xref: /dragonfly/sys/dev/netif/re/if_re.c (revision 2983445f)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  * $DragonFly: src/sys/dev/netif/re/if_re.c,v 1.99 2008/10/30 11:27:40 sephe Exp $
37  */
38 
39 /*
40  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
41  *
42  * Written by Bill Paul <wpaul@windriver.com>
43  * Senior Networking Software Engineer
44  * Wind River Systems
45  */
46 
47 /*
48  * This driver is designed to support RealTek's next generation of
49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
52  *
53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54  * with the older 8139 family, however it also supports a special
55  * C+ mode of operation that provides several new performance enhancing
56  * features. These include:
57  *
58  *	o Descriptor based DMA mechanism. Each descriptor represents
59  *	  a single packet fragment. Data buffers may be aligned on
60  *	  any byte boundary.
61  *
62  *	o 64-bit DMA
63  *
64  *	o TCP/IP checksum offload for both RX and TX
65  *
66  *	o High and normal priority transmit DMA rings
67  *
68  *	o VLAN tag insertion and extraction
69  *
70  *	o TCP large send (segmentation offload)
71  *
72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73  * programming API is fairly straightforward. The RX filtering, EEPROM
74  * access and PHY access is the same as it is on the older 8139 series
75  * chips.
76  *
77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78  * same programming API and feature set as the 8139C+ with the following
79  * differences and additions:
80  *
81  *	o 1000Mbps mode
82  *
83  *	o Jumbo frames
84  *
85  * 	o GMII and TBI ports/registers for interfacing with copper
86  *	  or fiber PHYs
87  *
88  *      o RX and TX DMA rings can have up to 1024 descriptors
89  *        (the 8139C+ allows a maximum of 64)
90  *
91  *	o Slight differences in register layout from the 8139C+
92  *
93  * The TX start and timer interrupt registers are at different locations
94  * on the 8169 than they are on the 8139C+. Also, the status word in the
95  * RX descriptor has a slightly different bit layout. The 8169 does not
96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97  * copper gigE PHY.
98  *
99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100  * (the 'S' stands for 'single-chip'). These devices have the same
101  * programming API as the older 8169, but also have some vendor-specific
102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104  *
105  * This driver takes advantage of the RX and TX checksum offload and
106  * VLAN tag insertion/extraction features. It also implements TX
107  * interrupt moderation using the timer interrupt registers, which
108  * significantly reduces TX interrupt load. There is also support
109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
110  * jumbo frames larger than 7440, so the max MTU possible with this
111  * driver is 7422 bytes.
112  */
113 
114 #define _IP_VHL
115 
116 #include "opt_polling.h"
117 
118 #include <sys/param.h>
119 #include <sys/bus.h>
120 #include <sys/endian.h>
121 #include <sys/kernel.h>
122 #include <sys/in_cksum.h>
123 #include <sys/interrupt.h>
124 #include <sys/malloc.h>
125 #include <sys/mbuf.h>
126 #include <sys/rman.h>
127 #include <sys/serialize.h>
128 #include <sys/socket.h>
129 #include <sys/sockio.h>
130 #include <sys/sysctl.h>
131 
132 #include <net/bpf.h>
133 #include <net/ethernet.h>
134 #include <net/if.h>
135 #include <net/ifq_var.h>
136 #include <net/if_arp.h>
137 #include <net/if_dl.h>
138 #include <net/if_media.h>
139 #include <net/if_types.h>
140 #include <net/vlan/if_vlan_var.h>
141 #include <net/vlan/if_vlan_ether.h>
142 
143 #include <netinet/ip.h>
144 
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
147 
148 #include <bus/pci/pcidevs.h>
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 #include <dev/netif/re/if_rereg.h>
156 #include <dev/netif/re/if_revar.h>
157 
158 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
159 
160 /*
161  * Various supported device vendors/types and their names.
162  */
163 static const struct re_type {
164 	uint16_t	re_vid;
165 	uint16_t	re_did;
166 	const char	*re_name;
167 } re_devs[] = {
168 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
169 	  "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170 
171 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
172 	  "RealTek 8139C+ 10/100BaseTX" },
173 
174 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
175 	  "RealTek 810x PCIe 10/100baseTX" },
176 
177 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
178 	  "RealTek 8111/8168 PCIe Gigabit Ethernet" },
179 
180 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
181 	  "RealTek 8110/8169 Gigabit Ethernet" },
182 
183 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
184 	  "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
185 
186 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
187 	  "Corega CG-LAPCIGT Gigabit Ethernet" },
188 
189 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
190 	  "Linksys EG1032 Gigabit Ethernet" },
191 
192 	{ PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
193 	  "US Robotics 997902 Gigabit Ethernet" },
194 
195 	{ PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
196 	  "TTTech MC322 Gigabit Ethernet" },
197 
198 	{ 0, 0, NULL }
199 };
200 
201 static const struct re_hwrev re_hwrevs[] = {
202 	{ RE_HWREV_8139CPLUS,	RE_MACVER_UNKN,		ETHERMTU,
203 	  RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
204 
205 	{ RE_HWREV_8169,	RE_MACVER_UNKN,		ETHERMTU,
206 	  RE_C_HWCSUM | RE_C_8169 },
207 
208 	{ RE_HWREV_8110S,	RE_MACVER_03,		RE_MTU_6K,
209 	  RE_C_HWCSUM | RE_C_8169 },
210 
211 	{ RE_HWREV_8169S,	RE_MACVER_03,		RE_MTU_6K,
212 	  RE_C_HWCSUM | RE_C_8169 },
213 
214 	{ RE_HWREV_8169SB,	RE_MACVER_04,		RE_MTU_6K,
215 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
216 
217 	{ RE_HWREV_8169SC1,	RE_MACVER_05,		RE_MTU_6K,
218 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
219 
220 	{ RE_HWREV_8169SC2,	RE_MACVER_06,		RE_MTU_6K,
221 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
222 
223 	{ RE_HWREV_8168B1,	RE_MACVER_21,		RE_MTU_6K,
224 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
225 
226 	{ RE_HWREV_8168B2,	RE_MACVER_23,		RE_MTU_6K,
227 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
228 
229 	{ RE_HWREV_8168B3,	RE_MACVER_23,		RE_MTU_6K,
230 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
231 
232 	{ RE_HWREV_8168C,	RE_MACVER_29,		RE_MTU_6K,
233 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
234 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
235 
236 	{ RE_HWREV_8168CP,	RE_MACVER_2B,		RE_MTU_6K,
237 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
238 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
239 
240 	{ RE_HWREV_8168D,	RE_MACVER_2A,		RE_MTU_9K,
241 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
242 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
243 
244 	{ RE_HWREV_8168E,   RE_MACVER_25,       RE_MTU_6K,
245 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
246 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
247 
248 	{ RE_HWREV_8100E,	RE_MACVER_UNKN,		ETHERMTU,
249 	  RE_C_HWCSUM | RE_C_FASTE },
250 
251 	{ RE_HWREV_8101E1,	RE_MACVER_16,		ETHERMTU,
252 	  RE_C_HWCSUM | RE_C_FASTE },
253 
254 	{ RE_HWREV_8101E2,	RE_MACVER_16,		ETHERMTU,
255 	  RE_C_HWCSUM | RE_C_FASTE },
256 
257 	{ RE_HWREV_8102E,	RE_MACVER_15,		ETHERMTU,
258 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
259 	  RE_C_FASTE },
260 
261 	{ RE_HWREV_8102EL,	RE_MACVER_15,		ETHERMTU,
262 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
263 	  RE_C_FASTE },
264 
265 	{ RE_HWREV_NULL, 0, 0, 0 }
266 };
267 
268 static int	re_probe(device_t);
269 static int	re_attach(device_t);
270 static int	re_detach(device_t);
271 static int	re_suspend(device_t);
272 static int	re_resume(device_t);
273 static void	re_shutdown(device_t);
274 
275 static int	re_allocmem(device_t);
276 static void	re_freemem(device_t);
277 static void	re_freebufmem(struct re_softc *, int, int);
278 static int	re_encap(struct re_softc *, struct mbuf **, int *);
279 static int	re_newbuf_std(struct re_softc *, int, int);
280 static int	re_newbuf_jumbo(struct re_softc *, int, int);
281 static void	re_setup_rxdesc(struct re_softc *, int);
282 static int	re_rx_list_init(struct re_softc *);
283 static int	re_tx_list_init(struct re_softc *);
284 static int	re_rxeof(struct re_softc *);
285 static int	re_txeof(struct re_softc *);
286 static int	re_tx_collect(struct re_softc *);
287 static void	re_intr(void *);
288 static void	re_tick(void *);
289 static void	re_tick_serialized(void *);
290 
291 static void	re_start(struct ifnet *);
292 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
293 static void	re_init(void *);
294 static void	re_stop(struct re_softc *);
295 static void	re_watchdog(struct ifnet *);
296 static int	re_ifmedia_upd(struct ifnet *);
297 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
298 
299 static void	re_eeprom_putbyte(struct re_softc *, int);
300 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
301 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int);
302 static void	re_get_eewidth(struct re_softc *);
303 
304 static int	re_gmii_readreg(device_t, int, int);
305 static int	re_gmii_writereg(device_t, int, int, int);
306 
307 static int	re_miibus_readreg(device_t, int, int);
308 static int	re_miibus_writereg(device_t, int, int, int);
309 static void	re_miibus_statchg(device_t);
310 
311 static void	re_setmulti(struct re_softc *);
312 static void	re_reset(struct re_softc *, int);
313 static void	re_get_eaddr(struct re_softc *, uint8_t *);
314 
315 static void	re_setup_hw_im(struct re_softc *);
316 static void	re_setup_sim_im(struct re_softc *);
317 static void	re_disable_hw_im(struct re_softc *);
318 static void	re_disable_sim_im(struct re_softc *);
319 static void	re_config_imtype(struct re_softc *, int);
320 static void	re_setup_intr(struct re_softc *, int, int);
321 
322 static int	re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
323 static int	re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
324 static int	re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
325 static int	re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
326 static int	re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
327 
328 static int	re_jpool_alloc(struct re_softc *);
329 static void	re_jpool_free(struct re_softc *);
330 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
331 static void	re_jbuf_free(void *);
332 static void	re_jbuf_ref(void *);
333 
334 #ifdef RE_DIAG
335 static int	re_diag(struct re_softc *);
336 #endif
337 
338 #ifdef DEVICE_POLLING
339 static void	re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
340 #endif
341 
342 static device_method_t re_methods[] = {
343 	/* Device interface */
344 	DEVMETHOD(device_probe,		re_probe),
345 	DEVMETHOD(device_attach,	re_attach),
346 	DEVMETHOD(device_detach,	re_detach),
347 	DEVMETHOD(device_suspend,	re_suspend),
348 	DEVMETHOD(device_resume,	re_resume),
349 	DEVMETHOD(device_shutdown,	re_shutdown),
350 
351 	/* bus interface */
352 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
353 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
354 
355 	/* MII interface */
356 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
357 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
358 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
359 
360 	{ 0, 0 }
361 };
362 
363 static driver_t re_driver = {
364 	"re",
365 	re_methods,
366 	sizeof(struct re_softc)
367 };
368 
369 static devclass_t re_devclass;
370 
371 DECLARE_DUMMY_MODULE(if_re);
372 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
373 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, 0, 0);
374 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, 0, 0);
375 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
376 
377 static int	re_rx_desc_count = RE_RX_DESC_CNT_DEF;
378 static int	re_tx_desc_count = RE_TX_DESC_CNT_DEF;
379 
380 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
381 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
382 
383 #define EE_SET(x)	\
384 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
385 
386 #define EE_CLR(x)	\
387 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
388 
389 static __inline void
390 re_free_rxchain(struct re_softc *sc)
391 {
392 	if (sc->re_head != NULL) {
393 		m_freem(sc->re_head);
394 		sc->re_head = sc->re_tail = NULL;
395 	}
396 }
397 
398 /*
399  * Send a read command and address to the EEPROM, check for ACK.
400  */
401 static void
402 re_eeprom_putbyte(struct re_softc *sc, int addr)
403 {
404 	int d, i;
405 
406 	d = addr | (RE_9346_READ << sc->re_eewidth);
407 
408 	/*
409 	 * Feed in each bit and strobe the clock.
410 	 */
411 	for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
412 		if (d & i)
413 			EE_SET(RE_EE_DATAIN);
414 		else
415 			EE_CLR(RE_EE_DATAIN);
416 		DELAY(100);
417 		EE_SET(RE_EE_CLK);
418 		DELAY(150);
419 		EE_CLR(RE_EE_CLK);
420 		DELAY(100);
421 	}
422 }
423 
424 /*
425  * Read a word of data stored in the EEPROM at address 'addr.'
426  */
427 static void
428 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
429 {
430 	int i;
431 	uint16_t word = 0;
432 
433 	/*
434 	 * Send address of word we want to read.
435 	 */
436 	re_eeprom_putbyte(sc, addr);
437 
438 	/*
439 	 * Start reading bits from EEPROM.
440 	 */
441 	for (i = 0x8000; i != 0; i >>= 1) {
442 		EE_SET(RE_EE_CLK);
443 		DELAY(100);
444 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
445 			word |= i;
446 		EE_CLR(RE_EE_CLK);
447 		DELAY(100);
448 	}
449 
450 	*dest = word;
451 }
452 
453 /*
454  * Read a sequence of words from the EEPROM.
455  */
456 static void
457 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
458 {
459 	int i;
460 	uint16_t word = 0, *ptr;
461 
462 	CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
463 	DELAY(100);
464 
465 	for (i = 0; i < cnt; i++) {
466 		CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
467 		re_eeprom_getword(sc, off + i, &word);
468 		CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
469 		ptr = (uint16_t *)(dest + (i * 2));
470 		*ptr = word;
471 	}
472 
473 	CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
474 }
475 
476 static void
477 re_get_eewidth(struct re_softc *sc)
478 {
479 	uint16_t re_did = 0;
480 
481 	sc->re_eewidth = 6;
482 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
483 	if (re_did != 0x8129)
484 		sc->re_eewidth = 8;
485 }
486 
487 static int
488 re_gmii_readreg(device_t dev, int phy, int reg)
489 {
490 	struct re_softc *sc = device_get_softc(dev);
491 	u_int32_t rval;
492 	int i;
493 
494 	if (phy != 1)
495 		return(0);
496 
497 	/* Let the rgephy driver read the GMEDIASTAT register */
498 
499 	if (reg == RE_GMEDIASTAT)
500 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
501 
502 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
503 	DELAY(1000);
504 
505 	for (i = 0; i < RE_TIMEOUT; i++) {
506 		rval = CSR_READ_4(sc, RE_PHYAR);
507 		if (rval & RE_PHYAR_BUSY)
508 			break;
509 		DELAY(100);
510 	}
511 
512 	if (i == RE_TIMEOUT) {
513 		device_printf(dev, "PHY read failed\n");
514 		return(0);
515 	}
516 
517 	return(rval & RE_PHYAR_PHYDATA);
518 }
519 
520 static int
521 re_gmii_writereg(device_t dev, int phy, int reg, int data)
522 {
523 	struct re_softc *sc = device_get_softc(dev);
524 	uint32_t rval;
525 	int i;
526 
527 	CSR_WRITE_4(sc, RE_PHYAR,
528 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
529 	DELAY(1000);
530 
531 	for (i = 0; i < RE_TIMEOUT; i++) {
532 		rval = CSR_READ_4(sc, RE_PHYAR);
533 		if ((rval & RE_PHYAR_BUSY) == 0)
534 			break;
535 		DELAY(100);
536 	}
537 
538 	if (i == RE_TIMEOUT)
539 		device_printf(dev, "PHY write failed\n");
540 
541 	return(0);
542 }
543 
544 static int
545 re_miibus_readreg(device_t dev, int phy, int reg)
546 {
547 	struct re_softc	*sc = device_get_softc(dev);
548 	uint16_t rval = 0;
549 	uint16_t re8139_reg = 0;
550 
551 	if (!RE_IS_8139CP(sc)) {
552 		rval = re_gmii_readreg(dev, phy, reg);
553 		return(rval);
554 	}
555 
556 	/* Pretend the internal PHY is only at address 0 */
557 	if (phy)
558 		return(0);
559 
560 	switch(reg) {
561 	case MII_BMCR:
562 		re8139_reg = RE_BMCR;
563 		break;
564 	case MII_BMSR:
565 		re8139_reg = RE_BMSR;
566 		break;
567 	case MII_ANAR:
568 		re8139_reg = RE_ANAR;
569 		break;
570 	case MII_ANER:
571 		re8139_reg = RE_ANER;
572 		break;
573 	case MII_ANLPAR:
574 		re8139_reg = RE_LPAR;
575 		break;
576 	case MII_PHYIDR1:
577 	case MII_PHYIDR2:
578 		return(0);
579 	/*
580 	 * Allow the rlphy driver to read the media status
581 	 * register. If we have a link partner which does not
582 	 * support NWAY, this is the register which will tell
583 	 * us the results of parallel detection.
584 	 */
585 	case RE_MEDIASTAT:
586 		return(CSR_READ_1(sc, RE_MEDIASTAT));
587 	default:
588 		device_printf(dev, "bad phy register\n");
589 		return(0);
590 	}
591 	rval = CSR_READ_2(sc, re8139_reg);
592 	if (re8139_reg == RE_BMCR) {
593 		/* 8139C+ has different bit layout. */
594 		rval &= ~(BMCR_LOOP | BMCR_ISO);
595 	}
596 	return(rval);
597 }
598 
599 static int
600 re_miibus_writereg(device_t dev, int phy, int reg, int data)
601 {
602 	struct re_softc *sc= device_get_softc(dev);
603 	u_int16_t re8139_reg = 0;
604 
605 	if (!RE_IS_8139CP(sc))
606 		return(re_gmii_writereg(dev, phy, reg, data));
607 
608 	/* Pretend the internal PHY is only at address 0 */
609 	if (phy)
610 		return(0);
611 
612 	switch(reg) {
613 	case MII_BMCR:
614 		re8139_reg = RE_BMCR;
615 		/* 8139C+ has different bit layout. */
616 		data &= ~(BMCR_LOOP | BMCR_ISO);
617 		break;
618 	case MII_BMSR:
619 		re8139_reg = RE_BMSR;
620 		break;
621 	case MII_ANAR:
622 		re8139_reg = RE_ANAR;
623 		break;
624 	case MII_ANER:
625 		re8139_reg = RE_ANER;
626 		break;
627 	case MII_ANLPAR:
628 		re8139_reg = RE_LPAR;
629 		break;
630 	case MII_PHYIDR1:
631 	case MII_PHYIDR2:
632 		return(0);
633 	default:
634 		device_printf(dev, "bad phy register\n");
635 		return(0);
636 	}
637 	CSR_WRITE_2(sc, re8139_reg, data);
638 	return(0);
639 }
640 
641 static void
642 re_miibus_statchg(device_t dev)
643 {
644 }
645 
646 /*
647  * Program the 64-bit multicast hash filter.
648  */
649 static void
650 re_setmulti(struct re_softc *sc)
651 {
652 	struct ifnet *ifp = &sc->arpcom.ac_if;
653 	int h = 0;
654 	uint32_t hashes[2] = { 0, 0 };
655 	struct ifmultiaddr *ifma;
656 	uint32_t rxfilt;
657 	int mcnt = 0;
658 
659 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
660 
661 	/* Set the individual bit to receive frames for this host only. */
662 	rxfilt |= RE_RXCFG_RX_INDIV;
663 	/* Set capture broadcast bit to capture broadcast frames. */
664 	rxfilt |= RE_RXCFG_RX_BROAD;
665 
666 	rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
667 	if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
668 		rxfilt |= RE_RXCFG_RX_MULTI;
669 
670 		/* If we want promiscuous mode, set the allframes bit. */
671 		if (ifp->if_flags & IFF_PROMISC)
672 			rxfilt |= RE_RXCFG_RX_ALLPHYS;
673 
674 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
675 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
676 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
677 		return;
678 	}
679 
680 	/* first, zot all the existing hash bits */
681 	CSR_WRITE_4(sc, RE_MAR0, 0);
682 	CSR_WRITE_4(sc, RE_MAR4, 0);
683 
684 	/* now program new ones */
685 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
686 		if (ifma->ifma_addr->sa_family != AF_LINK)
687 			continue;
688 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
689 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
690 		if (h < 32)
691 			hashes[0] |= (1 << h);
692 		else
693 			hashes[1] |= (1 << (h - 32));
694 		mcnt++;
695 	}
696 
697 	if (mcnt)
698 		rxfilt |= RE_RXCFG_RX_MULTI;
699 	else
700 		rxfilt &= ~RE_RXCFG_RX_MULTI;
701 
702 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
703 
704 	/*
705 	 * For some unfathomable reason, RealTek decided to reverse
706 	 * the order of the multicast hash registers in the PCI Express
707 	 * parts. This means we have to write the hash pattern in reverse
708 	 * order for those devices.
709 	 */
710 	if (sc->re_caps & RE_C_PCIE) {
711 		CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[1]));
712 		CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[0]));
713 	} else {
714 		CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
715 		CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
716 	}
717 }
718 
719 static void
720 re_reset(struct re_softc *sc, int running)
721 {
722 	int i;
723 
724 	if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
725 		CSR_WRITE_1(sc, RE_COMMAND,
726 			    RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
727 		DELAY(100);
728 	}
729 
730 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
731 
732 	for (i = 0; i < RE_TIMEOUT; i++) {
733 		DELAY(10);
734 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
735 			break;
736 	}
737 	if (i == RE_TIMEOUT)
738 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
739 }
740 
741 #ifdef RE_DIAG
742 /*
743  * The following routine is designed to test for a defect on some
744  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
745  * lines connected to the bus, however for a 32-bit only card, they
746  * should be pulled high. The result of this defect is that the
747  * NIC will not work right if you plug it into a 64-bit slot: DMA
748  * operations will be done with 64-bit transfers, which will fail
749  * because the 64-bit data lines aren't connected.
750  *
751  * There's no way to work around this (short of talking a soldering
752  * iron to the board), however we can detect it. The method we use
753  * here is to put the NIC into digital loopback mode, set the receiver
754  * to promiscuous mode, and then try to send a frame. We then compare
755  * the frame data we sent to what was received. If the data matches,
756  * then the NIC is working correctly, otherwise we know the user has
757  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
758  * slot. In the latter case, there's no way the NIC can work correctly,
759  * so we print out a message on the console and abort the device attach.
760  */
761 
762 static int
763 re_diag(struct re_softc *sc)
764 {
765 	struct ifnet *ifp = &sc->arpcom.ac_if;
766 	struct mbuf *m0;
767 	struct ether_header *eh;
768 	struct re_desc *cur_rx;
769 	uint16_t status;
770 	uint32_t rxstat;
771 	int total_len, i, error = 0, phyaddr;
772 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
773 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
774 
775 	/* Allocate a single mbuf */
776 
777 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
778 	if (m0 == NULL)
779 		return(ENOBUFS);
780 
781 	/*
782 	 * Initialize the NIC in test mode. This sets the chip up
783 	 * so that it can send and receive frames, but performs the
784 	 * following special functions:
785 	 * - Puts receiver in promiscuous mode
786 	 * - Enables digital loopback mode
787 	 * - Leaves interrupts turned off
788 	 */
789 
790 	ifp->if_flags |= IFF_PROMISC;
791 	sc->re_flags |= RE_F_TESTMODE;
792 	re_init(sc);
793 	sc->re_flags |= RE_F_LINKED;
794 	if (!RE_IS_8139CP(sc))
795 		phyaddr = 1;
796 	else
797 		phyaddr = 0;
798 
799 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
800 	for (i = 0; i < RE_TIMEOUT; i++) {
801 		status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
802 		if (!(status & BMCR_RESET))
803 			break;
804 	}
805 
806 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
807 	CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
808 
809 	DELAY(100000);
810 
811 	/* Put some data in the mbuf */
812 
813 	eh = mtod(m0, struct ether_header *);
814 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
815 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
816 	eh->ether_type = htons(ETHERTYPE_IP);
817 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
818 
819 	/*
820 	 * Queue the packet, start transmission.
821 	 * Note: ifq_handoff() ultimately calls re_start() for us.
822 	 */
823 
824 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
825 	error = ifq_handoff(ifp, m0, NULL);
826 	if (error) {
827 		m0 = NULL;
828 		goto done;
829 	}
830 	m0 = NULL;
831 
832 	/* Wait for it to propagate through the chip */
833 
834 	DELAY(100000);
835 	for (i = 0; i < RE_TIMEOUT; i++) {
836 		status = CSR_READ_2(sc, RE_ISR);
837 		CSR_WRITE_2(sc, RE_ISR, status);
838 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
839 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
840 			break;
841 		DELAY(10);
842 	}
843 
844 	if (i == RE_TIMEOUT) {
845 		if_printf(ifp, "diagnostic failed to receive packet "
846 			  "in loopback mode\n");
847 		error = EIO;
848 		goto done;
849 	}
850 
851 	/*
852 	 * The packet should have been dumped into the first
853 	 * entry in the RX DMA ring. Grab it from there.
854 	 */
855 
856 	bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
857 			BUS_DMASYNC_POSTREAD);
858 	bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
859 			  sc->re_ldata.re_rx_dmamap[0]);
860 
861 	m0 = sc->re_ldata.re_rx_mbuf[0];
862 	sc->re_ldata.re_rx_mbuf[0] = NULL;
863 	eh = mtod(m0, struct ether_header *);
864 
865 	cur_rx = &sc->re_ldata.re_rx_list[0];
866 	total_len = RE_RXBYTES(cur_rx);
867 	rxstat = le32toh(cur_rx->re_cmdstat);
868 
869 	if (total_len != ETHER_MIN_LEN) {
870 		if_printf(ifp, "diagnostic failed, received short packet\n");
871 		error = EIO;
872 		goto done;
873 	}
874 
875 	/* Test that the received packet data matches what we sent. */
876 
877 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
878 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
879 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
880 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
881 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
882 		    dst, ":", src, ":", ETHERTYPE_IP);
883 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
884 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
885 		    ntohs(eh->ether_type));
886 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
887 		    "into a 64-bit PCI slot.\n");
888 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
889 		    "for proper operation.\n");
890 		if_printf(ifp, "Read the re(4) man page for more details.\n");
891 		error = EIO;
892 	}
893 
894 done:
895 	/* Turn interface off, release resources */
896 
897 	sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
898 	ifp->if_flags &= ~IFF_PROMISC;
899 	re_stop(sc);
900 	if (m0 != NULL)
901 		m_freem(m0);
902 
903 	return (error);
904 }
905 #endif	/* RE_DIAG */
906 
907 /*
908  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
909  * IDs against our list and return a device name if we find a match.
910  */
911 static int
912 re_probe(device_t dev)
913 {
914 	const struct re_type *t;
915 	const struct re_hwrev *hw_rev;
916 	struct re_softc *sc;
917 	int rid;
918 	uint32_t hwrev, macmode, txcfg;
919 	uint16_t vendor, product;
920 
921 	vendor = pci_get_vendor(dev);
922 	product = pci_get_device(dev);
923 
924 	/*
925 	 * Only attach to rev.3 of the Linksys EG1032 adapter.
926 	 * Rev.2 is supported by sk(4).
927 	 */
928 	if (vendor == PCI_VENDOR_LINKSYS &&
929 	    product == PCI_PRODUCT_LINKSYS_EG1032 &&
930 	    pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
931 		return ENXIO;
932 
933 	if (vendor == PCI_VENDOR_REALTEK &&
934 	    product == PCI_PRODUCT_REALTEK_RT8139 &&
935 	    pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
936 		/* Poor 8139 */
937 		return ENXIO;
938 	}
939 
940 	for (t = re_devs; t->re_name != NULL; t++) {
941 		if (product == t->re_did && vendor == t->re_vid)
942 			break;
943 	}
944 
945 	/*
946 	 * Check if we found a RealTek device.
947 	 */
948 	if (t->re_name == NULL)
949 		return ENXIO;
950 
951 	/*
952 	 * Temporarily map the I/O space so we can read the chip ID register.
953 	 */
954 	sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
955 	rid = RE_PCI_LOIO;
956 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
957 					    RF_ACTIVE);
958 	if (sc->re_res == NULL) {
959 		device_printf(dev, "couldn't map ports/memory\n");
960 		kfree(sc, M_TEMP);
961 		return ENXIO;
962 	}
963 
964 	sc->re_btag = rman_get_bustag(sc->re_res);
965 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
966 
967 	txcfg = CSR_READ_4(sc, RE_TXCFG);
968 	hwrev = txcfg & RE_TXCFG_HWREV;
969 	macmode = txcfg & RE_TXCFG_MACMODE;
970 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
971 	kfree(sc, M_TEMP);
972 
973 	/*
974 	 * and continue matching for the specific chip...
975 	 */
976 	for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
977 		if (hw_rev->re_hwrev == hwrev) {
978 			sc = device_get_softc(dev);
979 
980 			sc->re_hwrev = hw_rev->re_hwrev;
981 			sc->re_macver = hw_rev->re_macver;
982 			sc->re_caps = hw_rev->re_caps;
983 			sc->re_maxmtu = hw_rev->re_maxmtu;
984 
985 			/*
986 			 * Apply chip property fixup
987 			 */
988 			switch (sc->re_hwrev) {
989 			case RE_HWREV_8101E1:
990 			case RE_HWREV_8101E2:
991 				if (macmode == 0)
992 					sc->re_macver = RE_MACVER_11;
993 				else if (macmode == 0x200000)
994 					sc->re_macver = RE_MACVER_12;
995 				break;
996 			case RE_HWREV_8102E:
997 			case RE_HWREV_8102EL:
998 				if (macmode == 0)
999 					sc->re_macver = RE_MACVER_13;
1000 				else if (macmode == 0x100000)
1001 					sc->re_macver = RE_MACVER_14;
1002 				break;
1003 			case RE_HWREV_8168B2:
1004 			case RE_HWREV_8168B3:
1005 				if (macmode == 0)
1006 					sc->re_macver = RE_MACVER_22;
1007 				break;
1008 			case RE_HWREV_8168C:
1009 				if (macmode == 0)
1010 					sc->re_macver = RE_MACVER_24;
1011 				else if (macmode == 0x200000)
1012 					sc->re_macver = RE_MACVER_25;
1013 				else if (macmode == 0x300000)
1014 					sc->re_macver = RE_MACVER_27;
1015 				break;
1016 			case RE_HWREV_8168CP:
1017 				if (macmode == 0)
1018 					sc->re_macver = RE_MACVER_26;
1019 				else if (macmode == 0x100000)
1020 					sc->re_macver = RE_MACVER_28;
1021 				break;
1022 			}
1023 			if (pci_is_pcie(dev))
1024 				sc->re_caps |= RE_C_PCIE;
1025 
1026 			device_set_desc(dev, t->re_name);
1027 			return 0;
1028 		}
1029 	}
1030 
1031 	if (bootverbose) {
1032 		device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1033 			      hwrev, macmode);
1034 	}
1035 	return ENXIO;
1036 }
1037 
1038 static int
1039 re_allocmem(device_t dev)
1040 {
1041 	struct re_softc *sc = device_get_softc(dev);
1042 	bus_dmamem_t dmem;
1043 	int error, i;
1044 
1045 	/*
1046 	 * Allocate list data
1047 	 */
1048 	sc->re_ldata.re_tx_mbuf =
1049 	kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1050 		M_DEVBUF, M_ZERO | M_WAITOK);
1051 
1052 	sc->re_ldata.re_rx_mbuf =
1053 	kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1054 		M_DEVBUF, M_ZERO | M_WAITOK);
1055 
1056 	sc->re_ldata.re_rx_paddr =
1057 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1058 		M_DEVBUF, M_ZERO | M_WAITOK);
1059 
1060 	sc->re_ldata.re_tx_dmamap =
1061 	kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1062 		M_DEVBUF, M_ZERO | M_WAITOK);
1063 
1064 	sc->re_ldata.re_rx_dmamap =
1065 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1066 		M_DEVBUF, M_ZERO | M_WAITOK);
1067 
1068 	/*
1069 	 * Allocate the parent bus DMA tag appropriate for PCI.
1070 	 */
1071 	error = bus_dma_tag_create(NULL,	/* parent */
1072 			1, 0,			/* alignment, boundary */
1073 			BUS_SPACE_MAXADDR,	/* lowaddr */
1074 			BUS_SPACE_MAXADDR,	/* highaddr */
1075 			NULL, NULL,		/* filter, filterarg */
1076 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1077 			0,			/* nsegments */
1078 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1079 			0,			/* flags */
1080 			&sc->re_parent_tag);
1081 	if (error) {
1082 		device_printf(dev, "could not allocate parent dma tag\n");
1083 		return error;
1084 	}
1085 
1086 	/* Allocate TX descriptor list. */
1087 	error = bus_dmamem_coherent(sc->re_parent_tag,
1088 			RE_RING_ALIGN, 0,
1089 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1090 			RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1091 			&dmem);
1092 	if (error) {
1093 		device_printf(dev, "could not allocate TX ring\n");
1094 		return error;
1095 	}
1096 	sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1097 	sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1098 	sc->re_ldata.re_tx_list = dmem.dmem_addr;
1099 	sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1100 
1101 	/* Allocate RX descriptor list. */
1102 	error = bus_dmamem_coherent(sc->re_parent_tag,
1103 			RE_RING_ALIGN, 0,
1104 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1105 			RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1106 			&dmem);
1107 	if (error) {
1108 		device_printf(dev, "could not allocate RX ring\n");
1109 		return error;
1110 	}
1111 	sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1112 	sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1113 	sc->re_ldata.re_rx_list = dmem.dmem_addr;
1114 	sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1115 
1116 	/* Allocate maps for TX mbufs. */
1117 	error = bus_dma_tag_create(sc->re_parent_tag,
1118 			1, 0,
1119 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1120 			NULL, NULL,
1121 			RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1122 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1123 			&sc->re_ldata.re_tx_mtag);
1124 	if (error) {
1125 		device_printf(dev, "could not allocate TX buf dma tag\n");
1126 		return(error);
1127 	}
1128 
1129 	/* Create DMA maps for TX buffers */
1130 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1131 		error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1132 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1133 				&sc->re_ldata.re_tx_dmamap[i]);
1134 		if (error) {
1135 			device_printf(dev, "can't create DMA map for TX buf\n");
1136 			re_freebufmem(sc, i, 0);
1137 			return(error);
1138 		}
1139 	}
1140 
1141 	/* Allocate maps for RX mbufs. */
1142 	error = bus_dma_tag_create(sc->re_parent_tag,
1143 			RE_RXBUF_ALIGN, 0,
1144 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1145 			NULL, NULL,
1146 			MCLBYTES, 1, MCLBYTES,
1147 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1148 			&sc->re_ldata.re_rx_mtag);
1149 	if (error) {
1150 		device_printf(dev, "could not allocate RX buf dma tag\n");
1151 		return(error);
1152 	}
1153 
1154 	/* Create spare DMA map for RX */
1155 	error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1156 			&sc->re_ldata.re_rx_spare);
1157 	if (error) {
1158 		device_printf(dev, "can't create spare DMA map for RX\n");
1159 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1160 		sc->re_ldata.re_rx_mtag = NULL;
1161 		return error;
1162 	}
1163 
1164 	/* Create DMA maps for RX buffers */
1165 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1166 		error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1167 				BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1168 		if (error) {
1169 			device_printf(dev, "can't create DMA map for RX buf\n");
1170 			re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1171 			return(error);
1172 		}
1173 	}
1174 
1175 	/* Create jumbo buffer pool for RX if required */
1176 	if (sc->re_caps & RE_C_CONTIGRX) {
1177 		error = re_jpool_alloc(sc);
1178 		if (error) {
1179 			re_jpool_free(sc);
1180 			/* Disable jumbo frame support */
1181 			sc->re_maxmtu = ETHERMTU;
1182 		}
1183 	}
1184 	return(0);
1185 }
1186 
1187 static void
1188 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1189 {
1190 	int i;
1191 
1192 	/* Destroy all the RX and TX buffer maps */
1193 	if (sc->re_ldata.re_tx_mtag) {
1194 		for (i = 0; i < tx_cnt; i++) {
1195 			bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1196 					   sc->re_ldata.re_tx_dmamap[i]);
1197 		}
1198 		bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1199 		sc->re_ldata.re_tx_mtag = NULL;
1200 	}
1201 
1202 	if (sc->re_ldata.re_rx_mtag) {
1203 		for (i = 0; i < rx_cnt; i++) {
1204 			bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1205 					   sc->re_ldata.re_rx_dmamap[i]);
1206 		}
1207 		bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1208 				   sc->re_ldata.re_rx_spare);
1209 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1210 		sc->re_ldata.re_rx_mtag = NULL;
1211 	}
1212 }
1213 
1214 static void
1215 re_freemem(device_t dev)
1216 {
1217 	struct re_softc *sc = device_get_softc(dev);
1218 
1219 	/* Unload and free the RX DMA ring memory and map */
1220 	if (sc->re_ldata.re_rx_list_tag) {
1221 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1222 				  sc->re_ldata.re_rx_list_map);
1223 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1224 				sc->re_ldata.re_rx_list,
1225 				sc->re_ldata.re_rx_list_map);
1226 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1227 	}
1228 
1229 	/* Unload and free the TX DMA ring memory and map */
1230 	if (sc->re_ldata.re_tx_list_tag) {
1231 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1232 				  sc->re_ldata.re_tx_list_map);
1233 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1234 				sc->re_ldata.re_tx_list,
1235 				sc->re_ldata.re_tx_list_map);
1236 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1237 	}
1238 
1239 	/* Free RX/TX buf DMA stuffs */
1240 	re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1241 
1242 	/* Unload and free the stats buffer and map */
1243 	if (sc->re_ldata.re_stag) {
1244 		bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
1245 		bus_dmamem_free(sc->re_ldata.re_stag,
1246 				sc->re_ldata.re_stats,
1247 				sc->re_ldata.re_smap);
1248 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1249 	}
1250 
1251 	if (sc->re_caps & RE_C_CONTIGRX)
1252 		re_jpool_free(sc);
1253 
1254 	if (sc->re_parent_tag)
1255 		bus_dma_tag_destroy(sc->re_parent_tag);
1256 
1257 	if (sc->re_ldata.re_tx_mbuf != NULL)
1258 		kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1259 	if (sc->re_ldata.re_rx_mbuf != NULL)
1260 		kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1261 	if (sc->re_ldata.re_rx_paddr != NULL)
1262 		kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1263 	if (sc->re_ldata.re_tx_dmamap != NULL)
1264 		kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1265 	if (sc->re_ldata.re_rx_dmamap != NULL)
1266 		kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1267 }
1268 
1269 /*
1270  * Attach the interface. Allocate softc structures, do ifmedia
1271  * setup and ethernet/BPF attach.
1272  */
1273 static int
1274 re_attach(device_t dev)
1275 {
1276 	struct re_softc	*sc = device_get_softc(dev);
1277 	struct ifnet *ifp;
1278 	uint8_t eaddr[ETHER_ADDR_LEN];
1279 	int error = 0, rid, qlen;
1280 
1281 	callout_init(&sc->re_timer);
1282 	sc->re_dev = dev;
1283 
1284 	if (RE_IS_8139CP(sc)) {
1285 		sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1286 		sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1287 	} else {
1288 		sc->re_rx_desc_cnt = re_rx_desc_count;
1289 		if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1290 			sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1291 
1292 		sc->re_tx_desc_cnt = re_tx_desc_count;
1293 		if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1294 			sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1295 	}
1296 
1297 	qlen = RE_IFQ_MAXLEN;
1298 	if (sc->re_tx_desc_cnt > qlen)
1299 		qlen = sc->re_tx_desc_cnt;
1300 
1301 	sc->re_rxbuf_size = MCLBYTES;
1302 	sc->re_newbuf = re_newbuf_std;
1303 
1304 	sc->re_tx_time = 5;		/* 125us */
1305 	sc->re_rx_time = 2;		/* 50us */
1306 	if (sc->re_caps & RE_C_PCIE)
1307 		sc->re_sim_time = 75;	/* 75us */
1308 	else
1309 		sc->re_sim_time = 125;	/* 125us */
1310 	if (!RE_IS_8139CP(sc)) {
1311 		/* simulated interrupt moderation */
1312 		sc->re_imtype = RE_IMTYPE_SIM;
1313 	} else {
1314 		sc->re_imtype = RE_IMTYPE_NONE;
1315 	}
1316 	re_config_imtype(sc, sc->re_imtype);
1317 
1318 	sysctl_ctx_init(&sc->re_sysctl_ctx);
1319 	sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1320 					     SYSCTL_STATIC_CHILDREN(_hw),
1321 					     OID_AUTO,
1322 					     device_get_nameunit(dev),
1323 					     CTLFLAG_RD, 0, "");
1324 	if (sc->re_sysctl_tree == NULL) {
1325 		device_printf(dev, "can't add sysctl node\n");
1326 		error = ENXIO;
1327 		goto fail;
1328 	}
1329 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1330 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1331 		       "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1332 		       0, "RX desc count");
1333 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1334 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1335 		       "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1336 		       0, "TX desc count");
1337 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1338 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1339 			OID_AUTO, "sim_time",
1340 			CTLTYPE_INT | CTLFLAG_RW,
1341 			sc, 0, re_sysctl_simtime, "I",
1342 			"Simulated interrupt moderation time (usec).");
1343 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1344 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1345 			OID_AUTO, "imtype",
1346 			CTLTYPE_INT | CTLFLAG_RW,
1347 			sc, 0, re_sysctl_imtype, "I",
1348 			"Interrupt moderation type -- "
1349 			"0:disable, 1:simulated, "
1350 			"2:hardware(if supported)");
1351 	if (sc->re_caps & RE_C_HWIM) {
1352 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1353 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1354 				OID_AUTO, "hw_rxtime",
1355 				CTLTYPE_INT | CTLFLAG_RW,
1356 				sc, 0, re_sysctl_rxtime, "I",
1357 				"Hardware interrupt moderation time "
1358 				"(unit: 25usec).");
1359 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1360 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1361 				OID_AUTO, "hw_txtime",
1362 				CTLTYPE_INT | CTLFLAG_RW,
1363 				sc, 0, re_sysctl_txtime, "I",
1364 				"Hardware interrupt moderation time "
1365 				"(unit: 25usec).");
1366 	}
1367 
1368 #ifndef BURN_BRIDGES
1369 	/*
1370 	 * Handle power management nonsense.
1371 	 */
1372 
1373 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1374 		uint32_t membase, irq;
1375 
1376 		/* Save important PCI config data. */
1377 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1378 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1379 
1380 		/* Reset the power state. */
1381 		device_printf(dev, "chip is in D%d power mode "
1382 		    "-- setting to D0\n", pci_get_powerstate(dev));
1383 
1384 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1385 
1386 		/* Restore PCI config data. */
1387 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1388 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1389 	}
1390 #endif
1391 	/*
1392 	 * Map control/status registers.
1393 	 */
1394 	pci_enable_busmaster(dev);
1395 
1396 	rid = RE_PCI_LOIO;
1397 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1398 					    RF_ACTIVE);
1399 
1400 	if (sc->re_res == NULL) {
1401 		device_printf(dev, "couldn't map ports\n");
1402 		error = ENXIO;
1403 		goto fail;
1404 	}
1405 
1406 	sc->re_btag = rman_get_bustag(sc->re_res);
1407 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1408 
1409 	/* Allocate interrupt */
1410 	rid = 0;
1411 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1412 					    RF_SHAREABLE | RF_ACTIVE);
1413 
1414 	if (sc->re_irq == NULL) {
1415 		device_printf(dev, "couldn't map interrupt\n");
1416 		error = ENXIO;
1417 		goto fail;
1418 	}
1419 
1420 	/* Reset the adapter. */
1421 	re_reset(sc, 0);
1422 
1423 	if (RE_IS_8139CP(sc)) {
1424 		sc->re_bus_speed = 33; /* XXX */
1425 	} else if (sc->re_caps & RE_C_PCIE) {
1426 		sc->re_bus_speed = 125;
1427 	} else {
1428 		uint8_t cfg2;
1429 
1430 		cfg2 = CSR_READ_1(sc, RE_CFG2);
1431 		switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1432 		case RE_CFG2_PCICLK_33MHZ:
1433 			sc->re_bus_speed = 33;
1434 			break;
1435 		case RE_CFG2_PCICLK_66MHZ:
1436 			sc->re_bus_speed = 66;
1437 			break;
1438 		default:
1439 			device_printf(dev, "unknown bus speed, assume 33MHz\n");
1440 			sc->re_bus_speed = 33;
1441 			break;
1442 		}
1443 		if (cfg2 & RE_CFG2_PCI64)
1444 			sc->re_caps |= RE_C_PCI64;
1445 	}
1446 	device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1447 		      "PCI%s %dMHz\n",
1448 		      sc->re_hwrev, sc->re_macver,
1449 		      (sc->re_caps & RE_C_PCIE) ?
1450 		      "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1451 		      sc->re_bus_speed);
1452 
1453 	/*
1454 	 * NOTE:
1455 	 * DO NOT try to adjust config1 and config5 which was spotted in
1456 	 * Realtek's Linux drivers.  It will _permanently_ damage certain
1457 	 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1458 	 */
1459 
1460 	re_get_eaddr(sc, eaddr);
1461 
1462 	if (!RE_IS_8139CP(sc)) {
1463 		/* Set RX length mask */
1464 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1465 		sc->re_txstart = RE_GTXSTART;
1466 	} else {
1467 		/* Set RX length mask */
1468 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1469 		sc->re_txstart = RE_TXSTART;
1470 	}
1471 
1472 	/* Allocate DMA stuffs */
1473 	error = re_allocmem(dev);
1474 	if (error)
1475 		goto fail;
1476 
1477 	/*
1478 	 * Apply some magic PCI settings from Realtek ...
1479 	 */
1480 	if (RE_IS_8169(sc)) {
1481 		CSR_WRITE_1(sc, 0x82, 1);
1482 		pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1483 	}
1484 	pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1485 
1486 	if (sc->re_caps & RE_C_MAC2) {
1487 		/*
1488 		 * Following part is extracted from Realtek BSD driver v176.
1489 		 * However, this does _not_ make much/any sense:
1490 		 * 8168C's PCI Express device control is located at 0x78,
1491 		 * so the reading from 0x79 (higher part of 0x78) and setting
1492 		 * the 4~6bits intend to enlarge the "max read request size"
1493 		 * (we will do it).  The content of the rest part of this
1494 		 * register is not meaningful to other PCI registers, so
1495 		 * writing the value to 0x54 could be completely wrong.
1496 		 * 0x80 is the lower part of PCI Express device status, non-
1497 		 * reserved bits are RW1C, writing 0 to them will not have
1498 		 * any effect at all.
1499 		 */
1500 #ifdef foo
1501 		uint8_t val;
1502 
1503 		val = pci_read_config(dev, 0x79, 1);
1504 		val = (val & ~0x70) | 0x50;
1505 		pci_write_config(dev, 0x54, val, 1);
1506 		pci_write_config(dev, 0x80, 0, 1);
1507 #endif
1508 	}
1509 
1510 	/*
1511 	 * Apply some PHY fixup from Realtek ...
1512 	 */
1513 	if (sc->re_hwrev == RE_HWREV_8110S) {
1514 		CSR_WRITE_1(sc, 0x82, 1);
1515 		re_miibus_writereg(dev, 1, 0xb, 0);
1516 	}
1517 	if (sc->re_caps & RE_C_PHYPMGT) {
1518 		/* Power up PHY */
1519 		re_miibus_writereg(dev, 1, 0x1f, 0);
1520 		re_miibus_writereg(dev, 1, 0xe, 0);
1521 	}
1522 
1523 	/* Do MII setup */
1524 	if (mii_phy_probe(dev, &sc->re_miibus,
1525 	    re_ifmedia_upd, re_ifmedia_sts)) {
1526 		device_printf(dev, "MII without any phy!\n");
1527 		error = ENXIO;
1528 		goto fail;
1529 	}
1530 
1531 	ifp = &sc->arpcom.ac_if;
1532 	ifp->if_softc = sc;
1533 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1534 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1535 	ifp->if_ioctl = re_ioctl;
1536 	ifp->if_start = re_start;
1537 #ifdef DEVICE_POLLING
1538 	ifp->if_poll = re_poll;
1539 #endif
1540 	ifp->if_watchdog = re_watchdog;
1541 	ifp->if_init = re_init;
1542 	if (!RE_IS_8139CP(sc)) /* XXX */
1543 		ifp->if_baudrate = 1000000000;
1544 	else
1545 		ifp->if_baudrate = 100000000;
1546 	ifq_set_maxlen(&ifp->if_snd, qlen);
1547 	ifq_set_ready(&ifp->if_snd);
1548 
1549 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1550 	if (sc->re_caps & RE_C_HWCSUM)
1551 		ifp->if_capabilities |= IFCAP_HWCSUM;
1552 
1553 	ifp->if_capenable = ifp->if_capabilities;
1554 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1555 		ifp->if_hwassist = RE_CSUM_FEATURES;
1556 	else
1557 		ifp->if_hwassist = 0;
1558 
1559 	/*
1560 	 * Call MI attach routine.
1561 	 */
1562 	ether_ifattach(ifp, eaddr, NULL);
1563 
1564 #ifdef RE_DIAG
1565 	/*
1566 	 * Perform hardware diagnostic on the original RTL8169.
1567 	 * Some 32-bit cards were incorrectly wired and would
1568 	 * malfunction if plugged into a 64-bit slot.
1569 	 */
1570 	if (sc->re_hwrev == RE_HWREV_8169) {
1571 		lwkt_serialize_enter(ifp->if_serializer);
1572 		error = re_diag(sc);
1573 		lwkt_serialize_exit(ifp->if_serializer);
1574 
1575 		if (error) {
1576 			device_printf(dev, "hardware diagnostic failure\n");
1577 			ether_ifdetach(ifp);
1578 			goto fail;
1579 		}
1580 	}
1581 #endif	/* RE_DIAG */
1582 
1583 	/* Hook interrupt last to avoid having to lock softc */
1584 	error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1585 			       &sc->re_intrhand, ifp->if_serializer);
1586 
1587 	if (error) {
1588 		device_printf(dev, "couldn't set up irq\n");
1589 		ether_ifdetach(ifp);
1590 		goto fail;
1591 	}
1592 
1593 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->re_irq));
1594 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1595 
1596 fail:
1597 	if (error)
1598 		re_detach(dev);
1599 
1600 	return (error);
1601 }
1602 
1603 /*
1604  * Shutdown hardware and free up resources. This can be called any
1605  * time after the mutex has been initialized. It is called in both
1606  * the error case in attach and the normal detach case so it needs
1607  * to be careful about only freeing resources that have actually been
1608  * allocated.
1609  */
1610 static int
1611 re_detach(device_t dev)
1612 {
1613 	struct re_softc *sc = device_get_softc(dev);
1614 	struct ifnet *ifp = &sc->arpcom.ac_if;
1615 
1616 	/* These should only be active if attach succeeded */
1617 	if (device_is_attached(dev)) {
1618 		lwkt_serialize_enter(ifp->if_serializer);
1619 		re_stop(sc);
1620 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1621 		lwkt_serialize_exit(ifp->if_serializer);
1622 
1623 		ether_ifdetach(ifp);
1624 	}
1625 	if (sc->re_miibus)
1626 		device_delete_child(dev, sc->re_miibus);
1627 	bus_generic_detach(dev);
1628 
1629 	if (sc->re_sysctl_tree != NULL)
1630 		sysctl_ctx_free(&sc->re_sysctl_ctx);
1631 
1632 	if (sc->re_irq)
1633 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1634 	if (sc->re_res) {
1635 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1636 				     sc->re_res);
1637 	}
1638 
1639 	/* Free DMA stuffs */
1640 	re_freemem(dev);
1641 
1642 	return(0);
1643 }
1644 
1645 static void
1646 re_setup_rxdesc(struct re_softc *sc, int idx)
1647 {
1648 	bus_addr_t paddr;
1649 	uint32_t cmdstat;
1650 	struct re_desc *d;
1651 
1652 	paddr = sc->re_ldata.re_rx_paddr[idx];
1653 	d = &sc->re_ldata.re_rx_list[idx];
1654 
1655 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1656 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1657 
1658 	cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1659 	if (idx == (sc->re_rx_desc_cnt - 1))
1660 		cmdstat |= RE_RDESC_CMD_EOR;
1661 	d->re_cmdstat = htole32(cmdstat);
1662 }
1663 
1664 static int
1665 re_newbuf_std(struct re_softc *sc, int idx, int init)
1666 {
1667 	bus_dma_segment_t seg;
1668 	bus_dmamap_t map;
1669 	struct mbuf *m;
1670 	int error, nsegs;
1671 
1672 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1673 	if (m == NULL) {
1674 		error = ENOBUFS;
1675 
1676 		if (init) {
1677 			if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1678 			return error;
1679 		} else {
1680 			goto back;
1681 		}
1682 	}
1683 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1684 
1685 	/*
1686 	 * NOTE:
1687 	 * re(4) chips need address of the receive buffer to be 8-byte
1688 	 * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1689 	 */
1690 
1691 	error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1692 			sc->re_ldata.re_rx_spare, m,
1693 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1694 	if (error) {
1695 		m_freem(m);
1696 		if (init) {
1697 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1698 			return error;
1699 		} else {
1700 			goto back;
1701 		}
1702 	}
1703 
1704 	if (!init) {
1705 		bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1706 				sc->re_ldata.re_rx_dmamap[idx],
1707 				BUS_DMASYNC_POSTREAD);
1708 		bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1709 				  sc->re_ldata.re_rx_dmamap[idx]);
1710 	}
1711 	sc->re_ldata.re_rx_mbuf[idx] = m;
1712 	sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1713 
1714 	map = sc->re_ldata.re_rx_dmamap[idx];
1715 	sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1716 	sc->re_ldata.re_rx_spare = map;
1717 back:
1718 	re_setup_rxdesc(sc, idx);
1719 	return error;
1720 }
1721 
1722 static int
1723 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1724 {
1725 	struct mbuf *m;
1726 	struct re_jbuf *jbuf;
1727 	int error = 0;
1728 
1729 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1730 	if (m == NULL) {
1731 		error = ENOBUFS;
1732 		if (init) {
1733 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1734 			return error;
1735 		} else {
1736 			goto back;
1737 		}
1738 	}
1739 
1740 	jbuf = re_jbuf_alloc(sc);
1741 	if (jbuf == NULL) {
1742 		m_freem(m);
1743 
1744 		error = ENOBUFS;
1745 		if (init) {
1746 			if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1747 			return error;
1748 		} else {
1749 			goto back;
1750 		}
1751 	}
1752 
1753 	m->m_ext.ext_arg = jbuf;
1754 	m->m_ext.ext_buf = jbuf->re_buf;
1755 	m->m_ext.ext_free = re_jbuf_free;
1756 	m->m_ext.ext_ref = re_jbuf_ref;
1757 	m->m_ext.ext_size = sc->re_rxbuf_size;
1758 
1759 	m->m_data = m->m_ext.ext_buf;
1760 	m->m_flags |= M_EXT;
1761 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1762 
1763 	/*
1764 	 * NOTE:
1765 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1766 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1767 	 */
1768 
1769 	sc->re_ldata.re_rx_mbuf[idx] = m;
1770 	sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1771 back:
1772 	re_setup_rxdesc(sc, idx);
1773 	return error;
1774 }
1775 
1776 static int
1777 re_tx_list_init(struct re_softc *sc)
1778 {
1779 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1780 
1781 	sc->re_ldata.re_tx_prodidx = 0;
1782 	sc->re_ldata.re_tx_considx = 0;
1783 	sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1784 
1785 	return(0);
1786 }
1787 
1788 static int
1789 re_rx_list_init(struct re_softc *sc)
1790 {
1791 	int i, error;
1792 
1793 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1794 
1795 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1796 		error = sc->re_newbuf(sc, i, 1);
1797 		if (error)
1798 			return(error);
1799 	}
1800 
1801 	sc->re_ldata.re_rx_prodidx = 0;
1802 	sc->re_head = sc->re_tail = NULL;
1803 
1804 	return(0);
1805 }
1806 
1807 #define RE_IP4_PACKET	0x1
1808 #define RE_TCP_PACKET	0x2
1809 #define RE_UDP_PACKET	0x4
1810 
1811 static __inline uint8_t
1812 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1813 {
1814 	uint8_t packet_type = 0;
1815 
1816 	if (sc->re_caps & RE_C_MAC2) {
1817 		if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1818 			packet_type |= RE_IP4_PACKET;
1819 	} else {
1820 		if (rxstat & RE_RDESC_STAT_PROTOID)
1821 			packet_type |= RE_IP4_PACKET;
1822 	}
1823 	if (RE_TCPPKT(rxstat))
1824 		packet_type |= RE_TCP_PACKET;
1825 	else if (RE_UDPPKT(rxstat))
1826 		packet_type |= RE_UDP_PACKET;
1827 	return packet_type;
1828 }
1829 
1830 /*
1831  * RX handler for C+ and 8169. For the gigE chips, we support
1832  * the reception of jumbo frames that have been fragmented
1833  * across multiple 2K mbuf cluster buffers.
1834  */
1835 static int
1836 re_rxeof(struct re_softc *sc)
1837 {
1838 	struct ifnet *ifp = &sc->arpcom.ac_if;
1839 	struct mbuf *m;
1840 	struct re_desc 	*cur_rx;
1841 	uint32_t rxstat, rxctrl;
1842 	int i, total_len, rx = 0;
1843 	struct mbuf_chain chain[MAXCPU];
1844 
1845 	ether_input_chain_init(chain);
1846 
1847 	for (i = sc->re_ldata.re_rx_prodidx;
1848 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1849 		cur_rx = &sc->re_ldata.re_rx_list[i];
1850 		m = sc->re_ldata.re_rx_mbuf[i];
1851 		total_len = RE_RXBYTES(cur_rx);
1852 		rxstat = le32toh(cur_rx->re_cmdstat);
1853 		rxctrl = le32toh(cur_rx->re_control);
1854 
1855 		rx = 1;
1856 
1857 #ifdef INVARIANTS
1858 		if (sc->re_flags & RE_F_USE_JPOOL)
1859 			KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1860 #endif
1861 
1862 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1863 			if (sc->re_flags & RE_F_DROP_RXFRAG) {
1864 				re_setup_rxdesc(sc, i);
1865 				continue;
1866 			}
1867 
1868 			if (sc->re_newbuf(sc, i, 0)) {
1869 				/* Drop upcoming fragments */
1870 				sc->re_flags |= RE_F_DROP_RXFRAG;
1871 				continue;
1872 			}
1873 
1874 			m->m_len = MCLBYTES;
1875 			if (sc->re_head == NULL) {
1876 				sc->re_head = sc->re_tail = m;
1877 			} else {
1878 				sc->re_tail->m_next = m;
1879 				sc->re_tail = m;
1880 			}
1881 			continue;
1882 		} else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1883 			/*
1884 			 * Last fragment of a multi-fragment packet.
1885 			 *
1886 			 * Since error already happened, this fragment
1887 			 * must be dropped as well as the fragment chain.
1888 			 */
1889 			re_setup_rxdesc(sc, i);
1890 			re_free_rxchain(sc);
1891 			sc->re_flags &= ~RE_F_DROP_RXFRAG;
1892 			continue;
1893 		}
1894 
1895 		/*
1896 		 * NOTE: for the 8139C+, the frame length field
1897 		 * is always 12 bits in size, but for the gigE chips,
1898 		 * it is 13 bits (since the max RX frame length is 16K).
1899 		 * Unfortunately, all 32 bits in the status word
1900 		 * were already used, so to make room for the extra
1901 		 * length bit, RealTek took out the 'frame alignment
1902 		 * error' bit and shifted the other status bits
1903 		 * over one slot. The OWN, EOR, FS and LS bits are
1904 		 * still in the same places. We have already extracted
1905 		 * the frame length and checked the OWN bit, so rather
1906 		 * than using an alternate bit mapping, we shift the
1907 		 * status bits one space to the right so we can evaluate
1908 		 * them using the 8169 status as though it was in the
1909 		 * same format as that of the 8139C+.
1910 		 */
1911 		if (!RE_IS_8139CP(sc))
1912 			rxstat >>= 1;
1913 
1914 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1915 			ifp->if_ierrors++;
1916 			/*
1917 			 * If this is part of a multi-fragment packet,
1918 			 * discard all the pieces.
1919 			 */
1920 			re_free_rxchain(sc);
1921 			re_setup_rxdesc(sc, i);
1922 			continue;
1923 		}
1924 
1925 		/*
1926 		 * If allocating a replacement mbuf fails,
1927 		 * reload the current one.
1928 		 */
1929 
1930 		if (sc->re_newbuf(sc, i, 0)) {
1931 			ifp->if_ierrors++;
1932 			continue;
1933 		}
1934 
1935 		if (sc->re_head != NULL) {
1936 			m->m_len = total_len % MCLBYTES;
1937 			/*
1938 			 * Special case: if there's 4 bytes or less
1939 			 * in this buffer, the mbuf can be discarded:
1940 			 * the last 4 bytes is the CRC, which we don't
1941 			 * care about anyway.
1942 			 */
1943 			if (m->m_len <= ETHER_CRC_LEN) {
1944 				sc->re_tail->m_len -=
1945 				    (ETHER_CRC_LEN - m->m_len);
1946 				m_freem(m);
1947 			} else {
1948 				m->m_len -= ETHER_CRC_LEN;
1949 				sc->re_tail->m_next = m;
1950 			}
1951 			m = sc->re_head;
1952 			sc->re_head = sc->re_tail = NULL;
1953 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1954 		} else {
1955 			m->m_pkthdr.len = m->m_len =
1956 			    (total_len - ETHER_CRC_LEN);
1957 		}
1958 
1959 		ifp->if_ipackets++;
1960 		m->m_pkthdr.rcvif = ifp;
1961 
1962 		/* Do RX checksumming if enabled */
1963 
1964 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1965 			uint8_t packet_type;
1966 
1967 			packet_type = re_packet_type(sc, rxstat, rxctrl);
1968 
1969 			/* Check IP header checksum */
1970 			if (packet_type & RE_IP4_PACKET) {
1971 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1972 				if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
1973 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1974 			}
1975 
1976 			/* Check TCP/UDP checksum */
1977 			if (((packet_type & RE_TCP_PACKET) &&
1978 			     (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
1979 			    ((packet_type & RE_UDP_PACKET) &&
1980 			     (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
1981 				m->m_pkthdr.csum_flags |=
1982 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1983 				    CSUM_FRAG_NOT_CHECKED;
1984 				m->m_pkthdr.csum_data = 0xffff;
1985 			}
1986 		}
1987 
1988 		if (rxctrl & RE_RDESC_CTL_HASTAG) {
1989 			m->m_flags |= M_VLANTAG;
1990 			m->m_pkthdr.ether_vlantag =
1991 				be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
1992 		}
1993 		ether_input_chain(ifp, m, NULL, chain);
1994 	}
1995 
1996 	ether_input_dispatch(chain);
1997 
1998 	sc->re_ldata.re_rx_prodidx = i;
1999 
2000 	return rx;
2001 }
2002 
2003 #undef RE_IP4_PACKET
2004 #undef RE_TCP_PACKET
2005 #undef RE_UDP_PACKET
2006 
2007 static int
2008 re_tx_collect(struct re_softc *sc)
2009 {
2010 	struct ifnet *ifp = &sc->arpcom.ac_if;
2011 	uint32_t txstat;
2012 	int idx, tx = 0;
2013 
2014 	for (idx = sc->re_ldata.re_tx_considx;
2015 	     sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2016 	     RE_TXDESC_INC(sc, idx)) {
2017 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2018 		if (txstat & RE_TDESC_CMD_OWN)
2019 			break;
2020 
2021 		tx = 1;
2022 
2023 		sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2024 
2025 		/*
2026 		 * We only stash mbufs in the last descriptor
2027 		 * in a fragment chain, which also happens to
2028 		 * be the only place where the TX status bits
2029 		 * are valid.
2030 		 */
2031 		if (txstat & RE_TDESC_CMD_EOF) {
2032 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2033 			    sc->re_ldata.re_tx_dmamap[idx]);
2034 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2035 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
2036 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2037 			    RE_TDESC_STAT_COLCNT))
2038 				ifp->if_collisions++;
2039 			if (txstat & RE_TDESC_STAT_TXERRSUM)
2040 				ifp->if_oerrors++;
2041 			else
2042 				ifp->if_opackets++;
2043 		}
2044 		sc->re_ldata.re_tx_free++;
2045 	}
2046 	sc->re_ldata.re_tx_considx = idx;
2047 
2048 	return tx;
2049 }
2050 
2051 static int
2052 re_txeof(struct re_softc *sc)
2053 {
2054 	struct ifnet *ifp = &sc->arpcom.ac_if;
2055 	int tx;
2056 
2057 	tx = re_tx_collect(sc);
2058 
2059 	/* There is enough free TX descs */
2060 	if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2061 		ifp->if_flags &= ~IFF_OACTIVE;
2062 
2063 	/*
2064 	 * Some chips will ignore a second TX request issued while an
2065 	 * existing transmission is in progress. If the transmitter goes
2066 	 * idle but there are still packets waiting to be sent, we need
2067 	 * to restart the channel here to flush them out. This only seems
2068 	 * to be required with the PCIe devices.
2069 	 */
2070 	if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2071 		CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2072 	else
2073 		ifp->if_timer = 0;
2074 
2075 	return tx;
2076 }
2077 
2078 static void
2079 re_tick(void *xsc)
2080 {
2081 	struct re_softc *sc = xsc;
2082 
2083 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2084 	re_tick_serialized(xsc);
2085 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2086 }
2087 
2088 static void
2089 re_tick_serialized(void *xsc)
2090 {
2091 	struct re_softc *sc = xsc;
2092 	struct ifnet *ifp = &sc->arpcom.ac_if;
2093 	struct mii_data *mii;
2094 
2095 	ASSERT_SERIALIZED(ifp->if_serializer);
2096 
2097 	mii = device_get_softc(sc->re_miibus);
2098 	mii_tick(mii);
2099 	if (sc->re_flags & RE_F_LINKED) {
2100 		if (!(mii->mii_media_status & IFM_ACTIVE))
2101 			sc->re_flags &= ~RE_F_LINKED;
2102 	} else {
2103 		if (mii->mii_media_status & IFM_ACTIVE &&
2104 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2105 			sc->re_flags |= RE_F_LINKED;
2106 			if (!ifq_is_empty(&ifp->if_snd))
2107 				if_devstart(ifp);
2108 		}
2109 	}
2110 
2111 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2112 }
2113 
2114 #ifdef DEVICE_POLLING
2115 
2116 static void
2117 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2118 {
2119 	struct re_softc *sc = ifp->if_softc;
2120 
2121 	ASSERT_SERIALIZED(ifp->if_serializer);
2122 
2123 	switch(cmd) {
2124 	case POLL_REGISTER:
2125 		/* disable interrupts */
2126 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2127 		break;
2128 
2129 	case POLL_DEREGISTER:
2130 		/* enable interrupts */
2131 		re_setup_intr(sc, 1, sc->re_imtype);
2132 		break;
2133 
2134 	default:
2135 		sc->rxcycles = count;
2136 		re_rxeof(sc);
2137 		re_txeof(sc);
2138 
2139 		if (!ifq_is_empty(&ifp->if_snd))
2140 			if_devstart(ifp);
2141 
2142 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2143 			uint16_t       status;
2144 
2145 			status = CSR_READ_2(sc, RE_ISR);
2146 			if (status == 0xffff)
2147 				return;
2148 			if (status)
2149 				CSR_WRITE_2(sc, RE_ISR, status);
2150 
2151 			/*
2152 			 * XXX check behaviour on receiver stalls.
2153 			 */
2154 
2155 			if (status & RE_ISR_SYSTEM_ERR)
2156 				re_init(sc);
2157 		}
2158 		break;
2159 	}
2160 }
2161 #endif /* DEVICE_POLLING */
2162 
2163 static void
2164 re_intr(void *arg)
2165 {
2166 	struct re_softc	*sc = arg;
2167 	struct ifnet *ifp = &sc->arpcom.ac_if;
2168 	uint16_t status;
2169 	int rx, tx;
2170 
2171 	ASSERT_SERIALIZED(ifp->if_serializer);
2172 
2173 	if ((sc->re_flags & RE_F_SUSPENDED) ||
2174 	    (ifp->if_flags & IFF_RUNNING) == 0)
2175 		return;
2176 
2177 	rx = tx = 0;
2178 	for (;;) {
2179 		status = CSR_READ_2(sc, RE_ISR);
2180 		/* If the card has gone away the read returns 0xffff. */
2181 		if (status == 0xffff)
2182 			break;
2183 		if (status)
2184 			CSR_WRITE_2(sc, RE_ISR, status);
2185 
2186 		if ((status & sc->re_intrs) == 0)
2187 			break;
2188 
2189 		if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2190 			rx |= re_rxeof(sc);
2191 
2192 		if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2193 			tx |= re_txeof(sc);
2194 
2195 		if (status & RE_ISR_SYSTEM_ERR)
2196 			re_init(sc);
2197 
2198 		if (status & RE_ISR_LINKCHG) {
2199 			callout_stop(&sc->re_timer);
2200 			re_tick_serialized(sc);
2201 		}
2202 	}
2203 
2204 	if (sc->re_imtype == RE_IMTYPE_SIM) {
2205 		if ((sc->re_flags & RE_F_TIMER_INTR)) {
2206 			if ((tx | rx) == 0) {
2207 				/*
2208 				 * Nothing needs to be processed, fallback
2209 				 * to use TX/RX interrupts.
2210 				 */
2211 				re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2212 
2213 				/*
2214 				 * Recollect, mainly to avoid the possible
2215 				 * race introduced by changing interrupt
2216 				 * masks.
2217 				 */
2218 				re_rxeof(sc);
2219 				tx = re_txeof(sc);
2220 			} else {
2221 				CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2222 			}
2223 		} else if (tx | rx) {
2224 			/*
2225 			 * Assume that using simulated interrupt moderation
2226 			 * (hardware timer based) could reduce the interript
2227 			 * rate.
2228 			 */
2229 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2230 		}
2231 	}
2232 
2233 	if (tx && !ifq_is_empty(&ifp->if_snd))
2234 		if_devstart(ifp);
2235 }
2236 
2237 static int
2238 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2239 {
2240 	struct mbuf *m = *m_head;
2241 	bus_dma_segment_t segs[RE_MAXSEGS];
2242 	bus_dmamap_t map;
2243 	int error, maxsegs, idx, i, nsegs;
2244 	struct re_desc *d, *tx_ring;
2245 	uint32_t cmd_csum, ctl_csum, vlantag;
2246 
2247 	KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2248 		("not enough free TX desc\n"));
2249 
2250 	map = sc->re_ldata.re_tx_dmamap[*idx0];
2251 
2252 	/*
2253 	 * Set up checksum offload. Note: checksum offload bits must
2254 	 * appear in all descriptors of a multi-descriptor transmit
2255 	 * attempt. (This is according to testing done with an 8169
2256 	 * chip. I'm not sure if this is a requirement or a bug.)
2257 	 */
2258 	cmd_csum = ctl_csum = 0;
2259 	if (m->m_pkthdr.csum_flags & CSUM_IP) {
2260 		cmd_csum |= RE_TDESC_CMD_IPCSUM;
2261 		ctl_csum |= RE_TDESC_CTL_IPCSUM;
2262 	}
2263 	if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2264 		cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2265 		ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2266 	}
2267 	if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2268 		cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2269 		ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2270 	}
2271 
2272 	/* For MAC2 chips, csum flags are set on re_control */
2273 	if (sc->re_caps & RE_C_MAC2)
2274 		cmd_csum = 0;
2275 	else
2276 		ctl_csum = 0;
2277 
2278 	if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2279 		/*
2280 		 * With some of the RealTek chips, using the checksum offload
2281 		 * support in conjunction with the autopadding feature results
2282 		 * in the transmission of corrupt frames. For example, if we
2283 		 * need to send a really small IP fragment that's less than 60
2284 		 * bytes in size, and IP header checksumming is enabled, the
2285 		 * resulting ethernet frame that appears on the wire will
2286 		 * have garbled payload. To work around this, if TX checksum
2287 		 * offload is enabled, we always manually pad short frames out
2288 		 * to the minimum ethernet frame size.
2289 		 *
2290 		 * Note: this appears unnecessary for TCP, and doing it for TCP
2291 		 * with PCIe adapters seems to result in bad checksums.
2292 		 */
2293 		if ((m->m_pkthdr.csum_flags &
2294 		     (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2295 		    (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2296 		    m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2297 			error = m_devpad(m, RE_MIN_FRAMELEN);
2298 			if (error)
2299 				goto back;
2300 		}
2301 	}
2302 
2303 	vlantag = 0;
2304 	if (m->m_flags & M_VLANTAG) {
2305 		vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2306 			  RE_TDESC_CTL_INSTAG;
2307 	}
2308 
2309 	maxsegs = sc->re_ldata.re_tx_free;
2310 	if (maxsegs > RE_MAXSEGS)
2311 		maxsegs = RE_MAXSEGS;
2312 
2313 	error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2314 			m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2315 	if (error)
2316 		goto back;
2317 
2318 	m = *m_head;
2319 	bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2320 
2321 	/*
2322 	 * Map the segment array into descriptors.  We also keep track
2323 	 * of the end of the ring and set the end-of-ring bits as needed,
2324 	 * and we set the ownership bits in all except the very first
2325 	 * descriptor, whose ownership bits will be turned on later.
2326 	 */
2327 	tx_ring = sc->re_ldata.re_tx_list;
2328 	idx = *idx0;
2329 	i = 0;
2330 	for (;;) {
2331 		uint32_t cmdstat;
2332 
2333 		d = &tx_ring[idx];
2334 
2335 		cmdstat = segs[i].ds_len;
2336 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2337 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2338 		if (i == 0)
2339 			cmdstat |= RE_TDESC_CMD_SOF;
2340 		else
2341 			cmdstat |= RE_TDESC_CMD_OWN;
2342 		if (idx == (sc->re_tx_desc_cnt - 1))
2343 			cmdstat |= RE_TDESC_CMD_EOR;
2344 		d->re_cmdstat = htole32(cmdstat | cmd_csum);
2345 		d->re_control = htole32(ctl_csum | vlantag);
2346 
2347 		i++;
2348 		if (i == nsegs)
2349 			break;
2350 		RE_TXDESC_INC(sc, idx);
2351 	}
2352 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2353 
2354 	/* Transfer ownership of packet to the chip. */
2355 	d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2356 	if (*idx0 != idx)
2357 		tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2358 
2359 	/*
2360 	 * Insure that the map for this transmission
2361 	 * is placed at the array index of the last descriptor
2362 	 * in this chain.
2363 	 */
2364 	sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2365 	sc->re_ldata.re_tx_dmamap[idx] = map;
2366 
2367 	sc->re_ldata.re_tx_mbuf[idx] = m;
2368 	sc->re_ldata.re_tx_free -= nsegs;
2369 
2370 	RE_TXDESC_INC(sc, idx);
2371 	*idx0 = idx;
2372 back:
2373 	if (error) {
2374 		m_freem(*m_head);
2375 		*m_head = NULL;
2376 	}
2377 	return error;
2378 }
2379 
2380 /*
2381  * Main transmit routine for C+ and gigE NICs.
2382  */
2383 
2384 static void
2385 re_start(struct ifnet *ifp)
2386 {
2387 	struct re_softc	*sc = ifp->if_softc;
2388 	struct mbuf *m_head;
2389 	int idx, need_trans, oactive, error;
2390 
2391 	ASSERT_SERIALIZED(ifp->if_serializer);
2392 
2393 	if ((sc->re_flags & RE_F_LINKED) == 0) {
2394 		ifq_purge(&ifp->if_snd);
2395 		return;
2396 	}
2397 
2398 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
2399 		return;
2400 
2401 	idx = sc->re_ldata.re_tx_prodidx;
2402 
2403 	need_trans = 0;
2404 	oactive = 0;
2405 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2406 		if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2407 			if (!oactive) {
2408 				if (re_tx_collect(sc)) {
2409 					oactive = 1;
2410 					continue;
2411 				}
2412 			}
2413 			ifp->if_flags |= IFF_OACTIVE;
2414 			break;
2415 		}
2416 
2417 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2418 		if (m_head == NULL)
2419 			break;
2420 
2421 		error = re_encap(sc, &m_head, &idx);
2422 		if (error) {
2423 			/* m_head is freed by re_encap(), if we reach here */
2424 			ifp->if_oerrors++;
2425 
2426 			if (error == EFBIG && !oactive) {
2427 				if (re_tx_collect(sc)) {
2428 					oactive = 1;
2429 					continue;
2430 				}
2431 			}
2432 			ifp->if_flags |= IFF_OACTIVE;
2433 			break;
2434 		}
2435 
2436 		oactive = 0;
2437 		need_trans = 1;
2438 
2439 		/*
2440 		 * If there's a BPF listener, bounce a copy of this frame
2441 		 * to him.
2442 		 */
2443 		ETHER_BPF_MTAP(ifp, m_head);
2444 	}
2445 
2446 	if (!need_trans)
2447 		return;
2448 
2449 	sc->re_ldata.re_tx_prodidx = idx;
2450 
2451 	/*
2452 	 * RealTek put the TX poll request register in a different
2453 	 * location on the 8169 gigE chip. I don't know why.
2454 	 */
2455 	CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2456 
2457 	/*
2458 	 * Set a timeout in case the chip goes out to lunch.
2459 	 */
2460 	ifp->if_timer = 5;
2461 }
2462 
2463 static void
2464 re_init(void *xsc)
2465 {
2466 	struct re_softc *sc = xsc;
2467 	struct ifnet *ifp = &sc->arpcom.ac_if;
2468 	struct mii_data *mii;
2469 	int error, framelen;
2470 
2471 	ASSERT_SERIALIZED(ifp->if_serializer);
2472 
2473 	mii = device_get_softc(sc->re_miibus);
2474 
2475 	/*
2476 	 * Cancel pending I/O and free all RX/TX buffers.
2477 	 */
2478 	re_stop(sc);
2479 
2480 	if (sc->re_caps & RE_C_CONTIGRX) {
2481 		if (ifp->if_mtu > ETHERMTU) {
2482 			KKASSERT(sc->re_ldata.re_jbuf != NULL);
2483 			sc->re_flags |= RE_F_USE_JPOOL;
2484 			sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2485 			sc->re_newbuf = re_newbuf_jumbo;
2486 		} else {
2487 			sc->re_flags &= ~RE_F_USE_JPOOL;
2488 			sc->re_rxbuf_size = MCLBYTES;
2489 			sc->re_newbuf = re_newbuf_std;
2490 		}
2491 	}
2492 
2493 	/*
2494 	 * Adjust max read request size according to MTU; mainly to
2495 	 * improve TX performance for common case (ETHERMTU) on GigE
2496 	 * NICs.  However, this could _not_ be done on 10/100 only
2497 	 * NICs; their DMA engines will malfunction using non-default
2498 	 * max read request size.
2499 	 */
2500 	if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2501 		if (ifp->if_mtu > ETHERMTU) {
2502 			/*
2503 			 * 512 seems to be the only value that works
2504 			 * reliably with jumbo frame
2505 			 */
2506 			pcie_set_max_readrq(sc->re_dev,
2507 				PCIEM_DEVCTL_MAX_READRQ_512);
2508 		} else {
2509 			pcie_set_max_readrq(sc->re_dev,
2510 				PCIEM_DEVCTL_MAX_READRQ_4096);
2511 		}
2512 	}
2513 
2514 	/*
2515 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2516 	 * RX checksum offload. We must configure the C+ register
2517 	 * before all others.
2518 	 */
2519 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2520 		    RE_CPLUSCMD_PCI_MRW |
2521 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2522 		     RE_CPLUSCMD_VLANSTRIP : 0) |
2523 		    (ifp->if_capenable & IFCAP_RXCSUM ?
2524 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
2525 
2526 	/*
2527 	 * Init our MAC address.  Even though the chipset
2528 	 * documentation doesn't mention it, we need to enter "Config
2529 	 * register write enable" mode to modify the ID registers.
2530 	 */
2531 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2532 	CSR_WRITE_4(sc, RE_IDR0,
2533 	    htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2534 	CSR_WRITE_2(sc, RE_IDR4,
2535 	    htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2536 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2537 
2538 	/*
2539 	 * For C+ mode, initialize the RX descriptors and mbufs.
2540 	 */
2541 	error = re_rx_list_init(sc);
2542 	if (error) {
2543 		re_stop(sc);
2544 		return;
2545 	}
2546 	error = re_tx_list_init(sc);
2547 	if (error) {
2548 		re_stop(sc);
2549 		return;
2550 	}
2551 
2552 	/*
2553 	 * Load the addresses of the RX and TX lists into the chip.
2554 	 */
2555 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2556 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2557 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2558 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2559 
2560 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2561 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2562 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2563 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2564 
2565 	/*
2566 	 * Enable transmit and receive.
2567 	 */
2568 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2569 
2570 	/*
2571 	 * Set the initial TX and RX configuration.
2572 	 */
2573 	if (sc->re_flags & RE_F_TESTMODE) {
2574 		if (!RE_IS_8139CP(sc))
2575 			CSR_WRITE_4(sc, RE_TXCFG,
2576 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2577 		else
2578 			CSR_WRITE_4(sc, RE_TXCFG,
2579 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2580 	} else
2581 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2582 
2583 	framelen = RE_FRAMELEN(ifp->if_mtu);
2584 	if (framelen < MCLBYTES)
2585 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2586 	else
2587 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2588 
2589 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2590 
2591 	/*
2592 	 * Program the multicast filter, if necessary.
2593 	 */
2594 	re_setmulti(sc);
2595 
2596 #ifdef DEVICE_POLLING
2597 	/*
2598 	 * Disable interrupts if we are polling.
2599 	 */
2600 	if (ifp->if_flags & IFF_POLLING)
2601 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2602 	else	/* otherwise ... */
2603 #endif /* DEVICE_POLLING */
2604 	/*
2605 	 * Enable interrupts.
2606 	 */
2607 	if (sc->re_flags & RE_F_TESTMODE)
2608 		CSR_WRITE_2(sc, RE_IMR, 0);
2609 	else
2610 		re_setup_intr(sc, 1, sc->re_imtype);
2611 	CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2612 
2613 	/* Start RX/TX process. */
2614 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2615 
2616 #ifdef notdef
2617 	/* Enable receiver and transmitter. */
2618 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2619 #endif
2620 
2621 	/*
2622 	 * For 8169 gigE NICs, set the max allowed RX packet
2623 	 * size so we can receive jumbo frames.
2624 	 */
2625 	if (!RE_IS_8139CP(sc)) {
2626 		if (sc->re_caps & RE_C_CONTIGRX)
2627 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2628 		else
2629 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2630 	}
2631 
2632 	if (sc->re_flags & RE_F_TESTMODE)
2633 		return;
2634 
2635 	mii_mediachg(mii);
2636 
2637 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2638 
2639 	ifp->if_flags |= IFF_RUNNING;
2640 	ifp->if_flags &= ~IFF_OACTIVE;
2641 
2642 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2643 }
2644 
2645 /*
2646  * Set media options.
2647  */
2648 static int
2649 re_ifmedia_upd(struct ifnet *ifp)
2650 {
2651 	struct re_softc *sc = ifp->if_softc;
2652 	struct mii_data *mii;
2653 
2654 	ASSERT_SERIALIZED(ifp->if_serializer);
2655 
2656 	mii = device_get_softc(sc->re_miibus);
2657 	mii_mediachg(mii);
2658 
2659 	return(0);
2660 }
2661 
2662 /*
2663  * Report current media status.
2664  */
2665 static void
2666 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2667 {
2668 	struct re_softc *sc = ifp->if_softc;
2669 	struct mii_data *mii;
2670 
2671 	ASSERT_SERIALIZED(ifp->if_serializer);
2672 
2673 	mii = device_get_softc(sc->re_miibus);
2674 
2675 	mii_pollstat(mii);
2676 	ifmr->ifm_active = mii->mii_media_active;
2677 	ifmr->ifm_status = mii->mii_media_status;
2678 }
2679 
2680 static int
2681 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2682 {
2683 	struct re_softc *sc = ifp->if_softc;
2684 	struct ifreq *ifr = (struct ifreq *) data;
2685 	struct mii_data *mii;
2686 	int error = 0, mask;
2687 
2688 	ASSERT_SERIALIZED(ifp->if_serializer);
2689 
2690 	switch(command) {
2691 	case SIOCSIFMTU:
2692 		if (ifr->ifr_mtu > sc->re_maxmtu) {
2693 			error = EINVAL;
2694 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2695 			ifp->if_mtu = ifr->ifr_mtu;
2696 			if (ifp->if_flags & IFF_RUNNING)
2697 				ifp->if_init(sc);
2698 		}
2699 		break;
2700 
2701 	case SIOCSIFFLAGS:
2702 		if (ifp->if_flags & IFF_UP) {
2703 			if (ifp->if_flags & IFF_RUNNING) {
2704 				if ((ifp->if_flags ^ sc->re_if_flags) &
2705 				    (IFF_PROMISC | IFF_ALLMULTI))
2706 					re_setmulti(sc);
2707 			} else {
2708 				re_init(sc);
2709 			}
2710 		} else if (ifp->if_flags & IFF_RUNNING) {
2711 			re_stop(sc);
2712 		}
2713 		sc->re_if_flags = ifp->if_flags;
2714 		break;
2715 
2716 	case SIOCADDMULTI:
2717 	case SIOCDELMULTI:
2718 		re_setmulti(sc);
2719 		break;
2720 
2721 	case SIOCGIFMEDIA:
2722 	case SIOCSIFMEDIA:
2723 		mii = device_get_softc(sc->re_miibus);
2724 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2725 		break;
2726 
2727 	case SIOCSIFCAP:
2728 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2729 		       ifp->if_capabilities;
2730 		ifp->if_capenable ^= mask;
2731 
2732 		if (mask & IFCAP_HWCSUM) {
2733 			if (ifp->if_capenable & IFCAP_TXCSUM)
2734 				ifp->if_hwassist = RE_CSUM_FEATURES;
2735 			else
2736 				ifp->if_hwassist = 0;
2737 		}
2738 		if (mask && (ifp->if_flags & IFF_RUNNING))
2739 			re_init(sc);
2740 		break;
2741 
2742 	default:
2743 		error = ether_ioctl(ifp, command, data);
2744 		break;
2745 	}
2746 	return(error);
2747 }
2748 
2749 static void
2750 re_watchdog(struct ifnet *ifp)
2751 {
2752 	struct re_softc *sc = ifp->if_softc;
2753 
2754 	ASSERT_SERIALIZED(ifp->if_serializer);
2755 
2756 	if_printf(ifp, "watchdog timeout\n");
2757 
2758 	ifp->if_oerrors++;
2759 
2760 	re_txeof(sc);
2761 	re_rxeof(sc);
2762 
2763 	re_init(sc);
2764 
2765 	if (!ifq_is_empty(&ifp->if_snd))
2766 		if_devstart(ifp);
2767 }
2768 
2769 /*
2770  * Stop the adapter and free any mbufs allocated to the
2771  * RX and TX lists.
2772  */
2773 static void
2774 re_stop(struct re_softc *sc)
2775 {
2776 	struct ifnet *ifp = &sc->arpcom.ac_if;
2777 	int i;
2778 
2779 	ASSERT_SERIALIZED(ifp->if_serializer);
2780 
2781 	/* Reset the adapter. */
2782 	re_reset(sc, ifp->if_flags & IFF_RUNNING);
2783 
2784 	ifp->if_timer = 0;
2785 	callout_stop(&sc->re_timer);
2786 
2787 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2788 	sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2789 
2790 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2791 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2792 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2793 
2794 	re_free_rxchain(sc);
2795 
2796 	/* Free the TX list buffers. */
2797 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2798 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2799 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2800 					  sc->re_ldata.re_tx_dmamap[i]);
2801 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2802 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2803 		}
2804 	}
2805 
2806 	/* Free the RX list buffers. */
2807 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2808 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2809 			if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2810 				bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2811 						  sc->re_ldata.re_rx_dmamap[i]);
2812 			}
2813 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2814 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2815 		}
2816 	}
2817 }
2818 
2819 /*
2820  * Device suspend routine.  Stop the interface and save some PCI
2821  * settings in case the BIOS doesn't restore them properly on
2822  * resume.
2823  */
2824 static int
2825 re_suspend(device_t dev)
2826 {
2827 #ifndef BURN_BRIDGES
2828 	int i;
2829 #endif
2830 	struct re_softc *sc = device_get_softc(dev);
2831 	struct ifnet *ifp = &sc->arpcom.ac_if;
2832 
2833 	lwkt_serialize_enter(ifp->if_serializer);
2834 
2835 	re_stop(sc);
2836 
2837 #ifndef BURN_BRIDGES
2838 	for (i = 0; i < 5; i++)
2839 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2840 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2841 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2842 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2843 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2844 #endif
2845 
2846 	sc->re_flags |= RE_F_SUSPENDED;
2847 
2848 	lwkt_serialize_exit(ifp->if_serializer);
2849 
2850 	return (0);
2851 }
2852 
2853 /*
2854  * Device resume routine.  Restore some PCI settings in case the BIOS
2855  * doesn't, re-enable busmastering, and restart the interface if
2856  * appropriate.
2857  */
2858 static int
2859 re_resume(device_t dev)
2860 {
2861 	struct re_softc *sc = device_get_softc(dev);
2862 	struct ifnet *ifp = &sc->arpcom.ac_if;
2863 #ifndef BURN_BRIDGES
2864 	int i;
2865 #endif
2866 
2867 	lwkt_serialize_enter(ifp->if_serializer);
2868 
2869 #ifndef BURN_BRIDGES
2870 	/* better way to do this? */
2871 	for (i = 0; i < 5; i++)
2872 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2873 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2874 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2875 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2876 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2877 
2878 	/* reenable busmastering */
2879 	pci_enable_busmaster(dev);
2880 	pci_enable_io(dev, SYS_RES_IOPORT);
2881 #endif
2882 
2883 	/* reinitialize interface if necessary */
2884 	if (ifp->if_flags & IFF_UP)
2885 		re_init(sc);
2886 
2887 	sc->re_flags &= ~RE_F_SUSPENDED;
2888 
2889 	lwkt_serialize_exit(ifp->if_serializer);
2890 
2891 	return (0);
2892 }
2893 
2894 /*
2895  * Stop all chip I/O so that the kernel's probe routines don't
2896  * get confused by errant DMAs when rebooting.
2897  */
2898 static void
2899 re_shutdown(device_t dev)
2900 {
2901 	struct re_softc *sc = device_get_softc(dev);
2902 	struct ifnet *ifp = &sc->arpcom.ac_if;
2903 
2904 	lwkt_serialize_enter(ifp->if_serializer);
2905 	re_stop(sc);
2906 	lwkt_serialize_exit(ifp->if_serializer);
2907 }
2908 
2909 static int
2910 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
2911 {
2912 	struct re_softc *sc = arg1;
2913 
2914 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
2915 }
2916 
2917 static int
2918 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
2919 {
2920 	struct re_softc *sc = arg1;
2921 
2922 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
2923 }
2924 
2925 static int
2926 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
2927 {
2928 	struct re_softc *sc = arg1;
2929 	struct ifnet *ifp = &sc->arpcom.ac_if;
2930 	int error, v;
2931 
2932 	lwkt_serialize_enter(ifp->if_serializer);
2933 
2934 	v = *hwtime;
2935 	error = sysctl_handle_int(oidp, &v, 0, req);
2936 	if (error || req->newptr == NULL)
2937 		goto back;
2938 
2939 	if (v <= 0) {
2940 		error = EINVAL;
2941 		goto back;
2942 	}
2943 
2944 	if (v != *hwtime) {
2945 		*hwtime = v;
2946 
2947 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
2948 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
2949 			re_setup_hw_im(sc);
2950 	}
2951 back:
2952 	lwkt_serialize_exit(ifp->if_serializer);
2953 	return error;
2954 }
2955 
2956 static int
2957 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
2958 {
2959 	struct re_softc *sc = arg1;
2960 	struct ifnet *ifp = &sc->arpcom.ac_if;
2961 	int error, v;
2962 
2963 	lwkt_serialize_enter(ifp->if_serializer);
2964 
2965 	v = sc->re_sim_time;
2966 	error = sysctl_handle_int(oidp, &v, 0, req);
2967 	if (error || req->newptr == NULL)
2968 		goto back;
2969 
2970 	if (v <= 0) {
2971 		error = EINVAL;
2972 		goto back;
2973 	}
2974 
2975 	if (v != sc->re_sim_time) {
2976 		sc->re_sim_time = v;
2977 
2978 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
2979 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
2980 #ifdef foo
2981 			int reg;
2982 
2983 			/*
2984 			 * Following code causes various strange
2985 			 * performance problems.  Hmm ...
2986 			 */
2987 			CSR_WRITE_2(sc, RE_IMR, 0);
2988 			if (!RE_IS_8139CP(sc))
2989 				reg = RE_TIMERINT_8169;
2990 			else
2991 				reg = RE_TIMERINT;
2992 			CSR_WRITE_4(sc, reg, 0);
2993 			CSR_READ_4(sc, reg); /* flush */
2994 
2995 			CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
2996 			re_setup_sim_im(sc);
2997 #else
2998 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2999 			DELAY(10);
3000 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3001 #endif
3002 		}
3003 	}
3004 back:
3005 	lwkt_serialize_exit(ifp->if_serializer);
3006 	return error;
3007 }
3008 
3009 static int
3010 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3011 {
3012 	struct re_softc *sc = arg1;
3013 	struct ifnet *ifp = &sc->arpcom.ac_if;
3014 	int error, v;
3015 
3016 	lwkt_serialize_enter(ifp->if_serializer);
3017 
3018 	v = sc->re_imtype;
3019 	error = sysctl_handle_int(oidp, &v, 0, req);
3020 	if (error || req->newptr == NULL)
3021 		goto back;
3022 
3023 	if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3024 		error = EINVAL;
3025 		goto back;
3026 	}
3027 	if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3028 		/* Can't do hardware interrupt moderation */
3029 		error = EOPNOTSUPP;
3030 		goto back;
3031 	}
3032 
3033 	if (v != sc->re_imtype) {
3034 		sc->re_imtype = v;
3035 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3036 		    IFF_RUNNING)
3037 			re_setup_intr(sc, 1, sc->re_imtype);
3038 	}
3039 back:
3040 	lwkt_serialize_exit(ifp->if_serializer);
3041 	return error;
3042 }
3043 
3044 static void
3045 re_setup_hw_im(struct re_softc *sc)
3046 {
3047 	KKASSERT(sc->re_caps & RE_C_HWIM);
3048 
3049 	/*
3050 	 * Interrupt moderation
3051 	 *
3052 	 * 0xABCD
3053 	 * A - unknown (maybe TX related)
3054 	 * B - TX timer (unit: 25us)
3055 	 * C - unknown (maybe RX related)
3056 	 * D - RX timer (unit: 25us)
3057 	 *
3058 	 *
3059 	 * re(4)'s interrupt moderation is actually controlled by
3060 	 * two variables, like most other NICs (bge, bce etc.)
3061 	 * o  timer
3062 	 * o  number of packets [P]
3063 	 *
3064 	 * The logic relationship between these two variables is
3065 	 * similar to other NICs too:
3066 	 * if (timer expire || packets > [P])
3067 	 *     Interrupt is delivered
3068 	 *
3069 	 * Currently we only know how to set 'timer', but not
3070 	 * 'number of packets', which should be ~30, as far as I
3071 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3072 	 */
3073 	CSR_WRITE_2(sc, RE_IM,
3074 		    RE_IM_RXTIME(sc->re_rx_time) |
3075 		    RE_IM_TXTIME(sc->re_tx_time) |
3076 		    RE_IM_MAGIC);
3077 }
3078 
3079 static void
3080 re_disable_hw_im(struct re_softc *sc)
3081 {
3082 	if (sc->re_caps & RE_C_HWIM)
3083 		CSR_WRITE_2(sc, RE_IM, 0);
3084 }
3085 
3086 static void
3087 re_setup_sim_im(struct re_softc *sc)
3088 {
3089 	if (!RE_IS_8139CP(sc)) {
3090 		uint32_t ticks;
3091 
3092 		/*
3093 		 * Datasheet says tick decreases at bus speed,
3094 		 * but it seems the clock runs a little bit
3095 		 * faster, so we do some compensation here.
3096 		 */
3097 		ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3098 		CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3099 	} else {
3100 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3101 	}
3102 	CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3103 	sc->re_flags |= RE_F_TIMER_INTR;
3104 }
3105 
3106 static void
3107 re_disable_sim_im(struct re_softc *sc)
3108 {
3109 	if (!RE_IS_8139CP(sc))
3110 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3111 	else
3112 		CSR_WRITE_4(sc, RE_TIMERINT, 0);
3113 	sc->re_flags &= ~RE_F_TIMER_INTR;
3114 }
3115 
3116 static void
3117 re_config_imtype(struct re_softc *sc, int imtype)
3118 {
3119 	switch (imtype) {
3120 	case RE_IMTYPE_HW:
3121 		KKASSERT(sc->re_caps & RE_C_HWIM);
3122 		/* FALL THROUGH */
3123 	case RE_IMTYPE_NONE:
3124 		sc->re_intrs = RE_INTRS;
3125 		sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3126 				RE_ISR_RX_OVERRUN;
3127 		sc->re_tx_ack = RE_ISR_TX_OK;
3128 		break;
3129 
3130 	case RE_IMTYPE_SIM:
3131 		sc->re_intrs = RE_INTRS_TIMER;
3132 		sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3133 		sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3134 		break;
3135 
3136 	default:
3137 		panic("%s: unknown imtype %d\n",
3138 		      sc->arpcom.ac_if.if_xname, imtype);
3139 	}
3140 }
3141 
3142 static void
3143 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3144 {
3145 	re_config_imtype(sc, imtype);
3146 
3147 	if (enable_intrs)
3148 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3149 	else
3150 		CSR_WRITE_2(sc, RE_IMR, 0);
3151 
3152 	switch (imtype) {
3153 	case RE_IMTYPE_NONE:
3154 		re_disable_sim_im(sc);
3155 		re_disable_hw_im(sc);
3156 		break;
3157 
3158 	case RE_IMTYPE_HW:
3159 		KKASSERT(sc->re_caps & RE_C_HWIM);
3160 		re_disable_sim_im(sc);
3161 		re_setup_hw_im(sc);
3162 		break;
3163 
3164 	case RE_IMTYPE_SIM:
3165 		re_disable_hw_im(sc);
3166 		re_setup_sim_im(sc);
3167 		break;
3168 
3169 	default:
3170 		panic("%s: unknown imtype %d\n",
3171 		      sc->arpcom.ac_if.if_xname, imtype);
3172 	}
3173 }
3174 
3175 static void
3176 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3177 {
3178 	int i;
3179 
3180 	if (sc->re_macver == RE_MACVER_11 || sc->re_macver == RE_MACVER_12) {
3181 		uint16_t re_did;
3182 
3183 		re_get_eewidth(sc);
3184 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3185 		if (re_did == 0x8128) {
3186 			uint16_t as[ETHER_ADDR_LEN / 2];
3187 
3188 			/*
3189 			 * Get station address from the EEPROM.
3190 			 */
3191 			re_read_eeprom(sc, (caddr_t)as, RE_EE_EADDR, 3);
3192 			for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3193 				as[i] = le16toh(as[i]);
3194 			bcopy(as, eaddr, sizeof(eaddr));
3195 			return;
3196 		}
3197 	}
3198 
3199 	/*
3200 	 * Get station address from IDRx.
3201 	 */
3202 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
3203 		eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3204 }
3205 
3206 static int
3207 re_jpool_alloc(struct re_softc *sc)
3208 {
3209 	struct re_list_data *ldata = &sc->re_ldata;
3210 	struct re_jbuf *jbuf;
3211 	bus_addr_t paddr;
3212 	bus_size_t jpool_size;
3213 	bus_dmamem_t dmem;
3214 	caddr_t buf;
3215 	int i, error;
3216 
3217 	lwkt_serialize_init(&ldata->re_jbuf_serializer);
3218 
3219 	ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3220 				 M_DEVBUF, M_WAITOK | M_ZERO);
3221 
3222 	jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3223 
3224 	error = bus_dmamem_coherent(sc->re_parent_tag,
3225 			RE_RXBUF_ALIGN, 0,
3226 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3227 			jpool_size, BUS_DMA_WAITOK, &dmem);
3228 	if (error) {
3229 		device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3230 		return error;
3231 	}
3232 	ldata->re_jpool_tag = dmem.dmem_tag;
3233 	ldata->re_jpool_map = dmem.dmem_map;
3234 	ldata->re_jpool = dmem.dmem_addr;
3235 	paddr = dmem.dmem_busaddr;
3236 
3237 	/* ..and split it into 9KB chunks */
3238 	SLIST_INIT(&ldata->re_jbuf_free);
3239 
3240 	buf = ldata->re_jpool;
3241 	for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3242 		jbuf = &ldata->re_jbuf[i];
3243 
3244 		jbuf->re_sc = sc;
3245 		jbuf->re_inuse = 0;
3246 		jbuf->re_slot = i;
3247 		jbuf->re_buf = buf;
3248 		jbuf->re_paddr = paddr;
3249 
3250 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3251 
3252 		buf += RE_JBUF_SIZE;
3253 		paddr += RE_JBUF_SIZE;
3254 	}
3255 	return 0;
3256 }
3257 
3258 static void
3259 re_jpool_free(struct re_softc *sc)
3260 {
3261 	struct re_list_data *ldata = &sc->re_ldata;
3262 
3263 	if (ldata->re_jpool_tag != NULL) {
3264 		bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3265 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3266 				ldata->re_jpool_map);
3267 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3268 		ldata->re_jpool_tag = NULL;
3269 	}
3270 
3271 	if (ldata->re_jbuf != NULL) {
3272 		kfree(ldata->re_jbuf, M_DEVBUF);
3273 		ldata->re_jbuf = NULL;
3274 	}
3275 }
3276 
3277 static struct re_jbuf *
3278 re_jbuf_alloc(struct re_softc *sc)
3279 {
3280 	struct re_list_data *ldata = &sc->re_ldata;
3281 	struct re_jbuf *jbuf;
3282 
3283 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3284 
3285 	jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3286 	if (jbuf != NULL) {
3287 		SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3288 		jbuf->re_inuse = 1;
3289 	}
3290 
3291 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3292 
3293 	return jbuf;
3294 }
3295 
3296 static void
3297 re_jbuf_free(void *arg)
3298 {
3299 	struct re_jbuf *jbuf = arg;
3300 	struct re_softc *sc = jbuf->re_sc;
3301 	struct re_list_data *ldata = &sc->re_ldata;
3302 
3303 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3304 		panic("%s: free wrong jumbo buffer\n",
3305 		      sc->arpcom.ac_if.if_xname);
3306 	} else if (jbuf->re_inuse == 0) {
3307 		panic("%s: jumbo buffer already freed\n",
3308 		      sc->arpcom.ac_if.if_xname);
3309 	}
3310 
3311 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3312 	atomic_subtract_int(&jbuf->re_inuse, 1);
3313 	if (jbuf->re_inuse == 0)
3314 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3315 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3316 }
3317 
3318 static void
3319 re_jbuf_ref(void *arg)
3320 {
3321 	struct re_jbuf *jbuf = arg;
3322 	struct re_softc *sc = jbuf->re_sc;
3323 	struct re_list_data *ldata = &sc->re_ldata;
3324 
3325 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3326 		panic("%s: ref wrong jumbo buffer\n",
3327 		      sc->arpcom.ac_if.if_xname);
3328 	} else if (jbuf->re_inuse == 0) {
3329 		panic("%s: jumbo buffer already freed\n",
3330 		      sc->arpcom.ac_if.if_xname);
3331 	}
3332 	atomic_add_int(&jbuf->re_inuse, 1);
3333 }
3334