xref: /dragonfly/sys/dev/netif/re/if_re.c (revision 8accc937)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  */
37 
38 /*
39  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * This driver is designed to support RealTek's next generation of
48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
50  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
51  *
52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53  * with the older 8139 family, however it also supports a special
54  * C+ mode of operation that provides several new performance enhancing
55  * features. These include:
56  *
57  *	o Descriptor based DMA mechanism. Each descriptor represents
58  *	  a single packet fragment. Data buffers may be aligned on
59  *	  any byte boundary.
60  *
61  *	o 64-bit DMA
62  *
63  *	o TCP/IP checksum offload for both RX and TX
64  *
65  *	o High and normal priority transmit DMA rings
66  *
67  *	o VLAN tag insertion and extraction
68  *
69  *	o TCP large send (segmentation offload)
70  *
71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72  * programming API is fairly straightforward. The RX filtering, EEPROM
73  * access and PHY access is the same as it is on the older 8139 series
74  * chips.
75  *
76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77  * same programming API and feature set as the 8139C+ with the following
78  * differences and additions:
79  *
80  *	o 1000Mbps mode
81  *
82  *	o Jumbo frames
83  *
84  * 	o GMII and TBI ports/registers for interfacing with copper
85  *	  or fiber PHYs
86  *
87  *      o RX and TX DMA rings can have up to 1024 descriptors
88  *        (the 8139C+ allows a maximum of 64)
89  *
90  *	o Slight differences in register layout from the 8139C+
91  *
92  * The TX start and timer interrupt registers are at different locations
93  * on the 8169 than they are on the 8139C+. Also, the status word in the
94  * RX descriptor has a slightly different bit layout. The 8169 does not
95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96  * copper gigE PHY.
97  *
98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99  * (the 'S' stands for 'single-chip'). These devices have the same
100  * programming API as the older 8169, but also have some vendor-specific
101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103  *
104  * This driver takes advantage of the RX and TX checksum offload and
105  * VLAN tag insertion/extraction features. It also implements TX
106  * interrupt moderation using the timer interrupt registers, which
107  * significantly reduces TX interrupt load. There is also support
108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
109  * jumbo frames larger than 7440, so the max MTU possible with this
110  * driver is 7422 bytes.
111  */
112 
113 #define _IP_VHL
114 
115 #include "opt_ifpoll.h"
116 
117 #include <sys/param.h>
118 #include <sys/bus.h>
119 #include <sys/endian.h>
120 #include <sys/kernel.h>
121 #include <sys/in_cksum.h>
122 #include <sys/interrupt.h>
123 #include <sys/malloc.h>
124 #include <sys/mbuf.h>
125 #include <sys/rman.h>
126 #include <sys/serialize.h>
127 #include <sys/socket.h>
128 #include <sys/sockio.h>
129 #include <sys/sysctl.h>
130 
131 #include <net/bpf.h>
132 #include <net/ethernet.h>
133 #include <net/if.h>
134 #include <net/ifq_var.h>
135 #include <net/if_arp.h>
136 #include <net/if_dl.h>
137 #include <net/if_media.h>
138 #include <net/if_poll.h>
139 #include <net/if_types.h>
140 #include <net/vlan/if_vlan_var.h>
141 #include <net/vlan/if_vlan_ether.h>
142 
143 #include <netinet/ip.h>
144 
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
147 
148 #include <bus/pci/pcidevs.h>
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 #include <dev/netif/re/if_rereg.h>
156 #include <dev/netif/re/if_revar.h>
157 
158 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
159 
160 /*
161  * Various supported device vendors/types and their names.
162  */
163 static const struct re_type {
164 	uint16_t	re_vid;
165 	uint16_t	re_did;
166 	const char	*re_name;
167 } re_devs[] = {
168 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
169 	  "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170 
171 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
172 	  "RealTek 8139C+ 10/100BaseTX" },
173 
174 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
175 	  "RealTek 810x PCIe 10/100baseTX" },
176 
177 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
178 	  "RealTek 8111/8168 PCIe Gigabit Ethernet" },
179 
180 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
181 	  "RealTek 8110/8169 Gigabit Ethernet" },
182 
183 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
184 	  "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
185 
186 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
187 	  "Corega CG-LAPCIGT Gigabit Ethernet" },
188 
189 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
190 	  "Linksys EG1032 Gigabit Ethernet" },
191 
192 	{ PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
193 	  "US Robotics 997902 Gigabit Ethernet" },
194 
195 	{ PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
196 	  "TTTech MC322 Gigabit Ethernet" },
197 
198 	{ 0, 0, NULL }
199 };
200 
201 static const struct re_hwrev re_hwrevs[] = {
202 	{ RE_HWREV_8139CPLUS,	RE_MACVER_UNKN,		ETHERMTU,
203 	  RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
204 
205 	{ RE_HWREV_8169,	RE_MACVER_UNKN,		ETHERMTU,
206 	  RE_C_HWCSUM | RE_C_8169 },
207 
208 	{ RE_HWREV_8110S,	RE_MACVER_03,		RE_MTU_6K,
209 	  RE_C_HWCSUM | RE_C_8169 },
210 
211 	{ RE_HWREV_8169S,	RE_MACVER_03,		RE_MTU_6K,
212 	  RE_C_HWCSUM | RE_C_8169 },
213 
214 	{ RE_HWREV_8169SB,	RE_MACVER_04,		RE_MTU_6K,
215 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
216 
217 	{ RE_HWREV_8169SC1,	RE_MACVER_05,		RE_MTU_6K,
218 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
219 
220 	{ RE_HWREV_8169SC2,	RE_MACVER_06,		RE_MTU_6K,
221 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
222 
223 	{ RE_HWREV_8168B1,	RE_MACVER_21,		RE_MTU_6K,
224 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
225 
226 	{ RE_HWREV_8168B2,	RE_MACVER_23,		RE_MTU_6K,
227 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
228 
229 	{ RE_HWREV_8168B3,	RE_MACVER_23,		RE_MTU_6K,
230 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
231 
232 	{ RE_HWREV_8168C,	RE_MACVER_29,		RE_MTU_6K,
233 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
234 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
235 
236 	{ RE_HWREV_8168CP,	RE_MACVER_2B,		RE_MTU_6K,
237 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
238 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
239 
240 	{ RE_HWREV_8168D,	RE_MACVER_2A,		RE_MTU_9K,
241 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
242 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
243 
244 	{ RE_HWREV_8168DP,	RE_MACVER_2D,		RE_MTU_9K,
245 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
246 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
247 
248 	{ RE_HWREV_8168E,	RE_MACVER_UNKN,		RE_MTU_9K,
249 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
250 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
251 
252 	{ RE_HWREV_8168F,	RE_MACVER_UNKN,		RE_MTU_9K,
253 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
254 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
255 
256 	{ RE_HWREV_8100E,	RE_MACVER_UNKN,		ETHERMTU,
257 	  RE_C_HWCSUM | RE_C_FASTE },
258 
259 	{ RE_HWREV_8101E1,	RE_MACVER_16,		ETHERMTU,
260 	  RE_C_HWCSUM | RE_C_FASTE },
261 
262 	{ RE_HWREV_8101E2,	RE_MACVER_16,		ETHERMTU,
263 	  RE_C_HWCSUM | RE_C_FASTE },
264 
265 	{ RE_HWREV_8102E,	RE_MACVER_15,		ETHERMTU,
266 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
267 	  RE_C_FASTE },
268 
269 	{ RE_HWREV_8102EL,	RE_MACVER_15,		ETHERMTU,
270 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
271 	  RE_C_FASTE },
272 
273 	{ RE_HWREV_8105E,	RE_MACVER_UNKN,		ETHERMTU,
274 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
275 	  RE_C_STOP_RXTX | RE_C_FASTE },
276 
277 	{ RE_HWREV_NULL, 0, 0, 0 }
278 };
279 
280 static int	re_probe(device_t);
281 static int	re_attach(device_t);
282 static int	re_detach(device_t);
283 static int	re_suspend(device_t);
284 static int	re_resume(device_t);
285 static void	re_shutdown(device_t);
286 
287 static int	re_allocmem(device_t);
288 static void	re_freemem(device_t);
289 static void	re_freebufmem(struct re_softc *, int, int);
290 static int	re_encap(struct re_softc *, struct mbuf **, int *);
291 static int	re_newbuf_std(struct re_softc *, int, int);
292 static int	re_newbuf_jumbo(struct re_softc *, int, int);
293 static void	re_setup_rxdesc(struct re_softc *, int);
294 static int	re_rx_list_init(struct re_softc *);
295 static int	re_tx_list_init(struct re_softc *);
296 static int	re_rxeof(struct re_softc *);
297 static int	re_txeof(struct re_softc *);
298 static int	re_tx_collect(struct re_softc *);
299 static void	re_intr(void *);
300 static void	re_tick(void *);
301 static void	re_tick_serialized(void *);
302 
303 static void	re_start(struct ifnet *);
304 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
305 static void	re_init(void *);
306 static void	re_stop(struct re_softc *);
307 static void	re_watchdog(struct ifnet *);
308 static int	re_ifmedia_upd(struct ifnet *);
309 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
310 
311 static void	re_eeprom_putbyte(struct re_softc *, int);
312 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
313 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int);
314 static void	re_get_eewidth(struct re_softc *);
315 
316 static int	re_gmii_readreg(device_t, int, int);
317 static int	re_gmii_writereg(device_t, int, int, int);
318 
319 static int	re_miibus_readreg(device_t, int, int);
320 static int	re_miibus_writereg(device_t, int, int, int);
321 static void	re_miibus_statchg(device_t);
322 
323 static void	re_setmulti(struct re_softc *);
324 static void	re_reset(struct re_softc *, int);
325 static void	re_get_eaddr(struct re_softc *, uint8_t *);
326 
327 static void	re_setup_hw_im(struct re_softc *);
328 static void	re_setup_sim_im(struct re_softc *);
329 static void	re_disable_hw_im(struct re_softc *);
330 static void	re_disable_sim_im(struct re_softc *);
331 static void	re_config_imtype(struct re_softc *, int);
332 static void	re_setup_intr(struct re_softc *, int, int);
333 
334 static int	re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
335 static int	re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
336 static int	re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
337 static int	re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
338 static int	re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
339 
340 static int	re_jpool_alloc(struct re_softc *);
341 static void	re_jpool_free(struct re_softc *);
342 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
343 static void	re_jbuf_free(void *);
344 static void	re_jbuf_ref(void *);
345 
346 #ifdef RE_DIAG
347 static int	re_diag(struct re_softc *);
348 #endif
349 
350 #ifdef IFPOLL_ENABLE
351 static void	re_npoll(struct ifnet *, struct ifpoll_info *);
352 static void	re_npoll_compat(struct ifnet *, void *, int);
353 #endif
354 
355 static device_method_t re_methods[] = {
356 	/* Device interface */
357 	DEVMETHOD(device_probe,		re_probe),
358 	DEVMETHOD(device_attach,	re_attach),
359 	DEVMETHOD(device_detach,	re_detach),
360 	DEVMETHOD(device_suspend,	re_suspend),
361 	DEVMETHOD(device_resume,	re_resume),
362 	DEVMETHOD(device_shutdown,	re_shutdown),
363 
364 	/* bus interface */
365 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
366 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
367 
368 	/* MII interface */
369 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
370 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
371 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
372 
373 	{ 0, 0 }
374 };
375 
376 static driver_t re_driver = {
377 	"re",
378 	re_methods,
379 	sizeof(struct re_softc)
380 };
381 
382 static devclass_t re_devclass;
383 
384 DECLARE_DUMMY_MODULE(if_re);
385 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
386 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, NULL, NULL);
387 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, NULL, NULL);
388 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, NULL, NULL);
389 
390 static int	re_rx_desc_count = RE_RX_DESC_CNT_DEF;
391 static int	re_tx_desc_count = RE_TX_DESC_CNT_DEF;
392 static int	re_msi_enable = 0;
393 
394 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
395 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
396 TUNABLE_INT("hw.re.msi.enable", &re_msi_enable);
397 
398 #define EE_SET(x)	\
399 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
400 
401 #define EE_CLR(x)	\
402 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
403 
404 static __inline void
405 re_free_rxchain(struct re_softc *sc)
406 {
407 	if (sc->re_head != NULL) {
408 		m_freem(sc->re_head);
409 		sc->re_head = sc->re_tail = NULL;
410 	}
411 }
412 
413 /*
414  * Send a read command and address to the EEPROM, check for ACK.
415  */
416 static void
417 re_eeprom_putbyte(struct re_softc *sc, int addr)
418 {
419 	int d, i;
420 
421 	d = addr | (RE_9346_READ << sc->re_eewidth);
422 
423 	/*
424 	 * Feed in each bit and strobe the clock.
425 	 */
426 	for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
427 		if (d & i)
428 			EE_SET(RE_EE_DATAIN);
429 		else
430 			EE_CLR(RE_EE_DATAIN);
431 		DELAY(100);
432 		EE_SET(RE_EE_CLK);
433 		DELAY(150);
434 		EE_CLR(RE_EE_CLK);
435 		DELAY(100);
436 	}
437 }
438 
439 /*
440  * Read a word of data stored in the EEPROM at address 'addr.'
441  */
442 static void
443 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
444 {
445 	int i;
446 	uint16_t word = 0;
447 
448 	/*
449 	 * Send address of word we want to read.
450 	 */
451 	re_eeprom_putbyte(sc, addr);
452 
453 	/*
454 	 * Start reading bits from EEPROM.
455 	 */
456 	for (i = 0x8000; i != 0; i >>= 1) {
457 		EE_SET(RE_EE_CLK);
458 		DELAY(100);
459 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
460 			word |= i;
461 		EE_CLR(RE_EE_CLK);
462 		DELAY(100);
463 	}
464 
465 	*dest = word;
466 }
467 
468 /*
469  * Read a sequence of words from the EEPROM.
470  */
471 static void
472 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
473 {
474 	int i;
475 	uint16_t word = 0, *ptr;
476 
477 	CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
478 	DELAY(100);
479 
480 	for (i = 0; i < cnt; i++) {
481 		CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
482 		re_eeprom_getword(sc, off + i, &word);
483 		CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
484 		ptr = (uint16_t *)(dest + (i * 2));
485 		*ptr = word;
486 	}
487 
488 	CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
489 }
490 
491 static void
492 re_get_eewidth(struct re_softc *sc)
493 {
494 	uint16_t re_did = 0;
495 
496 	sc->re_eewidth = 6;
497 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
498 	if (re_did != 0x8129)
499 		sc->re_eewidth = 8;
500 }
501 
502 static int
503 re_gmii_readreg(device_t dev, int phy, int reg)
504 {
505 	struct re_softc *sc = device_get_softc(dev);
506 	u_int32_t rval;
507 	int i;
508 
509 	if (phy != 1)
510 		return(0);
511 
512 	/* Let the rgephy driver read the GMEDIASTAT register */
513 
514 	if (reg == RE_GMEDIASTAT)
515 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
516 
517 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
518 	DELAY(1000);
519 
520 	for (i = 0; i < RE_TIMEOUT; i++) {
521 		rval = CSR_READ_4(sc, RE_PHYAR);
522 		if (rval & RE_PHYAR_BUSY)
523 			break;
524 		DELAY(100);
525 	}
526 
527 	if (i == RE_TIMEOUT) {
528 		device_printf(dev, "PHY read failed\n");
529 		return(0);
530 	}
531 
532 	return(rval & RE_PHYAR_PHYDATA);
533 }
534 
535 static int
536 re_gmii_writereg(device_t dev, int phy, int reg, int data)
537 {
538 	struct re_softc *sc = device_get_softc(dev);
539 	uint32_t rval;
540 	int i;
541 
542 	CSR_WRITE_4(sc, RE_PHYAR,
543 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
544 	DELAY(1000);
545 
546 	for (i = 0; i < RE_TIMEOUT; i++) {
547 		rval = CSR_READ_4(sc, RE_PHYAR);
548 		if ((rval & RE_PHYAR_BUSY) == 0)
549 			break;
550 		DELAY(100);
551 	}
552 
553 	if (i == RE_TIMEOUT)
554 		device_printf(dev, "PHY write failed\n");
555 
556 	return(0);
557 }
558 
559 static int
560 re_miibus_readreg(device_t dev, int phy, int reg)
561 {
562 	struct re_softc	*sc = device_get_softc(dev);
563 	uint16_t rval = 0;
564 	uint16_t re8139_reg = 0;
565 
566 	if (!RE_IS_8139CP(sc)) {
567 		rval = re_gmii_readreg(dev, phy, reg);
568 		return(rval);
569 	}
570 
571 	/* Pretend the internal PHY is only at address 0 */
572 	if (phy)
573 		return(0);
574 
575 	switch(reg) {
576 	case MII_BMCR:
577 		re8139_reg = RE_BMCR;
578 		break;
579 	case MII_BMSR:
580 		re8139_reg = RE_BMSR;
581 		break;
582 	case MII_ANAR:
583 		re8139_reg = RE_ANAR;
584 		break;
585 	case MII_ANER:
586 		re8139_reg = RE_ANER;
587 		break;
588 	case MII_ANLPAR:
589 		re8139_reg = RE_LPAR;
590 		break;
591 	case MII_PHYIDR1:
592 	case MII_PHYIDR2:
593 		return(0);
594 	/*
595 	 * Allow the rlphy driver to read the media status
596 	 * register. If we have a link partner which does not
597 	 * support NWAY, this is the register which will tell
598 	 * us the results of parallel detection.
599 	 */
600 	case RE_MEDIASTAT:
601 		return(CSR_READ_1(sc, RE_MEDIASTAT));
602 	default:
603 		device_printf(dev, "bad phy register\n");
604 		return(0);
605 	}
606 	rval = CSR_READ_2(sc, re8139_reg);
607 	if (re8139_reg == RE_BMCR) {
608 		/* 8139C+ has different bit layout. */
609 		rval &= ~(BMCR_LOOP | BMCR_ISO);
610 	}
611 	return(rval);
612 }
613 
614 static int
615 re_miibus_writereg(device_t dev, int phy, int reg, int data)
616 {
617 	struct re_softc *sc= device_get_softc(dev);
618 	u_int16_t re8139_reg = 0;
619 
620 	if (!RE_IS_8139CP(sc))
621 		return(re_gmii_writereg(dev, phy, reg, data));
622 
623 	/* Pretend the internal PHY is only at address 0 */
624 	if (phy)
625 		return(0);
626 
627 	switch(reg) {
628 	case MII_BMCR:
629 		re8139_reg = RE_BMCR;
630 		/* 8139C+ has different bit layout. */
631 		data &= ~(BMCR_LOOP | BMCR_ISO);
632 		break;
633 	case MII_BMSR:
634 		re8139_reg = RE_BMSR;
635 		break;
636 	case MII_ANAR:
637 		re8139_reg = RE_ANAR;
638 		break;
639 	case MII_ANER:
640 		re8139_reg = RE_ANER;
641 		break;
642 	case MII_ANLPAR:
643 		re8139_reg = RE_LPAR;
644 		break;
645 	case MII_PHYIDR1:
646 	case MII_PHYIDR2:
647 		return(0);
648 	default:
649 		device_printf(dev, "bad phy register\n");
650 		return(0);
651 	}
652 	CSR_WRITE_2(sc, re8139_reg, data);
653 	return(0);
654 }
655 
656 static void
657 re_miibus_statchg(device_t dev)
658 {
659 }
660 
661 /*
662  * Program the 64-bit multicast hash filter.
663  */
664 static void
665 re_setmulti(struct re_softc *sc)
666 {
667 	struct ifnet *ifp = &sc->arpcom.ac_if;
668 	int h = 0;
669 	uint32_t hashes[2] = { 0, 0 };
670 	struct ifmultiaddr *ifma;
671 	uint32_t rxfilt;
672 	int mcnt = 0;
673 
674 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
675 
676 	/* Set the individual bit to receive frames for this host only. */
677 	rxfilt |= RE_RXCFG_RX_INDIV;
678 	/* Set capture broadcast bit to capture broadcast frames. */
679 	rxfilt |= RE_RXCFG_RX_BROAD;
680 
681 	rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
682 	if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
683 		rxfilt |= RE_RXCFG_RX_MULTI;
684 
685 		/* If we want promiscuous mode, set the allframes bit. */
686 		if (ifp->if_flags & IFF_PROMISC)
687 			rxfilt |= RE_RXCFG_RX_ALLPHYS;
688 
689 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
690 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
691 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
692 		return;
693 	}
694 
695 	/* first, zot all the existing hash bits */
696 	CSR_WRITE_4(sc, RE_MAR0, 0);
697 	CSR_WRITE_4(sc, RE_MAR4, 0);
698 
699 	/* now program new ones */
700 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
701 		if (ifma->ifma_addr->sa_family != AF_LINK)
702 			continue;
703 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
704 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
705 		if (h < 32)
706 			hashes[0] |= (1 << h);
707 		else
708 			hashes[1] |= (1 << (h - 32));
709 		mcnt++;
710 	}
711 
712 	if (mcnt)
713 		rxfilt |= RE_RXCFG_RX_MULTI;
714 	else
715 		rxfilt &= ~RE_RXCFG_RX_MULTI;
716 
717 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
718 
719 	/*
720 	 * For some unfathomable reason, RealTek decided to reverse
721 	 * the order of the multicast hash registers in the PCI Express
722 	 * parts. This means we have to write the hash pattern in reverse
723 	 * order for those devices.
724 	 */
725 	if (sc->re_caps & RE_C_PCIE) {
726 		CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[1]));
727 		CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[0]));
728 	} else {
729 		CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
730 		CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
731 	}
732 }
733 
734 static void
735 re_reset(struct re_softc *sc, int running)
736 {
737 	int i;
738 
739 	if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
740 		CSR_WRITE_1(sc, RE_COMMAND,
741 			    RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
742 		DELAY(100);
743 	}
744 
745 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
746 
747 	for (i = 0; i < RE_TIMEOUT; i++) {
748 		DELAY(10);
749 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
750 			break;
751 	}
752 	if (i == RE_TIMEOUT)
753 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
754 }
755 
756 #ifdef RE_DIAG
757 /*
758  * The following routine is designed to test for a defect on some
759  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
760  * lines connected to the bus, however for a 32-bit only card, they
761  * should be pulled high. The result of this defect is that the
762  * NIC will not work right if you plug it into a 64-bit slot: DMA
763  * operations will be done with 64-bit transfers, which will fail
764  * because the 64-bit data lines aren't connected.
765  *
766  * There's no way to work around this (short of talking a soldering
767  * iron to the board), however we can detect it. The method we use
768  * here is to put the NIC into digital loopback mode, set the receiver
769  * to promiscuous mode, and then try to send a frame. We then compare
770  * the frame data we sent to what was received. If the data matches,
771  * then the NIC is working correctly, otherwise we know the user has
772  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
773  * slot. In the latter case, there's no way the NIC can work correctly,
774  * so we print out a message on the console and abort the device attach.
775  */
776 
777 static int
778 re_diag(struct re_softc *sc)
779 {
780 	struct ifnet *ifp = &sc->arpcom.ac_if;
781 	struct mbuf *m0;
782 	struct ether_header *eh;
783 	struct re_desc *cur_rx;
784 	uint16_t status;
785 	uint32_t rxstat;
786 	int total_len, i, error = 0, phyaddr;
787 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
788 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
789 
790 	/* Allocate a single mbuf */
791 
792 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
793 	if (m0 == NULL)
794 		return(ENOBUFS);
795 
796 	/*
797 	 * Initialize the NIC in test mode. This sets the chip up
798 	 * so that it can send and receive frames, but performs the
799 	 * following special functions:
800 	 * - Puts receiver in promiscuous mode
801 	 * - Enables digital loopback mode
802 	 * - Leaves interrupts turned off
803 	 */
804 
805 	ifp->if_flags |= IFF_PROMISC;
806 	sc->re_flags |= RE_F_TESTMODE;
807 	re_init(sc);
808 	sc->re_flags |= RE_F_LINKED;
809 	if (!RE_IS_8139CP(sc))
810 		phyaddr = 1;
811 	else
812 		phyaddr = 0;
813 
814 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
815 	for (i = 0; i < RE_TIMEOUT; i++) {
816 		status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
817 		if (!(status & BMCR_RESET))
818 			break;
819 	}
820 
821 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
822 	CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
823 
824 	DELAY(100000);
825 
826 	/* Put some data in the mbuf */
827 
828 	eh = mtod(m0, struct ether_header *);
829 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
830 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
831 	eh->ether_type = htons(ETHERTYPE_IP);
832 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
833 
834 	/*
835 	 * Queue the packet, start transmission.
836 	 * Note: ifq_handoff() ultimately calls re_start() for us.
837 	 */
838 
839 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
840 	error = ifq_handoff(ifp, m0, NULL);
841 	if (error) {
842 		m0 = NULL;
843 		goto done;
844 	}
845 	m0 = NULL;
846 
847 	/* Wait for it to propagate through the chip */
848 
849 	DELAY(100000);
850 	for (i = 0; i < RE_TIMEOUT; i++) {
851 		status = CSR_READ_2(sc, RE_ISR);
852 		CSR_WRITE_2(sc, RE_ISR, status);
853 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
854 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
855 			break;
856 		DELAY(10);
857 	}
858 
859 	if (i == RE_TIMEOUT) {
860 		if_printf(ifp, "diagnostic failed to receive packet "
861 			  "in loopback mode\n");
862 		error = EIO;
863 		goto done;
864 	}
865 
866 	/*
867 	 * The packet should have been dumped into the first
868 	 * entry in the RX DMA ring. Grab it from there.
869 	 */
870 
871 	bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
872 			BUS_DMASYNC_POSTREAD);
873 	bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
874 			  sc->re_ldata.re_rx_dmamap[0]);
875 
876 	m0 = sc->re_ldata.re_rx_mbuf[0];
877 	sc->re_ldata.re_rx_mbuf[0] = NULL;
878 	eh = mtod(m0, struct ether_header *);
879 
880 	cur_rx = &sc->re_ldata.re_rx_list[0];
881 	total_len = RE_RXBYTES(cur_rx);
882 	rxstat = le32toh(cur_rx->re_cmdstat);
883 
884 	if (total_len != ETHER_MIN_LEN) {
885 		if_printf(ifp, "diagnostic failed, received short packet\n");
886 		error = EIO;
887 		goto done;
888 	}
889 
890 	/* Test that the received packet data matches what we sent. */
891 
892 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
893 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
894 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
895 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
896 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
897 		    dst, ":", src, ":", ETHERTYPE_IP);
898 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
899 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
900 		    ntohs(eh->ether_type));
901 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
902 		    "into a 64-bit PCI slot.\n");
903 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
904 		    "for proper operation.\n");
905 		if_printf(ifp, "Read the re(4) man page for more details.\n");
906 		error = EIO;
907 	}
908 
909 done:
910 	/* Turn interface off, release resources */
911 
912 	sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
913 	ifp->if_flags &= ~IFF_PROMISC;
914 	re_stop(sc);
915 	if (m0 != NULL)
916 		m_freem(m0);
917 
918 	return (error);
919 }
920 #endif	/* RE_DIAG */
921 
922 /*
923  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
924  * IDs against our list and return a device name if we find a match.
925  */
926 static int
927 re_probe(device_t dev)
928 {
929 	const struct re_type *t;
930 	const struct re_hwrev *hw_rev;
931 	struct re_softc *sc;
932 	int rid;
933 	uint32_t hwrev, macmode, txcfg;
934 	uint16_t vendor, product;
935 
936 	vendor = pci_get_vendor(dev);
937 	product = pci_get_device(dev);
938 
939 	/*
940 	 * Only attach to rev.3 of the Linksys EG1032 adapter.
941 	 * Rev.2 is supported by sk(4).
942 	 */
943 	if (vendor == PCI_VENDOR_LINKSYS &&
944 	    product == PCI_PRODUCT_LINKSYS_EG1032 &&
945 	    pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
946 		return ENXIO;
947 
948 	if (vendor == PCI_VENDOR_REALTEK &&
949 	    product == PCI_PRODUCT_REALTEK_RT8139 &&
950 	    pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
951 		/* Poor 8139 */
952 		return ENXIO;
953 	}
954 
955 	for (t = re_devs; t->re_name != NULL; t++) {
956 		if (product == t->re_did && vendor == t->re_vid)
957 			break;
958 	}
959 
960 	/*
961 	 * Check if we found a RealTek device.
962 	 */
963 	if (t->re_name == NULL)
964 		return ENXIO;
965 
966 	/*
967 	 * Temporarily map the I/O space so we can read the chip ID register.
968 	 */
969 	sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
970 	rid = RE_PCI_LOIO;
971 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
972 					    RF_ACTIVE);
973 	if (sc->re_res == NULL) {
974 		device_printf(dev, "couldn't map ports/memory\n");
975 		kfree(sc, M_TEMP);
976 		return ENXIO;
977 	}
978 
979 	sc->re_btag = rman_get_bustag(sc->re_res);
980 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
981 
982 	txcfg = CSR_READ_4(sc, RE_TXCFG);
983 	hwrev = txcfg & RE_TXCFG_HWREV;
984 	macmode = txcfg & RE_TXCFG_MACMODE;
985 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
986 	kfree(sc, M_TEMP);
987 
988 	/*
989 	 * and continue matching for the specific chip...
990 	 */
991 	for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
992 		if (hw_rev->re_hwrev == hwrev) {
993 			sc = device_get_softc(dev);
994 
995 			sc->re_hwrev = hw_rev->re_hwrev;
996 			sc->re_macver = hw_rev->re_macver;
997 			sc->re_caps = hw_rev->re_caps;
998 			sc->re_maxmtu = hw_rev->re_maxmtu;
999 
1000 			/*
1001 			 * Apply chip property fixup
1002 			 */
1003 			switch (sc->re_hwrev) {
1004 			case RE_HWREV_8101E1:
1005 			case RE_HWREV_8101E2:
1006 				if (macmode == 0)
1007 					sc->re_macver = RE_MACVER_11;
1008 				else if (macmode == 0x200000)
1009 					sc->re_macver = RE_MACVER_12;
1010 				break;
1011 			case RE_HWREV_8102E:
1012 			case RE_HWREV_8102EL:
1013 				if (macmode == 0)
1014 					sc->re_macver = RE_MACVER_13;
1015 				else if (macmode == 0x100000)
1016 					sc->re_macver = RE_MACVER_14;
1017 				break;
1018 			case RE_HWREV_8168B2:
1019 			case RE_HWREV_8168B3:
1020 				if (macmode == 0)
1021 					sc->re_macver = RE_MACVER_22;
1022 				break;
1023 			case RE_HWREV_8168C:
1024 				if (macmode == 0)
1025 					sc->re_macver = RE_MACVER_24;
1026 				else if (macmode == 0x200000)
1027 					sc->re_macver = RE_MACVER_25;
1028 				else if (macmode == 0x300000)
1029 					sc->re_macver = RE_MACVER_27;
1030 				break;
1031 			case RE_HWREV_8168CP:
1032 				if (macmode == 0)
1033 					sc->re_macver = RE_MACVER_26;
1034 				else if (macmode == 0x100000)
1035 					sc->re_macver = RE_MACVER_28;
1036 				break;
1037 			case RE_HWREV_8168DP:
1038 				if (macmode == 0)
1039 					sc->re_macver = RE_MACVER_2B;
1040 				else if (macmode == 0x200000)
1041 					sc->re_macver = RE_MACVER_2C;
1042 				break;
1043 			case RE_HWREV_8168E:
1044 				if (macmode == 0x100000)
1045 					sc->re_macver = RE_MACVER_2E;
1046 				else if (macmode == 0x200000)
1047 					sc->re_macver = RE_MACVER_2F;
1048 				break;
1049 			case RE_HWREV_8168F:
1050 				if (macmode == 0x000000)
1051 					sc->re_macver = RE_MACVER_30;
1052 				else if (macmode == 0x100000)
1053 					sc->re_macver = RE_MACVER_31;
1054 				break;
1055 			}
1056 			if (pci_is_pcie(dev))
1057 				sc->re_caps |= RE_C_PCIE;
1058 
1059 			device_set_desc(dev, t->re_name);
1060 			return 0;
1061 		}
1062 	}
1063 
1064 	if (bootverbose) {
1065 		device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1066 			      hwrev, macmode);
1067 	}
1068 	return ENXIO;
1069 }
1070 
1071 static int
1072 re_allocmem(device_t dev)
1073 {
1074 	struct re_softc *sc = device_get_softc(dev);
1075 	bus_dmamem_t dmem;
1076 	int error, i;
1077 
1078 	/*
1079 	 * Allocate list data
1080 	 */
1081 	sc->re_ldata.re_tx_mbuf =
1082 	kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1083 		M_DEVBUF, M_ZERO | M_WAITOK);
1084 
1085 	sc->re_ldata.re_rx_mbuf =
1086 	kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1087 		M_DEVBUF, M_ZERO | M_WAITOK);
1088 
1089 	sc->re_ldata.re_rx_paddr =
1090 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1091 		M_DEVBUF, M_ZERO | M_WAITOK);
1092 
1093 	sc->re_ldata.re_tx_dmamap =
1094 	kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1095 		M_DEVBUF, M_ZERO | M_WAITOK);
1096 
1097 	sc->re_ldata.re_rx_dmamap =
1098 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1099 		M_DEVBUF, M_ZERO | M_WAITOK);
1100 
1101 	/*
1102 	 * Allocate the parent bus DMA tag appropriate for PCI.
1103 	 */
1104 	error = bus_dma_tag_create(NULL,	/* parent */
1105 			1, 0,			/* alignment, boundary */
1106 			BUS_SPACE_MAXADDR,	/* lowaddr */
1107 			BUS_SPACE_MAXADDR,	/* highaddr */
1108 			NULL, NULL,		/* filter, filterarg */
1109 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1110 			0,			/* nsegments */
1111 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1112 			0,			/* flags */
1113 			&sc->re_parent_tag);
1114 	if (error) {
1115 		device_printf(dev, "could not allocate parent dma tag\n");
1116 		return error;
1117 	}
1118 
1119 	/* Allocate TX descriptor list. */
1120 	error = bus_dmamem_coherent(sc->re_parent_tag,
1121 			RE_RING_ALIGN, 0,
1122 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1123 			RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1124 			&dmem);
1125 	if (error) {
1126 		device_printf(dev, "could not allocate TX ring\n");
1127 		return error;
1128 	}
1129 	sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1130 	sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1131 	sc->re_ldata.re_tx_list = dmem.dmem_addr;
1132 	sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1133 
1134 	/* Allocate RX descriptor list. */
1135 	error = bus_dmamem_coherent(sc->re_parent_tag,
1136 			RE_RING_ALIGN, 0,
1137 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1138 			RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1139 			&dmem);
1140 	if (error) {
1141 		device_printf(dev, "could not allocate RX ring\n");
1142 		return error;
1143 	}
1144 	sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1145 	sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1146 	sc->re_ldata.re_rx_list = dmem.dmem_addr;
1147 	sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1148 
1149 	/* Allocate maps for TX mbufs. */
1150 	error = bus_dma_tag_create(sc->re_parent_tag,
1151 			1, 0,
1152 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1153 			NULL, NULL,
1154 			RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1155 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1156 			&sc->re_ldata.re_tx_mtag);
1157 	if (error) {
1158 		device_printf(dev, "could not allocate TX buf dma tag\n");
1159 		return(error);
1160 	}
1161 
1162 	/* Create DMA maps for TX buffers */
1163 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1164 		error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1165 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1166 				&sc->re_ldata.re_tx_dmamap[i]);
1167 		if (error) {
1168 			device_printf(dev, "can't create DMA map for TX buf\n");
1169 			re_freebufmem(sc, i, 0);
1170 			return(error);
1171 		}
1172 	}
1173 
1174 	/* Allocate maps for RX mbufs. */
1175 	error = bus_dma_tag_create(sc->re_parent_tag,
1176 			RE_RXBUF_ALIGN, 0,
1177 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1178 			NULL, NULL,
1179 			MCLBYTES, 1, MCLBYTES,
1180 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1181 			&sc->re_ldata.re_rx_mtag);
1182 	if (error) {
1183 		device_printf(dev, "could not allocate RX buf dma tag\n");
1184 		return(error);
1185 	}
1186 
1187 	/* Create spare DMA map for RX */
1188 	error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1189 			&sc->re_ldata.re_rx_spare);
1190 	if (error) {
1191 		device_printf(dev, "can't create spare DMA map for RX\n");
1192 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1193 		sc->re_ldata.re_rx_mtag = NULL;
1194 		return error;
1195 	}
1196 
1197 	/* Create DMA maps for RX buffers */
1198 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1199 		error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1200 				BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1201 		if (error) {
1202 			device_printf(dev, "can't create DMA map for RX buf\n");
1203 			re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1204 			return(error);
1205 		}
1206 	}
1207 
1208 	/* Create jumbo buffer pool for RX if required */
1209 	if (sc->re_caps & RE_C_CONTIGRX) {
1210 		error = re_jpool_alloc(sc);
1211 		if (error) {
1212 			re_jpool_free(sc);
1213 			/* Disable jumbo frame support */
1214 			sc->re_maxmtu = ETHERMTU;
1215 		}
1216 	}
1217 	return(0);
1218 }
1219 
1220 static void
1221 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1222 {
1223 	int i;
1224 
1225 	/* Destroy all the RX and TX buffer maps */
1226 	if (sc->re_ldata.re_tx_mtag) {
1227 		for (i = 0; i < tx_cnt; i++) {
1228 			bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1229 					   sc->re_ldata.re_tx_dmamap[i]);
1230 		}
1231 		bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1232 		sc->re_ldata.re_tx_mtag = NULL;
1233 	}
1234 
1235 	if (sc->re_ldata.re_rx_mtag) {
1236 		for (i = 0; i < rx_cnt; i++) {
1237 			bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1238 					   sc->re_ldata.re_rx_dmamap[i]);
1239 		}
1240 		bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1241 				   sc->re_ldata.re_rx_spare);
1242 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1243 		sc->re_ldata.re_rx_mtag = NULL;
1244 	}
1245 }
1246 
1247 static void
1248 re_freemem(device_t dev)
1249 {
1250 	struct re_softc *sc = device_get_softc(dev);
1251 
1252 	/* Unload and free the RX DMA ring memory and map */
1253 	if (sc->re_ldata.re_rx_list_tag) {
1254 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1255 				  sc->re_ldata.re_rx_list_map);
1256 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1257 				sc->re_ldata.re_rx_list,
1258 				sc->re_ldata.re_rx_list_map);
1259 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1260 	}
1261 
1262 	/* Unload and free the TX DMA ring memory and map */
1263 	if (sc->re_ldata.re_tx_list_tag) {
1264 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1265 				  sc->re_ldata.re_tx_list_map);
1266 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1267 				sc->re_ldata.re_tx_list,
1268 				sc->re_ldata.re_tx_list_map);
1269 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1270 	}
1271 
1272 	/* Free RX/TX buf DMA stuffs */
1273 	re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1274 
1275 	/* Unload and free the stats buffer and map */
1276 	if (sc->re_ldata.re_stag) {
1277 		bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
1278 		bus_dmamem_free(sc->re_ldata.re_stag,
1279 				sc->re_ldata.re_stats,
1280 				sc->re_ldata.re_smap);
1281 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1282 	}
1283 
1284 	if (sc->re_caps & RE_C_CONTIGRX)
1285 		re_jpool_free(sc);
1286 
1287 	if (sc->re_parent_tag)
1288 		bus_dma_tag_destroy(sc->re_parent_tag);
1289 
1290 	if (sc->re_ldata.re_tx_mbuf != NULL)
1291 		kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1292 	if (sc->re_ldata.re_rx_mbuf != NULL)
1293 		kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1294 	if (sc->re_ldata.re_rx_paddr != NULL)
1295 		kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1296 	if (sc->re_ldata.re_tx_dmamap != NULL)
1297 		kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1298 	if (sc->re_ldata.re_rx_dmamap != NULL)
1299 		kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1300 }
1301 
1302 /*
1303  * Attach the interface. Allocate softc structures, do ifmedia
1304  * setup and ethernet/BPF attach.
1305  */
1306 static int
1307 re_attach(device_t dev)
1308 {
1309 	struct re_softc	*sc = device_get_softc(dev);
1310 	struct ifnet *ifp;
1311 	uint8_t eaddr[ETHER_ADDR_LEN];
1312 	int error = 0, rid, qlen;
1313 	u_int irq_flags;
1314 
1315 	callout_init(&sc->re_timer);
1316 	sc->re_dev = dev;
1317 
1318 	if (RE_IS_8139CP(sc)) {
1319 		sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1320 		sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1321 	} else {
1322 		sc->re_rx_desc_cnt = re_rx_desc_count;
1323 		if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1324 			sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1325 
1326 		sc->re_tx_desc_cnt = re_tx_desc_count;
1327 		if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1328 			sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1329 	}
1330 
1331 	qlen = RE_IFQ_MAXLEN;
1332 	if (sc->re_tx_desc_cnt > qlen)
1333 		qlen = sc->re_tx_desc_cnt;
1334 
1335 	sc->re_rxbuf_size = MCLBYTES;
1336 	sc->re_newbuf = re_newbuf_std;
1337 
1338 	sc->re_tx_time = 5;		/* 125us */
1339 	sc->re_rx_time = 2;		/* 50us */
1340 	if (sc->re_caps & RE_C_PCIE)
1341 		sc->re_sim_time = 75;	/* 75us */
1342 	else
1343 		sc->re_sim_time = 125;	/* 125us */
1344 	if (!RE_IS_8139CP(sc)) {
1345 		/* simulated interrupt moderation */
1346 		sc->re_imtype = RE_IMTYPE_SIM;
1347 	} else {
1348 		sc->re_imtype = RE_IMTYPE_NONE;
1349 	}
1350 	re_config_imtype(sc, sc->re_imtype);
1351 
1352 	sysctl_ctx_init(&sc->re_sysctl_ctx);
1353 	sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1354 					     SYSCTL_STATIC_CHILDREN(_hw),
1355 					     OID_AUTO,
1356 					     device_get_nameunit(dev),
1357 					     CTLFLAG_RD, 0, "");
1358 	if (sc->re_sysctl_tree == NULL) {
1359 		device_printf(dev, "can't add sysctl node\n");
1360 		error = ENXIO;
1361 		goto fail;
1362 	}
1363 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1364 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1365 		       "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1366 		       0, "RX desc count");
1367 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1368 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1369 		       "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1370 		       0, "TX desc count");
1371 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1372 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1373 			OID_AUTO, "sim_time",
1374 			CTLTYPE_INT | CTLFLAG_RW,
1375 			sc, 0, re_sysctl_simtime, "I",
1376 			"Simulated interrupt moderation time (usec).");
1377 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1378 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1379 			OID_AUTO, "imtype",
1380 			CTLTYPE_INT | CTLFLAG_RW,
1381 			sc, 0, re_sysctl_imtype, "I",
1382 			"Interrupt moderation type -- "
1383 			"0:disable, 1:simulated, "
1384 			"2:hardware(if supported)");
1385 	if (sc->re_caps & RE_C_HWIM) {
1386 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1387 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1388 				OID_AUTO, "hw_rxtime",
1389 				CTLTYPE_INT | CTLFLAG_RW,
1390 				sc, 0, re_sysctl_rxtime, "I",
1391 				"Hardware interrupt moderation time "
1392 				"(unit: 25usec).");
1393 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1394 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1395 				OID_AUTO, "hw_txtime",
1396 				CTLTYPE_INT | CTLFLAG_RW,
1397 				sc, 0, re_sysctl_txtime, "I",
1398 				"Hardware interrupt moderation time "
1399 				"(unit: 25usec).");
1400 	}
1401 
1402 #ifndef BURN_BRIDGES
1403 	/*
1404 	 * Handle power management nonsense.
1405 	 */
1406 
1407 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1408 		uint32_t membase, irq;
1409 
1410 		/* Save important PCI config data. */
1411 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1412 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1413 
1414 		/* Reset the power state. */
1415 		device_printf(dev, "chip is in D%d power mode "
1416 		    "-- setting to D0\n", pci_get_powerstate(dev));
1417 
1418 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1419 
1420 		/* Restore PCI config data. */
1421 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1422 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1423 	}
1424 #endif
1425 	/*
1426 	 * Map control/status registers.
1427 	 */
1428 	pci_enable_busmaster(dev);
1429 
1430 	rid = RE_PCI_LOIO;
1431 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1432 					    RF_ACTIVE);
1433 
1434 	if (sc->re_res == NULL) {
1435 		device_printf(dev, "couldn't map ports\n");
1436 		error = ENXIO;
1437 		goto fail;
1438 	}
1439 
1440 	sc->re_btag = rman_get_bustag(sc->re_res);
1441 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1442 
1443 	/* Allocate interrupt */
1444 	sc->re_irq_type = pci_alloc_1intr(dev, re_msi_enable,
1445 					   &sc->re_irq_rid, &irq_flags);
1446 
1447 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->re_irq_rid,
1448 					    irq_flags);
1449 	if (sc->re_irq == NULL) {
1450 		device_printf(dev, "couldn't map interrupt\n");
1451 		error = ENXIO;
1452 		goto fail;
1453 	}
1454 
1455 	/* Reset the adapter. */
1456 	re_reset(sc, 0);
1457 
1458 	if (RE_IS_8139CP(sc)) {
1459 		sc->re_bus_speed = 33; /* XXX */
1460 	} else if (sc->re_caps & RE_C_PCIE) {
1461 		sc->re_bus_speed = 125;
1462 	} else {
1463 		uint8_t cfg2;
1464 
1465 		cfg2 = CSR_READ_1(sc, RE_CFG2);
1466 		switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1467 		case RE_CFG2_PCICLK_33MHZ:
1468 			sc->re_bus_speed = 33;
1469 			break;
1470 		case RE_CFG2_PCICLK_66MHZ:
1471 			sc->re_bus_speed = 66;
1472 			break;
1473 		default:
1474 			device_printf(dev, "unknown bus speed, assume 33MHz\n");
1475 			sc->re_bus_speed = 33;
1476 			break;
1477 		}
1478 		if (cfg2 & RE_CFG2_PCI64)
1479 			sc->re_caps |= RE_C_PCI64;
1480 	}
1481 	device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1482 		      "PCI%s %dMHz\n",
1483 		      sc->re_hwrev, sc->re_macver,
1484 		      (sc->re_caps & RE_C_PCIE) ?
1485 		      "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1486 		      sc->re_bus_speed);
1487 
1488 	/*
1489 	 * NOTE:
1490 	 * DO NOT try to adjust config1 and config5 which was spotted in
1491 	 * Realtek's Linux drivers.  It will _permanently_ damage certain
1492 	 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1493 	 */
1494 
1495 	re_get_eaddr(sc, eaddr);
1496 
1497 	if (!RE_IS_8139CP(sc)) {
1498 		/* Set RX length mask */
1499 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1500 		sc->re_txstart = RE_GTXSTART;
1501 	} else {
1502 		/* Set RX length mask */
1503 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1504 		sc->re_txstart = RE_TXSTART;
1505 	}
1506 
1507 	/* Allocate DMA stuffs */
1508 	error = re_allocmem(dev);
1509 	if (error)
1510 		goto fail;
1511 
1512 	/*
1513 	 * Apply some magic PCI settings from Realtek ...
1514 	 */
1515 	if (RE_IS_8169(sc)) {
1516 		CSR_WRITE_1(sc, 0x82, 1);
1517 		pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1518 	}
1519 	pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1520 
1521 	if (sc->re_caps & RE_C_MAC2) {
1522 		/*
1523 		 * Following part is extracted from Realtek BSD driver v176.
1524 		 * However, this does _not_ make much/any sense:
1525 		 * 8168C's PCI Express device control is located at 0x78,
1526 		 * so the reading from 0x79 (higher part of 0x78) and setting
1527 		 * the 4~6bits intend to enlarge the "max read request size"
1528 		 * (we will do it).  The content of the rest part of this
1529 		 * register is not meaningful to other PCI registers, so
1530 		 * writing the value to 0x54 could be completely wrong.
1531 		 * 0x80 is the lower part of PCI Express device status, non-
1532 		 * reserved bits are RW1C, writing 0 to them will not have
1533 		 * any effect at all.
1534 		 */
1535 #ifdef foo
1536 		uint8_t val;
1537 
1538 		val = pci_read_config(dev, 0x79, 1);
1539 		val = (val & ~0x70) | 0x50;
1540 		pci_write_config(dev, 0x54, val, 1);
1541 		pci_write_config(dev, 0x80, 0, 1);
1542 #endif
1543 	}
1544 
1545 	/*
1546 	 * Apply some PHY fixup from Realtek ...
1547 	 */
1548 	if (sc->re_hwrev == RE_HWREV_8110S) {
1549 		CSR_WRITE_1(sc, 0x82, 1);
1550 		re_miibus_writereg(dev, 1, 0xb, 0);
1551 	}
1552 	if (sc->re_caps & RE_C_PHYPMGT) {
1553 		/* Power up PHY */
1554 		re_miibus_writereg(dev, 1, 0x1f, 0);
1555 		re_miibus_writereg(dev, 1, 0xe, 0);
1556 	}
1557 
1558 	/* Do MII setup */
1559 	if (mii_phy_probe(dev, &sc->re_miibus,
1560 	    re_ifmedia_upd, re_ifmedia_sts)) {
1561 		device_printf(dev, "MII without any phy!\n");
1562 		error = ENXIO;
1563 		goto fail;
1564 	}
1565 
1566 	ifp = &sc->arpcom.ac_if;
1567 	ifp->if_softc = sc;
1568 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1569 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1570 	ifp->if_ioctl = re_ioctl;
1571 	ifp->if_start = re_start;
1572 #ifdef IFPOLL_ENABLE
1573 	ifp->if_npoll = re_npoll;
1574 #endif
1575 	ifp->if_watchdog = re_watchdog;
1576 	ifp->if_init = re_init;
1577 	if (!RE_IS_8139CP(sc)) /* XXX */
1578 		ifp->if_baudrate = 1000000000;
1579 	else
1580 		ifp->if_baudrate = 100000000;
1581 	ifq_set_maxlen(&ifp->if_snd, qlen);
1582 	ifq_set_ready(&ifp->if_snd);
1583 
1584 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1585 	if (sc->re_caps & RE_C_HWCSUM)
1586 		ifp->if_capabilities |= IFCAP_HWCSUM;
1587 
1588 	ifp->if_capenable = ifp->if_capabilities;
1589 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1590 		ifp->if_hwassist = RE_CSUM_FEATURES;
1591 	else
1592 		ifp->if_hwassist = 0;
1593 
1594 	/*
1595 	 * Call MI attach routine.
1596 	 */
1597 	ether_ifattach(ifp, eaddr, NULL);
1598 
1599 #ifdef IFPOLL_ENABLE
1600 	ifpoll_compat_setup(&sc->re_npoll,
1601 	    &sc->re_sysctl_ctx, sc->re_sysctl_tree, device_get_unit(dev),
1602 	    ifp->if_serializer);
1603 #endif
1604 
1605 #ifdef RE_DIAG
1606 	/*
1607 	 * Perform hardware diagnostic on the original RTL8169.
1608 	 * Some 32-bit cards were incorrectly wired and would
1609 	 * malfunction if plugged into a 64-bit slot.
1610 	 */
1611 	if (sc->re_hwrev == RE_HWREV_8169) {
1612 		lwkt_serialize_enter(ifp->if_serializer);
1613 		error = re_diag(sc);
1614 		lwkt_serialize_exit(ifp->if_serializer);
1615 
1616 		if (error) {
1617 			device_printf(dev, "hardware diagnostic failure\n");
1618 			ether_ifdetach(ifp);
1619 			goto fail;
1620 		}
1621 	}
1622 #endif	/* RE_DIAG */
1623 
1624 	/* Hook interrupt last to avoid having to lock softc */
1625 	error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1626 			       &sc->re_intrhand, ifp->if_serializer);
1627 
1628 	if (error) {
1629 		device_printf(dev, "couldn't set up irq\n");
1630 		ether_ifdetach(ifp);
1631 		goto fail;
1632 	}
1633 
1634 	ifp->if_cpuid = rman_get_cpuid(sc->re_irq);
1635 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1636 
1637 fail:
1638 	if (error)
1639 		re_detach(dev);
1640 
1641 	return (error);
1642 }
1643 
1644 /*
1645  * Shutdown hardware and free up resources. This can be called any
1646  * time after the mutex has been initialized. It is called in both
1647  * the error case in attach and the normal detach case so it needs
1648  * to be careful about only freeing resources that have actually been
1649  * allocated.
1650  */
1651 static int
1652 re_detach(device_t dev)
1653 {
1654 	struct re_softc *sc = device_get_softc(dev);
1655 	struct ifnet *ifp = &sc->arpcom.ac_if;
1656 
1657 	/* These should only be active if attach succeeded */
1658 	if (device_is_attached(dev)) {
1659 		lwkt_serialize_enter(ifp->if_serializer);
1660 		re_stop(sc);
1661 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1662 		lwkt_serialize_exit(ifp->if_serializer);
1663 
1664 		ether_ifdetach(ifp);
1665 	}
1666 	if (sc->re_miibus)
1667 		device_delete_child(dev, sc->re_miibus);
1668 	bus_generic_detach(dev);
1669 
1670 	if (sc->re_sysctl_tree != NULL)
1671 		sysctl_ctx_free(&sc->re_sysctl_ctx);
1672 
1673 	if (sc->re_irq)
1674 		bus_release_resource(dev, SYS_RES_IRQ, sc->re_irq_rid,
1675 				     sc->re_irq);
1676 
1677 	if (sc->re_irq_type == PCI_INTR_TYPE_MSI)
1678 		pci_release_msi(dev);
1679 
1680 	if (sc->re_res) {
1681 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1682 				     sc->re_res);
1683 	}
1684 
1685 	/* Free DMA stuffs */
1686 	re_freemem(dev);
1687 
1688 	return(0);
1689 }
1690 
1691 static void
1692 re_setup_rxdesc(struct re_softc *sc, int idx)
1693 {
1694 	bus_addr_t paddr;
1695 	uint32_t cmdstat;
1696 	struct re_desc *d;
1697 
1698 	paddr = sc->re_ldata.re_rx_paddr[idx];
1699 	d = &sc->re_ldata.re_rx_list[idx];
1700 
1701 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1702 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1703 
1704 	cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1705 	if (idx == (sc->re_rx_desc_cnt - 1))
1706 		cmdstat |= RE_RDESC_CMD_EOR;
1707 	d->re_cmdstat = htole32(cmdstat);
1708 }
1709 
1710 static int
1711 re_newbuf_std(struct re_softc *sc, int idx, int init)
1712 {
1713 	bus_dma_segment_t seg;
1714 	bus_dmamap_t map;
1715 	struct mbuf *m;
1716 	int error, nsegs;
1717 
1718 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1719 	if (m == NULL) {
1720 		error = ENOBUFS;
1721 
1722 		if (init) {
1723 			if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1724 			return error;
1725 		} else {
1726 			goto back;
1727 		}
1728 	}
1729 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1730 
1731 	/*
1732 	 * NOTE:
1733 	 * re(4) chips need address of the receive buffer to be 8-byte
1734 	 * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1735 	 */
1736 
1737 	error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1738 			sc->re_ldata.re_rx_spare, m,
1739 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1740 	if (error) {
1741 		m_freem(m);
1742 		if (init) {
1743 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1744 			return error;
1745 		} else {
1746 			goto back;
1747 		}
1748 	}
1749 
1750 	if (!init) {
1751 		bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1752 				sc->re_ldata.re_rx_dmamap[idx],
1753 				BUS_DMASYNC_POSTREAD);
1754 		bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1755 				  sc->re_ldata.re_rx_dmamap[idx]);
1756 	}
1757 	sc->re_ldata.re_rx_mbuf[idx] = m;
1758 	sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1759 
1760 	map = sc->re_ldata.re_rx_dmamap[idx];
1761 	sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1762 	sc->re_ldata.re_rx_spare = map;
1763 back:
1764 	re_setup_rxdesc(sc, idx);
1765 	return error;
1766 }
1767 
1768 static int
1769 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1770 {
1771 	struct mbuf *m;
1772 	struct re_jbuf *jbuf;
1773 	int error = 0;
1774 
1775 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1776 	if (m == NULL) {
1777 		error = ENOBUFS;
1778 		if (init) {
1779 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1780 			return error;
1781 		} else {
1782 			goto back;
1783 		}
1784 	}
1785 
1786 	jbuf = re_jbuf_alloc(sc);
1787 	if (jbuf == NULL) {
1788 		m_freem(m);
1789 
1790 		error = ENOBUFS;
1791 		if (init) {
1792 			if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1793 			return error;
1794 		} else {
1795 			goto back;
1796 		}
1797 	}
1798 
1799 	m->m_ext.ext_arg = jbuf;
1800 	m->m_ext.ext_buf = jbuf->re_buf;
1801 	m->m_ext.ext_free = re_jbuf_free;
1802 	m->m_ext.ext_ref = re_jbuf_ref;
1803 	m->m_ext.ext_size = sc->re_rxbuf_size;
1804 
1805 	m->m_data = m->m_ext.ext_buf;
1806 	m->m_flags |= M_EXT;
1807 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1808 
1809 	/*
1810 	 * NOTE:
1811 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1812 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1813 	 */
1814 
1815 	sc->re_ldata.re_rx_mbuf[idx] = m;
1816 	sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1817 back:
1818 	re_setup_rxdesc(sc, idx);
1819 	return error;
1820 }
1821 
1822 static int
1823 re_tx_list_init(struct re_softc *sc)
1824 {
1825 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1826 
1827 	sc->re_ldata.re_tx_prodidx = 0;
1828 	sc->re_ldata.re_tx_considx = 0;
1829 	sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1830 
1831 	return(0);
1832 }
1833 
1834 static int
1835 re_rx_list_init(struct re_softc *sc)
1836 {
1837 	int i, error;
1838 
1839 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1840 
1841 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1842 		error = sc->re_newbuf(sc, i, 1);
1843 		if (error)
1844 			return(error);
1845 	}
1846 
1847 	sc->re_ldata.re_rx_prodidx = 0;
1848 	sc->re_head = sc->re_tail = NULL;
1849 
1850 	return(0);
1851 }
1852 
1853 #define RE_IP4_PACKET	0x1
1854 #define RE_TCP_PACKET	0x2
1855 #define RE_UDP_PACKET	0x4
1856 
1857 static __inline uint8_t
1858 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1859 {
1860 	uint8_t packet_type = 0;
1861 
1862 	if (sc->re_caps & RE_C_MAC2) {
1863 		if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1864 			packet_type |= RE_IP4_PACKET;
1865 	} else {
1866 		if (rxstat & RE_RDESC_STAT_PROTOID)
1867 			packet_type |= RE_IP4_PACKET;
1868 	}
1869 	if (RE_TCPPKT(rxstat))
1870 		packet_type |= RE_TCP_PACKET;
1871 	else if (RE_UDPPKT(rxstat))
1872 		packet_type |= RE_UDP_PACKET;
1873 	return packet_type;
1874 }
1875 
1876 /*
1877  * RX handler for C+ and 8169. For the gigE chips, we support
1878  * the reception of jumbo frames that have been fragmented
1879  * across multiple 2K mbuf cluster buffers.
1880  */
1881 static int
1882 re_rxeof(struct re_softc *sc)
1883 {
1884 	struct ifnet *ifp = &sc->arpcom.ac_if;
1885 	struct mbuf *m;
1886 	struct re_desc 	*cur_rx;
1887 	uint32_t rxstat, rxctrl;
1888 	int i, total_len, rx = 0;
1889 
1890 	for (i = sc->re_ldata.re_rx_prodidx;
1891 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1892 		cur_rx = &sc->re_ldata.re_rx_list[i];
1893 		m = sc->re_ldata.re_rx_mbuf[i];
1894 		total_len = RE_RXBYTES(cur_rx);
1895 		rxstat = le32toh(cur_rx->re_cmdstat);
1896 		rxctrl = le32toh(cur_rx->re_control);
1897 
1898 		rx = 1;
1899 
1900 #ifdef INVARIANTS
1901 		if (sc->re_flags & RE_F_USE_JPOOL)
1902 			KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1903 #endif
1904 
1905 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1906 			if (sc->re_flags & RE_F_DROP_RXFRAG) {
1907 				re_setup_rxdesc(sc, i);
1908 				continue;
1909 			}
1910 
1911 			if (sc->re_newbuf(sc, i, 0)) {
1912 				/* Drop upcoming fragments */
1913 				sc->re_flags |= RE_F_DROP_RXFRAG;
1914 				continue;
1915 			}
1916 
1917 			m->m_len = MCLBYTES;
1918 			if (sc->re_head == NULL) {
1919 				sc->re_head = sc->re_tail = m;
1920 			} else {
1921 				sc->re_tail->m_next = m;
1922 				sc->re_tail = m;
1923 			}
1924 			continue;
1925 		} else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1926 			/*
1927 			 * Last fragment of a multi-fragment packet.
1928 			 *
1929 			 * Since error already happened, this fragment
1930 			 * must be dropped as well as the fragment chain.
1931 			 */
1932 			re_setup_rxdesc(sc, i);
1933 			re_free_rxchain(sc);
1934 			sc->re_flags &= ~RE_F_DROP_RXFRAG;
1935 			continue;
1936 		}
1937 
1938 		/*
1939 		 * NOTE: for the 8139C+, the frame length field
1940 		 * is always 12 bits in size, but for the gigE chips,
1941 		 * it is 13 bits (since the max RX frame length is 16K).
1942 		 * Unfortunately, all 32 bits in the status word
1943 		 * were already used, so to make room for the extra
1944 		 * length bit, RealTek took out the 'frame alignment
1945 		 * error' bit and shifted the other status bits
1946 		 * over one slot. The OWN, EOR, FS and LS bits are
1947 		 * still in the same places. We have already extracted
1948 		 * the frame length and checked the OWN bit, so rather
1949 		 * than using an alternate bit mapping, we shift the
1950 		 * status bits one space to the right so we can evaluate
1951 		 * them using the 8169 status as though it was in the
1952 		 * same format as that of the 8139C+.
1953 		 */
1954 		if (!RE_IS_8139CP(sc))
1955 			rxstat >>= 1;
1956 
1957 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1958 			ifp->if_ierrors++;
1959 			/*
1960 			 * If this is part of a multi-fragment packet,
1961 			 * discard all the pieces.
1962 			 */
1963 			re_free_rxchain(sc);
1964 			re_setup_rxdesc(sc, i);
1965 			continue;
1966 		}
1967 
1968 		/*
1969 		 * If allocating a replacement mbuf fails,
1970 		 * reload the current one.
1971 		 */
1972 
1973 		if (sc->re_newbuf(sc, i, 0)) {
1974 			ifp->if_ierrors++;
1975 			continue;
1976 		}
1977 
1978 		if (sc->re_head != NULL) {
1979 			m->m_len = total_len % MCLBYTES;
1980 			/*
1981 			 * Special case: if there's 4 bytes or less
1982 			 * in this buffer, the mbuf can be discarded:
1983 			 * the last 4 bytes is the CRC, which we don't
1984 			 * care about anyway.
1985 			 */
1986 			if (m->m_len <= ETHER_CRC_LEN) {
1987 				sc->re_tail->m_len -=
1988 				    (ETHER_CRC_LEN - m->m_len);
1989 				m_freem(m);
1990 			} else {
1991 				m->m_len -= ETHER_CRC_LEN;
1992 				sc->re_tail->m_next = m;
1993 			}
1994 			m = sc->re_head;
1995 			sc->re_head = sc->re_tail = NULL;
1996 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1997 		} else {
1998 			m->m_pkthdr.len = m->m_len =
1999 			    (total_len - ETHER_CRC_LEN);
2000 		}
2001 
2002 		ifp->if_ipackets++;
2003 		m->m_pkthdr.rcvif = ifp;
2004 
2005 		/* Do RX checksumming if enabled */
2006 
2007 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2008 			uint8_t packet_type;
2009 
2010 			packet_type = re_packet_type(sc, rxstat, rxctrl);
2011 
2012 			/* Check IP header checksum */
2013 			if (packet_type & RE_IP4_PACKET) {
2014 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2015 				if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
2016 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2017 			}
2018 
2019 			/* Check TCP/UDP checksum */
2020 			if (((packet_type & RE_TCP_PACKET) &&
2021 			     (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2022 			    ((packet_type & RE_UDP_PACKET) &&
2023 			     (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2024 				m->m_pkthdr.csum_flags |=
2025 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2026 				    CSUM_FRAG_NOT_CHECKED;
2027 				m->m_pkthdr.csum_data = 0xffff;
2028 			}
2029 		}
2030 
2031 		if (rxctrl & RE_RDESC_CTL_HASTAG) {
2032 			m->m_flags |= M_VLANTAG;
2033 			m->m_pkthdr.ether_vlantag =
2034 				be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2035 		}
2036 		ifp->if_input(ifp, m);
2037 	}
2038 
2039 	sc->re_ldata.re_rx_prodidx = i;
2040 
2041 	return rx;
2042 }
2043 
2044 #undef RE_IP4_PACKET
2045 #undef RE_TCP_PACKET
2046 #undef RE_UDP_PACKET
2047 
2048 static int
2049 re_tx_collect(struct re_softc *sc)
2050 {
2051 	struct ifnet *ifp = &sc->arpcom.ac_if;
2052 	uint32_t txstat;
2053 	int idx, tx = 0;
2054 
2055 	for (idx = sc->re_ldata.re_tx_considx;
2056 	     sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2057 	     RE_TXDESC_INC(sc, idx)) {
2058 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2059 		if (txstat & RE_TDESC_CMD_OWN)
2060 			break;
2061 
2062 		tx = 1;
2063 
2064 		sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2065 
2066 		/*
2067 		 * We only stash mbufs in the last descriptor
2068 		 * in a fragment chain, which also happens to
2069 		 * be the only place where the TX status bits
2070 		 * are valid.
2071 		 */
2072 		if (txstat & RE_TDESC_CMD_EOF) {
2073 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2074 			    sc->re_ldata.re_tx_dmamap[idx]);
2075 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2076 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
2077 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2078 			    RE_TDESC_STAT_COLCNT))
2079 				ifp->if_collisions++;
2080 			if (txstat & RE_TDESC_STAT_TXERRSUM)
2081 				ifp->if_oerrors++;
2082 			else
2083 				ifp->if_opackets++;
2084 		}
2085 		sc->re_ldata.re_tx_free++;
2086 	}
2087 	sc->re_ldata.re_tx_considx = idx;
2088 
2089 	return tx;
2090 }
2091 
2092 static int
2093 re_txeof(struct re_softc *sc)
2094 {
2095 	struct ifnet *ifp = &sc->arpcom.ac_if;
2096 	int tx;
2097 
2098 	tx = re_tx_collect(sc);
2099 
2100 	/* There is enough free TX descs */
2101 	if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2102 		ifp->if_flags &= ~IFF_OACTIVE;
2103 
2104 	/*
2105 	 * Some chips will ignore a second TX request issued while an
2106 	 * existing transmission is in progress. If the transmitter goes
2107 	 * idle but there are still packets waiting to be sent, we need
2108 	 * to restart the channel here to flush them out. This only seems
2109 	 * to be required with the PCIe devices.
2110 	 */
2111 	if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2112 		CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2113 	else
2114 		ifp->if_timer = 0;
2115 
2116 	return tx;
2117 }
2118 
2119 static void
2120 re_tick(void *xsc)
2121 {
2122 	struct re_softc *sc = xsc;
2123 
2124 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2125 	re_tick_serialized(xsc);
2126 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2127 }
2128 
2129 static void
2130 re_tick_serialized(void *xsc)
2131 {
2132 	struct re_softc *sc = xsc;
2133 	struct ifnet *ifp = &sc->arpcom.ac_if;
2134 	struct mii_data *mii;
2135 
2136 	ASSERT_SERIALIZED(ifp->if_serializer);
2137 
2138 	mii = device_get_softc(sc->re_miibus);
2139 	mii_tick(mii);
2140 	if (sc->re_flags & RE_F_LINKED) {
2141 		if (!(mii->mii_media_status & IFM_ACTIVE))
2142 			sc->re_flags &= ~RE_F_LINKED;
2143 	} else {
2144 		if (mii->mii_media_status & IFM_ACTIVE &&
2145 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2146 			sc->re_flags |= RE_F_LINKED;
2147 			if (!ifq_is_empty(&ifp->if_snd))
2148 				if_devstart(ifp);
2149 		}
2150 	}
2151 
2152 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2153 }
2154 
2155 #ifdef IFPOLL_ENABLE
2156 
2157 static void
2158 re_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
2159 {
2160 	struct re_softc *sc = ifp->if_softc;
2161 
2162 	ASSERT_SERIALIZED(ifp->if_serializer);
2163 
2164 	if (sc->re_npoll.ifpc_stcount-- == 0) {
2165 		uint16_t       status;
2166 
2167 		sc->re_npoll.ifpc_stcount = sc->re_npoll.ifpc_stfrac;
2168 
2169 		status = CSR_READ_2(sc, RE_ISR);
2170 		if (status == 0xffff)
2171 			return;
2172 		if (status)
2173 			CSR_WRITE_2(sc, RE_ISR, status);
2174 
2175 		/*
2176 		 * XXX check behaviour on receiver stalls.
2177 		 */
2178 
2179 		if (status & RE_ISR_SYSTEM_ERR)
2180 			re_init(sc);
2181 	}
2182 
2183 	sc->rxcycles = count;
2184 	re_rxeof(sc);
2185 	re_txeof(sc);
2186 
2187 	if (!ifq_is_empty(&ifp->if_snd))
2188 		if_devstart(ifp);
2189 }
2190 
2191 static void
2192 re_npoll(struct ifnet *ifp, struct ifpoll_info *info)
2193 {
2194 	struct re_softc *sc = ifp->if_softc;
2195 
2196 	ASSERT_SERIALIZED(ifp->if_serializer);
2197 
2198 	if (info != NULL) {
2199 		int cpuid = sc->re_npoll.ifpc_cpuid;
2200 
2201 		info->ifpi_rx[cpuid].poll_func = re_npoll_compat;
2202 		info->ifpi_rx[cpuid].arg = NULL;
2203 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
2204 
2205 		if (ifp->if_flags & IFF_RUNNING)
2206 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2207 		ifp->if_npoll_cpuid = cpuid;
2208 	} else {
2209 		if (ifp->if_flags & IFF_RUNNING)
2210 			re_setup_intr(sc, 1, sc->re_imtype);
2211 		ifp->if_npoll_cpuid = -1;
2212 	}
2213 }
2214 #endif /* IFPOLL_ENABLE */
2215 
2216 static void
2217 re_intr(void *arg)
2218 {
2219 	struct re_softc	*sc = arg;
2220 	struct ifnet *ifp = &sc->arpcom.ac_if;
2221 	uint16_t status;
2222 	int rx, tx;
2223 
2224 	ASSERT_SERIALIZED(ifp->if_serializer);
2225 
2226 	if ((sc->re_flags & RE_F_SUSPENDED) ||
2227 	    (ifp->if_flags & IFF_RUNNING) == 0)
2228 		return;
2229 
2230 	rx = tx = 0;
2231 	for (;;) {
2232 		status = CSR_READ_2(sc, RE_ISR);
2233 		/* If the card has gone away the read returns 0xffff. */
2234 		if (status == 0xffff)
2235 			break;
2236 		if (status)
2237 			CSR_WRITE_2(sc, RE_ISR, status);
2238 
2239 		if ((status & sc->re_intrs) == 0)
2240 			break;
2241 
2242 		if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2243 			rx |= re_rxeof(sc);
2244 
2245 		if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2246 			tx |= re_txeof(sc);
2247 
2248 		if (status & RE_ISR_SYSTEM_ERR)
2249 			re_init(sc);
2250 
2251 		if (status & RE_ISR_LINKCHG) {
2252 			callout_stop(&sc->re_timer);
2253 			re_tick_serialized(sc);
2254 		}
2255 	}
2256 
2257 	if (sc->re_imtype == RE_IMTYPE_SIM) {
2258 		if ((sc->re_flags & RE_F_TIMER_INTR)) {
2259 			if ((tx | rx) == 0) {
2260 				/*
2261 				 * Nothing needs to be processed, fallback
2262 				 * to use TX/RX interrupts.
2263 				 */
2264 				re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2265 
2266 				/*
2267 				 * Recollect, mainly to avoid the possible
2268 				 * race introduced by changing interrupt
2269 				 * masks.
2270 				 */
2271 				re_rxeof(sc);
2272 				tx = re_txeof(sc);
2273 			} else {
2274 				CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2275 			}
2276 		} else if (tx | rx) {
2277 			/*
2278 			 * Assume that using simulated interrupt moderation
2279 			 * (hardware timer based) could reduce the interript
2280 			 * rate.
2281 			 */
2282 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2283 		}
2284 	}
2285 
2286 	if (tx && !ifq_is_empty(&ifp->if_snd))
2287 		if_devstart(ifp);
2288 }
2289 
2290 static int
2291 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2292 {
2293 	struct mbuf *m = *m_head;
2294 	bus_dma_segment_t segs[RE_MAXSEGS];
2295 	bus_dmamap_t map;
2296 	int error, maxsegs, idx, i, nsegs;
2297 	struct re_desc *d, *tx_ring;
2298 	uint32_t cmd_csum, ctl_csum, vlantag;
2299 
2300 	KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2301 		("not enough free TX desc"));
2302 
2303 	map = sc->re_ldata.re_tx_dmamap[*idx0];
2304 
2305 	/*
2306 	 * Set up checksum offload. Note: checksum offload bits must
2307 	 * appear in all descriptors of a multi-descriptor transmit
2308 	 * attempt. (This is according to testing done with an 8169
2309 	 * chip. I'm not sure if this is a requirement or a bug.)
2310 	 */
2311 	cmd_csum = ctl_csum = 0;
2312 	if (m->m_pkthdr.csum_flags & CSUM_IP) {
2313 		cmd_csum |= RE_TDESC_CMD_IPCSUM;
2314 		ctl_csum |= RE_TDESC_CTL_IPCSUM;
2315 	}
2316 	if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2317 		cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2318 		ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2319 	}
2320 	if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2321 		cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2322 		ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2323 	}
2324 
2325 	/* For MAC2 chips, csum flags are set on re_control */
2326 	if (sc->re_caps & RE_C_MAC2)
2327 		cmd_csum = 0;
2328 	else
2329 		ctl_csum = 0;
2330 
2331 	if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2332 		/*
2333 		 * With some of the RealTek chips, using the checksum offload
2334 		 * support in conjunction with the autopadding feature results
2335 		 * in the transmission of corrupt frames. For example, if we
2336 		 * need to send a really small IP fragment that's less than 60
2337 		 * bytes in size, and IP header checksumming is enabled, the
2338 		 * resulting ethernet frame that appears on the wire will
2339 		 * have garbled payload. To work around this, if TX checksum
2340 		 * offload is enabled, we always manually pad short frames out
2341 		 * to the minimum ethernet frame size.
2342 		 *
2343 		 * Note: this appears unnecessary for TCP, and doing it for TCP
2344 		 * with PCIe adapters seems to result in bad checksums.
2345 		 */
2346 		if ((m->m_pkthdr.csum_flags &
2347 		     (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2348 		    (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2349 		    m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2350 			error = m_devpad(m, RE_MIN_FRAMELEN);
2351 			if (error)
2352 				goto back;
2353 		}
2354 	}
2355 
2356 	vlantag = 0;
2357 	if (m->m_flags & M_VLANTAG) {
2358 		vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2359 			  RE_TDESC_CTL_INSTAG;
2360 	}
2361 
2362 	maxsegs = sc->re_ldata.re_tx_free;
2363 	if (maxsegs > RE_MAXSEGS)
2364 		maxsegs = RE_MAXSEGS;
2365 
2366 	error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2367 			m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2368 	if (error)
2369 		goto back;
2370 
2371 	m = *m_head;
2372 	bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2373 
2374 	/*
2375 	 * Map the segment array into descriptors.  We also keep track
2376 	 * of the end of the ring and set the end-of-ring bits as needed,
2377 	 * and we set the ownership bits in all except the very first
2378 	 * descriptor, whose ownership bits will be turned on later.
2379 	 */
2380 	tx_ring = sc->re_ldata.re_tx_list;
2381 	idx = *idx0;
2382 	i = 0;
2383 	for (;;) {
2384 		uint32_t cmdstat;
2385 
2386 		d = &tx_ring[idx];
2387 
2388 		cmdstat = segs[i].ds_len;
2389 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2390 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2391 		if (i == 0)
2392 			cmdstat |= RE_TDESC_CMD_SOF;
2393 		else
2394 			cmdstat |= RE_TDESC_CMD_OWN;
2395 		if (idx == (sc->re_tx_desc_cnt - 1))
2396 			cmdstat |= RE_TDESC_CMD_EOR;
2397 		d->re_cmdstat = htole32(cmdstat | cmd_csum);
2398 		d->re_control = htole32(ctl_csum | vlantag);
2399 
2400 		i++;
2401 		if (i == nsegs)
2402 			break;
2403 		RE_TXDESC_INC(sc, idx);
2404 	}
2405 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2406 
2407 	/* Transfer ownership of packet to the chip. */
2408 	d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2409 	if (*idx0 != idx)
2410 		tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2411 
2412 	/*
2413 	 * Insure that the map for this transmission
2414 	 * is placed at the array index of the last descriptor
2415 	 * in this chain.
2416 	 */
2417 	sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2418 	sc->re_ldata.re_tx_dmamap[idx] = map;
2419 
2420 	sc->re_ldata.re_tx_mbuf[idx] = m;
2421 	sc->re_ldata.re_tx_free -= nsegs;
2422 
2423 	RE_TXDESC_INC(sc, idx);
2424 	*idx0 = idx;
2425 back:
2426 	if (error) {
2427 		m_freem(*m_head);
2428 		*m_head = NULL;
2429 	}
2430 	return error;
2431 }
2432 
2433 /*
2434  * Main transmit routine for C+ and gigE NICs.
2435  */
2436 
2437 static void
2438 re_start(struct ifnet *ifp)
2439 {
2440 	struct re_softc	*sc = ifp->if_softc;
2441 	struct mbuf *m_head;
2442 	int idx, need_trans, oactive, error;
2443 
2444 	ASSERT_SERIALIZED(ifp->if_serializer);
2445 
2446 	if ((sc->re_flags & RE_F_LINKED) == 0) {
2447 		ifq_purge(&ifp->if_snd);
2448 		return;
2449 	}
2450 
2451 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
2452 		return;
2453 
2454 	idx = sc->re_ldata.re_tx_prodidx;
2455 
2456 	need_trans = 0;
2457 	oactive = 0;
2458 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2459 		if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2460 			if (!oactive) {
2461 				if (re_tx_collect(sc)) {
2462 					oactive = 1;
2463 					continue;
2464 				}
2465 			}
2466 			ifp->if_flags |= IFF_OACTIVE;
2467 			break;
2468 		}
2469 
2470 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2471 		if (m_head == NULL)
2472 			break;
2473 
2474 		error = re_encap(sc, &m_head, &idx);
2475 		if (error) {
2476 			/* m_head is freed by re_encap(), if we reach here */
2477 			ifp->if_oerrors++;
2478 
2479 			if (error == EFBIG && !oactive) {
2480 				if (re_tx_collect(sc)) {
2481 					oactive = 1;
2482 					continue;
2483 				}
2484 			}
2485 			ifp->if_flags |= IFF_OACTIVE;
2486 			break;
2487 		}
2488 
2489 		oactive = 0;
2490 		need_trans = 1;
2491 
2492 		/*
2493 		 * If there's a BPF listener, bounce a copy of this frame
2494 		 * to him.
2495 		 */
2496 		ETHER_BPF_MTAP(ifp, m_head);
2497 	}
2498 
2499 	/*
2500 	 * If sc->re_ldata.re_tx_mbuf[idx] is not NULL it is possible
2501 	 * for IFF_OACTIVE to not be properly set when we also do not
2502 	 * have sufficient free tx descriptors, leaving packet in
2503 	 * ifp->if_send.  This can cause if_start_dispatch() to loop
2504 	 * infinitely so make sure IFF_OACTIVE is set properly.
2505 	 */
2506 	if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2507 		if ((ifp->if_flags & IFF_OACTIVE) == 0) {
2508 			device_printf(sc->re_dev,
2509 				      "Debug: IFF_OACTIVE was not set when"
2510 				      " re_tx_free was below minimum!\n");
2511 			ifp->if_flags |= IFF_OACTIVE;
2512 		}
2513 	}
2514 	if (!need_trans)
2515 		return;
2516 
2517 	sc->re_ldata.re_tx_prodidx = idx;
2518 
2519 	/*
2520 	 * RealTek put the TX poll request register in a different
2521 	 * location on the 8169 gigE chip. I don't know why.
2522 	 */
2523 	CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2524 
2525 	/*
2526 	 * Set a timeout in case the chip goes out to lunch.
2527 	 */
2528 	ifp->if_timer = 5;
2529 }
2530 
2531 static void
2532 re_init(void *xsc)
2533 {
2534 	struct re_softc *sc = xsc;
2535 	struct ifnet *ifp = &sc->arpcom.ac_if;
2536 	struct mii_data *mii;
2537 	int error, framelen;
2538 
2539 	ASSERT_SERIALIZED(ifp->if_serializer);
2540 
2541 	mii = device_get_softc(sc->re_miibus);
2542 
2543 	/*
2544 	 * Cancel pending I/O and free all RX/TX buffers.
2545 	 */
2546 	re_stop(sc);
2547 
2548 	if (sc->re_caps & RE_C_CONTIGRX) {
2549 		if (ifp->if_mtu > ETHERMTU) {
2550 			KKASSERT(sc->re_ldata.re_jbuf != NULL);
2551 			sc->re_flags |= RE_F_USE_JPOOL;
2552 			sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2553 			sc->re_newbuf = re_newbuf_jumbo;
2554 		} else {
2555 			sc->re_flags &= ~RE_F_USE_JPOOL;
2556 			sc->re_rxbuf_size = MCLBYTES;
2557 			sc->re_newbuf = re_newbuf_std;
2558 		}
2559 	}
2560 
2561 	/*
2562 	 * Adjust max read request size according to MTU; mainly to
2563 	 * improve TX performance for common case (ETHERMTU) on GigE
2564 	 * NICs.  However, this could _not_ be done on 10/100 only
2565 	 * NICs; their DMA engines will malfunction using non-default
2566 	 * max read request size.
2567 	 */
2568 	if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2569 		if (ifp->if_mtu > ETHERMTU) {
2570 			/*
2571 			 * 512 seems to be the only value that works
2572 			 * reliably with jumbo frame
2573 			 */
2574 			pcie_set_max_readrq(sc->re_dev,
2575 				PCIEM_DEVCTL_MAX_READRQ_512);
2576 		} else {
2577 			pcie_set_max_readrq(sc->re_dev,
2578 				PCIEM_DEVCTL_MAX_READRQ_4096);
2579 		}
2580 	}
2581 
2582 	/*
2583 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2584 	 * RX checksum offload. We must configure the C+ register
2585 	 * before all others.
2586 	 */
2587 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2588 		    RE_CPLUSCMD_PCI_MRW |
2589 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2590 		     RE_CPLUSCMD_VLANSTRIP : 0) |
2591 		    (ifp->if_capenable & IFCAP_RXCSUM ?
2592 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
2593 
2594 	/*
2595 	 * Init our MAC address.  Even though the chipset
2596 	 * documentation doesn't mention it, we need to enter "Config
2597 	 * register write enable" mode to modify the ID registers.
2598 	 */
2599 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2600 	CSR_WRITE_4(sc, RE_IDR0,
2601 	    htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2602 	CSR_WRITE_2(sc, RE_IDR4,
2603 	    htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2604 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2605 
2606 	/*
2607 	 * For C+ mode, initialize the RX descriptors and mbufs.
2608 	 */
2609 	error = re_rx_list_init(sc);
2610 	if (error) {
2611 		re_stop(sc);
2612 		return;
2613 	}
2614 	error = re_tx_list_init(sc);
2615 	if (error) {
2616 		re_stop(sc);
2617 		return;
2618 	}
2619 
2620 	/*
2621 	 * Load the addresses of the RX and TX lists into the chip.
2622 	 */
2623 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2624 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2625 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2626 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2627 
2628 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2629 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2630 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2631 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2632 
2633 	/*
2634 	 * Enable transmit and receive.
2635 	 */
2636 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2637 
2638 	/*
2639 	 * Set the initial TX and RX configuration.
2640 	 */
2641 	if (sc->re_flags & RE_F_TESTMODE) {
2642 		if (!RE_IS_8139CP(sc))
2643 			CSR_WRITE_4(sc, RE_TXCFG,
2644 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2645 		else
2646 			CSR_WRITE_4(sc, RE_TXCFG,
2647 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2648 	} else
2649 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2650 
2651 	framelen = RE_FRAMELEN(ifp->if_mtu);
2652 	if (framelen < MCLBYTES)
2653 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2654 	else
2655 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2656 
2657 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2658 
2659 	/*
2660 	 * Program the multicast filter, if necessary.
2661 	 */
2662 	re_setmulti(sc);
2663 
2664 #ifdef IFPOLL_ENABLE
2665 	/*
2666 	 * Disable interrupts if we are polling.
2667 	 */
2668 	if (ifp->if_flags & IFF_NPOLLING)
2669 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2670 	else	/* otherwise ... */
2671 #endif /* IFPOLL_ENABLE */
2672 	/*
2673 	 * Enable interrupts.
2674 	 */
2675 	if (sc->re_flags & RE_F_TESTMODE)
2676 		CSR_WRITE_2(sc, RE_IMR, 0);
2677 	else
2678 		re_setup_intr(sc, 1, sc->re_imtype);
2679 	CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2680 
2681 	/* Start RX/TX process. */
2682 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2683 
2684 #ifdef notdef
2685 	/* Enable receiver and transmitter. */
2686 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2687 #endif
2688 
2689 	/*
2690 	 * For 8169 gigE NICs, set the max allowed RX packet
2691 	 * size so we can receive jumbo frames.
2692 	 */
2693 	if (!RE_IS_8139CP(sc)) {
2694 		if (sc->re_caps & RE_C_CONTIGRX)
2695 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2696 		else
2697 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2698 	}
2699 
2700 	if (sc->re_flags & RE_F_TESTMODE)
2701 		return;
2702 
2703 	mii_mediachg(mii);
2704 
2705 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2706 
2707 	ifp->if_flags |= IFF_RUNNING;
2708 	ifp->if_flags &= ~IFF_OACTIVE;
2709 
2710 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2711 }
2712 
2713 /*
2714  * Set media options.
2715  */
2716 static int
2717 re_ifmedia_upd(struct ifnet *ifp)
2718 {
2719 	struct re_softc *sc = ifp->if_softc;
2720 	struct mii_data *mii;
2721 
2722 	ASSERT_SERIALIZED(ifp->if_serializer);
2723 
2724 	mii = device_get_softc(sc->re_miibus);
2725 	mii_mediachg(mii);
2726 
2727 	return(0);
2728 }
2729 
2730 /*
2731  * Report current media status.
2732  */
2733 static void
2734 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2735 {
2736 	struct re_softc *sc = ifp->if_softc;
2737 	struct mii_data *mii;
2738 
2739 	ASSERT_SERIALIZED(ifp->if_serializer);
2740 
2741 	mii = device_get_softc(sc->re_miibus);
2742 
2743 	mii_pollstat(mii);
2744 	ifmr->ifm_active = mii->mii_media_active;
2745 	ifmr->ifm_status = mii->mii_media_status;
2746 }
2747 
2748 static int
2749 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2750 {
2751 	struct re_softc *sc = ifp->if_softc;
2752 	struct ifreq *ifr = (struct ifreq *) data;
2753 	struct mii_data *mii;
2754 	int error = 0, mask;
2755 
2756 	ASSERT_SERIALIZED(ifp->if_serializer);
2757 
2758 	switch(command) {
2759 	case SIOCSIFMTU:
2760 		if (ifr->ifr_mtu > sc->re_maxmtu) {
2761 			error = EINVAL;
2762 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2763 			ifp->if_mtu = ifr->ifr_mtu;
2764 			if (ifp->if_flags & IFF_RUNNING)
2765 				ifp->if_init(sc);
2766 		}
2767 		break;
2768 
2769 	case SIOCSIFFLAGS:
2770 		if (ifp->if_flags & IFF_UP) {
2771 			if (ifp->if_flags & IFF_RUNNING) {
2772 				if ((ifp->if_flags ^ sc->re_if_flags) &
2773 				    (IFF_PROMISC | IFF_ALLMULTI))
2774 					re_setmulti(sc);
2775 			} else {
2776 				re_init(sc);
2777 			}
2778 		} else if (ifp->if_flags & IFF_RUNNING) {
2779 			re_stop(sc);
2780 		}
2781 		sc->re_if_flags = ifp->if_flags;
2782 		break;
2783 
2784 	case SIOCADDMULTI:
2785 	case SIOCDELMULTI:
2786 		re_setmulti(sc);
2787 		break;
2788 
2789 	case SIOCGIFMEDIA:
2790 	case SIOCSIFMEDIA:
2791 		mii = device_get_softc(sc->re_miibus);
2792 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2793 		break;
2794 
2795 	case SIOCSIFCAP:
2796 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2797 		       ifp->if_capabilities;
2798 		ifp->if_capenable ^= mask;
2799 
2800 		if (mask & IFCAP_HWCSUM) {
2801 			if (ifp->if_capenable & IFCAP_TXCSUM)
2802 				ifp->if_hwassist = RE_CSUM_FEATURES;
2803 			else
2804 				ifp->if_hwassist = 0;
2805 		}
2806 		if (mask && (ifp->if_flags & IFF_RUNNING))
2807 			re_init(sc);
2808 		break;
2809 
2810 	default:
2811 		error = ether_ioctl(ifp, command, data);
2812 		break;
2813 	}
2814 	return(error);
2815 }
2816 
2817 static void
2818 re_watchdog(struct ifnet *ifp)
2819 {
2820 	struct re_softc *sc = ifp->if_softc;
2821 
2822 	ASSERT_SERIALIZED(ifp->if_serializer);
2823 
2824 	if_printf(ifp, "watchdog timeout\n");
2825 
2826 	ifp->if_oerrors++;
2827 
2828 	re_txeof(sc);
2829 	re_rxeof(sc);
2830 
2831 	re_init(sc);
2832 
2833 	if (!ifq_is_empty(&ifp->if_snd))
2834 		if_devstart(ifp);
2835 }
2836 
2837 /*
2838  * Stop the adapter and free any mbufs allocated to the
2839  * RX and TX lists.
2840  */
2841 static void
2842 re_stop(struct re_softc *sc)
2843 {
2844 	struct ifnet *ifp = &sc->arpcom.ac_if;
2845 	int i;
2846 
2847 	ASSERT_SERIALIZED(ifp->if_serializer);
2848 
2849 	/* Reset the adapter. */
2850 	re_reset(sc, ifp->if_flags & IFF_RUNNING);
2851 
2852 	ifp->if_timer = 0;
2853 	callout_stop(&sc->re_timer);
2854 
2855 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2856 	sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2857 
2858 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2859 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2860 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2861 
2862 	re_free_rxchain(sc);
2863 
2864 	/* Free the TX list buffers. */
2865 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2866 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2867 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2868 					  sc->re_ldata.re_tx_dmamap[i]);
2869 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2870 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2871 		}
2872 	}
2873 
2874 	/* Free the RX list buffers. */
2875 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2876 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2877 			if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2878 				bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2879 						  sc->re_ldata.re_rx_dmamap[i]);
2880 			}
2881 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2882 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2883 		}
2884 	}
2885 }
2886 
2887 /*
2888  * Device suspend routine.  Stop the interface and save some PCI
2889  * settings in case the BIOS doesn't restore them properly on
2890  * resume.
2891  */
2892 static int
2893 re_suspend(device_t dev)
2894 {
2895 #ifndef BURN_BRIDGES
2896 	int i;
2897 #endif
2898 	struct re_softc *sc = device_get_softc(dev);
2899 	struct ifnet *ifp = &sc->arpcom.ac_if;
2900 
2901 	lwkt_serialize_enter(ifp->if_serializer);
2902 
2903 	re_stop(sc);
2904 
2905 #ifndef BURN_BRIDGES
2906 	for (i = 0; i < 5; i++)
2907 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2908 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2909 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2910 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2911 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2912 #endif
2913 
2914 	sc->re_flags |= RE_F_SUSPENDED;
2915 
2916 	lwkt_serialize_exit(ifp->if_serializer);
2917 
2918 	return (0);
2919 }
2920 
2921 /*
2922  * Device resume routine.  Restore some PCI settings in case the BIOS
2923  * doesn't, re-enable busmastering, and restart the interface if
2924  * appropriate.
2925  */
2926 static int
2927 re_resume(device_t dev)
2928 {
2929 	struct re_softc *sc = device_get_softc(dev);
2930 	struct ifnet *ifp = &sc->arpcom.ac_if;
2931 #ifndef BURN_BRIDGES
2932 	int i;
2933 #endif
2934 
2935 	lwkt_serialize_enter(ifp->if_serializer);
2936 
2937 #ifndef BURN_BRIDGES
2938 	/* better way to do this? */
2939 	for (i = 0; i < 5; i++)
2940 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2941 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2942 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2943 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2944 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2945 
2946 	/* reenable busmastering */
2947 	pci_enable_busmaster(dev);
2948 	pci_enable_io(dev, SYS_RES_IOPORT);
2949 #endif
2950 
2951 	/* reinitialize interface if necessary */
2952 	if (ifp->if_flags & IFF_UP)
2953 		re_init(sc);
2954 
2955 	sc->re_flags &= ~RE_F_SUSPENDED;
2956 
2957 	lwkt_serialize_exit(ifp->if_serializer);
2958 
2959 	return (0);
2960 }
2961 
2962 /*
2963  * Stop all chip I/O so that the kernel's probe routines don't
2964  * get confused by errant DMAs when rebooting.
2965  */
2966 static void
2967 re_shutdown(device_t dev)
2968 {
2969 	struct re_softc *sc = device_get_softc(dev);
2970 	struct ifnet *ifp = &sc->arpcom.ac_if;
2971 
2972 	lwkt_serialize_enter(ifp->if_serializer);
2973 	re_stop(sc);
2974 	lwkt_serialize_exit(ifp->if_serializer);
2975 }
2976 
2977 static int
2978 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
2979 {
2980 	struct re_softc *sc = arg1;
2981 
2982 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
2983 }
2984 
2985 static int
2986 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
2987 {
2988 	struct re_softc *sc = arg1;
2989 
2990 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
2991 }
2992 
2993 static int
2994 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
2995 {
2996 	struct re_softc *sc = arg1;
2997 	struct ifnet *ifp = &sc->arpcom.ac_if;
2998 	int error, v;
2999 
3000 	lwkt_serialize_enter(ifp->if_serializer);
3001 
3002 	v = *hwtime;
3003 	error = sysctl_handle_int(oidp, &v, 0, req);
3004 	if (error || req->newptr == NULL)
3005 		goto back;
3006 
3007 	if (v <= 0) {
3008 		error = EINVAL;
3009 		goto back;
3010 	}
3011 
3012 	if (v != *hwtime) {
3013 		*hwtime = v;
3014 
3015 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3016 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
3017 			re_setup_hw_im(sc);
3018 	}
3019 back:
3020 	lwkt_serialize_exit(ifp->if_serializer);
3021 	return error;
3022 }
3023 
3024 static int
3025 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
3026 {
3027 	struct re_softc *sc = arg1;
3028 	struct ifnet *ifp = &sc->arpcom.ac_if;
3029 	int error, v;
3030 
3031 	lwkt_serialize_enter(ifp->if_serializer);
3032 
3033 	v = sc->re_sim_time;
3034 	error = sysctl_handle_int(oidp, &v, 0, req);
3035 	if (error || req->newptr == NULL)
3036 		goto back;
3037 
3038 	if (v <= 0) {
3039 		error = EINVAL;
3040 		goto back;
3041 	}
3042 
3043 	if (v != sc->re_sim_time) {
3044 		sc->re_sim_time = v;
3045 
3046 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3047 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3048 #ifdef foo
3049 			int reg;
3050 
3051 			/*
3052 			 * Following code causes various strange
3053 			 * performance problems.  Hmm ...
3054 			 */
3055 			CSR_WRITE_2(sc, RE_IMR, 0);
3056 			if (!RE_IS_8139CP(sc))
3057 				reg = RE_TIMERINT_8169;
3058 			else
3059 				reg = RE_TIMERINT;
3060 			CSR_WRITE_4(sc, reg, 0);
3061 			CSR_READ_4(sc, reg); /* flush */
3062 
3063 			CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3064 			re_setup_sim_im(sc);
3065 #else
3066 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3067 			DELAY(10);
3068 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3069 #endif
3070 		}
3071 	}
3072 back:
3073 	lwkt_serialize_exit(ifp->if_serializer);
3074 	return error;
3075 }
3076 
3077 static int
3078 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3079 {
3080 	struct re_softc *sc = arg1;
3081 	struct ifnet *ifp = &sc->arpcom.ac_if;
3082 	int error, v;
3083 
3084 	lwkt_serialize_enter(ifp->if_serializer);
3085 
3086 	v = sc->re_imtype;
3087 	error = sysctl_handle_int(oidp, &v, 0, req);
3088 	if (error || req->newptr == NULL)
3089 		goto back;
3090 
3091 	if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3092 		error = EINVAL;
3093 		goto back;
3094 	}
3095 	if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3096 		/* Can't do hardware interrupt moderation */
3097 		error = EOPNOTSUPP;
3098 		goto back;
3099 	}
3100 
3101 	if (v != sc->re_imtype) {
3102 		sc->re_imtype = v;
3103 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3104 		    IFF_RUNNING)
3105 			re_setup_intr(sc, 1, sc->re_imtype);
3106 	}
3107 back:
3108 	lwkt_serialize_exit(ifp->if_serializer);
3109 	return error;
3110 }
3111 
3112 static void
3113 re_setup_hw_im(struct re_softc *sc)
3114 {
3115 	KKASSERT(sc->re_caps & RE_C_HWIM);
3116 
3117 	/*
3118 	 * Interrupt moderation
3119 	 *
3120 	 * 0xABCD
3121 	 * A - unknown (maybe TX related)
3122 	 * B - TX timer (unit: 25us)
3123 	 * C - unknown (maybe RX related)
3124 	 * D - RX timer (unit: 25us)
3125 	 *
3126 	 *
3127 	 * re(4)'s interrupt moderation is actually controlled by
3128 	 * two variables, like most other NICs (bge, bce etc.)
3129 	 * o  timer
3130 	 * o  number of packets [P]
3131 	 *
3132 	 * The logic relationship between these two variables is
3133 	 * similar to other NICs too:
3134 	 * if (timer expire || packets > [P])
3135 	 *     Interrupt is delivered
3136 	 *
3137 	 * Currently we only know how to set 'timer', but not
3138 	 * 'number of packets', which should be ~30, as far as I
3139 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3140 	 */
3141 	CSR_WRITE_2(sc, RE_IM,
3142 		    RE_IM_RXTIME(sc->re_rx_time) |
3143 		    RE_IM_TXTIME(sc->re_tx_time) |
3144 		    RE_IM_MAGIC);
3145 }
3146 
3147 static void
3148 re_disable_hw_im(struct re_softc *sc)
3149 {
3150 	if (sc->re_caps & RE_C_HWIM)
3151 		CSR_WRITE_2(sc, RE_IM, 0);
3152 }
3153 
3154 static void
3155 re_setup_sim_im(struct re_softc *sc)
3156 {
3157 	if (!RE_IS_8139CP(sc)) {
3158 		uint32_t ticks;
3159 
3160 		/*
3161 		 * Datasheet says tick decreases at bus speed,
3162 		 * but it seems the clock runs a little bit
3163 		 * faster, so we do some compensation here.
3164 		 */
3165 		ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3166 		CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3167 	} else {
3168 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3169 	}
3170 	CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3171 	sc->re_flags |= RE_F_TIMER_INTR;
3172 }
3173 
3174 static void
3175 re_disable_sim_im(struct re_softc *sc)
3176 {
3177 	if (!RE_IS_8139CP(sc))
3178 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3179 	else
3180 		CSR_WRITE_4(sc, RE_TIMERINT, 0);
3181 	sc->re_flags &= ~RE_F_TIMER_INTR;
3182 }
3183 
3184 static void
3185 re_config_imtype(struct re_softc *sc, int imtype)
3186 {
3187 	switch (imtype) {
3188 	case RE_IMTYPE_HW:
3189 		KKASSERT(sc->re_caps & RE_C_HWIM);
3190 		/* FALL THROUGH */
3191 	case RE_IMTYPE_NONE:
3192 		sc->re_intrs = RE_INTRS;
3193 		sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3194 				RE_ISR_RX_OVERRUN;
3195 		sc->re_tx_ack = RE_ISR_TX_OK;
3196 		break;
3197 
3198 	case RE_IMTYPE_SIM:
3199 		sc->re_intrs = RE_INTRS_TIMER;
3200 		sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3201 		sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3202 		break;
3203 
3204 	default:
3205 		panic("%s: unknown imtype %d",
3206 		      sc->arpcom.ac_if.if_xname, imtype);
3207 	}
3208 }
3209 
3210 static void
3211 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3212 {
3213 	re_config_imtype(sc, imtype);
3214 
3215 	if (enable_intrs)
3216 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3217 	else
3218 		CSR_WRITE_2(sc, RE_IMR, 0);
3219 
3220 	sc->re_npoll.ifpc_stcount = 0;
3221 
3222 	switch (imtype) {
3223 	case RE_IMTYPE_NONE:
3224 		re_disable_sim_im(sc);
3225 		re_disable_hw_im(sc);
3226 		break;
3227 
3228 	case RE_IMTYPE_HW:
3229 		KKASSERT(sc->re_caps & RE_C_HWIM);
3230 		re_disable_sim_im(sc);
3231 		re_setup_hw_im(sc);
3232 		break;
3233 
3234 	case RE_IMTYPE_SIM:
3235 		re_disable_hw_im(sc);
3236 		re_setup_sim_im(sc);
3237 		break;
3238 
3239 	default:
3240 		panic("%s: unknown imtype %d",
3241 		      sc->arpcom.ac_if.if_xname, imtype);
3242 	}
3243 }
3244 
3245 static void
3246 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3247 {
3248 	int i;
3249 
3250 	if (sc->re_macver == RE_MACVER_11 ||
3251 	    sc->re_macver == RE_MACVER_12 ||
3252 	    sc->re_macver == RE_MACVER_30 ||
3253 	    sc->re_macver == RE_MACVER_31) {
3254 		uint16_t re_did;
3255 
3256 		re_get_eewidth(sc);
3257 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3258 		if (re_did == 0x8128) {
3259 			uint16_t as[ETHER_ADDR_LEN / 2];
3260 			int eaddr_off;
3261 
3262 			if (sc->re_macver == RE_MACVER_30 ||
3263 			    sc->re_macver == RE_MACVER_31)
3264 				eaddr_off = RE_EE_EADDR1;
3265 			else
3266 				eaddr_off = RE_EE_EADDR0;
3267 
3268 			/*
3269 			 * Get station address from the EEPROM.
3270 			 */
3271 			re_read_eeprom(sc, (caddr_t)as, eaddr_off, 3);
3272 			for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3273 				as[i] = le16toh(as[i]);
3274 			bcopy(as, eaddr, ETHER_ADDR_LEN);
3275 			return;
3276 		}
3277 	}
3278 
3279 	/*
3280 	 * Get station address from IDRx.
3281 	 */
3282 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
3283 		eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3284 }
3285 
3286 static int
3287 re_jpool_alloc(struct re_softc *sc)
3288 {
3289 	struct re_list_data *ldata = &sc->re_ldata;
3290 	struct re_jbuf *jbuf;
3291 	bus_addr_t paddr;
3292 	bus_size_t jpool_size;
3293 	bus_dmamem_t dmem;
3294 	caddr_t buf;
3295 	int i, error;
3296 
3297 	lwkt_serialize_init(&ldata->re_jbuf_serializer);
3298 
3299 	ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3300 				 M_DEVBUF, M_WAITOK | M_ZERO);
3301 
3302 	jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3303 
3304 	error = bus_dmamem_coherent(sc->re_parent_tag,
3305 			RE_RXBUF_ALIGN, 0,
3306 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3307 			jpool_size, BUS_DMA_WAITOK, &dmem);
3308 	if (error) {
3309 		device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3310 		return error;
3311 	}
3312 	ldata->re_jpool_tag = dmem.dmem_tag;
3313 	ldata->re_jpool_map = dmem.dmem_map;
3314 	ldata->re_jpool = dmem.dmem_addr;
3315 	paddr = dmem.dmem_busaddr;
3316 
3317 	/* ..and split it into 9KB chunks */
3318 	SLIST_INIT(&ldata->re_jbuf_free);
3319 
3320 	buf = ldata->re_jpool;
3321 	for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3322 		jbuf = &ldata->re_jbuf[i];
3323 
3324 		jbuf->re_sc = sc;
3325 		jbuf->re_inuse = 0;
3326 		jbuf->re_slot = i;
3327 		jbuf->re_buf = buf;
3328 		jbuf->re_paddr = paddr;
3329 
3330 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3331 
3332 		buf += RE_JBUF_SIZE;
3333 		paddr += RE_JBUF_SIZE;
3334 	}
3335 	return 0;
3336 }
3337 
3338 static void
3339 re_jpool_free(struct re_softc *sc)
3340 {
3341 	struct re_list_data *ldata = &sc->re_ldata;
3342 
3343 	if (ldata->re_jpool_tag != NULL) {
3344 		bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3345 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3346 				ldata->re_jpool_map);
3347 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3348 		ldata->re_jpool_tag = NULL;
3349 	}
3350 
3351 	if (ldata->re_jbuf != NULL) {
3352 		kfree(ldata->re_jbuf, M_DEVBUF);
3353 		ldata->re_jbuf = NULL;
3354 	}
3355 }
3356 
3357 static struct re_jbuf *
3358 re_jbuf_alloc(struct re_softc *sc)
3359 {
3360 	struct re_list_data *ldata = &sc->re_ldata;
3361 	struct re_jbuf *jbuf;
3362 
3363 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3364 
3365 	jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3366 	if (jbuf != NULL) {
3367 		SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3368 		jbuf->re_inuse = 1;
3369 	}
3370 
3371 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3372 
3373 	return jbuf;
3374 }
3375 
3376 static void
3377 re_jbuf_free(void *arg)
3378 {
3379 	struct re_jbuf *jbuf = arg;
3380 	struct re_softc *sc = jbuf->re_sc;
3381 	struct re_list_data *ldata = &sc->re_ldata;
3382 
3383 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3384 		panic("%s: free wrong jumbo buffer",
3385 		      sc->arpcom.ac_if.if_xname);
3386 	} else if (jbuf->re_inuse == 0) {
3387 		panic("%s: jumbo buffer already freed",
3388 		      sc->arpcom.ac_if.if_xname);
3389 	}
3390 
3391 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3392 	atomic_subtract_int(&jbuf->re_inuse, 1);
3393 	if (jbuf->re_inuse == 0)
3394 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3395 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3396 }
3397 
3398 static void
3399 re_jbuf_ref(void *arg)
3400 {
3401 	struct re_jbuf *jbuf = arg;
3402 	struct re_softc *sc = jbuf->re_sc;
3403 	struct re_list_data *ldata = &sc->re_ldata;
3404 
3405 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3406 		panic("%s: ref wrong jumbo buffer",
3407 		      sc->arpcom.ac_if.if_xname);
3408 	} else if (jbuf->re_inuse == 0) {
3409 		panic("%s: jumbo buffer already freed",
3410 		      sc->arpcom.ac_if.if_xname);
3411 	}
3412 	atomic_add_int(&jbuf->re_inuse, 1);
3413 }
3414