xref: /dragonfly/sys/dev/netif/re/if_re.c (revision 9b5a9965)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  * $DragonFly: src/sys/dev/netif/re/if_re.c,v 1.33 2007/06/26 07:47:28 hasso Exp $
37  */
38 
39 /*
40  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
41  *
42  * Written by Bill Paul <wpaul@windriver.com>
43  * Senior Networking Software Engineer
44  * Wind River Systems
45  */
46 
47 /*
48  * This driver is designed to support RealTek's next generation of
49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
52  *
53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54  * with the older 8139 family, however it also supports a special
55  * C+ mode of operation that provides several new performance enhancing
56  * features. These include:
57  *
58  *	o Descriptor based DMA mechanism. Each descriptor represents
59  *	  a single packet fragment. Data buffers may be aligned on
60  *	  any byte boundary.
61  *
62  *	o 64-bit DMA
63  *
64  *	o TCP/IP checksum offload for both RX and TX
65  *
66  *	o High and normal priority transmit DMA rings
67  *
68  *	o VLAN tag insertion and extraction
69  *
70  *	o TCP large send (segmentation offload)
71  *
72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73  * programming API is fairly straightforward. The RX filtering, EEPROM
74  * access and PHY access is the same as it is on the older 8139 series
75  * chips.
76  *
77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78  * same programming API and feature set as the 8139C+ with the following
79  * differences and additions:
80  *
81  *	o 1000Mbps mode
82  *
83  *	o Jumbo frames
84  *
85  * 	o GMII and TBI ports/registers for interfacing with copper
86  *	  or fiber PHYs
87  *
88  *      o RX and TX DMA rings can have up to 1024 descriptors
89  *        (the 8139C+ allows a maximum of 64)
90  *
91  *	o Slight differences in register layout from the 8139C+
92  *
93  * The TX start and timer interrupt registers are at different locations
94  * on the 8169 than they are on the 8139C+. Also, the status word in the
95  * RX descriptor has a slightly different bit layout. The 8169 does not
96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97  * copper gigE PHY.
98  *
99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100  * (the 'S' stands for 'single-chip'). These devices have the same
101  * programming API as the older 8169, but also have some vendor-specific
102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104  *
105  * This driver takes advantage of the RX and TX checksum offload and
106  * VLAN tag insertion/extraction features. It also implements TX
107  * interrupt moderation using the timer interrupt registers, which
108  * significantly reduces TX interrupt load. There is also support
109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
110  * jumbo frames larger than 7440, so the max MTU possible with this
111  * driver is 7422 bytes.
112  */
113 
114 #include "opt_polling.h"
115 
116 #include <sys/param.h>
117 #include <sys/bus.h>
118 #include <sys/endian.h>
119 #include <sys/kernel.h>
120 #include <sys/malloc.h>
121 #include <sys/mbuf.h>
122 /* #include <sys/module.h> */
123 #include <sys/rman.h>
124 #include <sys/serialize.h>
125 #include <sys/socket.h>
126 #include <sys/sockio.h>
127 #include <sys/sysctl.h>
128 
129 #include <net/bpf.h>
130 #include <net/ethernet.h>
131 #include <net/if.h>
132 #include <net/ifq_var.h>
133 #include <net/if_arp.h>
134 #include <net/if_dl.h>
135 #include <net/if_media.h>
136 #include <net/if_types.h>
137 #include <net/vlan/if_vlan_var.h>
138 
139 #include <dev/netif/mii_layer/mii.h>
140 #include <dev/netif/mii_layer/miivar.h>
141 
142 #include <bus/pci/pcidevs.h>
143 #include <bus/pci/pcireg.h>
144 #include <bus/pci/pcivar.h>
145 
146 /* "device miibus" required.  See GENERIC if you get errors here. */
147 #include "miibus_if.h"
148 
149 #include <dev/netif/re/if_rereg.h>
150 #include <dev/netif/re/if_revar.h>
151 
152 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
153 #if 0
154 #define RE_DISABLE_HWCSUM
155 #endif
156 
157 /*
158  * Various supported device vendors/types and their names.
159  */
160 static const struct re_type re_devs[] = {
161 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T, RE_HWREV_8169S,
162 		"D-Link DGE-528(T) Gigabit Ethernet Adapter" },
163 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139, RE_HWREV_8139CPLUS,
164 		"RealTek 8139C+ 10/100BaseTX" },
165 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E, RE_HWREV_8101E,
166 		"RealTek 8101E PCIe 10/100baseTX" },
167 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168, RE_HWREV_8168_SPIN1,
168 		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
169 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168, RE_HWREV_8168_SPIN2,
170 		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
171 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169, RE_HWREV_8169,
172 		"RealTek 8169 Gigabit Ethernet" },
173 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169, RE_HWREV_8169S,
174 		"RealTek 8169S Single-chip Gigabit Ethernet" },
175 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169, RE_HWREV_8169_8110SB,
176 		"RealTek 8169SB/8110SB Single-chip Gigabit Ethernet" },
177 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169, RE_HWREV_8169_8110SC,
178 		"RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
179 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC, RE_HWREV_8169_8110SC,
180 		"RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
181 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169, RE_HWREV_8110S,
182 		"RealTek 8110S Single-chip Gigabit Ethernet" },
183 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT, RE_HWREV_8169S,
184 		"Corega CG-LAPCIGT Gigabit Ethernet" },
185 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032, RE_HWREV_8169S,
186 		"Linksys EG1032 Gigabit Ethernet" },
187 	{ PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902, RE_HWREV_8169S,
188 		"US Robotics 997902 Gigabit Ethernet" },
189 	{ 0, 0, 0, NULL }
190 };
191 
192 static const struct re_hwrev re_hwrevs[] = {
193 	{ RE_HWREV_8139CPLUS,	RE_8139CPLUS,	RE_F_HASMPC,	"C+" },
194 	{ RE_HWREV_8168_SPIN1,	RE_8169,	RE_F_PCIE,	"8168" },
195 	{ RE_HWREV_8168_SPIN2,	RE_8169,	RE_F_PCIE,	"8168" },
196 	{ RE_HWREV_8169,	RE_8169,	RE_F_HASMPC,	"8169" },
197 	{ RE_HWREV_8169S,	RE_8169,	RE_F_HASMPC,	"8169S" },
198 	{ RE_HWREV_8110S,	RE_8169,	RE_F_HASMPC,	"8110S" },
199 	{ RE_HWREV_8169_8110SB,	RE_8169,	RE_F_HASMPC,	"8169SB" },
200 	{ RE_HWREV_8169_8110SC,	RE_8169,	0,		"8169SC" },
201 	{ RE_HWREV_8100E,	RE_8169,	RE_F_HASMPC,	"8100E" },
202 	{ RE_HWREV_8101E,	RE_8169,	RE_F_PCIE,	"8101E" },
203 	{ 0, 0, 0, NULL }
204 };
205 
206 static int	re_probe(device_t);
207 static int	re_attach(device_t);
208 static int	re_detach(device_t);
209 
210 static int	re_encap(struct re_softc *, struct mbuf **, int *, int *);
211 
212 static void	re_dma_map_addr(void *, bus_dma_segment_t *, int, int);
213 static void	re_dma_map_desc(void *, bus_dma_segment_t *, int,
214 				bus_size_t, int);
215 static int	re_allocmem(device_t, struct re_softc *);
216 static int	re_newbuf(struct re_softc *, int, struct mbuf *);
217 static int	re_rx_list_init(struct re_softc *);
218 static int	re_tx_list_init(struct re_softc *);
219 static void	re_rxeof(struct re_softc *);
220 static void	re_txeof(struct re_softc *);
221 static void	re_intr(void *);
222 static void	re_tick(void *);
223 static void	re_tick_serialized(void *);
224 static void	re_start(struct ifnet *);
225 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
226 static void	re_init(void *);
227 static void	re_stop(struct re_softc *);
228 static void	re_watchdog(struct ifnet *);
229 static int	re_suspend(device_t);
230 static int	re_resume(device_t);
231 static void	re_shutdown(device_t);
232 static int	re_ifmedia_upd(struct ifnet *);
233 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
234 
235 static void	re_eeprom_putbyte(struct re_softc *, int);
236 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
237 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int);
238 static int	re_gmii_readreg(device_t, int, int);
239 static int	re_gmii_writereg(device_t, int, int, int);
240 
241 static int	re_miibus_readreg(device_t, int, int);
242 static int	re_miibus_writereg(device_t, int, int, int);
243 static void	re_miibus_statchg(device_t);
244 
245 static void	re_setmulti(struct re_softc *);
246 static void	re_reset(struct re_softc *);
247 
248 #ifdef RE_DIAG
249 static int	re_diag(struct re_softc *);
250 #endif
251 
252 #ifdef DEVICE_POLLING
253 static void	re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
254 #endif
255 
256 static int	re_sysctl_tx_moderation(SYSCTL_HANDLER_ARGS);
257 
258 static device_method_t re_methods[] = {
259 	/* Device interface */
260 	DEVMETHOD(device_probe,		re_probe),
261 	DEVMETHOD(device_attach,	re_attach),
262 	DEVMETHOD(device_detach,	re_detach),
263 	DEVMETHOD(device_suspend,	re_suspend),
264 	DEVMETHOD(device_resume,	re_resume),
265 	DEVMETHOD(device_shutdown,	re_shutdown),
266 
267 	/* bus interface */
268 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
269 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
270 
271 	/* MII interface */
272 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
273 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
274 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
275 
276 	{ 0, 0 }
277 };
278 
279 static driver_t re_driver = {
280 	"re",
281 	re_methods,
282 	sizeof(struct re_softc)
283 };
284 
285 static devclass_t re_devclass;
286 
287 DECLARE_DUMMY_MODULE(if_re);
288 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, 0, 0);
289 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, 0, 0);
290 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
291 
292 #define EE_SET(x)	\
293 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
294 
295 #define EE_CLR(x)	\
296 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
297 
298 /*
299  * Send a read command and address to the EEPROM, check for ACK.
300  */
301 static void
302 re_eeprom_putbyte(struct re_softc *sc, int addr)
303 {
304 	int d, i;
305 
306 	d = addr | (RE_9346_READ << sc->re_eewidth);
307 
308 	/*
309 	 * Feed in each bit and strobe the clock.
310 	 */
311 	for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
312 		if (d & i)
313 			EE_SET(RE_EE_DATAIN);
314 		else
315 			EE_CLR(RE_EE_DATAIN);
316 		DELAY(100);
317 		EE_SET(RE_EE_CLK);
318 		DELAY(150);
319 		EE_CLR(RE_EE_CLK);
320 		DELAY(100);
321 	}
322 }
323 
324 /*
325  * Read a word of data stored in the EEPROM at address 'addr.'
326  */
327 static void
328 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
329 {
330 	int i;
331 	uint16_t word = 0;
332 
333 	/*
334 	 * Send address of word we want to read.
335 	 */
336 	re_eeprom_putbyte(sc, addr);
337 
338 	/*
339 	 * Start reading bits from EEPROM.
340 	 */
341 	for (i = 0x8000; i != 0; i >>= 1) {
342 		EE_SET(RE_EE_CLK);
343 		DELAY(100);
344 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
345 			word |= i;
346 		EE_CLR(RE_EE_CLK);
347 		DELAY(100);
348 	}
349 
350 	*dest = word;
351 }
352 
353 /*
354  * Read a sequence of words from the EEPROM.
355  */
356 static void
357 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
358 {
359 	int i;
360 	uint16_t word = 0, *ptr;
361 
362 	CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
363 	DELAY(100);
364 
365 	for (i = 0; i < cnt; i++) {
366 		CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
367 		re_eeprom_getword(sc, off + i, &word);
368 		CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
369 		ptr = (uint16_t *)(dest + (i * 2));
370 		*ptr = word;
371 	}
372 
373 	CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
374 }
375 
376 static int
377 re_gmii_readreg(device_t dev, int phy, int reg)
378 {
379 	struct re_softc *sc = device_get_softc(dev);
380 	u_int32_t rval;
381 	int i;
382 
383 	if (phy != 1)
384 		return(0);
385 
386 	/* Let the rgephy driver read the GMEDIASTAT register */
387 
388 	if (reg == RE_GMEDIASTAT)
389 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
390 
391 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
392 	DELAY(1000);
393 
394 	for (i = 0; i < RE_TIMEOUT; i++) {
395 		rval = CSR_READ_4(sc, RE_PHYAR);
396 		if (rval & RE_PHYAR_BUSY)
397 			break;
398 		DELAY(100);
399 	}
400 
401 	if (i == RE_TIMEOUT) {
402 		device_printf(dev, "PHY read failed\n");
403 		return(0);
404 	}
405 
406 	return(rval & RE_PHYAR_PHYDATA);
407 }
408 
409 static int
410 re_gmii_writereg(device_t dev, int phy, int reg, int data)
411 {
412 	struct re_softc *sc = device_get_softc(dev);
413 	uint32_t rval;
414 	int i;
415 
416 	CSR_WRITE_4(sc, RE_PHYAR,
417 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
418 	DELAY(1000);
419 
420 	for (i = 0; i < RE_TIMEOUT; i++) {
421 		rval = CSR_READ_4(sc, RE_PHYAR);
422 		if ((rval & RE_PHYAR_BUSY) == 0)
423 			break;
424 		DELAY(100);
425 	}
426 
427 	if (i == RE_TIMEOUT)
428 		device_printf(dev, "PHY write failed\n");
429 
430 	return(0);
431 }
432 
433 static int
434 re_miibus_readreg(device_t dev, int phy, int reg)
435 {
436 	struct re_softc	*sc = device_get_softc(dev);
437 	uint16_t rval = 0;
438 	uint16_t re8139_reg = 0;
439 
440 	if (sc->re_type == RE_8169) {
441 		rval = re_gmii_readreg(dev, phy, reg);
442 		return(rval);
443 	}
444 
445 	/* Pretend the internal PHY is only at address 0 */
446 	if (phy)
447 		return(0);
448 
449 	switch(reg) {
450 	case MII_BMCR:
451 		re8139_reg = RE_BMCR;
452 		break;
453 	case MII_BMSR:
454 		re8139_reg = RE_BMSR;
455 		break;
456 	case MII_ANAR:
457 		re8139_reg = RE_ANAR;
458 		break;
459 	case MII_ANER:
460 		re8139_reg = RE_ANER;
461 		break;
462 	case MII_ANLPAR:
463 		re8139_reg = RE_LPAR;
464 		break;
465 	case MII_PHYIDR1:
466 	case MII_PHYIDR2:
467 		return(0);
468 	/*
469 	 * Allow the rlphy driver to read the media status
470 	 * register. If we have a link partner which does not
471 	 * support NWAY, this is the register which will tell
472 	 * us the results of parallel detection.
473 	 */
474 	case RE_MEDIASTAT:
475 		return(CSR_READ_1(sc, RE_MEDIASTAT));
476 	default:
477 		device_printf(dev, "bad phy register\n");
478 		return(0);
479 	}
480 	rval = CSR_READ_2(sc, re8139_reg);
481 	if (sc->re_type == RE_8139CPLUS && re8139_reg == RE_BMCR) {
482 		/* 8139C+ has different bit layout. */
483 		rval &= ~(BMCR_LOOP | BMCR_ISO);
484 	}
485 	return(rval);
486 }
487 
488 static int
489 re_miibus_writereg(device_t dev, int phy, int reg, int data)
490 {
491 	struct re_softc *sc= device_get_softc(dev);
492 	u_int16_t re8139_reg = 0;
493 
494 	if (sc->re_type == RE_8169)
495 		return(re_gmii_writereg(dev, phy, reg, data));
496 
497 	/* Pretend the internal PHY is only at address 0 */
498 	if (phy)
499 		return(0);
500 
501 	switch(reg) {
502 	case MII_BMCR:
503 		re8139_reg = RE_BMCR;
504 		if (sc->re_type == RE_8139CPLUS) {
505 			/* 8139C+ has different bit layout. */
506 			data &= ~(BMCR_LOOP | BMCR_ISO);
507 		}
508 		break;
509 	case MII_BMSR:
510 		re8139_reg = RE_BMSR;
511 		break;
512 	case MII_ANAR:
513 		re8139_reg = RE_ANAR;
514 		break;
515 	case MII_ANER:
516 		re8139_reg = RE_ANER;
517 		break;
518 	case MII_ANLPAR:
519 		re8139_reg = RE_LPAR;
520 		break;
521 	case MII_PHYIDR1:
522 	case MII_PHYIDR2:
523 		return(0);
524 	default:
525 		device_printf(dev, "bad phy register\n");
526 		return(0);
527 	}
528 	CSR_WRITE_2(sc, re8139_reg, data);
529 	return(0);
530 }
531 
532 static void
533 re_miibus_statchg(device_t dev)
534 {
535 }
536 
537 /*
538  * Program the 64-bit multicast hash filter.
539  */
540 static void
541 re_setmulti(struct re_softc *sc)
542 {
543 	struct ifnet *ifp = &sc->arpcom.ac_if;
544 	int h = 0;
545 	uint32_t hashes[2] = { 0, 0 };
546 	struct ifmultiaddr *ifma;
547 	uint32_t rxfilt;
548 	int mcnt = 0;
549 
550 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
551 
552 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
553 		rxfilt |= RE_RXCFG_RX_MULTI;
554 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
555 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
556 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
557 		return;
558 	}
559 
560 	/* first, zot all the existing hash bits */
561 	CSR_WRITE_4(sc, RE_MAR0, 0);
562 	CSR_WRITE_4(sc, RE_MAR4, 0);
563 
564 	/* now program new ones */
565 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
566 		if (ifma->ifma_addr->sa_family != AF_LINK)
567 			continue;
568 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
569 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
570 		if (h < 32)
571 			hashes[0] |= (1 << h);
572 		else
573 			hashes[1] |= (1 << (h - 32));
574 		mcnt++;
575 	}
576 
577 	if (mcnt)
578 		rxfilt |= RE_RXCFG_RX_MULTI;
579 	else
580 		rxfilt &= ~RE_RXCFG_RX_MULTI;
581 
582 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
583 	CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
584 	CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
585 }
586 
587 static void
588 re_reset(struct re_softc *sc)
589 {
590 	int i;
591 
592 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
593 
594 	for (i = 0; i < RE_TIMEOUT; i++) {
595 		DELAY(10);
596 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
597 			break;
598 	}
599 	if (i == RE_TIMEOUT)
600 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
601 
602 	CSR_WRITE_1(sc, 0x82, 1);
603 }
604 
605 #ifdef RE_DIAG
606 /*
607  * The following routine is designed to test for a defect on some
608  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
609  * lines connected to the bus, however for a 32-bit only card, they
610  * should be pulled high. The result of this defect is that the
611  * NIC will not work right if you plug it into a 64-bit slot: DMA
612  * operations will be done with 64-bit transfers, which will fail
613  * because the 64-bit data lines aren't connected.
614  *
615  * There's no way to work around this (short of talking a soldering
616  * iron to the board), however we can detect it. The method we use
617  * here is to put the NIC into digital loopback mode, set the receiver
618  * to promiscuous mode, and then try to send a frame. We then compare
619  * the frame data we sent to what was received. If the data matches,
620  * then the NIC is working correctly, otherwise we know the user has
621  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
622  * slot. In the latter case, there's no way the NIC can work correctly,
623  * so we print out a message on the console and abort the device attach.
624  */
625 
626 static int
627 re_diag(struct re_softc *sc)
628 {
629 	struct ifnet *ifp = &sc->arpcom.ac_if;
630 	struct mbuf *m0;
631 	struct ether_header *eh;
632 	struct re_desc *cur_rx;
633 	uint16_t status;
634 	uint32_t rxstat;
635 	int total_len, i, error = 0, phyaddr;
636 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
637 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
638 
639 	/* Allocate a single mbuf */
640 
641 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
642 	if (m0 == NULL)
643 		return(ENOBUFS);
644 
645 	/*
646 	 * Initialize the NIC in test mode. This sets the chip up
647 	 * so that it can send and receive frames, but performs the
648 	 * following special functions:
649 	 * - Puts receiver in promiscuous mode
650 	 * - Enables digital loopback mode
651 	 * - Leaves interrupts turned off
652 	 */
653 
654 	ifp->if_flags |= IFF_PROMISC;
655 	sc->re_testmode = 1;
656 	re_reset(sc);
657 	re_init(sc);
658 	sc->re_link = 1;
659 	if (sc->re_type == RE_8169)
660 		phyaddr = 1;
661 	else
662 		phyaddr = 0;
663 
664 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
665 	for (i = 0; i < RE_TIMEOUT; i++) {
666 		status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
667 		if (!(status & BMCR_RESET))
668 			break;
669 	}
670 
671 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
672 	CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
673 
674 	DELAY(100000);
675 
676 	/* Put some data in the mbuf */
677 
678 	eh = mtod(m0, struct ether_header *);
679 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
680 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
681 	eh->ether_type = htons(ETHERTYPE_IP);
682 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
683 
684 	/*
685 	 * Queue the packet, start transmission.
686 	 * Note: ifq_handoff() ultimately calls re_start() for us.
687 	 */
688 
689 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
690 	error = ifq_handoff(ifp, m0, NULL);
691 	if (error) {
692 		m0 = NULL;
693 		goto done;
694 	}
695 	m0 = NULL;
696 
697 	/* Wait for it to propagate through the chip */
698 
699 	DELAY(100000);
700 	for (i = 0; i < RE_TIMEOUT; i++) {
701 		status = CSR_READ_2(sc, RE_ISR);
702 		CSR_WRITE_2(sc, RE_ISR, status);
703 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
704 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
705 			break;
706 		DELAY(10);
707 	}
708 
709 	if (i == RE_TIMEOUT) {
710 		if_printf(ifp, "diagnostic failed to receive packet "
711 			  "in loopback mode\n");
712 		error = EIO;
713 		goto done;
714 	}
715 
716 	/*
717 	 * The packet should have been dumped into the first
718 	 * entry in the RX DMA ring. Grab it from there.
719 	 */
720 
721 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
722 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
723 	bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0],
724 			BUS_DMASYNC_POSTWRITE);
725 	bus_dmamap_unload(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0]);
726 
727 	m0 = sc->re_ldata.re_rx_mbuf[0];
728 	sc->re_ldata.re_rx_mbuf[0] = NULL;
729 	eh = mtod(m0, struct ether_header *);
730 
731 	cur_rx = &sc->re_ldata.re_rx_list[0];
732 	total_len = RE_RXBYTES(cur_rx);
733 	rxstat = le32toh(cur_rx->re_cmdstat);
734 
735 	if (total_len != ETHER_MIN_LEN) {
736 		if_printf(ifp, "diagnostic failed, received short packet\n");
737 		error = EIO;
738 		goto done;
739 	}
740 
741 	/* Test that the received packet data matches what we sent. */
742 
743 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
744 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
745 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
746 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
747 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
748 		    dst, ":", src, ":", ETHERTYPE_IP);
749 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
750 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
751 		    ntohs(eh->ether_type));
752 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
753 		    "into a 64-bit PCI slot.\n");
754 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
755 		    "for proper operation.\n");
756 		if_printf(ifp, "Read the re(4) man page for more details.\n");
757 		error = EIO;
758 	}
759 
760 done:
761 	/* Turn interface off, release resources */
762 
763 	sc->re_testmode = 0;
764 	sc->re_link = 0;
765 	ifp->if_flags &= ~IFF_PROMISC;
766 	re_stop(sc);
767 	if (m0 != NULL)
768 		m_freem(m0);
769 
770 	return (error);
771 }
772 #endif	/* RE_DIAG */
773 
774 /*
775  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
776  * IDs against our list and return a device name if we find a match.
777  */
778 static int
779 re_probe(device_t dev)
780 {
781 	const struct re_type *t;
782 	struct re_softc *sc;
783 	int rid;
784 	uint32_t hwrev;
785 	uint16_t vendor, product;
786 
787 	t = re_devs;
788 
789 	vendor = pci_get_vendor(dev);
790 	product = pci_get_device(dev);
791 
792 	/*
793 	 * Only attach to rev.3 of the Linksys EG1032 adapter.
794 	 * Rev.2 is supported by sk(4).
795 	 */
796 	if (vendor == PCI_VENDOR_LINKSYS &&
797 	    product == PCI_PRODUCT_LINKSYS_EG1032 &&
798 	    pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
799 			return ENXIO;
800 
801 	for (t = re_devs; t->re_name != NULL; t++) {
802 		if (product == t->re_did && vendor == t->re_vid)
803 			break;
804 	}
805 
806 	/*
807 	 * Check if we found a RealTek device.
808 	 */
809 	if (t->re_name == NULL)
810 		return(ENXIO);
811 
812 	/*
813 	 * Temporarily map the I/O space so we can read the chip ID register.
814 	 */
815 	sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
816 	rid = RE_PCI_LOIO;
817 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
818 					    RF_ACTIVE);
819 	if (sc->re_res == NULL) {
820 		device_printf(dev, "couldn't map ports/memory\n");
821 		kfree(sc, M_TEMP);
822 		return(ENXIO);
823 	}
824 
825 	sc->re_btag = rman_get_bustag(sc->re_res);
826 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
827 
828 	hwrev = CSR_READ_4(sc, RE_TXCFG) & RE_TXCFG_HWREV;
829 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
830 	kfree(sc, M_TEMP);
831 
832 	/*
833 	 * and continue matching for the specific chip...
834 	 */
835 	for (; t->re_name != NULL; t++) {
836 		if (product == t->re_did && vendor == t->re_vid &&
837 		    t->re_basetype == hwrev) {
838 			device_set_desc(dev, t->re_name);
839 			return(0);
840 		}
841 	}
842 	return(ENXIO);
843 }
844 
845 /*
846  * This routine takes the segment list provided as the result of
847  * a bus_dma_map_load() operation and assigns the addresses/lengths
848  * to RealTek DMA descriptors. This can be called either by the RX
849  * code or the TX code. In the RX case, we'll probably wind up mapping
850  * at most one segment. For the TX case, there could be any number of
851  * segments since TX packets may span multiple mbufs. In either case,
852  * if the number of segments is larger than the re_maxsegs limit
853  * specified by the caller, we abort the mapping operation. Sadly,
854  * whoever designed the buffer mapping API did not provide a way to
855  * return an error from here, so we have to fake it a bit.
856  */
857 
858 static void
859 re_dma_map_desc(void *arg, bus_dma_segment_t *segs, int nseg,
860 		bus_size_t mapsize, int error)
861 {
862 	struct re_dmaload_arg *ctx;
863 	struct re_desc *d = NULL;
864 	int i = 0, idx;
865 	uint32_t cmdstat;
866 
867 	if (error)
868 		return;
869 
870 	ctx = arg;
871 
872 	/* Signal error to caller if there's too many segments */
873 	if (nseg > ctx->re_maxsegs) {
874 		ctx->re_maxsegs = 0;
875 		return;
876 	}
877 
878 	/*
879 	 * Map the segment array into descriptors. Note that we set the
880 	 * start-of-frame and end-of-frame markers for either TX or RX, but
881 	 * they really only have meaning in the TX case. (In the RX case,
882 	 * it's the chip that tells us where packets begin and end.)
883 	 * We also keep track of the end of the ring and set the
884 	 * end-of-ring bits as needed, and we set the ownership bits
885 	 * in all except the very first descriptor. (The caller will
886 	 * set this descriptor later when it start transmission or
887 	 * reception.)
888 	 */
889 	idx = ctx->re_idx;
890 	for (;;) {
891 		d = &ctx->re_ring[idx];
892 		if (le32toh(d->re_cmdstat) & RE_RDESC_STAT_OWN) {
893 			ctx->re_maxsegs = 0;
894 			return;
895 		}
896 		cmdstat = segs[i].ds_len;
897 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
898 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
899 		if (i == 0)
900 			cmdstat |= RE_TDESC_CMD_SOF;
901 		else
902 			cmdstat |= RE_TDESC_CMD_OWN;
903 		if (idx == (RE_RX_DESC_CNT - 1))
904 			cmdstat |= RE_TDESC_CMD_EOR;
905 		d->re_cmdstat = htole32(cmdstat | ctx->re_flags);
906 		i++;
907 		if (i == nseg)
908 			break;
909 		RE_DESC_INC(idx);
910 	}
911 
912 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
913 	ctx->re_maxsegs = nseg;
914 	ctx->re_idx = idx;
915 }
916 
917 /*
918  * Map a single buffer address.
919  */
920 
921 static void
922 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
923 {
924 	uint32_t *addr;
925 
926 	if (error)
927 		return;
928 
929 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
930 	addr = arg;
931 	*addr = segs->ds_addr;
932 }
933 
934 static int
935 re_allocmem(device_t dev, struct re_softc *sc)
936 {
937 	int error, i, nseg;
938 
939 	/*
940 	 * Allocate map for RX mbufs.
941 	 */
942 	nseg = 32;
943 	error = bus_dma_tag_create(sc->re_parent_tag, ETHER_ALIGN, 0,
944 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
945 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
946 	    &sc->re_ldata.re_mtag);
947 	if (error) {
948 		device_printf(dev, "could not allocate dma tag\n");
949 		return(error);
950 	}
951 
952 	/*
953 	 * Allocate map for TX descriptor list.
954 	 */
955 	error = bus_dma_tag_create(sc->re_parent_tag, RE_RING_ALIGN,
956 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
957             NULL, RE_TX_LIST_SZ, 1, RE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
958 	    &sc->re_ldata.re_tx_list_tag);
959 	if (error) {
960 		device_printf(dev, "could not allocate dma tag\n");
961 		return(error);
962 	}
963 
964 	/* Allocate DMA'able memory for the TX ring */
965 
966         error = bus_dmamem_alloc(sc->re_ldata.re_tx_list_tag,
967 	    (void **)&sc->re_ldata.re_tx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO,
968             &sc->re_ldata.re_tx_list_map);
969         if (error) {
970 		device_printf(dev, "could not allocate TX ring\n");
971                 return(error);
972 	}
973 
974 	/* Load the map for the TX ring. */
975 
976 	error = bus_dmamap_load(sc->re_ldata.re_tx_list_tag,
977 	     sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
978 	     RE_TX_LIST_SZ, re_dma_map_addr,
979 	     &sc->re_ldata.re_tx_list_addr, BUS_DMA_NOWAIT);
980 	if (error) {
981 		device_printf(dev, "could not get addres of TX ring\n");
982 		return(error);
983 	}
984 
985 	/* Create DMA maps for TX buffers */
986 
987 	for (i = 0; i < RE_TX_DESC_CNT; i++) {
988 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
989 			    &sc->re_ldata.re_tx_dmamap[i]);
990 		if (error) {
991 			device_printf(dev, "can't create DMA map for TX\n");
992 			return(error);
993 		}
994 	}
995 
996 	/*
997 	 * Allocate map for RX descriptor list.
998 	 */
999 	error = bus_dma_tag_create(sc->re_parent_tag, RE_RING_ALIGN,
1000 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1001             NULL, RE_RX_LIST_SZ, 1, RE_RX_LIST_SZ, BUS_DMA_ALLOCNOW,
1002 	    &sc->re_ldata.re_rx_list_tag);
1003 	if (error) {
1004 		device_printf(dev, "could not allocate dma tag\n");
1005 		return(error);
1006 	}
1007 
1008 	/* Allocate DMA'able memory for the RX ring */
1009 
1010         error = bus_dmamem_alloc(sc->re_ldata.re_rx_list_tag,
1011 	    (void **)&sc->re_ldata.re_rx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO,
1012             &sc->re_ldata.re_rx_list_map);
1013         if (error) {
1014 		device_printf(dev, "could not allocate RX ring\n");
1015                 return(error);
1016 	}
1017 
1018 	/* Load the map for the RX ring. */
1019 
1020 	error = bus_dmamap_load(sc->re_ldata.re_rx_list_tag,
1021 	     sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
1022 	     RE_RX_LIST_SZ, re_dma_map_addr,
1023 	     &sc->re_ldata.re_rx_list_addr, BUS_DMA_NOWAIT);
1024 	if (error) {
1025 		device_printf(dev, "could not get address of RX ring\n");
1026 		return(error);
1027 	}
1028 
1029 	/* Create DMA maps for RX buffers */
1030 
1031 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
1032 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
1033 			    &sc->re_ldata.re_rx_dmamap[i]);
1034 		if (error) {
1035 			device_printf(dev, "can't create DMA map for RX\n");
1036 			return(ENOMEM);
1037 		}
1038 	}
1039 
1040 	return(0);
1041 }
1042 
1043 /*
1044  * Attach the interface. Allocate softc structures, do ifmedia
1045  * setup and ethernet/BPF attach.
1046  */
1047 static int
1048 re_attach(device_t dev)
1049 {
1050 	struct re_softc	*sc = device_get_softc(dev);
1051 	struct ifnet *ifp;
1052 	const struct re_hwrev *hw_rev;
1053 	uint8_t eaddr[ETHER_ADDR_LEN];
1054 	uint16_t as[ETHER_ADDR_LEN / 2];
1055 	uint16_t re_did = 0;
1056 	uint32_t hwrev;
1057 	int error = 0, rid, i;
1058 
1059 	callout_init(&sc->re_timer);
1060 #ifdef RE_DIAG
1061 	sc->re_dev = dev;
1062 #endif
1063 
1064 	RE_ENABLE_TX_MODERATION(sc);
1065 
1066 	sysctl_ctx_init(&sc->re_sysctl_ctx);
1067 	sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1068 					     SYSCTL_STATIC_CHILDREN(_hw),
1069 					     OID_AUTO,
1070 					     device_get_nameunit(dev),
1071 					     CTLFLAG_RD, 0, "");
1072 	if (sc->re_sysctl_tree == NULL) {
1073 		device_printf(dev, "can't add sysctl node\n");
1074 		error = ENXIO;
1075 		goto fail;
1076 	}
1077 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1078 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1079 			OID_AUTO, "tx_moderation",
1080 			CTLTYPE_INT | CTLFLAG_RW,
1081 			sc, 0, re_sysctl_tx_moderation, "I",
1082 			"Enable/Disable TX moderation");
1083 
1084 #ifndef BURN_BRIDGES
1085 	/*
1086 	 * Handle power management nonsense.
1087 	 */
1088 
1089 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1090 		uint32_t membase, irq;
1091 
1092 		/* Save important PCI config data. */
1093 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1094 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1095 
1096 		/* Reset the power state. */
1097 		device_printf(dev, "chip is in D%d power mode "
1098 		    "-- setting to D0\n", pci_get_powerstate(dev));
1099 
1100 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1101 
1102 		/* Restore PCI config data. */
1103 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1104 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1105 	}
1106 #endif
1107 	/*
1108 	 * Map control/status registers.
1109 	 */
1110 	pci_enable_busmaster(dev);
1111 
1112 	rid = RE_PCI_LOIO;
1113 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1114 					    RF_ACTIVE);
1115 
1116 	if (sc->re_res == NULL) {
1117 		device_printf(dev, "couldn't map ports\n");
1118 		error = ENXIO;
1119 		goto fail;
1120 	}
1121 
1122 	sc->re_btag = rman_get_bustag(sc->re_res);
1123 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1124 
1125 	/* Allocate interrupt */
1126 	rid = 0;
1127 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1128 					    RF_SHAREABLE | RF_ACTIVE);
1129 
1130 	if (sc->re_irq == NULL) {
1131 		device_printf(dev, "couldn't map interrupt\n");
1132 		error = ENXIO;
1133 		goto fail;
1134 	}
1135 
1136 	/* Reset the adapter. */
1137 	re_reset(sc);
1138 
1139 	hwrev = CSR_READ_4(sc, RE_TXCFG) & RE_TXCFG_HWREV;
1140 	for (hw_rev = re_hwrevs; hw_rev->re_desc != NULL; hw_rev++) {
1141 		if (hw_rev->re_rev == hwrev) {
1142 			sc->re_type = hw_rev->re_type;
1143 			sc->re_flags = hw_rev->re_flags;
1144 			break;
1145 		}
1146 	}
1147 
1148 	sc->re_eewidth = 6;
1149 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1150 	if (re_did != 0x8129)
1151 	        sc->re_eewidth = 8;
1152 
1153 	/*
1154 	 * Get station address from the EEPROM.
1155 	 */
1156 	re_read_eeprom(sc, (caddr_t)as, RE_EE_EADDR, 3);
1157 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1158 		as[i] = le16toh(as[i]);
1159 	bcopy(as, eaddr, sizeof(eaddr));
1160 
1161 	if (sc->re_type == RE_8169) {
1162 		/* Set RX length mask */
1163 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1164 		sc->re_txstart = RE_GTXSTART;
1165 	} else {
1166 		/* Set RX length mask */
1167 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1168 		sc->re_txstart = RE_TXSTART;
1169 	}
1170 
1171 	/*
1172 	 * Allocate the parent bus DMA tag appropriate for PCI.
1173 	 */
1174 #define RE_NSEG_NEW 32
1175 	error = bus_dma_tag_create(NULL,	/* parent */
1176 			1, 0,			/* alignment, boundary */
1177 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1178 			BUS_SPACE_MAXADDR,	/* highaddr */
1179 			NULL, NULL,		/* filter, filterarg */
1180 			MAXBSIZE, RE_NSEG_NEW,	/* maxsize, nsegments */
1181 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1182 			BUS_DMA_ALLOCNOW,	/* flags */
1183 			&sc->re_parent_tag);
1184 	if (error)
1185 		goto fail;
1186 
1187 	error = re_allocmem(dev, sc);
1188 
1189 	if (error)
1190 		goto fail;
1191 
1192 	/* Do MII setup */
1193 	if (mii_phy_probe(dev, &sc->re_miibus,
1194 	    re_ifmedia_upd, re_ifmedia_sts)) {
1195 		device_printf(dev, "MII without any phy!\n");
1196 		error = ENXIO;
1197 		goto fail;
1198 	}
1199 
1200 	ifp = &sc->arpcom.ac_if;
1201 	ifp->if_softc = sc;
1202 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1203 	ifp->if_mtu = ETHERMTU;
1204 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1205 	ifp->if_ioctl = re_ioctl;
1206 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1207 	ifp->if_start = re_start;
1208 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1209 #ifdef DEVICE_POLLING
1210 	ifp->if_poll = re_poll;
1211 #endif
1212 	ifp->if_watchdog = re_watchdog;
1213 	ifp->if_init = re_init;
1214 	if (sc->re_type == RE_8169)
1215 		ifp->if_baudrate = 1000000000;
1216 	else
1217 		ifp->if_baudrate = 100000000;
1218 	ifq_set_maxlen(&ifp->if_snd, RE_IFQ_MAXLEN);
1219 	ifq_set_ready(&ifp->if_snd);
1220 
1221 #ifdef RE_DISABLE_HWCSUM
1222 	ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
1223 	ifp->if_hwassist = 0;
1224 #else
1225 	ifp->if_capenable = ifp->if_capabilities;
1226 	ifp->if_hwassist = RE_CSUM_FEATURES;
1227 #endif	/* RE_DISABLE_HWCSUM */
1228 
1229 	/*
1230 	 * Call MI attach routine.
1231 	 */
1232 	ether_ifattach(ifp, eaddr, NULL);
1233 
1234 #ifdef RE_DIAG
1235 	/*
1236 	 * Perform hardware diagnostic on the original RTL8169.
1237 	 * Some 32-bit cards were incorrectly wired and would
1238 	 * malfunction if plugged into a 64-bit slot.
1239 	 */
1240 	if (hwrev == RE_HWREV_8169) {
1241 		lwkt_serialize_enter(ifp->if_serializer);
1242 		error = re_diag(sc);
1243 		lwkt_serialize_exit(ifp->if_serializer);
1244 
1245 		if (error) {
1246 			device_printf(dev, "hardware diagnostic failure\n");
1247 			ether_ifdetach(ifp);
1248 			goto fail;
1249 		}
1250 	}
1251 #endif	/* RE_DIAG */
1252 
1253 	/* Hook interrupt last to avoid having to lock softc */
1254 	error = bus_setup_intr(dev, sc->re_irq, INTR_NETSAFE, re_intr, sc,
1255 			       &sc->re_intrhand, ifp->if_serializer);
1256 
1257 	if (error) {
1258 		device_printf(dev, "couldn't set up irq\n");
1259 		ether_ifdetach(ifp);
1260 		goto fail;
1261 	}
1262 
1263 fail:
1264 	if (error)
1265 		re_detach(dev);
1266 
1267 	return (error);
1268 }
1269 
1270 /*
1271  * Shutdown hardware and free up resources. This can be called any
1272  * time after the mutex has been initialized. It is called in both
1273  * the error case in attach and the normal detach case so it needs
1274  * to be careful about only freeing resources that have actually been
1275  * allocated.
1276  */
1277 static int
1278 re_detach(device_t dev)
1279 {
1280 	struct re_softc *sc = device_get_softc(dev);
1281 	struct ifnet *ifp = &sc->arpcom.ac_if;
1282 	int i;
1283 
1284 	/* These should only be active if attach succeeded */
1285 	if (device_is_attached(dev)) {
1286 		lwkt_serialize_enter(ifp->if_serializer);
1287 		re_stop(sc);
1288 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1289 		lwkt_serialize_exit(ifp->if_serializer);
1290 
1291 		ether_ifdetach(ifp);
1292 	}
1293 	if (sc->re_miibus)
1294 		device_delete_child(dev, sc->re_miibus);
1295 	bus_generic_detach(dev);
1296 
1297 	if (sc->re_irq)
1298 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1299 	if (sc->re_res) {
1300 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1301 				     sc->re_res);
1302 	}
1303 
1304 	/* Unload and free the RX DMA ring memory and map */
1305 
1306 	if (sc->re_ldata.re_rx_list_tag) {
1307 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1308 		    sc->re_ldata.re_rx_list_map);
1309 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1310 		    sc->re_ldata.re_rx_list,
1311 		    sc->re_ldata.re_rx_list_map);
1312 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1313 	}
1314 
1315 	/* Unload and free the TX DMA ring memory and map */
1316 
1317 	if (sc->re_ldata.re_tx_list_tag) {
1318 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1319 		    sc->re_ldata.re_tx_list_map);
1320 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1321 		    sc->re_ldata.re_tx_list,
1322 		    sc->re_ldata.re_tx_list_map);
1323 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1324 	}
1325 
1326 	/* Destroy all the RX and TX buffer maps */
1327 
1328 	if (sc->re_ldata.re_mtag) {
1329 		for (i = 0; i < RE_TX_DESC_CNT; i++)
1330 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1331 			    sc->re_ldata.re_tx_dmamap[i]);
1332 		for (i = 0; i < RE_RX_DESC_CNT; i++)
1333 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1334 			    sc->re_ldata.re_rx_dmamap[i]);
1335 		bus_dma_tag_destroy(sc->re_ldata.re_mtag);
1336 	}
1337 
1338 	/* Unload and free the stats buffer and map */
1339 
1340 	if (sc->re_ldata.re_stag) {
1341 		bus_dmamap_unload(sc->re_ldata.re_stag,
1342 		    sc->re_ldata.re_rx_list_map);
1343 		bus_dmamem_free(sc->re_ldata.re_stag,
1344 		    sc->re_ldata.re_stats,
1345 		    sc->re_ldata.re_smap);
1346 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1347 	}
1348 
1349 	if (sc->re_parent_tag)
1350 		bus_dma_tag_destroy(sc->re_parent_tag);
1351 
1352 	return(0);
1353 }
1354 
1355 static int
1356 re_newbuf(struct re_softc *sc, int idx, struct mbuf *m)
1357 {
1358 	struct re_dmaload_arg arg;
1359 	struct mbuf *n = NULL;
1360 	int error;
1361 
1362 	if (m == NULL) {
1363 		n = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1364 		if (n == NULL)
1365 			return(ENOBUFS);
1366 		m = n;
1367 	} else
1368 		m->m_data = m->m_ext.ext_buf;
1369 
1370 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1371 
1372 	/*
1373 	 * NOTE:
1374 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1375 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1376 	 */
1377 
1378 	arg.sc = sc;
1379 	arg.re_idx = idx;
1380 	arg.re_maxsegs = 1;
1381 	arg.re_flags = 0;
1382 	arg.re_ring = sc->re_ldata.re_rx_list;
1383 
1384         error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag,
1385 	    sc->re_ldata.re_rx_dmamap[idx], m, re_dma_map_desc,
1386 	    &arg, BUS_DMA_NOWAIT);
1387 	if (error || arg.re_maxsegs != 1) {
1388 		if (n != NULL)
1389 			m_freem(n);
1390 		return (ENOMEM);
1391 	}
1392 
1393 	sc->re_ldata.re_rx_list[idx].re_cmdstat |= htole32(RE_RDESC_CMD_OWN);
1394 	sc->re_ldata.re_rx_mbuf[idx] = m;
1395 
1396         bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[idx],
1397 		        BUS_DMASYNC_PREREAD);
1398 
1399 	return(0);
1400 }
1401 
1402 static int
1403 re_tx_list_init(struct re_softc *sc)
1404 {
1405 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ);
1406 	bzero(&sc->re_ldata.re_tx_mbuf, RE_TX_DESC_CNT * sizeof(struct mbuf *));
1407 
1408 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1409 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
1410 	sc->re_ldata.re_tx_prodidx = 0;
1411 	sc->re_ldata.re_tx_considx = 0;
1412 	sc->re_ldata.re_tx_free = RE_TX_DESC_CNT;
1413 
1414 	return(0);
1415 }
1416 
1417 static int
1418 re_rx_list_init(struct re_softc *sc)
1419 {
1420 	int i, error;
1421 
1422 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
1423 	bzero(&sc->re_ldata.re_rx_mbuf, RE_RX_DESC_CNT * sizeof(struct mbuf *));
1424 
1425 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
1426 		error = re_newbuf(sc, i, NULL);
1427 		if (error)
1428 			return(error);
1429 	}
1430 
1431 	/* Flush the RX descriptors */
1432 
1433 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1434 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_PREWRITE);
1435 
1436 	sc->re_ldata.re_rx_prodidx = 0;
1437 	sc->re_head = sc->re_tail = NULL;
1438 
1439 	return(0);
1440 }
1441 
1442 /*
1443  * RX handler for C+ and 8169. For the gigE chips, we support
1444  * the reception of jumbo frames that have been fragmented
1445  * across multiple 2K mbuf cluster buffers.
1446  */
1447 static void
1448 re_rxeof(struct re_softc *sc)
1449 {
1450 	struct ifnet *ifp = &sc->arpcom.ac_if;
1451 	struct mbuf *m;
1452 	struct re_desc 	*cur_rx;
1453 	uint32_t rxstat, rxvlan;
1454 	int i, total_len;
1455 
1456 	/* Invalidate the descriptor memory */
1457 
1458 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1459 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
1460 
1461 	for (i = sc->re_ldata.re_rx_prodidx;
1462 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0 ; RE_DESC_INC(i)) {
1463 		cur_rx = &sc->re_ldata.re_rx_list[i];
1464 		m = sc->re_ldata.re_rx_mbuf[i];
1465 		total_len = RE_RXBYTES(cur_rx);
1466 		rxstat = le32toh(cur_rx->re_cmdstat);
1467 		rxvlan = le32toh(cur_rx->re_vlanctl);
1468 
1469 		/* Invalidate the RX mbuf and unload its map */
1470 
1471 		bus_dmamap_sync(sc->re_ldata.re_mtag,
1472 				sc->re_ldata.re_rx_dmamap[i],
1473 				BUS_DMASYNC_POSTWRITE);
1474 		bus_dmamap_unload(sc->re_ldata.re_mtag,
1475 				  sc->re_ldata.re_rx_dmamap[i]);
1476 
1477 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1478 			m->m_len = MCLBYTES - ETHER_ALIGN;
1479 			if (sc->re_head == NULL) {
1480 				sc->re_head = sc->re_tail = m;
1481 			} else {
1482 				sc->re_tail->m_next = m;
1483 				sc->re_tail = m;
1484 			}
1485 			re_newbuf(sc, i, NULL);
1486 			continue;
1487 		}
1488 
1489 		/*
1490 		 * NOTE: for the 8139C+, the frame length field
1491 		 * is always 12 bits in size, but for the gigE chips,
1492 		 * it is 13 bits (since the max RX frame length is 16K).
1493 		 * Unfortunately, all 32 bits in the status word
1494 		 * were already used, so to make room for the extra
1495 		 * length bit, RealTek took out the 'frame alignment
1496 		 * error' bit and shifted the other status bits
1497 		 * over one slot. The OWN, EOR, FS and LS bits are
1498 		 * still in the same places. We have already extracted
1499 		 * the frame length and checked the OWN bit, so rather
1500 		 * than using an alternate bit mapping, we shift the
1501 		 * status bits one space to the right so we can evaluate
1502 		 * them using the 8169 status as though it was in the
1503 		 * same format as that of the 8139C+.
1504 		 */
1505 		if (sc->re_type == RE_8169)
1506 			rxstat >>= 1;
1507 
1508 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1509 			ifp->if_ierrors++;
1510 			/*
1511 			 * If this is part of a multi-fragment packet,
1512 			 * discard all the pieces.
1513 			 */
1514 			if (sc->re_head != NULL) {
1515 				m_freem(sc->re_head);
1516 				sc->re_head = sc->re_tail = NULL;
1517 			}
1518 			re_newbuf(sc, i, m);
1519 			continue;
1520 		}
1521 
1522 		/*
1523 		 * If allocating a replacement mbuf fails,
1524 		 * reload the current one.
1525 		 */
1526 
1527 		if (re_newbuf(sc, i, NULL)) {
1528 			ifp->if_ierrors++;
1529 			if (sc->re_head != NULL) {
1530 				m_freem(sc->re_head);
1531 				sc->re_head = sc->re_tail = NULL;
1532 			}
1533 			re_newbuf(sc, i, m);
1534 			continue;
1535 		}
1536 
1537 		if (sc->re_head != NULL) {
1538 			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1539 			/*
1540 			 * Special case: if there's 4 bytes or less
1541 			 * in this buffer, the mbuf can be discarded:
1542 			 * the last 4 bytes is the CRC, which we don't
1543 			 * care about anyway.
1544 			 */
1545 			if (m->m_len <= ETHER_CRC_LEN) {
1546 				sc->re_tail->m_len -=
1547 				    (ETHER_CRC_LEN - m->m_len);
1548 				m_freem(m);
1549 			} else {
1550 				m->m_len -= ETHER_CRC_LEN;
1551 				sc->re_tail->m_next = m;
1552 			}
1553 			m = sc->re_head;
1554 			sc->re_head = sc->re_tail = NULL;
1555 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1556 		} else
1557 			m->m_pkthdr.len = m->m_len =
1558 			    (total_len - ETHER_CRC_LEN);
1559 
1560 		ifp->if_ipackets++;
1561 		m->m_pkthdr.rcvif = ifp;
1562 
1563 		/* Do RX checksumming if enabled */
1564 
1565 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1566 
1567 			/* Check IP header checksum */
1568 			if (rxstat & RE_RDESC_STAT_PROTOID)
1569 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1570 			if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
1571 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1572 
1573 			/* Check TCP/UDP checksum */
1574 			if ((RE_TCPPKT(rxstat) &&
1575 			    (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
1576 			    (RE_UDPPKT(rxstat) &&
1577 			    (rxstat & RE_RDESC_STAT_UDPSUMBAD)) == 0) {
1578 				m->m_pkthdr.csum_flags |=
1579 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1580 				m->m_pkthdr.csum_data = 0xffff;
1581 			}
1582 		}
1583 
1584 		if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1585 			VLAN_INPUT_TAG(m,
1586 			   be16toh((rxvlan & RE_RDESC_VLANCTL_DATA)));
1587 		} else {
1588 			ifp->if_input(ifp, m);
1589 		}
1590 	}
1591 
1592 	/* Flush the RX DMA ring */
1593 
1594 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1595 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_PREWRITE);
1596 
1597 	sc->re_ldata.re_rx_prodidx = i;
1598 }
1599 
1600 static void
1601 re_txeof(struct re_softc *sc)
1602 {
1603 	struct ifnet *ifp = &sc->arpcom.ac_if;
1604 	uint32_t txstat;
1605 	int idx;
1606 
1607 	/* Invalidate the TX descriptor list */
1608 
1609 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1610 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_POSTREAD);
1611 
1612 	for (idx = sc->re_ldata.re_tx_considx;
1613 	     sc->re_ldata.re_tx_free < RE_TX_DESC_CNT; RE_DESC_INC(idx)) {
1614 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
1615 		if (txstat & RE_TDESC_CMD_OWN)
1616 			break;
1617 
1618 		sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
1619 
1620 		/*
1621 		 * We only stash mbufs in the last descriptor
1622 		 * in a fragment chain, which also happens to
1623 		 * be the only place where the TX status bits
1624 		 * are valid.
1625 		 */
1626 		if (txstat & RE_TDESC_CMD_EOF) {
1627 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
1628 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
1629 			bus_dmamap_unload(sc->re_ldata.re_mtag,
1630 			    sc->re_ldata.re_tx_dmamap[idx]);
1631 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
1632 			    RE_TDESC_STAT_COLCNT))
1633 				ifp->if_collisions++;
1634 			if (txstat & RE_TDESC_STAT_TXERRSUM)
1635 				ifp->if_oerrors++;
1636 			else
1637 				ifp->if_opackets++;
1638 		}
1639 		sc->re_ldata.re_tx_free++;
1640 	}
1641 
1642 	/* No changes made to the TX ring, so no flush needed */
1643 	if (sc->re_ldata.re_tx_free) {
1644 		sc->re_ldata.re_tx_considx = idx;
1645 		ifp->if_flags &= ~IFF_OACTIVE;
1646 		ifp->if_timer = 0;
1647 	}
1648 
1649 	/*
1650 	 * Some chips will ignore a second TX request issued while an
1651 	 * existing transmission is in progress. If the transmitter goes
1652 	 * idle but there are still packets waiting to be sent, we need
1653 	 * to restart the channel here to flush them out. This only seems
1654 	 * to be required with the PCIe devices.
1655 	 */
1656 	if (sc->re_ldata.re_tx_free < RE_TX_DESC_CNT)
1657 		CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
1658 
1659 	/*
1660 	 * If not all descriptors have been released reaped yet,
1661 	 * reload the timer so that we will eventually get another
1662 	 * interrupt that will cause us to re-enter this routine.
1663 	 * This is done in case the transmitter has gone idle.
1664 	 */
1665 	if (RE_TX_MODERATION_IS_ENABLED(sc) &&
1666 	    sc->re_ldata.re_tx_free < RE_TX_DESC_CNT)
1667                 CSR_WRITE_4(sc, RE_TIMERCNT, 1);
1668 }
1669 
1670 static void
1671 re_tick(void *xsc)
1672 {
1673 	struct re_softc *sc = xsc;
1674 
1675 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1676 	re_tick_serialized(xsc);
1677 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1678 }
1679 
1680 static void
1681 re_tick_serialized(void *xsc)
1682 {
1683 	struct re_softc *sc = xsc;
1684 	struct ifnet *ifp = &sc->arpcom.ac_if;
1685 	struct mii_data *mii;
1686 
1687 	mii = device_get_softc(sc->re_miibus);
1688 	mii_tick(mii);
1689 	if (sc->re_link) {
1690 		if (!(mii->mii_media_status & IFM_ACTIVE))
1691 			sc->re_link = 0;
1692 	} else {
1693 		if (mii->mii_media_status & IFM_ACTIVE &&
1694 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1695 			sc->re_link = 1;
1696 			if (!ifq_is_empty(&ifp->if_snd))
1697 				ifp->if_start(ifp);
1698 		}
1699 	}
1700 
1701 	callout_reset(&sc->re_timer, hz, re_tick, sc);
1702 }
1703 
1704 #ifdef DEVICE_POLLING
1705 
1706 static void
1707 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1708 {
1709 	struct re_softc *sc = ifp->if_softc;
1710 
1711 	switch(cmd) {
1712 	case POLL_REGISTER:
1713 		/* disable interrupts */
1714 		CSR_WRITE_2(sc, RE_IMR, 0x0000);
1715 		break;
1716 	case POLL_DEREGISTER:
1717 		/* enable interrupts */
1718 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
1719 		break;
1720 	default:
1721 		sc->rxcycles = count;
1722 		re_rxeof(sc);
1723 		re_txeof(sc);
1724 
1725 		if (!ifq_is_empty(&ifp->if_snd))
1726 			(*ifp->if_start)(ifp);
1727 
1728 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1729 			uint16_t       status;
1730 
1731 			status = CSR_READ_2(sc, RE_ISR);
1732 			if (status == 0xffff)
1733 				return;
1734 			if (status)
1735 				CSR_WRITE_2(sc, RE_ISR, status);
1736 
1737 			/*
1738 			 * XXX check behaviour on receiver stalls.
1739 			 */
1740 
1741 			if (status & RE_ISR_SYSTEM_ERR) {
1742 				re_reset(sc);
1743 				re_init(sc);
1744 			}
1745 		}
1746 		break;
1747 	}
1748 }
1749 #endif /* DEVICE_POLLING */
1750 
1751 static void
1752 re_intr(void *arg)
1753 {
1754 	struct re_softc	*sc = arg;
1755 	struct ifnet *ifp = &sc->arpcom.ac_if;
1756 	uint16_t status;
1757 
1758 	if (sc->suspended || (ifp->if_flags & IFF_UP) == 0)
1759 		return;
1760 
1761 	for (;;) {
1762 		status = CSR_READ_2(sc, RE_ISR);
1763 		/* If the card has gone away the read returns 0xffff. */
1764 		if (status == 0xffff)
1765 			break;
1766 		if (status)
1767 			CSR_WRITE_2(sc, RE_ISR, status);
1768 
1769 		if ((status & sc->re_intrs) == 0)
1770 			break;
1771 
1772 		if (status & (RE_ISR_RX_OK | RE_ISR_RX_ERR | RE_ISR_FIFO_OFLOW))
1773 			re_rxeof(sc);
1774 
1775 		if ((status & sc->re_tx_ack) ||
1776 		    (status & RE_ISR_TX_ERR) ||
1777 		    (status & RE_ISR_TX_DESC_UNAVAIL))
1778 			re_txeof(sc);
1779 
1780 		if (status & RE_ISR_SYSTEM_ERR) {
1781 			re_reset(sc);
1782 			re_init(sc);
1783 		}
1784 
1785 		if (status & RE_ISR_LINKCHG) {
1786 			callout_stop(&sc->re_timer);
1787 			re_tick_serialized(sc);
1788 		}
1789 	}
1790 
1791 	if (!ifq_is_empty(&ifp->if_snd))
1792 		(*ifp->if_start)(ifp);
1793 }
1794 
1795 static int
1796 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx, int *called_defrag)
1797 {
1798 	struct ifnet *ifp = &sc->arpcom.ac_if;
1799 	struct mbuf *m, *m_new = NULL;
1800 	struct re_dmaload_arg	arg;
1801 	bus_dmamap_t		map;
1802 	int			error;
1803 
1804 	*called_defrag = 0;
1805 	if (sc->re_ldata.re_tx_free <= 4)
1806 		return(EFBIG);
1807 
1808 	m = *m_head;
1809 
1810 	/*
1811 	 * Set up checksum offload. Note: checksum offload bits must
1812 	 * appear in all descriptors of a multi-descriptor transmit
1813 	 * attempt. (This is according to testing done with an 8169
1814 	 * chip. I'm not sure if this is a requirement or a bug.)
1815 	 */
1816 
1817 	arg.re_flags = 0;
1818 
1819 	if (m->m_pkthdr.csum_flags & CSUM_IP)
1820 		arg.re_flags |= RE_TDESC_CMD_IPCSUM;
1821 	if (m->m_pkthdr.csum_flags & CSUM_TCP)
1822 		arg.re_flags |= RE_TDESC_CMD_TCPCSUM;
1823 	if (m->m_pkthdr.csum_flags & CSUM_UDP)
1824 		arg.re_flags |= RE_TDESC_CMD_UDPCSUM;
1825 
1826 	arg.sc = sc;
1827 	arg.re_idx = *idx;
1828 	arg.re_maxsegs = sc->re_ldata.re_tx_free;
1829 	if (arg.re_maxsegs > 4)
1830 		arg.re_maxsegs -= 4;
1831 	arg.re_ring = sc->re_ldata.re_tx_list;
1832 
1833 	map = sc->re_ldata.re_tx_dmamap[*idx];
1834 
1835 	/*
1836 	 * With some of the RealTek chips, using the checksum offload
1837 	 * support in conjunction with the autopadding feature results
1838 	 * in the transmission of corrupt frames. For example, if we
1839 	 * need to send a really small IP fragment that's less than 60
1840 	 * bytes in size, and IP header checksumming is enabled, the
1841 	 * resulting ethernet frame that appears on the wire will
1842 	 * have garbled payload. To work around this, if TX checksum
1843 	 * offload is enabled, we always manually pad short frames out
1844 	 * to the minimum ethernet frame size. We do this by pretending
1845 	 * the mbuf chain has too many fragments so the coalescing code
1846 	 * below can assemble the packet into a single buffer that's
1847 	 * padded out to the mininum frame size.
1848 	 *
1849 	 * Note: this appears unnecessary for TCP, and doing it for TCP
1850 	 * with PCIe adapters seems to result in bad checksums.
1851 	 */
1852 	if (arg.re_flags && !(arg.re_flags & RE_TDESC_CMD_TCPCSUM) &&
1853 	    m->m_pkthdr.len < RE_MIN_FRAMELEN) {
1854 		error = EFBIG;
1855 	} else {
1856 		error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map,
1857 		    m, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1858 	}
1859 
1860 	if (error && error != EFBIG) {
1861 		if_printf(ifp, "can't map mbuf (error %d)\n", error);
1862 		return(ENOBUFS);
1863 	}
1864 
1865 	/* Too many segments to map, coalesce into a single mbuf */
1866 
1867 	if (error || arg.re_maxsegs == 0) {
1868 		m_new = m_defrag_nofree(m, MB_DONTWAIT);
1869 		if (m_new == NULL) {
1870 			return(1);
1871 		} else {
1872 			m = m_new;
1873 			*m_head = m;
1874 		}
1875 
1876 		/*
1877 		 * Manually pad short frames, and zero the pad space
1878 		 * to avoid leaking data.
1879 		 */
1880 		if (m_new->m_pkthdr.len < RE_MIN_FRAMELEN) {
1881 			bzero(mtod(m_new, char *) + m_new->m_pkthdr.len,
1882 			    RE_MIN_FRAMELEN - m_new->m_pkthdr.len);
1883 			m_new->m_pkthdr.len += RE_MIN_FRAMELEN -
1884 			    m_new->m_pkthdr.len;
1885 			m_new->m_len = m_new->m_pkthdr.len;
1886 		}
1887 
1888 		*called_defrag = 1;
1889 		arg.sc = sc;
1890 		arg.re_idx = *idx;
1891 		arg.re_maxsegs = sc->re_ldata.re_tx_free;
1892 		arg.re_ring = sc->re_ldata.re_tx_list;
1893 
1894 		error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map,
1895 		    m, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1896 		if (error) {
1897 			m_freem(m);
1898 			if_printf(ifp, "can't map mbuf (error %d)\n", error);
1899 			return(EFBIG);
1900 		}
1901 	}
1902 
1903 	/*
1904 	 * Insure that the map for this transmission
1905 	 * is placed at the array index of the last descriptor
1906 	 * in this chain.
1907 	 */
1908 	sc->re_ldata.re_tx_dmamap[*idx] =
1909 	    sc->re_ldata.re_tx_dmamap[arg.re_idx];
1910 	sc->re_ldata.re_tx_dmamap[arg.re_idx] = map;
1911 
1912 	sc->re_ldata.re_tx_mbuf[arg.re_idx] = m;
1913 	sc->re_ldata.re_tx_free -= arg.re_maxsegs;
1914 
1915 	/*
1916 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1917 	 * appear in the first descriptor of a multi-descriptor
1918 	 * transmission attempt.
1919 	 */
1920 
1921 	if ((m->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1922 	    m->m_pkthdr.rcvif != NULL &&
1923 	    m->m_pkthdr.rcvif->if_type == IFT_L2VLAN) {
1924 	    	struct ifvlan *ifv;
1925 		ifv = m->m_pkthdr.rcvif->if_softc;
1926 		if (ifv != NULL)
1927 			sc->re_ldata.re_tx_list[*idx].re_vlanctl =
1928 			    htole32(htobe16(ifv->ifv_tag) | RE_TDESC_VLANCTL_TAG);
1929 	}
1930 
1931 	/* Transfer ownership of packet to the chip. */
1932 
1933 	sc->re_ldata.re_tx_list[arg.re_idx].re_cmdstat |=
1934 	    htole32(RE_TDESC_CMD_OWN);
1935 	if (*idx != arg.re_idx)
1936 		sc->re_ldata.re_tx_list[*idx].re_cmdstat |=
1937 		    htole32(RE_TDESC_CMD_OWN);
1938 
1939 	RE_DESC_INC(arg.re_idx);
1940 	*idx = arg.re_idx;
1941 
1942 	return(0);
1943 }
1944 
1945 /*
1946  * Main transmit routine for C+ and gigE NICs.
1947  */
1948 
1949 static void
1950 re_start(struct ifnet *ifp)
1951 {
1952 	struct re_softc	*sc = ifp->if_softc;
1953 	struct mbuf *m_head;
1954 	struct mbuf *m_head2;
1955 	int called_defrag, idx, need_trans;
1956 
1957 	if (!sc->re_link || (ifp->if_flags & IFF_OACTIVE))
1958 		return;
1959 
1960 	idx = sc->re_ldata.re_tx_prodidx;
1961 
1962 	need_trans = 0;
1963 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
1964 		m_head = ifq_poll(&ifp->if_snd);
1965 		if (m_head == NULL)
1966 			break;
1967 		m_head2 = m_head;
1968 		if (re_encap(sc, &m_head2, &idx, &called_defrag)) {
1969 			/*
1970 			 * If we could not encapsulate the defragged packet,
1971 			 * the returned m_head2 is garbage and we must dequeue
1972 			 * and throw away the original packet.
1973 			 */
1974 			if (called_defrag) {
1975 				ifq_dequeue(&ifp->if_snd, m_head);
1976 				m_freem(m_head);
1977 			}
1978 			ifp->if_flags |= IFF_OACTIVE;
1979 			break;
1980 		}
1981 
1982 		/*
1983 		 * Clean out the packet we encapsulated.  If we defragged
1984 		 * the packet the m_head2 is the one that got encapsulated
1985 		 * and the original must be thrown away.  Otherwise m_head2
1986 		 * *IS* the original.
1987 		 */
1988 		ifq_dequeue(&ifp->if_snd, m_head);
1989 		if (called_defrag)
1990 			m_freem(m_head);
1991 		need_trans = 1;
1992 
1993 		/*
1994 		 * If there's a BPF listener, bounce a copy of this frame
1995 		 * to him.
1996 		 */
1997 		BPF_MTAP(ifp, m_head2);
1998 	}
1999 
2000 	if (!need_trans) {
2001 		if (RE_TX_MODERATION_IS_ENABLED(sc) &&
2002 		    sc->re_ldata.re_tx_free != RE_TX_DESC_CNT)
2003 			CSR_WRITE_4(sc, RE_TIMERCNT, 1);
2004 		return;
2005 	}
2006 
2007 	/* Flush the TX descriptors */
2008 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
2009 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
2010 
2011 	sc->re_ldata.re_tx_prodidx = idx;
2012 
2013 	/*
2014 	 * RealTek put the TX poll request register in a different
2015 	 * location on the 8169 gigE chip. I don't know why.
2016 	 */
2017 	CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2018 
2019 	if (RE_TX_MODERATION_IS_ENABLED(sc)) {
2020 		/*
2021 		 * Use the countdown timer for interrupt moderation.
2022 		 * 'TX done' interrupts are disabled. Instead, we reset the
2023 		 * countdown timer, which will begin counting until it hits
2024 		 * the value in the TIMERINT register, and then trigger an
2025 		 * interrupt. Each time we write to the TIMERCNT register,
2026 		 * the timer count is reset to 0.
2027 		 */
2028 		CSR_WRITE_4(sc, RE_TIMERCNT, 1);
2029 	}
2030 
2031 	/*
2032 	 * Set a timeout in case the chip goes out to lunch.
2033 	 */
2034 	ifp->if_timer = 5;
2035 }
2036 
2037 static void
2038 re_init(void *xsc)
2039 {
2040 	struct re_softc *sc = xsc;
2041 	struct ifnet *ifp = &sc->arpcom.ac_if;
2042 	struct mii_data *mii;
2043 	uint32_t rxcfg = 0;
2044 
2045 	mii = device_get_softc(sc->re_miibus);
2046 
2047 	/*
2048 	 * Cancel pending I/O and free all RX/TX buffers.
2049 	 */
2050 	re_stop(sc);
2051 
2052 	/*
2053 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2054 	 * RX checksum offload. We must configure the C+ register
2055 	 * before all others.
2056 	 */
2057 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2058 		    RE_CPLUSCMD_PCI_MRW | RE_CPLUSCMD_VLANSTRIP |
2059 		    (ifp->if_capenable & IFCAP_RXCSUM ?
2060 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
2061 
2062 	/*
2063 	 * Init our MAC address.  Even though the chipset
2064 	 * documentation doesn't mention it, we need to enter "Config
2065 	 * register write enable" mode to modify the ID registers.
2066 	 */
2067 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2068 	CSR_WRITE_4(sc, RE_IDR0,
2069 	    htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2070 	CSR_WRITE_2(sc, RE_IDR4,
2071 	    htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2072 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2073 
2074 	/*
2075 	 * For C+ mode, initialize the RX descriptors and mbufs.
2076 	 */
2077 	re_rx_list_init(sc);
2078 	re_tx_list_init(sc);
2079 
2080 	/*
2081 	 * Load the addresses of the RX and TX lists into the chip.
2082 	 */
2083 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2084 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2085 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2086 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2087 
2088 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2089 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2090 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2091 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2092 
2093 	/*
2094 	 * Enable transmit and receive.
2095 	 */
2096 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2097 
2098 	/*
2099 	 * Set the initial TX and RX configuration.
2100 	 */
2101 	if (sc->re_testmode) {
2102 		if (sc->re_type == RE_8169)
2103 			CSR_WRITE_4(sc, RE_TXCFG,
2104 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2105 		else
2106 			CSR_WRITE_4(sc, RE_TXCFG,
2107 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2108 	} else
2109 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2110 
2111 	CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, 16);
2112 
2113 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2114 
2115 	/* Set the individual bit to receive frames for this host only. */
2116 	rxcfg = CSR_READ_4(sc, RE_RXCFG);
2117 	rxcfg |= RE_RXCFG_RX_INDIV;
2118 
2119 	/* If we want promiscuous mode, set the allframes bit. */
2120 	if (ifp->if_flags & IFF_PROMISC) {
2121 		rxcfg |= RE_RXCFG_RX_ALLPHYS;
2122 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
2123 	} else {
2124 		rxcfg &= ~RE_RXCFG_RX_ALLPHYS;
2125 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
2126 	}
2127 
2128 	/*
2129 	 * Set capture broadcast bit to capture broadcast frames.
2130 	 */
2131 	if (ifp->if_flags & IFF_BROADCAST) {
2132 		rxcfg |= RE_RXCFG_RX_BROAD;
2133 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
2134 	} else {
2135 		rxcfg &= ~RE_RXCFG_RX_BROAD;
2136 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
2137 	}
2138 
2139 	/*
2140 	 * Program the multicast filter, if necessary.
2141 	 */
2142 	re_setmulti(sc);
2143 
2144 #ifdef DEVICE_POLLING
2145 	/*
2146 	 * Disable interrupts if we are polling.
2147 	 */
2148 	if (ifp->if_flags & IFF_POLLING)
2149 		CSR_WRITE_2(sc, RE_IMR, 0);
2150 	else	/* otherwise ... */
2151 #endif /* DEVICE_POLLING */
2152 	/*
2153 	 * Enable interrupts.
2154 	 */
2155 	if (sc->re_testmode)
2156 		CSR_WRITE_2(sc, RE_IMR, 0);
2157 	else
2158 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
2159 	CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2160 
2161 	/* Set initial TX threshold */
2162 	sc->re_txthresh = RE_TX_THRESH_INIT;
2163 
2164 	/* Start RX/TX process. */
2165 	if (sc->re_flags & RE_F_HASMPC)
2166 		CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2167 #ifdef notdef
2168 	/* Enable receiver and transmitter. */
2169 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2170 #endif
2171 
2172 	if (RE_TX_MODERATION_IS_ENABLED(sc)) {
2173 		/*
2174 		 * Initialize the timer interrupt register so that
2175 		 * a timer interrupt will be generated once the timer
2176 		 * reaches a certain number of ticks. The timer is
2177 		 * reloaded on each transmit. This gives us TX interrupt
2178 		 * moderation, which dramatically improves TX frame rate.
2179 		 */
2180 		if (sc->re_type == RE_8169)
2181 			CSR_WRITE_4(sc, RE_TIMERINT_8169, 0x800);
2182 		else
2183 			CSR_WRITE_4(sc, RE_TIMERINT, 0x400);
2184 	}
2185 
2186 	/*
2187 	 * For 8169 gigE NICs, set the max allowed RX packet
2188 	 * size so we can receive jumbo frames.
2189 	 */
2190 	if (sc->re_type == RE_8169)
2191 		CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2192 
2193 	if (sc->re_testmode) {
2194 		return;
2195 	}
2196 
2197 	mii_mediachg(mii);
2198 
2199 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2200 
2201 	ifp->if_flags |= IFF_RUNNING;
2202 	ifp->if_flags &= ~IFF_OACTIVE;
2203 
2204 	sc->re_link = 0;
2205 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2206 }
2207 
2208 /*
2209  * Set media options.
2210  */
2211 static int
2212 re_ifmedia_upd(struct ifnet *ifp)
2213 {
2214 	struct re_softc *sc = ifp->if_softc;
2215 	struct mii_data *mii;
2216 
2217 	mii = device_get_softc(sc->re_miibus);
2218 	mii_mediachg(mii);
2219 
2220 	return(0);
2221 }
2222 
2223 /*
2224  * Report current media status.
2225  */
2226 static void
2227 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2228 {
2229 	struct re_softc *sc = ifp->if_softc;
2230 	struct mii_data *mii;
2231 
2232 	mii = device_get_softc(sc->re_miibus);
2233 
2234 	mii_pollstat(mii);
2235 	ifmr->ifm_active = mii->mii_media_active;
2236 	ifmr->ifm_status = mii->mii_media_status;
2237 }
2238 
2239 static int
2240 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2241 {
2242 	struct re_softc *sc = ifp->if_softc;
2243 	struct ifreq *ifr = (struct ifreq *) data;
2244 	struct mii_data *mii;
2245 	int error = 0;
2246 
2247 	switch(command) {
2248 	case SIOCSIFMTU:
2249 		if (ifr->ifr_mtu > RE_JUMBO_MTU)
2250 			error = EINVAL;
2251 		ifp->if_mtu = ifr->ifr_mtu;
2252 		break;
2253 	case SIOCSIFFLAGS:
2254 		if (ifp->if_flags & IFF_UP)
2255 			re_init(sc);
2256 		else if (ifp->if_flags & IFF_RUNNING)
2257 			re_stop(sc);
2258 		break;
2259 	case SIOCADDMULTI:
2260 	case SIOCDELMULTI:
2261 		re_setmulti(sc);
2262 		error = 0;
2263 		break;
2264 	case SIOCGIFMEDIA:
2265 	case SIOCSIFMEDIA:
2266 		mii = device_get_softc(sc->re_miibus);
2267 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2268 		break;
2269 	case SIOCSIFCAP:
2270 		ifp->if_capenable &= ~(IFCAP_HWCSUM);
2271 		ifp->if_capenable |=
2272 		    ifr->ifr_reqcap & (IFCAP_HWCSUM);
2273 		if (ifp->if_capenable & IFCAP_TXCSUM)
2274 			ifp->if_hwassist = RE_CSUM_FEATURES;
2275 		else
2276 			ifp->if_hwassist = 0;
2277 		if (ifp->if_flags & IFF_RUNNING)
2278 			re_init(sc);
2279 		break;
2280 	default:
2281 		error = ether_ioctl(ifp, command, data);
2282 		break;
2283 	}
2284 	return(error);
2285 }
2286 
2287 static void
2288 re_watchdog(struct ifnet *ifp)
2289 {
2290 	struct re_softc *sc = ifp->if_softc;
2291 
2292 	if_printf(ifp, "watchdog timeout\n");
2293 
2294 	ifp->if_oerrors++;
2295 
2296 	re_txeof(sc);
2297 	re_rxeof(sc);
2298 
2299 	re_init(sc);
2300 
2301 	if (!ifq_is_empty(&ifp->if_snd))
2302 		ifp->if_start(ifp);
2303 }
2304 
2305 /*
2306  * Stop the adapter and free any mbufs allocated to the
2307  * RX and TX lists.
2308  */
2309 static void
2310 re_stop(struct re_softc *sc)
2311 {
2312 	struct ifnet *ifp = &sc->arpcom.ac_if;
2313 	int i;
2314 
2315 	ifp->if_timer = 0;
2316 	callout_stop(&sc->re_timer);
2317 
2318 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2319 
2320 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2321 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2322 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2323 
2324 	if (sc->re_head != NULL) {
2325 		m_freem(sc->re_head);
2326 		sc->re_head = sc->re_tail = NULL;
2327 	}
2328 
2329 	/* Free the TX list buffers. */
2330 	for (i = 0; i < RE_TX_DESC_CNT; i++) {
2331 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2332 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2333 					  sc->re_ldata.re_tx_dmamap[i]);
2334 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2335 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2336 		}
2337 	}
2338 
2339 	/* Free the RX list buffers. */
2340 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
2341 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2342 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2343 					  sc->re_ldata.re_rx_dmamap[i]);
2344 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2345 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2346 		}
2347 	}
2348 }
2349 
2350 /*
2351  * Device suspend routine.  Stop the interface and save some PCI
2352  * settings in case the BIOS doesn't restore them properly on
2353  * resume.
2354  */
2355 static int
2356 re_suspend(device_t dev)
2357 {
2358 #ifndef BURN_BRIDGES
2359 	int i;
2360 #endif
2361 	struct re_softc *sc = device_get_softc(dev);
2362 
2363 	re_stop(sc);
2364 
2365 #ifndef BURN_BRIDGES
2366 	for (i = 0; i < 5; i++)
2367 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2368 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2369 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2370 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2371 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2372 #endif
2373 
2374 	sc->suspended = 1;
2375 
2376 	return (0);
2377 }
2378 
2379 /*
2380  * Device resume routine.  Restore some PCI settings in case the BIOS
2381  * doesn't, re-enable busmastering, and restart the interface if
2382  * appropriate.
2383  */
2384 static int
2385 re_resume(device_t dev)
2386 {
2387 	struct re_softc *sc = device_get_softc(dev);
2388 	struct ifnet *ifp = &sc->arpcom.ac_if;
2389 #ifndef BURN_BRIDGES
2390 	int i;
2391 #endif
2392 
2393 #ifndef BURN_BRIDGES
2394 	/* better way to do this? */
2395 	for (i = 0; i < 5; i++)
2396 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2397 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2398 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2399 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2400 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2401 
2402 	/* reenable busmastering */
2403 	pci_enable_busmaster(dev);
2404 	pci_enable_io(dev, SYS_RES_IOPORT);
2405 #endif
2406 
2407 	/* reinitialize interface if necessary */
2408 	if (ifp->if_flags & IFF_UP)
2409 		re_init(sc);
2410 
2411 	sc->suspended = 0;
2412 
2413 	return (0);
2414 }
2415 
2416 /*
2417  * Stop all chip I/O so that the kernel's probe routines don't
2418  * get confused by errant DMAs when rebooting.
2419  */
2420 static void
2421 re_shutdown(device_t dev)
2422 {
2423 	struct re_softc *sc = device_get_softc(dev);
2424 	struct ifnet *ifp = &sc->arpcom.ac_if;
2425 
2426 	lwkt_serialize_enter(ifp->if_serializer);
2427 	re_stop(sc);
2428 	lwkt_serialize_exit(ifp->if_serializer);
2429 }
2430 
2431 static int
2432 re_sysctl_tx_moderation(SYSCTL_HANDLER_ARGS)
2433 {
2434 	struct re_softc *sc = arg1;
2435 	struct ifnet *ifp = &sc->arpcom.ac_if;
2436 	int error = 0, mod, mod_old;
2437 
2438 	lwkt_serialize_enter(ifp->if_serializer);
2439 
2440 	mod_old = mod = RE_TX_MODERATION_IS_ENABLED(sc);
2441 
2442 	error = sysctl_handle_int(oidp, &mod, 0, req);
2443 	if (error || req->newptr == NULL || mod == mod_old)
2444 		goto back;
2445 	if (mod != 0 && mod != 1) {
2446 		error = EINVAL;
2447 		goto back;
2448 	}
2449 
2450 	if (mod)
2451 		RE_ENABLE_TX_MODERATION(sc);
2452 	else
2453 		RE_DISABLE_TX_MODERATION(sc);
2454 
2455 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == (IFF_RUNNING | IFF_UP))
2456 		re_init(sc);
2457 back:
2458 	lwkt_serialize_exit(ifp->if_serializer);
2459 	return error;
2460 }
2461