xref: /dragonfly/sys/dev/netif/re/if_re.c (revision a32bc35d)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  */
37 
38 /*
39  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * This driver is designed to support RealTek's next generation of
48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
50  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
51  *
52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53  * with the older 8139 family, however it also supports a special
54  * C+ mode of operation that provides several new performance enhancing
55  * features. These include:
56  *
57  *	o Descriptor based DMA mechanism. Each descriptor represents
58  *	  a single packet fragment. Data buffers may be aligned on
59  *	  any byte boundary.
60  *
61  *	o 64-bit DMA
62  *
63  *	o TCP/IP checksum offload for both RX and TX
64  *
65  *	o High and normal priority transmit DMA rings
66  *
67  *	o VLAN tag insertion and extraction
68  *
69  *	o TCP large send (segmentation offload)
70  *
71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72  * programming API is fairly straightforward. The RX filtering, EEPROM
73  * access and PHY access is the same as it is on the older 8139 series
74  * chips.
75  *
76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77  * same programming API and feature set as the 8139C+ with the following
78  * differences and additions:
79  *
80  *	o 1000Mbps mode
81  *
82  *	o Jumbo frames
83  *
84  * 	o GMII and TBI ports/registers for interfacing with copper
85  *	  or fiber PHYs
86  *
87  *      o RX and TX DMA rings can have up to 1024 descriptors
88  *        (the 8139C+ allows a maximum of 64)
89  *
90  *	o Slight differences in register layout from the 8139C+
91  *
92  * The TX start and timer interrupt registers are at different locations
93  * on the 8169 than they are on the 8139C+. Also, the status word in the
94  * RX descriptor has a slightly different bit layout. The 8169 does not
95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96  * copper gigE PHY.
97  *
98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99  * (the 'S' stands for 'single-chip'). These devices have the same
100  * programming API as the older 8169, but also have some vendor-specific
101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103  *
104  * This driver takes advantage of the RX and TX checksum offload and
105  * VLAN tag insertion/extraction features. It also implements TX
106  * interrupt moderation using the timer interrupt registers, which
107  * significantly reduces TX interrupt load. There is also support
108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
109  * jumbo frames larger than 7440, so the max MTU possible with this
110  * driver is 7422 bytes.
111  */
112 
113 #define _IP_VHL
114 
115 #include "opt_polling.h"
116 
117 #include <sys/param.h>
118 #include <sys/bus.h>
119 #include <sys/endian.h>
120 #include <sys/kernel.h>
121 #include <sys/in_cksum.h>
122 #include <sys/interrupt.h>
123 #include <sys/malloc.h>
124 #include <sys/mbuf.h>
125 #include <sys/rman.h>
126 #include <sys/serialize.h>
127 #include <sys/socket.h>
128 #include <sys/sockio.h>
129 #include <sys/sysctl.h>
130 
131 #include <net/bpf.h>
132 #include <net/ethernet.h>
133 #include <net/if.h>
134 #include <net/ifq_var.h>
135 #include <net/if_arp.h>
136 #include <net/if_dl.h>
137 #include <net/if_media.h>
138 #include <net/if_types.h>
139 #include <net/vlan/if_vlan_var.h>
140 #include <net/vlan/if_vlan_ether.h>
141 
142 #include <netinet/ip.h>
143 
144 #include <dev/netif/mii_layer/mii.h>
145 #include <dev/netif/mii_layer/miivar.h>
146 
147 #include <bus/pci/pcidevs.h>
148 #include <bus/pci/pcireg.h>
149 #include <bus/pci/pcivar.h>
150 
151 /* "device miibus" required.  See GENERIC if you get errors here. */
152 #include "miibus_if.h"
153 
154 #include <dev/netif/re/if_rereg.h>
155 #include <dev/netif/re/if_revar.h>
156 
157 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
158 
159 /*
160  * Various supported device vendors/types and their names.
161  */
162 static const struct re_type {
163 	uint16_t	re_vid;
164 	uint16_t	re_did;
165 	const char	*re_name;
166 } re_devs[] = {
167 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
168 	  "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
169 
170 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
171 	  "RealTek 8139C+ 10/100BaseTX" },
172 
173 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
174 	  "RealTek 810x PCIe 10/100baseTX" },
175 
176 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
177 	  "RealTek 8111/8168 PCIe Gigabit Ethernet" },
178 
179 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
180 	  "RealTek 8110/8169 Gigabit Ethernet" },
181 
182 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
183 	  "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
184 
185 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
186 	  "Corega CG-LAPCIGT Gigabit Ethernet" },
187 
188 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
189 	  "Linksys EG1032 Gigabit Ethernet" },
190 
191 	{ PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
192 	  "US Robotics 997902 Gigabit Ethernet" },
193 
194 	{ PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
195 	  "TTTech MC322 Gigabit Ethernet" },
196 
197 	{ 0, 0, NULL }
198 };
199 
200 static const struct re_hwrev re_hwrevs[] = {
201 	{ RE_HWREV_8139CPLUS,	RE_MACVER_UNKN,		ETHERMTU,
202 	  RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
203 
204 	{ RE_HWREV_8169,	RE_MACVER_UNKN,		ETHERMTU,
205 	  RE_C_HWCSUM | RE_C_8169 },
206 
207 	{ RE_HWREV_8110S,	RE_MACVER_03,		RE_MTU_6K,
208 	  RE_C_HWCSUM | RE_C_8169 },
209 
210 	{ RE_HWREV_8169S,	RE_MACVER_03,		RE_MTU_6K,
211 	  RE_C_HWCSUM | RE_C_8169 },
212 
213 	{ RE_HWREV_8169SB,	RE_MACVER_04,		RE_MTU_6K,
214 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
215 
216 	{ RE_HWREV_8169SC1,	RE_MACVER_05,		RE_MTU_6K,
217 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
218 
219 	{ RE_HWREV_8169SC2,	RE_MACVER_06,		RE_MTU_6K,
220 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
221 
222 	{ RE_HWREV_8168B1,	RE_MACVER_21,		RE_MTU_6K,
223 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
224 
225 	{ RE_HWREV_8168B2,	RE_MACVER_23,		RE_MTU_6K,
226 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
227 
228 	{ RE_HWREV_8168B3,	RE_MACVER_23,		RE_MTU_6K,
229 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
230 
231 	{ RE_HWREV_8168C,	RE_MACVER_29,		RE_MTU_6K,
232 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
233 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
234 
235 	{ RE_HWREV_8168CP,	RE_MACVER_2B,		RE_MTU_6K,
236 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
237 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
238 
239 	{ RE_HWREV_8168D,	RE_MACVER_2A,		RE_MTU_9K,
240 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
241 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
242 
243 	{ RE_HWREV_8168DP,	RE_MACVER_2D,		RE_MTU_9K,
244 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
245 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
246 
247 	{ RE_HWREV_8168E,	RE_MACVER_UNKN,		RE_MTU_9K,
248 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
249 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
250 
251 	{ RE_HWREV_8168F,	RE_MACVER_UNKN,		RE_MTU_9K,
252 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
253 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
254 
255 	{ RE_HWREV_8100E,	RE_MACVER_UNKN,		ETHERMTU,
256 	  RE_C_HWCSUM | RE_C_FASTE },
257 
258 	{ RE_HWREV_8101E1,	RE_MACVER_16,		ETHERMTU,
259 	  RE_C_HWCSUM | RE_C_FASTE },
260 
261 	{ RE_HWREV_8101E2,	RE_MACVER_16,		ETHERMTU,
262 	  RE_C_HWCSUM | RE_C_FASTE },
263 
264 	{ RE_HWREV_8102E,	RE_MACVER_15,		ETHERMTU,
265 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
266 	  RE_C_FASTE },
267 
268 	{ RE_HWREV_8102EL,	RE_MACVER_15,		ETHERMTU,
269 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
270 	  RE_C_FASTE },
271 
272 	{ RE_HWREV_8105E,	RE_MACVER_UNKN,		ETHERMTU,
273 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
274 	  RE_C_STOP_RXTX | RE_C_FASTE },
275 
276 	{ RE_HWREV_NULL, 0, 0, 0 }
277 };
278 
279 static int	re_probe(device_t);
280 static int	re_attach(device_t);
281 static int	re_detach(device_t);
282 static int	re_suspend(device_t);
283 static int	re_resume(device_t);
284 static void	re_shutdown(device_t);
285 
286 static int	re_allocmem(device_t);
287 static void	re_freemem(device_t);
288 static void	re_freebufmem(struct re_softc *, int, int);
289 static int	re_encap(struct re_softc *, struct mbuf **, int *);
290 static int	re_newbuf_std(struct re_softc *, int, int);
291 static int	re_newbuf_jumbo(struct re_softc *, int, int);
292 static void	re_setup_rxdesc(struct re_softc *, int);
293 static int	re_rx_list_init(struct re_softc *);
294 static int	re_tx_list_init(struct re_softc *);
295 static int	re_rxeof(struct re_softc *);
296 static int	re_txeof(struct re_softc *);
297 static int	re_tx_collect(struct re_softc *);
298 static void	re_intr(void *);
299 static void	re_tick(void *);
300 static void	re_tick_serialized(void *);
301 
302 static void	re_start(struct ifnet *);
303 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
304 static void	re_init(void *);
305 static void	re_stop(struct re_softc *);
306 static void	re_watchdog(struct ifnet *);
307 static int	re_ifmedia_upd(struct ifnet *);
308 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
309 
310 static void	re_eeprom_putbyte(struct re_softc *, int);
311 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
312 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int);
313 static void	re_get_eewidth(struct re_softc *);
314 
315 static int	re_gmii_readreg(device_t, int, int);
316 static int	re_gmii_writereg(device_t, int, int, int);
317 
318 static int	re_miibus_readreg(device_t, int, int);
319 static int	re_miibus_writereg(device_t, int, int, int);
320 static void	re_miibus_statchg(device_t);
321 
322 static void	re_setmulti(struct re_softc *);
323 static void	re_reset(struct re_softc *, int);
324 static void	re_get_eaddr(struct re_softc *, uint8_t *);
325 
326 static void	re_setup_hw_im(struct re_softc *);
327 static void	re_setup_sim_im(struct re_softc *);
328 static void	re_disable_hw_im(struct re_softc *);
329 static void	re_disable_sim_im(struct re_softc *);
330 static void	re_config_imtype(struct re_softc *, int);
331 static void	re_setup_intr(struct re_softc *, int, int);
332 
333 static int	re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
334 static int	re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
335 static int	re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
336 static int	re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
337 static int	re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
338 
339 static int	re_jpool_alloc(struct re_softc *);
340 static void	re_jpool_free(struct re_softc *);
341 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
342 static void	re_jbuf_free(void *);
343 static void	re_jbuf_ref(void *);
344 
345 #ifdef RE_DIAG
346 static int	re_diag(struct re_softc *);
347 #endif
348 
349 #ifdef DEVICE_POLLING
350 static void	re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
351 #endif
352 
353 static device_method_t re_methods[] = {
354 	/* Device interface */
355 	DEVMETHOD(device_probe,		re_probe),
356 	DEVMETHOD(device_attach,	re_attach),
357 	DEVMETHOD(device_detach,	re_detach),
358 	DEVMETHOD(device_suspend,	re_suspend),
359 	DEVMETHOD(device_resume,	re_resume),
360 	DEVMETHOD(device_shutdown,	re_shutdown),
361 
362 	/* bus interface */
363 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
364 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
365 
366 	/* MII interface */
367 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
368 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
369 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
370 
371 	{ 0, 0 }
372 };
373 
374 static driver_t re_driver = {
375 	"re",
376 	re_methods,
377 	sizeof(struct re_softc)
378 };
379 
380 static devclass_t re_devclass;
381 
382 DECLARE_DUMMY_MODULE(if_re);
383 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
384 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, NULL, NULL);
385 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, NULL, NULL);
386 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, NULL, NULL);
387 
388 static int	re_rx_desc_count = RE_RX_DESC_CNT_DEF;
389 static int	re_tx_desc_count = RE_TX_DESC_CNT_DEF;
390 
391 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
392 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
393 
394 #define EE_SET(x)	\
395 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
396 
397 #define EE_CLR(x)	\
398 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
399 
400 static __inline void
401 re_free_rxchain(struct re_softc *sc)
402 {
403 	if (sc->re_head != NULL) {
404 		m_freem(sc->re_head);
405 		sc->re_head = sc->re_tail = NULL;
406 	}
407 }
408 
409 /*
410  * Send a read command and address to the EEPROM, check for ACK.
411  */
412 static void
413 re_eeprom_putbyte(struct re_softc *sc, int addr)
414 {
415 	int d, i;
416 
417 	d = addr | (RE_9346_READ << sc->re_eewidth);
418 
419 	/*
420 	 * Feed in each bit and strobe the clock.
421 	 */
422 	for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
423 		if (d & i)
424 			EE_SET(RE_EE_DATAIN);
425 		else
426 			EE_CLR(RE_EE_DATAIN);
427 		DELAY(100);
428 		EE_SET(RE_EE_CLK);
429 		DELAY(150);
430 		EE_CLR(RE_EE_CLK);
431 		DELAY(100);
432 	}
433 }
434 
435 /*
436  * Read a word of data stored in the EEPROM at address 'addr.'
437  */
438 static void
439 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
440 {
441 	int i;
442 	uint16_t word = 0;
443 
444 	/*
445 	 * Send address of word we want to read.
446 	 */
447 	re_eeprom_putbyte(sc, addr);
448 
449 	/*
450 	 * Start reading bits from EEPROM.
451 	 */
452 	for (i = 0x8000; i != 0; i >>= 1) {
453 		EE_SET(RE_EE_CLK);
454 		DELAY(100);
455 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
456 			word |= i;
457 		EE_CLR(RE_EE_CLK);
458 		DELAY(100);
459 	}
460 
461 	*dest = word;
462 }
463 
464 /*
465  * Read a sequence of words from the EEPROM.
466  */
467 static void
468 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
469 {
470 	int i;
471 	uint16_t word = 0, *ptr;
472 
473 	CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
474 	DELAY(100);
475 
476 	for (i = 0; i < cnt; i++) {
477 		CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
478 		re_eeprom_getword(sc, off + i, &word);
479 		CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
480 		ptr = (uint16_t *)(dest + (i * 2));
481 		*ptr = word;
482 	}
483 
484 	CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
485 }
486 
487 static void
488 re_get_eewidth(struct re_softc *sc)
489 {
490 	uint16_t re_did = 0;
491 
492 	sc->re_eewidth = 6;
493 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
494 	if (re_did != 0x8129)
495 		sc->re_eewidth = 8;
496 }
497 
498 static int
499 re_gmii_readreg(device_t dev, int phy, int reg)
500 {
501 	struct re_softc *sc = device_get_softc(dev);
502 	u_int32_t rval;
503 	int i;
504 
505 	if (phy != 1)
506 		return(0);
507 
508 	/* Let the rgephy driver read the GMEDIASTAT register */
509 
510 	if (reg == RE_GMEDIASTAT)
511 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
512 
513 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
514 	DELAY(1000);
515 
516 	for (i = 0; i < RE_TIMEOUT; i++) {
517 		rval = CSR_READ_4(sc, RE_PHYAR);
518 		if (rval & RE_PHYAR_BUSY)
519 			break;
520 		DELAY(100);
521 	}
522 
523 	if (i == RE_TIMEOUT) {
524 		device_printf(dev, "PHY read failed\n");
525 		return(0);
526 	}
527 
528 	return(rval & RE_PHYAR_PHYDATA);
529 }
530 
531 static int
532 re_gmii_writereg(device_t dev, int phy, int reg, int data)
533 {
534 	struct re_softc *sc = device_get_softc(dev);
535 	uint32_t rval;
536 	int i;
537 
538 	CSR_WRITE_4(sc, RE_PHYAR,
539 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
540 	DELAY(1000);
541 
542 	for (i = 0; i < RE_TIMEOUT; i++) {
543 		rval = CSR_READ_4(sc, RE_PHYAR);
544 		if ((rval & RE_PHYAR_BUSY) == 0)
545 			break;
546 		DELAY(100);
547 	}
548 
549 	if (i == RE_TIMEOUT)
550 		device_printf(dev, "PHY write failed\n");
551 
552 	return(0);
553 }
554 
555 static int
556 re_miibus_readreg(device_t dev, int phy, int reg)
557 {
558 	struct re_softc	*sc = device_get_softc(dev);
559 	uint16_t rval = 0;
560 	uint16_t re8139_reg = 0;
561 
562 	if (!RE_IS_8139CP(sc)) {
563 		rval = re_gmii_readreg(dev, phy, reg);
564 		return(rval);
565 	}
566 
567 	/* Pretend the internal PHY is only at address 0 */
568 	if (phy)
569 		return(0);
570 
571 	switch(reg) {
572 	case MII_BMCR:
573 		re8139_reg = RE_BMCR;
574 		break;
575 	case MII_BMSR:
576 		re8139_reg = RE_BMSR;
577 		break;
578 	case MII_ANAR:
579 		re8139_reg = RE_ANAR;
580 		break;
581 	case MII_ANER:
582 		re8139_reg = RE_ANER;
583 		break;
584 	case MII_ANLPAR:
585 		re8139_reg = RE_LPAR;
586 		break;
587 	case MII_PHYIDR1:
588 	case MII_PHYIDR2:
589 		return(0);
590 	/*
591 	 * Allow the rlphy driver to read the media status
592 	 * register. If we have a link partner which does not
593 	 * support NWAY, this is the register which will tell
594 	 * us the results of parallel detection.
595 	 */
596 	case RE_MEDIASTAT:
597 		return(CSR_READ_1(sc, RE_MEDIASTAT));
598 	default:
599 		device_printf(dev, "bad phy register\n");
600 		return(0);
601 	}
602 	rval = CSR_READ_2(sc, re8139_reg);
603 	if (re8139_reg == RE_BMCR) {
604 		/* 8139C+ has different bit layout. */
605 		rval &= ~(BMCR_LOOP | BMCR_ISO);
606 	}
607 	return(rval);
608 }
609 
610 static int
611 re_miibus_writereg(device_t dev, int phy, int reg, int data)
612 {
613 	struct re_softc *sc= device_get_softc(dev);
614 	u_int16_t re8139_reg = 0;
615 
616 	if (!RE_IS_8139CP(sc))
617 		return(re_gmii_writereg(dev, phy, reg, data));
618 
619 	/* Pretend the internal PHY is only at address 0 */
620 	if (phy)
621 		return(0);
622 
623 	switch(reg) {
624 	case MII_BMCR:
625 		re8139_reg = RE_BMCR;
626 		/* 8139C+ has different bit layout. */
627 		data &= ~(BMCR_LOOP | BMCR_ISO);
628 		break;
629 	case MII_BMSR:
630 		re8139_reg = RE_BMSR;
631 		break;
632 	case MII_ANAR:
633 		re8139_reg = RE_ANAR;
634 		break;
635 	case MII_ANER:
636 		re8139_reg = RE_ANER;
637 		break;
638 	case MII_ANLPAR:
639 		re8139_reg = RE_LPAR;
640 		break;
641 	case MII_PHYIDR1:
642 	case MII_PHYIDR2:
643 		return(0);
644 	default:
645 		device_printf(dev, "bad phy register\n");
646 		return(0);
647 	}
648 	CSR_WRITE_2(sc, re8139_reg, data);
649 	return(0);
650 }
651 
652 static void
653 re_miibus_statchg(device_t dev)
654 {
655 }
656 
657 /*
658  * Program the 64-bit multicast hash filter.
659  */
660 static void
661 re_setmulti(struct re_softc *sc)
662 {
663 	struct ifnet *ifp = &sc->arpcom.ac_if;
664 	int h = 0;
665 	uint32_t hashes[2] = { 0, 0 };
666 	struct ifmultiaddr *ifma;
667 	uint32_t rxfilt;
668 	int mcnt = 0;
669 
670 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
671 
672 	/* Set the individual bit to receive frames for this host only. */
673 	rxfilt |= RE_RXCFG_RX_INDIV;
674 	/* Set capture broadcast bit to capture broadcast frames. */
675 	rxfilt |= RE_RXCFG_RX_BROAD;
676 
677 	rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
678 	if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
679 		rxfilt |= RE_RXCFG_RX_MULTI;
680 
681 		/* If we want promiscuous mode, set the allframes bit. */
682 		if (ifp->if_flags & IFF_PROMISC)
683 			rxfilt |= RE_RXCFG_RX_ALLPHYS;
684 
685 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
686 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
687 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
688 		return;
689 	}
690 
691 	/* first, zot all the existing hash bits */
692 	CSR_WRITE_4(sc, RE_MAR0, 0);
693 	CSR_WRITE_4(sc, RE_MAR4, 0);
694 
695 	/* now program new ones */
696 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
697 		if (ifma->ifma_addr->sa_family != AF_LINK)
698 			continue;
699 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
700 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
701 		if (h < 32)
702 			hashes[0] |= (1 << h);
703 		else
704 			hashes[1] |= (1 << (h - 32));
705 		mcnt++;
706 	}
707 
708 	if (mcnt)
709 		rxfilt |= RE_RXCFG_RX_MULTI;
710 	else
711 		rxfilt &= ~RE_RXCFG_RX_MULTI;
712 
713 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
714 
715 	/*
716 	 * For some unfathomable reason, RealTek decided to reverse
717 	 * the order of the multicast hash registers in the PCI Express
718 	 * parts. This means we have to write the hash pattern in reverse
719 	 * order for those devices.
720 	 */
721 	if (sc->re_caps & RE_C_PCIE) {
722 		CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[1]));
723 		CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[0]));
724 	} else {
725 		CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
726 		CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
727 	}
728 }
729 
730 static void
731 re_reset(struct re_softc *sc, int running)
732 {
733 	int i;
734 
735 	if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
736 		CSR_WRITE_1(sc, RE_COMMAND,
737 			    RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
738 		DELAY(100);
739 	}
740 
741 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
742 
743 	for (i = 0; i < RE_TIMEOUT; i++) {
744 		DELAY(10);
745 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
746 			break;
747 	}
748 	if (i == RE_TIMEOUT)
749 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
750 }
751 
752 #ifdef RE_DIAG
753 /*
754  * The following routine is designed to test for a defect on some
755  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
756  * lines connected to the bus, however for a 32-bit only card, they
757  * should be pulled high. The result of this defect is that the
758  * NIC will not work right if you plug it into a 64-bit slot: DMA
759  * operations will be done with 64-bit transfers, which will fail
760  * because the 64-bit data lines aren't connected.
761  *
762  * There's no way to work around this (short of talking a soldering
763  * iron to the board), however we can detect it. The method we use
764  * here is to put the NIC into digital loopback mode, set the receiver
765  * to promiscuous mode, and then try to send a frame. We then compare
766  * the frame data we sent to what was received. If the data matches,
767  * then the NIC is working correctly, otherwise we know the user has
768  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
769  * slot. In the latter case, there's no way the NIC can work correctly,
770  * so we print out a message on the console and abort the device attach.
771  */
772 
773 static int
774 re_diag(struct re_softc *sc)
775 {
776 	struct ifnet *ifp = &sc->arpcom.ac_if;
777 	struct mbuf *m0;
778 	struct ether_header *eh;
779 	struct re_desc *cur_rx;
780 	uint16_t status;
781 	uint32_t rxstat;
782 	int total_len, i, error = 0, phyaddr;
783 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
784 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
785 
786 	/* Allocate a single mbuf */
787 
788 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
789 	if (m0 == NULL)
790 		return(ENOBUFS);
791 
792 	/*
793 	 * Initialize the NIC in test mode. This sets the chip up
794 	 * so that it can send and receive frames, but performs the
795 	 * following special functions:
796 	 * - Puts receiver in promiscuous mode
797 	 * - Enables digital loopback mode
798 	 * - Leaves interrupts turned off
799 	 */
800 
801 	ifp->if_flags |= IFF_PROMISC;
802 	sc->re_flags |= RE_F_TESTMODE;
803 	re_init(sc);
804 	sc->re_flags |= RE_F_LINKED;
805 	if (!RE_IS_8139CP(sc))
806 		phyaddr = 1;
807 	else
808 		phyaddr = 0;
809 
810 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
811 	for (i = 0; i < RE_TIMEOUT; i++) {
812 		status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
813 		if (!(status & BMCR_RESET))
814 			break;
815 	}
816 
817 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
818 	CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
819 
820 	DELAY(100000);
821 
822 	/* Put some data in the mbuf */
823 
824 	eh = mtod(m0, struct ether_header *);
825 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
826 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
827 	eh->ether_type = htons(ETHERTYPE_IP);
828 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
829 
830 	/*
831 	 * Queue the packet, start transmission.
832 	 * Note: ifq_handoff() ultimately calls re_start() for us.
833 	 */
834 
835 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
836 	error = ifq_handoff(ifp, m0, NULL);
837 	if (error) {
838 		m0 = NULL;
839 		goto done;
840 	}
841 	m0 = NULL;
842 
843 	/* Wait for it to propagate through the chip */
844 
845 	DELAY(100000);
846 	for (i = 0; i < RE_TIMEOUT; i++) {
847 		status = CSR_READ_2(sc, RE_ISR);
848 		CSR_WRITE_2(sc, RE_ISR, status);
849 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
850 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
851 			break;
852 		DELAY(10);
853 	}
854 
855 	if (i == RE_TIMEOUT) {
856 		if_printf(ifp, "diagnostic failed to receive packet "
857 			  "in loopback mode\n");
858 		error = EIO;
859 		goto done;
860 	}
861 
862 	/*
863 	 * The packet should have been dumped into the first
864 	 * entry in the RX DMA ring. Grab it from there.
865 	 */
866 
867 	bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
868 			BUS_DMASYNC_POSTREAD);
869 	bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
870 			  sc->re_ldata.re_rx_dmamap[0]);
871 
872 	m0 = sc->re_ldata.re_rx_mbuf[0];
873 	sc->re_ldata.re_rx_mbuf[0] = NULL;
874 	eh = mtod(m0, struct ether_header *);
875 
876 	cur_rx = &sc->re_ldata.re_rx_list[0];
877 	total_len = RE_RXBYTES(cur_rx);
878 	rxstat = le32toh(cur_rx->re_cmdstat);
879 
880 	if (total_len != ETHER_MIN_LEN) {
881 		if_printf(ifp, "diagnostic failed, received short packet\n");
882 		error = EIO;
883 		goto done;
884 	}
885 
886 	/* Test that the received packet data matches what we sent. */
887 
888 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
889 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
890 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
891 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
892 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
893 		    dst, ":", src, ":", ETHERTYPE_IP);
894 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
895 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
896 		    ntohs(eh->ether_type));
897 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
898 		    "into a 64-bit PCI slot.\n");
899 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
900 		    "for proper operation.\n");
901 		if_printf(ifp, "Read the re(4) man page for more details.\n");
902 		error = EIO;
903 	}
904 
905 done:
906 	/* Turn interface off, release resources */
907 
908 	sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
909 	ifp->if_flags &= ~IFF_PROMISC;
910 	re_stop(sc);
911 	if (m0 != NULL)
912 		m_freem(m0);
913 
914 	return (error);
915 }
916 #endif	/* RE_DIAG */
917 
918 /*
919  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
920  * IDs against our list and return a device name if we find a match.
921  */
922 static int
923 re_probe(device_t dev)
924 {
925 	const struct re_type *t;
926 	const struct re_hwrev *hw_rev;
927 	struct re_softc *sc;
928 	int rid;
929 	uint32_t hwrev, macmode, txcfg;
930 	uint16_t vendor, product;
931 
932 	vendor = pci_get_vendor(dev);
933 	product = pci_get_device(dev);
934 
935 	/*
936 	 * Only attach to rev.3 of the Linksys EG1032 adapter.
937 	 * Rev.2 is supported by sk(4).
938 	 */
939 	if (vendor == PCI_VENDOR_LINKSYS &&
940 	    product == PCI_PRODUCT_LINKSYS_EG1032 &&
941 	    pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
942 		return ENXIO;
943 
944 	if (vendor == PCI_VENDOR_REALTEK &&
945 	    product == PCI_PRODUCT_REALTEK_RT8139 &&
946 	    pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
947 		/* Poor 8139 */
948 		return ENXIO;
949 	}
950 
951 	for (t = re_devs; t->re_name != NULL; t++) {
952 		if (product == t->re_did && vendor == t->re_vid)
953 			break;
954 	}
955 
956 	/*
957 	 * Check if we found a RealTek device.
958 	 */
959 	if (t->re_name == NULL)
960 		return ENXIO;
961 
962 	/*
963 	 * Temporarily map the I/O space so we can read the chip ID register.
964 	 */
965 	sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
966 	rid = RE_PCI_LOIO;
967 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
968 					    RF_ACTIVE);
969 	if (sc->re_res == NULL) {
970 		device_printf(dev, "couldn't map ports/memory\n");
971 		kfree(sc, M_TEMP);
972 		return ENXIO;
973 	}
974 
975 	sc->re_btag = rman_get_bustag(sc->re_res);
976 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
977 
978 	txcfg = CSR_READ_4(sc, RE_TXCFG);
979 	hwrev = txcfg & RE_TXCFG_HWREV;
980 	macmode = txcfg & RE_TXCFG_MACMODE;
981 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
982 	kfree(sc, M_TEMP);
983 
984 	/*
985 	 * and continue matching for the specific chip...
986 	 */
987 	for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
988 		if (hw_rev->re_hwrev == hwrev) {
989 			sc = device_get_softc(dev);
990 
991 			sc->re_hwrev = hw_rev->re_hwrev;
992 			sc->re_macver = hw_rev->re_macver;
993 			sc->re_caps = hw_rev->re_caps;
994 			sc->re_maxmtu = hw_rev->re_maxmtu;
995 
996 			/*
997 			 * Apply chip property fixup
998 			 */
999 			switch (sc->re_hwrev) {
1000 			case RE_HWREV_8101E1:
1001 			case RE_HWREV_8101E2:
1002 				if (macmode == 0)
1003 					sc->re_macver = RE_MACVER_11;
1004 				else if (macmode == 0x200000)
1005 					sc->re_macver = RE_MACVER_12;
1006 				break;
1007 			case RE_HWREV_8102E:
1008 			case RE_HWREV_8102EL:
1009 				if (macmode == 0)
1010 					sc->re_macver = RE_MACVER_13;
1011 				else if (macmode == 0x100000)
1012 					sc->re_macver = RE_MACVER_14;
1013 				break;
1014 			case RE_HWREV_8168B2:
1015 			case RE_HWREV_8168B3:
1016 				if (macmode == 0)
1017 					sc->re_macver = RE_MACVER_22;
1018 				break;
1019 			case RE_HWREV_8168C:
1020 				if (macmode == 0)
1021 					sc->re_macver = RE_MACVER_24;
1022 				else if (macmode == 0x200000)
1023 					sc->re_macver = RE_MACVER_25;
1024 				else if (macmode == 0x300000)
1025 					sc->re_macver = RE_MACVER_27;
1026 				break;
1027 			case RE_HWREV_8168CP:
1028 				if (macmode == 0)
1029 					sc->re_macver = RE_MACVER_26;
1030 				else if (macmode == 0x100000)
1031 					sc->re_macver = RE_MACVER_28;
1032 				break;
1033 			case RE_HWREV_8168DP:
1034 				if (macmode == 0)
1035 					sc->re_macver = RE_MACVER_2B;
1036 				else if (macmode == 0x200000)
1037 					sc->re_macver = RE_MACVER_2C;
1038 				break;
1039 			case RE_HWREV_8168E:
1040 				if (macmode == 0x100000)
1041 					sc->re_macver = RE_MACVER_2E;
1042 				else if (macmode == 0x200000)
1043 					sc->re_macver = RE_MACVER_2F;
1044 				break;
1045 			case RE_HWREV_8168F:
1046 				if (macmode == 0x000000)
1047 					sc->re_macver = RE_MACVER_30;
1048 				else if (macmode == 0x100000)
1049 					sc->re_macver = RE_MACVER_31;
1050 				break;
1051 			}
1052 			if (pci_is_pcie(dev))
1053 				sc->re_caps |= RE_C_PCIE;
1054 
1055 			device_set_desc(dev, t->re_name);
1056 			return 0;
1057 		}
1058 	}
1059 
1060 	if (bootverbose) {
1061 		device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1062 			      hwrev, macmode);
1063 	}
1064 	return ENXIO;
1065 }
1066 
1067 static int
1068 re_allocmem(device_t dev)
1069 {
1070 	struct re_softc *sc = device_get_softc(dev);
1071 	bus_dmamem_t dmem;
1072 	int error, i;
1073 
1074 	/*
1075 	 * Allocate list data
1076 	 */
1077 	sc->re_ldata.re_tx_mbuf =
1078 	kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1079 		M_DEVBUF, M_ZERO | M_WAITOK);
1080 
1081 	sc->re_ldata.re_rx_mbuf =
1082 	kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1083 		M_DEVBUF, M_ZERO | M_WAITOK);
1084 
1085 	sc->re_ldata.re_rx_paddr =
1086 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1087 		M_DEVBUF, M_ZERO | M_WAITOK);
1088 
1089 	sc->re_ldata.re_tx_dmamap =
1090 	kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1091 		M_DEVBUF, M_ZERO | M_WAITOK);
1092 
1093 	sc->re_ldata.re_rx_dmamap =
1094 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1095 		M_DEVBUF, M_ZERO | M_WAITOK);
1096 
1097 	/*
1098 	 * Allocate the parent bus DMA tag appropriate for PCI.
1099 	 */
1100 	error = bus_dma_tag_create(NULL,	/* parent */
1101 			1, 0,			/* alignment, boundary */
1102 			BUS_SPACE_MAXADDR,	/* lowaddr */
1103 			BUS_SPACE_MAXADDR,	/* highaddr */
1104 			NULL, NULL,		/* filter, filterarg */
1105 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1106 			0,			/* nsegments */
1107 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1108 			0,			/* flags */
1109 			&sc->re_parent_tag);
1110 	if (error) {
1111 		device_printf(dev, "could not allocate parent dma tag\n");
1112 		return error;
1113 	}
1114 
1115 	/* Allocate TX descriptor list. */
1116 	error = bus_dmamem_coherent(sc->re_parent_tag,
1117 			RE_RING_ALIGN, 0,
1118 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1119 			RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1120 			&dmem);
1121 	if (error) {
1122 		device_printf(dev, "could not allocate TX ring\n");
1123 		return error;
1124 	}
1125 	sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1126 	sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1127 	sc->re_ldata.re_tx_list = dmem.dmem_addr;
1128 	sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1129 
1130 	/* Allocate RX descriptor list. */
1131 	error = bus_dmamem_coherent(sc->re_parent_tag,
1132 			RE_RING_ALIGN, 0,
1133 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1134 			RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1135 			&dmem);
1136 	if (error) {
1137 		device_printf(dev, "could not allocate RX ring\n");
1138 		return error;
1139 	}
1140 	sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1141 	sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1142 	sc->re_ldata.re_rx_list = dmem.dmem_addr;
1143 	sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1144 
1145 	/* Allocate maps for TX mbufs. */
1146 	error = bus_dma_tag_create(sc->re_parent_tag,
1147 			1, 0,
1148 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1149 			NULL, NULL,
1150 			RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1151 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1152 			&sc->re_ldata.re_tx_mtag);
1153 	if (error) {
1154 		device_printf(dev, "could not allocate TX buf dma tag\n");
1155 		return(error);
1156 	}
1157 
1158 	/* Create DMA maps for TX buffers */
1159 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1160 		error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1161 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1162 				&sc->re_ldata.re_tx_dmamap[i]);
1163 		if (error) {
1164 			device_printf(dev, "can't create DMA map for TX buf\n");
1165 			re_freebufmem(sc, i, 0);
1166 			return(error);
1167 		}
1168 	}
1169 
1170 	/* Allocate maps for RX mbufs. */
1171 	error = bus_dma_tag_create(sc->re_parent_tag,
1172 			RE_RXBUF_ALIGN, 0,
1173 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1174 			NULL, NULL,
1175 			MCLBYTES, 1, MCLBYTES,
1176 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1177 			&sc->re_ldata.re_rx_mtag);
1178 	if (error) {
1179 		device_printf(dev, "could not allocate RX buf dma tag\n");
1180 		return(error);
1181 	}
1182 
1183 	/* Create spare DMA map for RX */
1184 	error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1185 			&sc->re_ldata.re_rx_spare);
1186 	if (error) {
1187 		device_printf(dev, "can't create spare DMA map for RX\n");
1188 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1189 		sc->re_ldata.re_rx_mtag = NULL;
1190 		return error;
1191 	}
1192 
1193 	/* Create DMA maps for RX buffers */
1194 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1195 		error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1196 				BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1197 		if (error) {
1198 			device_printf(dev, "can't create DMA map for RX buf\n");
1199 			re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1200 			return(error);
1201 		}
1202 	}
1203 
1204 	/* Create jumbo buffer pool for RX if required */
1205 	if (sc->re_caps & RE_C_CONTIGRX) {
1206 		error = re_jpool_alloc(sc);
1207 		if (error) {
1208 			re_jpool_free(sc);
1209 			/* Disable jumbo frame support */
1210 			sc->re_maxmtu = ETHERMTU;
1211 		}
1212 	}
1213 	return(0);
1214 }
1215 
1216 static void
1217 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1218 {
1219 	int i;
1220 
1221 	/* Destroy all the RX and TX buffer maps */
1222 	if (sc->re_ldata.re_tx_mtag) {
1223 		for (i = 0; i < tx_cnt; i++) {
1224 			bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1225 					   sc->re_ldata.re_tx_dmamap[i]);
1226 		}
1227 		bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1228 		sc->re_ldata.re_tx_mtag = NULL;
1229 	}
1230 
1231 	if (sc->re_ldata.re_rx_mtag) {
1232 		for (i = 0; i < rx_cnt; i++) {
1233 			bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1234 					   sc->re_ldata.re_rx_dmamap[i]);
1235 		}
1236 		bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1237 				   sc->re_ldata.re_rx_spare);
1238 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1239 		sc->re_ldata.re_rx_mtag = NULL;
1240 	}
1241 }
1242 
1243 static void
1244 re_freemem(device_t dev)
1245 {
1246 	struct re_softc *sc = device_get_softc(dev);
1247 
1248 	/* Unload and free the RX DMA ring memory and map */
1249 	if (sc->re_ldata.re_rx_list_tag) {
1250 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1251 				  sc->re_ldata.re_rx_list_map);
1252 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1253 				sc->re_ldata.re_rx_list,
1254 				sc->re_ldata.re_rx_list_map);
1255 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1256 	}
1257 
1258 	/* Unload and free the TX DMA ring memory and map */
1259 	if (sc->re_ldata.re_tx_list_tag) {
1260 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1261 				  sc->re_ldata.re_tx_list_map);
1262 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1263 				sc->re_ldata.re_tx_list,
1264 				sc->re_ldata.re_tx_list_map);
1265 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1266 	}
1267 
1268 	/* Free RX/TX buf DMA stuffs */
1269 	re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1270 
1271 	/* Unload and free the stats buffer and map */
1272 	if (sc->re_ldata.re_stag) {
1273 		bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
1274 		bus_dmamem_free(sc->re_ldata.re_stag,
1275 				sc->re_ldata.re_stats,
1276 				sc->re_ldata.re_smap);
1277 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1278 	}
1279 
1280 	if (sc->re_caps & RE_C_CONTIGRX)
1281 		re_jpool_free(sc);
1282 
1283 	if (sc->re_parent_tag)
1284 		bus_dma_tag_destroy(sc->re_parent_tag);
1285 
1286 	if (sc->re_ldata.re_tx_mbuf != NULL)
1287 		kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1288 	if (sc->re_ldata.re_rx_mbuf != NULL)
1289 		kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1290 	if (sc->re_ldata.re_rx_paddr != NULL)
1291 		kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1292 	if (sc->re_ldata.re_tx_dmamap != NULL)
1293 		kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1294 	if (sc->re_ldata.re_rx_dmamap != NULL)
1295 		kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1296 }
1297 
1298 /*
1299  * Attach the interface. Allocate softc structures, do ifmedia
1300  * setup and ethernet/BPF attach.
1301  */
1302 static int
1303 re_attach(device_t dev)
1304 {
1305 	struct re_softc	*sc = device_get_softc(dev);
1306 	struct ifnet *ifp;
1307 	uint8_t eaddr[ETHER_ADDR_LEN];
1308 	int error = 0, rid, qlen;
1309 
1310 	callout_init(&sc->re_timer);
1311 	sc->re_dev = dev;
1312 
1313 	if (RE_IS_8139CP(sc)) {
1314 		sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1315 		sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1316 	} else {
1317 		sc->re_rx_desc_cnt = re_rx_desc_count;
1318 		if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1319 			sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1320 
1321 		sc->re_tx_desc_cnt = re_tx_desc_count;
1322 		if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1323 			sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1324 	}
1325 
1326 	qlen = RE_IFQ_MAXLEN;
1327 	if (sc->re_tx_desc_cnt > qlen)
1328 		qlen = sc->re_tx_desc_cnt;
1329 
1330 	sc->re_rxbuf_size = MCLBYTES;
1331 	sc->re_newbuf = re_newbuf_std;
1332 
1333 	sc->re_tx_time = 5;		/* 125us */
1334 	sc->re_rx_time = 2;		/* 50us */
1335 	if (sc->re_caps & RE_C_PCIE)
1336 		sc->re_sim_time = 75;	/* 75us */
1337 	else
1338 		sc->re_sim_time = 125;	/* 125us */
1339 	if (!RE_IS_8139CP(sc)) {
1340 		/* simulated interrupt moderation */
1341 		sc->re_imtype = RE_IMTYPE_SIM;
1342 	} else {
1343 		sc->re_imtype = RE_IMTYPE_NONE;
1344 	}
1345 	re_config_imtype(sc, sc->re_imtype);
1346 
1347 	sysctl_ctx_init(&sc->re_sysctl_ctx);
1348 	sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1349 					     SYSCTL_STATIC_CHILDREN(_hw),
1350 					     OID_AUTO,
1351 					     device_get_nameunit(dev),
1352 					     CTLFLAG_RD, 0, "");
1353 	if (sc->re_sysctl_tree == NULL) {
1354 		device_printf(dev, "can't add sysctl node\n");
1355 		error = ENXIO;
1356 		goto fail;
1357 	}
1358 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1359 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1360 		       "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1361 		       0, "RX desc count");
1362 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1363 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1364 		       "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1365 		       0, "TX desc count");
1366 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1367 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1368 			OID_AUTO, "sim_time",
1369 			CTLTYPE_INT | CTLFLAG_RW,
1370 			sc, 0, re_sysctl_simtime, "I",
1371 			"Simulated interrupt moderation time (usec).");
1372 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1373 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1374 			OID_AUTO, "imtype",
1375 			CTLTYPE_INT | CTLFLAG_RW,
1376 			sc, 0, re_sysctl_imtype, "I",
1377 			"Interrupt moderation type -- "
1378 			"0:disable, 1:simulated, "
1379 			"2:hardware(if supported)");
1380 	if (sc->re_caps & RE_C_HWIM) {
1381 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1382 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1383 				OID_AUTO, "hw_rxtime",
1384 				CTLTYPE_INT | CTLFLAG_RW,
1385 				sc, 0, re_sysctl_rxtime, "I",
1386 				"Hardware interrupt moderation time "
1387 				"(unit: 25usec).");
1388 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1389 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1390 				OID_AUTO, "hw_txtime",
1391 				CTLTYPE_INT | CTLFLAG_RW,
1392 				sc, 0, re_sysctl_txtime, "I",
1393 				"Hardware interrupt moderation time "
1394 				"(unit: 25usec).");
1395 	}
1396 
1397 #ifndef BURN_BRIDGES
1398 	/*
1399 	 * Handle power management nonsense.
1400 	 */
1401 
1402 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1403 		uint32_t membase, irq;
1404 
1405 		/* Save important PCI config data. */
1406 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1407 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1408 
1409 		/* Reset the power state. */
1410 		device_printf(dev, "chip is in D%d power mode "
1411 		    "-- setting to D0\n", pci_get_powerstate(dev));
1412 
1413 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1414 
1415 		/* Restore PCI config data. */
1416 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1417 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1418 	}
1419 #endif
1420 	/*
1421 	 * Map control/status registers.
1422 	 */
1423 	pci_enable_busmaster(dev);
1424 
1425 	rid = RE_PCI_LOIO;
1426 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1427 					    RF_ACTIVE);
1428 
1429 	if (sc->re_res == NULL) {
1430 		device_printf(dev, "couldn't map ports\n");
1431 		error = ENXIO;
1432 		goto fail;
1433 	}
1434 
1435 	sc->re_btag = rman_get_bustag(sc->re_res);
1436 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1437 
1438 	/* Allocate interrupt */
1439 	rid = 0;
1440 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1441 					    RF_SHAREABLE | RF_ACTIVE);
1442 
1443 	if (sc->re_irq == NULL) {
1444 		device_printf(dev, "couldn't map interrupt\n");
1445 		error = ENXIO;
1446 		goto fail;
1447 	}
1448 
1449 	/* Reset the adapter. */
1450 	re_reset(sc, 0);
1451 
1452 	if (RE_IS_8139CP(sc)) {
1453 		sc->re_bus_speed = 33; /* XXX */
1454 	} else if (sc->re_caps & RE_C_PCIE) {
1455 		sc->re_bus_speed = 125;
1456 	} else {
1457 		uint8_t cfg2;
1458 
1459 		cfg2 = CSR_READ_1(sc, RE_CFG2);
1460 		switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1461 		case RE_CFG2_PCICLK_33MHZ:
1462 			sc->re_bus_speed = 33;
1463 			break;
1464 		case RE_CFG2_PCICLK_66MHZ:
1465 			sc->re_bus_speed = 66;
1466 			break;
1467 		default:
1468 			device_printf(dev, "unknown bus speed, assume 33MHz\n");
1469 			sc->re_bus_speed = 33;
1470 			break;
1471 		}
1472 		if (cfg2 & RE_CFG2_PCI64)
1473 			sc->re_caps |= RE_C_PCI64;
1474 	}
1475 	device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1476 		      "PCI%s %dMHz\n",
1477 		      sc->re_hwrev, sc->re_macver,
1478 		      (sc->re_caps & RE_C_PCIE) ?
1479 		      "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1480 		      sc->re_bus_speed);
1481 
1482 	/*
1483 	 * NOTE:
1484 	 * DO NOT try to adjust config1 and config5 which was spotted in
1485 	 * Realtek's Linux drivers.  It will _permanently_ damage certain
1486 	 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1487 	 */
1488 
1489 	re_get_eaddr(sc, eaddr);
1490 
1491 	if (!RE_IS_8139CP(sc)) {
1492 		/* Set RX length mask */
1493 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1494 		sc->re_txstart = RE_GTXSTART;
1495 	} else {
1496 		/* Set RX length mask */
1497 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1498 		sc->re_txstart = RE_TXSTART;
1499 	}
1500 
1501 	/* Allocate DMA stuffs */
1502 	error = re_allocmem(dev);
1503 	if (error)
1504 		goto fail;
1505 
1506 	/*
1507 	 * Apply some magic PCI settings from Realtek ...
1508 	 */
1509 	if (RE_IS_8169(sc)) {
1510 		CSR_WRITE_1(sc, 0x82, 1);
1511 		pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1512 	}
1513 	pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1514 
1515 	if (sc->re_caps & RE_C_MAC2) {
1516 		/*
1517 		 * Following part is extracted from Realtek BSD driver v176.
1518 		 * However, this does _not_ make much/any sense:
1519 		 * 8168C's PCI Express device control is located at 0x78,
1520 		 * so the reading from 0x79 (higher part of 0x78) and setting
1521 		 * the 4~6bits intend to enlarge the "max read request size"
1522 		 * (we will do it).  The content of the rest part of this
1523 		 * register is not meaningful to other PCI registers, so
1524 		 * writing the value to 0x54 could be completely wrong.
1525 		 * 0x80 is the lower part of PCI Express device status, non-
1526 		 * reserved bits are RW1C, writing 0 to them will not have
1527 		 * any effect at all.
1528 		 */
1529 #ifdef foo
1530 		uint8_t val;
1531 
1532 		val = pci_read_config(dev, 0x79, 1);
1533 		val = (val & ~0x70) | 0x50;
1534 		pci_write_config(dev, 0x54, val, 1);
1535 		pci_write_config(dev, 0x80, 0, 1);
1536 #endif
1537 	}
1538 
1539 	/*
1540 	 * Apply some PHY fixup from Realtek ...
1541 	 */
1542 	if (sc->re_hwrev == RE_HWREV_8110S) {
1543 		CSR_WRITE_1(sc, 0x82, 1);
1544 		re_miibus_writereg(dev, 1, 0xb, 0);
1545 	}
1546 	if (sc->re_caps & RE_C_PHYPMGT) {
1547 		/* Power up PHY */
1548 		re_miibus_writereg(dev, 1, 0x1f, 0);
1549 		re_miibus_writereg(dev, 1, 0xe, 0);
1550 	}
1551 
1552 	/* Do MII setup */
1553 	if (mii_phy_probe(dev, &sc->re_miibus,
1554 	    re_ifmedia_upd, re_ifmedia_sts)) {
1555 		device_printf(dev, "MII without any phy!\n");
1556 		error = ENXIO;
1557 		goto fail;
1558 	}
1559 
1560 	ifp = &sc->arpcom.ac_if;
1561 	ifp->if_softc = sc;
1562 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1563 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1564 	ifp->if_ioctl = re_ioctl;
1565 	ifp->if_start = re_start;
1566 #ifdef DEVICE_POLLING
1567 	ifp->if_poll = re_poll;
1568 #endif
1569 	ifp->if_watchdog = re_watchdog;
1570 	ifp->if_init = re_init;
1571 	if (!RE_IS_8139CP(sc)) /* XXX */
1572 		ifp->if_baudrate = 1000000000;
1573 	else
1574 		ifp->if_baudrate = 100000000;
1575 	ifq_set_maxlen(&ifp->if_snd, qlen);
1576 	ifq_set_ready(&ifp->if_snd);
1577 
1578 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1579 	if (sc->re_caps & RE_C_HWCSUM)
1580 		ifp->if_capabilities |= IFCAP_HWCSUM;
1581 
1582 	ifp->if_capenable = ifp->if_capabilities;
1583 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1584 		ifp->if_hwassist = RE_CSUM_FEATURES;
1585 	else
1586 		ifp->if_hwassist = 0;
1587 
1588 	/*
1589 	 * Call MI attach routine.
1590 	 */
1591 	ether_ifattach(ifp, eaddr, NULL);
1592 
1593 #ifdef RE_DIAG
1594 	/*
1595 	 * Perform hardware diagnostic on the original RTL8169.
1596 	 * Some 32-bit cards were incorrectly wired and would
1597 	 * malfunction if plugged into a 64-bit slot.
1598 	 */
1599 	if (sc->re_hwrev == RE_HWREV_8169) {
1600 		lwkt_serialize_enter(ifp->if_serializer);
1601 		error = re_diag(sc);
1602 		lwkt_serialize_exit(ifp->if_serializer);
1603 
1604 		if (error) {
1605 			device_printf(dev, "hardware diagnostic failure\n");
1606 			ether_ifdetach(ifp);
1607 			goto fail;
1608 		}
1609 	}
1610 #endif	/* RE_DIAG */
1611 
1612 	/* Hook interrupt last to avoid having to lock softc */
1613 	error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1614 			       &sc->re_intrhand, ifp->if_serializer);
1615 
1616 	if (error) {
1617 		device_printf(dev, "couldn't set up irq\n");
1618 		ether_ifdetach(ifp);
1619 		goto fail;
1620 	}
1621 
1622 	ifp->if_cpuid = rman_get_cpuid(sc->re_irq);
1623 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1624 
1625 fail:
1626 	if (error)
1627 		re_detach(dev);
1628 
1629 	return (error);
1630 }
1631 
1632 /*
1633  * Shutdown hardware and free up resources. This can be called any
1634  * time after the mutex has been initialized. It is called in both
1635  * the error case in attach and the normal detach case so it needs
1636  * to be careful about only freeing resources that have actually been
1637  * allocated.
1638  */
1639 static int
1640 re_detach(device_t dev)
1641 {
1642 	struct re_softc *sc = device_get_softc(dev);
1643 	struct ifnet *ifp = &sc->arpcom.ac_if;
1644 
1645 	/* These should only be active if attach succeeded */
1646 	if (device_is_attached(dev)) {
1647 		lwkt_serialize_enter(ifp->if_serializer);
1648 		re_stop(sc);
1649 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1650 		lwkt_serialize_exit(ifp->if_serializer);
1651 
1652 		ether_ifdetach(ifp);
1653 	}
1654 	if (sc->re_miibus)
1655 		device_delete_child(dev, sc->re_miibus);
1656 	bus_generic_detach(dev);
1657 
1658 	if (sc->re_sysctl_tree != NULL)
1659 		sysctl_ctx_free(&sc->re_sysctl_ctx);
1660 
1661 	if (sc->re_irq)
1662 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1663 	if (sc->re_res) {
1664 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1665 				     sc->re_res);
1666 	}
1667 
1668 	/* Free DMA stuffs */
1669 	re_freemem(dev);
1670 
1671 	return(0);
1672 }
1673 
1674 static void
1675 re_setup_rxdesc(struct re_softc *sc, int idx)
1676 {
1677 	bus_addr_t paddr;
1678 	uint32_t cmdstat;
1679 	struct re_desc *d;
1680 
1681 	paddr = sc->re_ldata.re_rx_paddr[idx];
1682 	d = &sc->re_ldata.re_rx_list[idx];
1683 
1684 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1685 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1686 
1687 	cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1688 	if (idx == (sc->re_rx_desc_cnt - 1))
1689 		cmdstat |= RE_RDESC_CMD_EOR;
1690 	d->re_cmdstat = htole32(cmdstat);
1691 }
1692 
1693 static int
1694 re_newbuf_std(struct re_softc *sc, int idx, int init)
1695 {
1696 	bus_dma_segment_t seg;
1697 	bus_dmamap_t map;
1698 	struct mbuf *m;
1699 	int error, nsegs;
1700 
1701 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1702 	if (m == NULL) {
1703 		error = ENOBUFS;
1704 
1705 		if (init) {
1706 			if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1707 			return error;
1708 		} else {
1709 			goto back;
1710 		}
1711 	}
1712 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1713 
1714 	/*
1715 	 * NOTE:
1716 	 * re(4) chips need address of the receive buffer to be 8-byte
1717 	 * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1718 	 */
1719 
1720 	error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1721 			sc->re_ldata.re_rx_spare, m,
1722 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1723 	if (error) {
1724 		m_freem(m);
1725 		if (init) {
1726 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1727 			return error;
1728 		} else {
1729 			goto back;
1730 		}
1731 	}
1732 
1733 	if (!init) {
1734 		bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1735 				sc->re_ldata.re_rx_dmamap[idx],
1736 				BUS_DMASYNC_POSTREAD);
1737 		bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1738 				  sc->re_ldata.re_rx_dmamap[idx]);
1739 	}
1740 	sc->re_ldata.re_rx_mbuf[idx] = m;
1741 	sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1742 
1743 	map = sc->re_ldata.re_rx_dmamap[idx];
1744 	sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1745 	sc->re_ldata.re_rx_spare = map;
1746 back:
1747 	re_setup_rxdesc(sc, idx);
1748 	return error;
1749 }
1750 
1751 static int
1752 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1753 {
1754 	struct mbuf *m;
1755 	struct re_jbuf *jbuf;
1756 	int error = 0;
1757 
1758 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1759 	if (m == NULL) {
1760 		error = ENOBUFS;
1761 		if (init) {
1762 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1763 			return error;
1764 		} else {
1765 			goto back;
1766 		}
1767 	}
1768 
1769 	jbuf = re_jbuf_alloc(sc);
1770 	if (jbuf == NULL) {
1771 		m_freem(m);
1772 
1773 		error = ENOBUFS;
1774 		if (init) {
1775 			if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1776 			return error;
1777 		} else {
1778 			goto back;
1779 		}
1780 	}
1781 
1782 	m->m_ext.ext_arg = jbuf;
1783 	m->m_ext.ext_buf = jbuf->re_buf;
1784 	m->m_ext.ext_free = re_jbuf_free;
1785 	m->m_ext.ext_ref = re_jbuf_ref;
1786 	m->m_ext.ext_size = sc->re_rxbuf_size;
1787 
1788 	m->m_data = m->m_ext.ext_buf;
1789 	m->m_flags |= M_EXT;
1790 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1791 
1792 	/*
1793 	 * NOTE:
1794 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1795 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1796 	 */
1797 
1798 	sc->re_ldata.re_rx_mbuf[idx] = m;
1799 	sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1800 back:
1801 	re_setup_rxdesc(sc, idx);
1802 	return error;
1803 }
1804 
1805 static int
1806 re_tx_list_init(struct re_softc *sc)
1807 {
1808 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1809 
1810 	sc->re_ldata.re_tx_prodidx = 0;
1811 	sc->re_ldata.re_tx_considx = 0;
1812 	sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1813 
1814 	return(0);
1815 }
1816 
1817 static int
1818 re_rx_list_init(struct re_softc *sc)
1819 {
1820 	int i, error;
1821 
1822 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1823 
1824 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1825 		error = sc->re_newbuf(sc, i, 1);
1826 		if (error)
1827 			return(error);
1828 	}
1829 
1830 	sc->re_ldata.re_rx_prodidx = 0;
1831 	sc->re_head = sc->re_tail = NULL;
1832 
1833 	return(0);
1834 }
1835 
1836 #define RE_IP4_PACKET	0x1
1837 #define RE_TCP_PACKET	0x2
1838 #define RE_UDP_PACKET	0x4
1839 
1840 static __inline uint8_t
1841 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1842 {
1843 	uint8_t packet_type = 0;
1844 
1845 	if (sc->re_caps & RE_C_MAC2) {
1846 		if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1847 			packet_type |= RE_IP4_PACKET;
1848 	} else {
1849 		if (rxstat & RE_RDESC_STAT_PROTOID)
1850 			packet_type |= RE_IP4_PACKET;
1851 	}
1852 	if (RE_TCPPKT(rxstat))
1853 		packet_type |= RE_TCP_PACKET;
1854 	else if (RE_UDPPKT(rxstat))
1855 		packet_type |= RE_UDP_PACKET;
1856 	return packet_type;
1857 }
1858 
1859 /*
1860  * RX handler for C+ and 8169. For the gigE chips, we support
1861  * the reception of jumbo frames that have been fragmented
1862  * across multiple 2K mbuf cluster buffers.
1863  */
1864 static int
1865 re_rxeof(struct re_softc *sc)
1866 {
1867 	struct ifnet *ifp = &sc->arpcom.ac_if;
1868 	struct mbuf *m;
1869 	struct re_desc 	*cur_rx;
1870 	uint32_t rxstat, rxctrl;
1871 	int i, total_len, rx = 0;
1872 
1873 	for (i = sc->re_ldata.re_rx_prodidx;
1874 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1875 		cur_rx = &sc->re_ldata.re_rx_list[i];
1876 		m = sc->re_ldata.re_rx_mbuf[i];
1877 		total_len = RE_RXBYTES(cur_rx);
1878 		rxstat = le32toh(cur_rx->re_cmdstat);
1879 		rxctrl = le32toh(cur_rx->re_control);
1880 
1881 		rx = 1;
1882 
1883 #ifdef INVARIANTS
1884 		if (sc->re_flags & RE_F_USE_JPOOL)
1885 			KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1886 #endif
1887 
1888 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1889 			if (sc->re_flags & RE_F_DROP_RXFRAG) {
1890 				re_setup_rxdesc(sc, i);
1891 				continue;
1892 			}
1893 
1894 			if (sc->re_newbuf(sc, i, 0)) {
1895 				/* Drop upcoming fragments */
1896 				sc->re_flags |= RE_F_DROP_RXFRAG;
1897 				continue;
1898 			}
1899 
1900 			m->m_len = MCLBYTES;
1901 			if (sc->re_head == NULL) {
1902 				sc->re_head = sc->re_tail = m;
1903 			} else {
1904 				sc->re_tail->m_next = m;
1905 				sc->re_tail = m;
1906 			}
1907 			continue;
1908 		} else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1909 			/*
1910 			 * Last fragment of a multi-fragment packet.
1911 			 *
1912 			 * Since error already happened, this fragment
1913 			 * must be dropped as well as the fragment chain.
1914 			 */
1915 			re_setup_rxdesc(sc, i);
1916 			re_free_rxchain(sc);
1917 			sc->re_flags &= ~RE_F_DROP_RXFRAG;
1918 			continue;
1919 		}
1920 
1921 		/*
1922 		 * NOTE: for the 8139C+, the frame length field
1923 		 * is always 12 bits in size, but for the gigE chips,
1924 		 * it is 13 bits (since the max RX frame length is 16K).
1925 		 * Unfortunately, all 32 bits in the status word
1926 		 * were already used, so to make room for the extra
1927 		 * length bit, RealTek took out the 'frame alignment
1928 		 * error' bit and shifted the other status bits
1929 		 * over one slot. The OWN, EOR, FS and LS bits are
1930 		 * still in the same places. We have already extracted
1931 		 * the frame length and checked the OWN bit, so rather
1932 		 * than using an alternate bit mapping, we shift the
1933 		 * status bits one space to the right so we can evaluate
1934 		 * them using the 8169 status as though it was in the
1935 		 * same format as that of the 8139C+.
1936 		 */
1937 		if (!RE_IS_8139CP(sc))
1938 			rxstat >>= 1;
1939 
1940 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1941 			ifp->if_ierrors++;
1942 			/*
1943 			 * If this is part of a multi-fragment packet,
1944 			 * discard all the pieces.
1945 			 */
1946 			re_free_rxchain(sc);
1947 			re_setup_rxdesc(sc, i);
1948 			continue;
1949 		}
1950 
1951 		/*
1952 		 * If allocating a replacement mbuf fails,
1953 		 * reload the current one.
1954 		 */
1955 
1956 		if (sc->re_newbuf(sc, i, 0)) {
1957 			ifp->if_ierrors++;
1958 			continue;
1959 		}
1960 
1961 		if (sc->re_head != NULL) {
1962 			m->m_len = total_len % MCLBYTES;
1963 			/*
1964 			 * Special case: if there's 4 bytes or less
1965 			 * in this buffer, the mbuf can be discarded:
1966 			 * the last 4 bytes is the CRC, which we don't
1967 			 * care about anyway.
1968 			 */
1969 			if (m->m_len <= ETHER_CRC_LEN) {
1970 				sc->re_tail->m_len -=
1971 				    (ETHER_CRC_LEN - m->m_len);
1972 				m_freem(m);
1973 			} else {
1974 				m->m_len -= ETHER_CRC_LEN;
1975 				sc->re_tail->m_next = m;
1976 			}
1977 			m = sc->re_head;
1978 			sc->re_head = sc->re_tail = NULL;
1979 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1980 		} else {
1981 			m->m_pkthdr.len = m->m_len =
1982 			    (total_len - ETHER_CRC_LEN);
1983 		}
1984 
1985 		ifp->if_ipackets++;
1986 		m->m_pkthdr.rcvif = ifp;
1987 
1988 		/* Do RX checksumming if enabled */
1989 
1990 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1991 			uint8_t packet_type;
1992 
1993 			packet_type = re_packet_type(sc, rxstat, rxctrl);
1994 
1995 			/* Check IP header checksum */
1996 			if (packet_type & RE_IP4_PACKET) {
1997 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1998 				if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
1999 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2000 			}
2001 
2002 			/* Check TCP/UDP checksum */
2003 			if (((packet_type & RE_TCP_PACKET) &&
2004 			     (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2005 			    ((packet_type & RE_UDP_PACKET) &&
2006 			     (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2007 				m->m_pkthdr.csum_flags |=
2008 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2009 				    CSUM_FRAG_NOT_CHECKED;
2010 				m->m_pkthdr.csum_data = 0xffff;
2011 			}
2012 		}
2013 
2014 		if (rxctrl & RE_RDESC_CTL_HASTAG) {
2015 			m->m_flags |= M_VLANTAG;
2016 			m->m_pkthdr.ether_vlantag =
2017 				be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2018 		}
2019 		ifp->if_input(ifp, m);
2020 	}
2021 
2022 	sc->re_ldata.re_rx_prodidx = i;
2023 
2024 	return rx;
2025 }
2026 
2027 #undef RE_IP4_PACKET
2028 #undef RE_TCP_PACKET
2029 #undef RE_UDP_PACKET
2030 
2031 static int
2032 re_tx_collect(struct re_softc *sc)
2033 {
2034 	struct ifnet *ifp = &sc->arpcom.ac_if;
2035 	uint32_t txstat;
2036 	int idx, tx = 0;
2037 
2038 	for (idx = sc->re_ldata.re_tx_considx;
2039 	     sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2040 	     RE_TXDESC_INC(sc, idx)) {
2041 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2042 		if (txstat & RE_TDESC_CMD_OWN)
2043 			break;
2044 
2045 		tx = 1;
2046 
2047 		sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2048 
2049 		/*
2050 		 * We only stash mbufs in the last descriptor
2051 		 * in a fragment chain, which also happens to
2052 		 * be the only place where the TX status bits
2053 		 * are valid.
2054 		 */
2055 		if (txstat & RE_TDESC_CMD_EOF) {
2056 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2057 			    sc->re_ldata.re_tx_dmamap[idx]);
2058 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2059 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
2060 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2061 			    RE_TDESC_STAT_COLCNT))
2062 				ifp->if_collisions++;
2063 			if (txstat & RE_TDESC_STAT_TXERRSUM)
2064 				ifp->if_oerrors++;
2065 			else
2066 				ifp->if_opackets++;
2067 		}
2068 		sc->re_ldata.re_tx_free++;
2069 	}
2070 	sc->re_ldata.re_tx_considx = idx;
2071 
2072 	return tx;
2073 }
2074 
2075 static int
2076 re_txeof(struct re_softc *sc)
2077 {
2078 	struct ifnet *ifp = &sc->arpcom.ac_if;
2079 	int tx;
2080 
2081 	tx = re_tx_collect(sc);
2082 
2083 	/* There is enough free TX descs */
2084 	if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2085 		ifp->if_flags &= ~IFF_OACTIVE;
2086 
2087 	/*
2088 	 * Some chips will ignore a second TX request issued while an
2089 	 * existing transmission is in progress. If the transmitter goes
2090 	 * idle but there are still packets waiting to be sent, we need
2091 	 * to restart the channel here to flush them out. This only seems
2092 	 * to be required with the PCIe devices.
2093 	 */
2094 	if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2095 		CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2096 	else
2097 		ifp->if_timer = 0;
2098 
2099 	return tx;
2100 }
2101 
2102 static void
2103 re_tick(void *xsc)
2104 {
2105 	struct re_softc *sc = xsc;
2106 
2107 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2108 	re_tick_serialized(xsc);
2109 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2110 }
2111 
2112 static void
2113 re_tick_serialized(void *xsc)
2114 {
2115 	struct re_softc *sc = xsc;
2116 	struct ifnet *ifp = &sc->arpcom.ac_if;
2117 	struct mii_data *mii;
2118 
2119 	ASSERT_SERIALIZED(ifp->if_serializer);
2120 
2121 	mii = device_get_softc(sc->re_miibus);
2122 	mii_tick(mii);
2123 	if (sc->re_flags & RE_F_LINKED) {
2124 		if (!(mii->mii_media_status & IFM_ACTIVE))
2125 			sc->re_flags &= ~RE_F_LINKED;
2126 	} else {
2127 		if (mii->mii_media_status & IFM_ACTIVE &&
2128 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2129 			sc->re_flags |= RE_F_LINKED;
2130 			if (!ifq_is_empty(&ifp->if_snd))
2131 				if_devstart(ifp);
2132 		}
2133 	}
2134 
2135 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2136 }
2137 
2138 #ifdef DEVICE_POLLING
2139 
2140 static void
2141 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2142 {
2143 	struct re_softc *sc = ifp->if_softc;
2144 
2145 	ASSERT_SERIALIZED(ifp->if_serializer);
2146 
2147 	switch(cmd) {
2148 	case POLL_REGISTER:
2149 		/* disable interrupts */
2150 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2151 		break;
2152 
2153 	case POLL_DEREGISTER:
2154 		/* enable interrupts */
2155 		re_setup_intr(sc, 1, sc->re_imtype);
2156 		break;
2157 
2158 	default:
2159 		sc->rxcycles = count;
2160 		re_rxeof(sc);
2161 		re_txeof(sc);
2162 
2163 		if (!ifq_is_empty(&ifp->if_snd))
2164 			if_devstart(ifp);
2165 
2166 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2167 			uint16_t       status;
2168 
2169 			status = CSR_READ_2(sc, RE_ISR);
2170 			if (status == 0xffff)
2171 				return;
2172 			if (status)
2173 				CSR_WRITE_2(sc, RE_ISR, status);
2174 
2175 			/*
2176 			 * XXX check behaviour on receiver stalls.
2177 			 */
2178 
2179 			if (status & RE_ISR_SYSTEM_ERR)
2180 				re_init(sc);
2181 		}
2182 		break;
2183 	}
2184 }
2185 #endif /* DEVICE_POLLING */
2186 
2187 static void
2188 re_intr(void *arg)
2189 {
2190 	struct re_softc	*sc = arg;
2191 	struct ifnet *ifp = &sc->arpcom.ac_if;
2192 	uint16_t status;
2193 	int rx, tx;
2194 
2195 	ASSERT_SERIALIZED(ifp->if_serializer);
2196 
2197 	if ((sc->re_flags & RE_F_SUSPENDED) ||
2198 	    (ifp->if_flags & IFF_RUNNING) == 0)
2199 		return;
2200 
2201 	rx = tx = 0;
2202 	for (;;) {
2203 		status = CSR_READ_2(sc, RE_ISR);
2204 		/* If the card has gone away the read returns 0xffff. */
2205 		if (status == 0xffff)
2206 			break;
2207 		if (status)
2208 			CSR_WRITE_2(sc, RE_ISR, status);
2209 
2210 		if ((status & sc->re_intrs) == 0)
2211 			break;
2212 
2213 		if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2214 			rx |= re_rxeof(sc);
2215 
2216 		if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2217 			tx |= re_txeof(sc);
2218 
2219 		if (status & RE_ISR_SYSTEM_ERR)
2220 			re_init(sc);
2221 
2222 		if (status & RE_ISR_LINKCHG) {
2223 			callout_stop(&sc->re_timer);
2224 			re_tick_serialized(sc);
2225 		}
2226 	}
2227 
2228 	if (sc->re_imtype == RE_IMTYPE_SIM) {
2229 		if ((sc->re_flags & RE_F_TIMER_INTR)) {
2230 			if ((tx | rx) == 0) {
2231 				/*
2232 				 * Nothing needs to be processed, fallback
2233 				 * to use TX/RX interrupts.
2234 				 */
2235 				re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2236 
2237 				/*
2238 				 * Recollect, mainly to avoid the possible
2239 				 * race introduced by changing interrupt
2240 				 * masks.
2241 				 */
2242 				re_rxeof(sc);
2243 				tx = re_txeof(sc);
2244 			} else {
2245 				CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2246 			}
2247 		} else if (tx | rx) {
2248 			/*
2249 			 * Assume that using simulated interrupt moderation
2250 			 * (hardware timer based) could reduce the interript
2251 			 * rate.
2252 			 */
2253 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2254 		}
2255 	}
2256 
2257 	if (tx && !ifq_is_empty(&ifp->if_snd))
2258 		if_devstart(ifp);
2259 }
2260 
2261 static int
2262 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2263 {
2264 	struct mbuf *m = *m_head;
2265 	bus_dma_segment_t segs[RE_MAXSEGS];
2266 	bus_dmamap_t map;
2267 	int error, maxsegs, idx, i, nsegs;
2268 	struct re_desc *d, *tx_ring;
2269 	uint32_t cmd_csum, ctl_csum, vlantag;
2270 
2271 	KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2272 		("not enough free TX desc"));
2273 
2274 	map = sc->re_ldata.re_tx_dmamap[*idx0];
2275 
2276 	/*
2277 	 * Set up checksum offload. Note: checksum offload bits must
2278 	 * appear in all descriptors of a multi-descriptor transmit
2279 	 * attempt. (This is according to testing done with an 8169
2280 	 * chip. I'm not sure if this is a requirement or a bug.)
2281 	 */
2282 	cmd_csum = ctl_csum = 0;
2283 	if (m->m_pkthdr.csum_flags & CSUM_IP) {
2284 		cmd_csum |= RE_TDESC_CMD_IPCSUM;
2285 		ctl_csum |= RE_TDESC_CTL_IPCSUM;
2286 	}
2287 	if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2288 		cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2289 		ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2290 	}
2291 	if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2292 		cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2293 		ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2294 	}
2295 
2296 	/* For MAC2 chips, csum flags are set on re_control */
2297 	if (sc->re_caps & RE_C_MAC2)
2298 		cmd_csum = 0;
2299 	else
2300 		ctl_csum = 0;
2301 
2302 	if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2303 		/*
2304 		 * With some of the RealTek chips, using the checksum offload
2305 		 * support in conjunction with the autopadding feature results
2306 		 * in the transmission of corrupt frames. For example, if we
2307 		 * need to send a really small IP fragment that's less than 60
2308 		 * bytes in size, and IP header checksumming is enabled, the
2309 		 * resulting ethernet frame that appears on the wire will
2310 		 * have garbled payload. To work around this, if TX checksum
2311 		 * offload is enabled, we always manually pad short frames out
2312 		 * to the minimum ethernet frame size.
2313 		 *
2314 		 * Note: this appears unnecessary for TCP, and doing it for TCP
2315 		 * with PCIe adapters seems to result in bad checksums.
2316 		 */
2317 		if ((m->m_pkthdr.csum_flags &
2318 		     (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2319 		    (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2320 		    m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2321 			error = m_devpad(m, RE_MIN_FRAMELEN);
2322 			if (error)
2323 				goto back;
2324 		}
2325 	}
2326 
2327 	vlantag = 0;
2328 	if (m->m_flags & M_VLANTAG) {
2329 		vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2330 			  RE_TDESC_CTL_INSTAG;
2331 	}
2332 
2333 	maxsegs = sc->re_ldata.re_tx_free;
2334 	if (maxsegs > RE_MAXSEGS)
2335 		maxsegs = RE_MAXSEGS;
2336 
2337 	error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2338 			m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2339 	if (error)
2340 		goto back;
2341 
2342 	m = *m_head;
2343 	bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2344 
2345 	/*
2346 	 * Map the segment array into descriptors.  We also keep track
2347 	 * of the end of the ring and set the end-of-ring bits as needed,
2348 	 * and we set the ownership bits in all except the very first
2349 	 * descriptor, whose ownership bits will be turned on later.
2350 	 */
2351 	tx_ring = sc->re_ldata.re_tx_list;
2352 	idx = *idx0;
2353 	i = 0;
2354 	for (;;) {
2355 		uint32_t cmdstat;
2356 
2357 		d = &tx_ring[idx];
2358 
2359 		cmdstat = segs[i].ds_len;
2360 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2361 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2362 		if (i == 0)
2363 			cmdstat |= RE_TDESC_CMD_SOF;
2364 		else
2365 			cmdstat |= RE_TDESC_CMD_OWN;
2366 		if (idx == (sc->re_tx_desc_cnt - 1))
2367 			cmdstat |= RE_TDESC_CMD_EOR;
2368 		d->re_cmdstat = htole32(cmdstat | cmd_csum);
2369 		d->re_control = htole32(ctl_csum | vlantag);
2370 
2371 		i++;
2372 		if (i == nsegs)
2373 			break;
2374 		RE_TXDESC_INC(sc, idx);
2375 	}
2376 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2377 
2378 	/* Transfer ownership of packet to the chip. */
2379 	d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2380 	if (*idx0 != idx)
2381 		tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2382 
2383 	/*
2384 	 * Insure that the map for this transmission
2385 	 * is placed at the array index of the last descriptor
2386 	 * in this chain.
2387 	 */
2388 	sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2389 	sc->re_ldata.re_tx_dmamap[idx] = map;
2390 
2391 	sc->re_ldata.re_tx_mbuf[idx] = m;
2392 	sc->re_ldata.re_tx_free -= nsegs;
2393 
2394 	RE_TXDESC_INC(sc, idx);
2395 	*idx0 = idx;
2396 back:
2397 	if (error) {
2398 		m_freem(*m_head);
2399 		*m_head = NULL;
2400 	}
2401 	return error;
2402 }
2403 
2404 /*
2405  * Main transmit routine for C+ and gigE NICs.
2406  */
2407 
2408 static void
2409 re_start(struct ifnet *ifp)
2410 {
2411 	struct re_softc	*sc = ifp->if_softc;
2412 	struct mbuf *m_head;
2413 	int idx, need_trans, oactive, error;
2414 
2415 	ASSERT_SERIALIZED(ifp->if_serializer);
2416 
2417 	if ((sc->re_flags & RE_F_LINKED) == 0) {
2418 		ifq_purge(&ifp->if_snd);
2419 		return;
2420 	}
2421 
2422 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
2423 		return;
2424 
2425 	idx = sc->re_ldata.re_tx_prodidx;
2426 
2427 	need_trans = 0;
2428 	oactive = 0;
2429 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2430 		if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2431 			if (!oactive) {
2432 				if (re_tx_collect(sc)) {
2433 					oactive = 1;
2434 					continue;
2435 				}
2436 			}
2437 			ifp->if_flags |= IFF_OACTIVE;
2438 			break;
2439 		}
2440 
2441 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2442 		if (m_head == NULL)
2443 			break;
2444 
2445 		error = re_encap(sc, &m_head, &idx);
2446 		if (error) {
2447 			/* m_head is freed by re_encap(), if we reach here */
2448 			ifp->if_oerrors++;
2449 
2450 			if (error == EFBIG && !oactive) {
2451 				if (re_tx_collect(sc)) {
2452 					oactive = 1;
2453 					continue;
2454 				}
2455 			}
2456 			ifp->if_flags |= IFF_OACTIVE;
2457 			break;
2458 		}
2459 
2460 		oactive = 0;
2461 		need_trans = 1;
2462 
2463 		/*
2464 		 * If there's a BPF listener, bounce a copy of this frame
2465 		 * to him.
2466 		 */
2467 		ETHER_BPF_MTAP(ifp, m_head);
2468 	}
2469 
2470 	/*
2471 	 * If sc->re_ldata.re_tx_mbuf[idx] is not NULL it is possible
2472 	 * for IFF_OACTIVE to not be properly set when we also do not
2473 	 * have sufficient free tx descriptors, leaving packet in
2474 	 * ifp->if_send.  This can cause if_start_dispatch() to loop
2475 	 * infinitely so make sure IFF_OACTIVE is set properly.
2476 	 */
2477 	if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2478 		if ((ifp->if_flags & IFF_OACTIVE) == 0) {
2479 			device_printf(sc->re_dev,
2480 				      "Debug: IFF_OACTIVE was not set when"
2481 				      " re_tx_free was below minimum!\n");
2482 			ifp->if_flags |= IFF_OACTIVE;
2483 		}
2484 	}
2485 	if (!need_trans)
2486 		return;
2487 
2488 	sc->re_ldata.re_tx_prodidx = idx;
2489 
2490 	/*
2491 	 * RealTek put the TX poll request register in a different
2492 	 * location on the 8169 gigE chip. I don't know why.
2493 	 */
2494 	CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2495 
2496 	/*
2497 	 * Set a timeout in case the chip goes out to lunch.
2498 	 */
2499 	ifp->if_timer = 5;
2500 }
2501 
2502 static void
2503 re_init(void *xsc)
2504 {
2505 	struct re_softc *sc = xsc;
2506 	struct ifnet *ifp = &sc->arpcom.ac_if;
2507 	struct mii_data *mii;
2508 	int error, framelen;
2509 
2510 	ASSERT_SERIALIZED(ifp->if_serializer);
2511 
2512 	mii = device_get_softc(sc->re_miibus);
2513 
2514 	/*
2515 	 * Cancel pending I/O and free all RX/TX buffers.
2516 	 */
2517 	re_stop(sc);
2518 
2519 	if (sc->re_caps & RE_C_CONTIGRX) {
2520 		if (ifp->if_mtu > ETHERMTU) {
2521 			KKASSERT(sc->re_ldata.re_jbuf != NULL);
2522 			sc->re_flags |= RE_F_USE_JPOOL;
2523 			sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2524 			sc->re_newbuf = re_newbuf_jumbo;
2525 		} else {
2526 			sc->re_flags &= ~RE_F_USE_JPOOL;
2527 			sc->re_rxbuf_size = MCLBYTES;
2528 			sc->re_newbuf = re_newbuf_std;
2529 		}
2530 	}
2531 
2532 	/*
2533 	 * Adjust max read request size according to MTU; mainly to
2534 	 * improve TX performance for common case (ETHERMTU) on GigE
2535 	 * NICs.  However, this could _not_ be done on 10/100 only
2536 	 * NICs; their DMA engines will malfunction using non-default
2537 	 * max read request size.
2538 	 */
2539 	if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2540 		if (ifp->if_mtu > ETHERMTU) {
2541 			/*
2542 			 * 512 seems to be the only value that works
2543 			 * reliably with jumbo frame
2544 			 */
2545 			pcie_set_max_readrq(sc->re_dev,
2546 				PCIEM_DEVCTL_MAX_READRQ_512);
2547 		} else {
2548 			pcie_set_max_readrq(sc->re_dev,
2549 				PCIEM_DEVCTL_MAX_READRQ_4096);
2550 		}
2551 	}
2552 
2553 	/*
2554 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2555 	 * RX checksum offload. We must configure the C+ register
2556 	 * before all others.
2557 	 */
2558 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2559 		    RE_CPLUSCMD_PCI_MRW |
2560 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2561 		     RE_CPLUSCMD_VLANSTRIP : 0) |
2562 		    (ifp->if_capenable & IFCAP_RXCSUM ?
2563 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
2564 
2565 	/*
2566 	 * Init our MAC address.  Even though the chipset
2567 	 * documentation doesn't mention it, we need to enter "Config
2568 	 * register write enable" mode to modify the ID registers.
2569 	 */
2570 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2571 	CSR_WRITE_4(sc, RE_IDR0,
2572 	    htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2573 	CSR_WRITE_2(sc, RE_IDR4,
2574 	    htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2575 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2576 
2577 	/*
2578 	 * For C+ mode, initialize the RX descriptors and mbufs.
2579 	 */
2580 	error = re_rx_list_init(sc);
2581 	if (error) {
2582 		re_stop(sc);
2583 		return;
2584 	}
2585 	error = re_tx_list_init(sc);
2586 	if (error) {
2587 		re_stop(sc);
2588 		return;
2589 	}
2590 
2591 	/*
2592 	 * Load the addresses of the RX and TX lists into the chip.
2593 	 */
2594 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2595 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2596 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2597 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2598 
2599 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2600 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2601 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2602 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2603 
2604 	/*
2605 	 * Enable transmit and receive.
2606 	 */
2607 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2608 
2609 	/*
2610 	 * Set the initial TX and RX configuration.
2611 	 */
2612 	if (sc->re_flags & RE_F_TESTMODE) {
2613 		if (!RE_IS_8139CP(sc))
2614 			CSR_WRITE_4(sc, RE_TXCFG,
2615 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2616 		else
2617 			CSR_WRITE_4(sc, RE_TXCFG,
2618 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2619 	} else
2620 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2621 
2622 	framelen = RE_FRAMELEN(ifp->if_mtu);
2623 	if (framelen < MCLBYTES)
2624 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2625 	else
2626 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2627 
2628 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2629 
2630 	/*
2631 	 * Program the multicast filter, if necessary.
2632 	 */
2633 	re_setmulti(sc);
2634 
2635 #ifdef DEVICE_POLLING
2636 	/*
2637 	 * Disable interrupts if we are polling.
2638 	 */
2639 	if (ifp->if_flags & IFF_POLLING)
2640 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2641 	else	/* otherwise ... */
2642 #endif /* DEVICE_POLLING */
2643 	/*
2644 	 * Enable interrupts.
2645 	 */
2646 	if (sc->re_flags & RE_F_TESTMODE)
2647 		CSR_WRITE_2(sc, RE_IMR, 0);
2648 	else
2649 		re_setup_intr(sc, 1, sc->re_imtype);
2650 	CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2651 
2652 	/* Start RX/TX process. */
2653 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2654 
2655 #ifdef notdef
2656 	/* Enable receiver and transmitter. */
2657 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2658 #endif
2659 
2660 	/*
2661 	 * For 8169 gigE NICs, set the max allowed RX packet
2662 	 * size so we can receive jumbo frames.
2663 	 */
2664 	if (!RE_IS_8139CP(sc)) {
2665 		if (sc->re_caps & RE_C_CONTIGRX)
2666 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2667 		else
2668 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2669 	}
2670 
2671 	if (sc->re_flags & RE_F_TESTMODE)
2672 		return;
2673 
2674 	mii_mediachg(mii);
2675 
2676 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2677 
2678 	ifp->if_flags |= IFF_RUNNING;
2679 	ifp->if_flags &= ~IFF_OACTIVE;
2680 
2681 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2682 }
2683 
2684 /*
2685  * Set media options.
2686  */
2687 static int
2688 re_ifmedia_upd(struct ifnet *ifp)
2689 {
2690 	struct re_softc *sc = ifp->if_softc;
2691 	struct mii_data *mii;
2692 
2693 	ASSERT_SERIALIZED(ifp->if_serializer);
2694 
2695 	mii = device_get_softc(sc->re_miibus);
2696 	mii_mediachg(mii);
2697 
2698 	return(0);
2699 }
2700 
2701 /*
2702  * Report current media status.
2703  */
2704 static void
2705 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2706 {
2707 	struct re_softc *sc = ifp->if_softc;
2708 	struct mii_data *mii;
2709 
2710 	ASSERT_SERIALIZED(ifp->if_serializer);
2711 
2712 	mii = device_get_softc(sc->re_miibus);
2713 
2714 	mii_pollstat(mii);
2715 	ifmr->ifm_active = mii->mii_media_active;
2716 	ifmr->ifm_status = mii->mii_media_status;
2717 }
2718 
2719 static int
2720 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2721 {
2722 	struct re_softc *sc = ifp->if_softc;
2723 	struct ifreq *ifr = (struct ifreq *) data;
2724 	struct mii_data *mii;
2725 	int error = 0, mask;
2726 
2727 	ASSERT_SERIALIZED(ifp->if_serializer);
2728 
2729 	switch(command) {
2730 	case SIOCSIFMTU:
2731 		if (ifr->ifr_mtu > sc->re_maxmtu) {
2732 			error = EINVAL;
2733 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2734 			ifp->if_mtu = ifr->ifr_mtu;
2735 			if (ifp->if_flags & IFF_RUNNING)
2736 				ifp->if_init(sc);
2737 		}
2738 		break;
2739 
2740 	case SIOCSIFFLAGS:
2741 		if (ifp->if_flags & IFF_UP) {
2742 			if (ifp->if_flags & IFF_RUNNING) {
2743 				if ((ifp->if_flags ^ sc->re_if_flags) &
2744 				    (IFF_PROMISC | IFF_ALLMULTI))
2745 					re_setmulti(sc);
2746 			} else {
2747 				re_init(sc);
2748 			}
2749 		} else if (ifp->if_flags & IFF_RUNNING) {
2750 			re_stop(sc);
2751 		}
2752 		sc->re_if_flags = ifp->if_flags;
2753 		break;
2754 
2755 	case SIOCADDMULTI:
2756 	case SIOCDELMULTI:
2757 		re_setmulti(sc);
2758 		break;
2759 
2760 	case SIOCGIFMEDIA:
2761 	case SIOCSIFMEDIA:
2762 		mii = device_get_softc(sc->re_miibus);
2763 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2764 		break;
2765 
2766 	case SIOCSIFCAP:
2767 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2768 		       ifp->if_capabilities;
2769 		ifp->if_capenable ^= mask;
2770 
2771 		if (mask & IFCAP_HWCSUM) {
2772 			if (ifp->if_capenable & IFCAP_TXCSUM)
2773 				ifp->if_hwassist = RE_CSUM_FEATURES;
2774 			else
2775 				ifp->if_hwassist = 0;
2776 		}
2777 		if (mask && (ifp->if_flags & IFF_RUNNING))
2778 			re_init(sc);
2779 		break;
2780 
2781 	default:
2782 		error = ether_ioctl(ifp, command, data);
2783 		break;
2784 	}
2785 	return(error);
2786 }
2787 
2788 static void
2789 re_watchdog(struct ifnet *ifp)
2790 {
2791 	struct re_softc *sc = ifp->if_softc;
2792 
2793 	ASSERT_SERIALIZED(ifp->if_serializer);
2794 
2795 	if_printf(ifp, "watchdog timeout\n");
2796 
2797 	ifp->if_oerrors++;
2798 
2799 	re_txeof(sc);
2800 	re_rxeof(sc);
2801 
2802 	re_init(sc);
2803 
2804 	if (!ifq_is_empty(&ifp->if_snd))
2805 		if_devstart(ifp);
2806 }
2807 
2808 /*
2809  * Stop the adapter and free any mbufs allocated to the
2810  * RX and TX lists.
2811  */
2812 static void
2813 re_stop(struct re_softc *sc)
2814 {
2815 	struct ifnet *ifp = &sc->arpcom.ac_if;
2816 	int i;
2817 
2818 	ASSERT_SERIALIZED(ifp->if_serializer);
2819 
2820 	/* Reset the adapter. */
2821 	re_reset(sc, ifp->if_flags & IFF_RUNNING);
2822 
2823 	ifp->if_timer = 0;
2824 	callout_stop(&sc->re_timer);
2825 
2826 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2827 	sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2828 
2829 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2830 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2831 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2832 
2833 	re_free_rxchain(sc);
2834 
2835 	/* Free the TX list buffers. */
2836 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2837 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2838 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2839 					  sc->re_ldata.re_tx_dmamap[i]);
2840 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2841 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2842 		}
2843 	}
2844 
2845 	/* Free the RX list buffers. */
2846 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2847 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2848 			if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2849 				bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2850 						  sc->re_ldata.re_rx_dmamap[i]);
2851 			}
2852 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2853 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2854 		}
2855 	}
2856 }
2857 
2858 /*
2859  * Device suspend routine.  Stop the interface and save some PCI
2860  * settings in case the BIOS doesn't restore them properly on
2861  * resume.
2862  */
2863 static int
2864 re_suspend(device_t dev)
2865 {
2866 #ifndef BURN_BRIDGES
2867 	int i;
2868 #endif
2869 	struct re_softc *sc = device_get_softc(dev);
2870 	struct ifnet *ifp = &sc->arpcom.ac_if;
2871 
2872 	lwkt_serialize_enter(ifp->if_serializer);
2873 
2874 	re_stop(sc);
2875 
2876 #ifndef BURN_BRIDGES
2877 	for (i = 0; i < 5; i++)
2878 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2879 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2880 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2881 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2882 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2883 #endif
2884 
2885 	sc->re_flags |= RE_F_SUSPENDED;
2886 
2887 	lwkt_serialize_exit(ifp->if_serializer);
2888 
2889 	return (0);
2890 }
2891 
2892 /*
2893  * Device resume routine.  Restore some PCI settings in case the BIOS
2894  * doesn't, re-enable busmastering, and restart the interface if
2895  * appropriate.
2896  */
2897 static int
2898 re_resume(device_t dev)
2899 {
2900 	struct re_softc *sc = device_get_softc(dev);
2901 	struct ifnet *ifp = &sc->arpcom.ac_if;
2902 #ifndef BURN_BRIDGES
2903 	int i;
2904 #endif
2905 
2906 	lwkt_serialize_enter(ifp->if_serializer);
2907 
2908 #ifndef BURN_BRIDGES
2909 	/* better way to do this? */
2910 	for (i = 0; i < 5; i++)
2911 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2912 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2913 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2914 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2915 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2916 
2917 	/* reenable busmastering */
2918 	pci_enable_busmaster(dev);
2919 	pci_enable_io(dev, SYS_RES_IOPORT);
2920 #endif
2921 
2922 	/* reinitialize interface if necessary */
2923 	if (ifp->if_flags & IFF_UP)
2924 		re_init(sc);
2925 
2926 	sc->re_flags &= ~RE_F_SUSPENDED;
2927 
2928 	lwkt_serialize_exit(ifp->if_serializer);
2929 
2930 	return (0);
2931 }
2932 
2933 /*
2934  * Stop all chip I/O so that the kernel's probe routines don't
2935  * get confused by errant DMAs when rebooting.
2936  */
2937 static void
2938 re_shutdown(device_t dev)
2939 {
2940 	struct re_softc *sc = device_get_softc(dev);
2941 	struct ifnet *ifp = &sc->arpcom.ac_if;
2942 
2943 	lwkt_serialize_enter(ifp->if_serializer);
2944 	re_stop(sc);
2945 	lwkt_serialize_exit(ifp->if_serializer);
2946 }
2947 
2948 static int
2949 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
2950 {
2951 	struct re_softc *sc = arg1;
2952 
2953 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
2954 }
2955 
2956 static int
2957 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
2958 {
2959 	struct re_softc *sc = arg1;
2960 
2961 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
2962 }
2963 
2964 static int
2965 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
2966 {
2967 	struct re_softc *sc = arg1;
2968 	struct ifnet *ifp = &sc->arpcom.ac_if;
2969 	int error, v;
2970 
2971 	lwkt_serialize_enter(ifp->if_serializer);
2972 
2973 	v = *hwtime;
2974 	error = sysctl_handle_int(oidp, &v, 0, req);
2975 	if (error || req->newptr == NULL)
2976 		goto back;
2977 
2978 	if (v <= 0) {
2979 		error = EINVAL;
2980 		goto back;
2981 	}
2982 
2983 	if (v != *hwtime) {
2984 		*hwtime = v;
2985 
2986 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
2987 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
2988 			re_setup_hw_im(sc);
2989 	}
2990 back:
2991 	lwkt_serialize_exit(ifp->if_serializer);
2992 	return error;
2993 }
2994 
2995 static int
2996 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
2997 {
2998 	struct re_softc *sc = arg1;
2999 	struct ifnet *ifp = &sc->arpcom.ac_if;
3000 	int error, v;
3001 
3002 	lwkt_serialize_enter(ifp->if_serializer);
3003 
3004 	v = sc->re_sim_time;
3005 	error = sysctl_handle_int(oidp, &v, 0, req);
3006 	if (error || req->newptr == NULL)
3007 		goto back;
3008 
3009 	if (v <= 0) {
3010 		error = EINVAL;
3011 		goto back;
3012 	}
3013 
3014 	if (v != sc->re_sim_time) {
3015 		sc->re_sim_time = v;
3016 
3017 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3018 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3019 #ifdef foo
3020 			int reg;
3021 
3022 			/*
3023 			 * Following code causes various strange
3024 			 * performance problems.  Hmm ...
3025 			 */
3026 			CSR_WRITE_2(sc, RE_IMR, 0);
3027 			if (!RE_IS_8139CP(sc))
3028 				reg = RE_TIMERINT_8169;
3029 			else
3030 				reg = RE_TIMERINT;
3031 			CSR_WRITE_4(sc, reg, 0);
3032 			CSR_READ_4(sc, reg); /* flush */
3033 
3034 			CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3035 			re_setup_sim_im(sc);
3036 #else
3037 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3038 			DELAY(10);
3039 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3040 #endif
3041 		}
3042 	}
3043 back:
3044 	lwkt_serialize_exit(ifp->if_serializer);
3045 	return error;
3046 }
3047 
3048 static int
3049 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3050 {
3051 	struct re_softc *sc = arg1;
3052 	struct ifnet *ifp = &sc->arpcom.ac_if;
3053 	int error, v;
3054 
3055 	lwkt_serialize_enter(ifp->if_serializer);
3056 
3057 	v = sc->re_imtype;
3058 	error = sysctl_handle_int(oidp, &v, 0, req);
3059 	if (error || req->newptr == NULL)
3060 		goto back;
3061 
3062 	if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3063 		error = EINVAL;
3064 		goto back;
3065 	}
3066 	if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3067 		/* Can't do hardware interrupt moderation */
3068 		error = EOPNOTSUPP;
3069 		goto back;
3070 	}
3071 
3072 	if (v != sc->re_imtype) {
3073 		sc->re_imtype = v;
3074 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3075 		    IFF_RUNNING)
3076 			re_setup_intr(sc, 1, sc->re_imtype);
3077 	}
3078 back:
3079 	lwkt_serialize_exit(ifp->if_serializer);
3080 	return error;
3081 }
3082 
3083 static void
3084 re_setup_hw_im(struct re_softc *sc)
3085 {
3086 	KKASSERT(sc->re_caps & RE_C_HWIM);
3087 
3088 	/*
3089 	 * Interrupt moderation
3090 	 *
3091 	 * 0xABCD
3092 	 * A - unknown (maybe TX related)
3093 	 * B - TX timer (unit: 25us)
3094 	 * C - unknown (maybe RX related)
3095 	 * D - RX timer (unit: 25us)
3096 	 *
3097 	 *
3098 	 * re(4)'s interrupt moderation is actually controlled by
3099 	 * two variables, like most other NICs (bge, bce etc.)
3100 	 * o  timer
3101 	 * o  number of packets [P]
3102 	 *
3103 	 * The logic relationship between these two variables is
3104 	 * similar to other NICs too:
3105 	 * if (timer expire || packets > [P])
3106 	 *     Interrupt is delivered
3107 	 *
3108 	 * Currently we only know how to set 'timer', but not
3109 	 * 'number of packets', which should be ~30, as far as I
3110 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3111 	 */
3112 	CSR_WRITE_2(sc, RE_IM,
3113 		    RE_IM_RXTIME(sc->re_rx_time) |
3114 		    RE_IM_TXTIME(sc->re_tx_time) |
3115 		    RE_IM_MAGIC);
3116 }
3117 
3118 static void
3119 re_disable_hw_im(struct re_softc *sc)
3120 {
3121 	if (sc->re_caps & RE_C_HWIM)
3122 		CSR_WRITE_2(sc, RE_IM, 0);
3123 }
3124 
3125 static void
3126 re_setup_sim_im(struct re_softc *sc)
3127 {
3128 	if (!RE_IS_8139CP(sc)) {
3129 		uint32_t ticks;
3130 
3131 		/*
3132 		 * Datasheet says tick decreases at bus speed,
3133 		 * but it seems the clock runs a little bit
3134 		 * faster, so we do some compensation here.
3135 		 */
3136 		ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3137 		CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3138 	} else {
3139 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3140 	}
3141 	CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3142 	sc->re_flags |= RE_F_TIMER_INTR;
3143 }
3144 
3145 static void
3146 re_disable_sim_im(struct re_softc *sc)
3147 {
3148 	if (!RE_IS_8139CP(sc))
3149 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3150 	else
3151 		CSR_WRITE_4(sc, RE_TIMERINT, 0);
3152 	sc->re_flags &= ~RE_F_TIMER_INTR;
3153 }
3154 
3155 static void
3156 re_config_imtype(struct re_softc *sc, int imtype)
3157 {
3158 	switch (imtype) {
3159 	case RE_IMTYPE_HW:
3160 		KKASSERT(sc->re_caps & RE_C_HWIM);
3161 		/* FALL THROUGH */
3162 	case RE_IMTYPE_NONE:
3163 		sc->re_intrs = RE_INTRS;
3164 		sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3165 				RE_ISR_RX_OVERRUN;
3166 		sc->re_tx_ack = RE_ISR_TX_OK;
3167 		break;
3168 
3169 	case RE_IMTYPE_SIM:
3170 		sc->re_intrs = RE_INTRS_TIMER;
3171 		sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3172 		sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3173 		break;
3174 
3175 	default:
3176 		panic("%s: unknown imtype %d",
3177 		      sc->arpcom.ac_if.if_xname, imtype);
3178 	}
3179 }
3180 
3181 static void
3182 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3183 {
3184 	re_config_imtype(sc, imtype);
3185 
3186 	if (enable_intrs)
3187 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3188 	else
3189 		CSR_WRITE_2(sc, RE_IMR, 0);
3190 
3191 	switch (imtype) {
3192 	case RE_IMTYPE_NONE:
3193 		re_disable_sim_im(sc);
3194 		re_disable_hw_im(sc);
3195 		break;
3196 
3197 	case RE_IMTYPE_HW:
3198 		KKASSERT(sc->re_caps & RE_C_HWIM);
3199 		re_disable_sim_im(sc);
3200 		re_setup_hw_im(sc);
3201 		break;
3202 
3203 	case RE_IMTYPE_SIM:
3204 		re_disable_hw_im(sc);
3205 		re_setup_sim_im(sc);
3206 		break;
3207 
3208 	default:
3209 		panic("%s: unknown imtype %d",
3210 		      sc->arpcom.ac_if.if_xname, imtype);
3211 	}
3212 }
3213 
3214 static void
3215 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3216 {
3217 	int i;
3218 
3219 	if (sc->re_macver == RE_MACVER_11 ||
3220 	    sc->re_macver == RE_MACVER_12 ||
3221 	    sc->re_macver == RE_MACVER_30 ||
3222 	    sc->re_macver == RE_MACVER_31) {
3223 		uint16_t re_did;
3224 
3225 		re_get_eewidth(sc);
3226 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3227 		if (re_did == 0x8128) {
3228 			uint16_t as[ETHER_ADDR_LEN / 2];
3229 			int eaddr_off;
3230 
3231 			if (sc->re_macver == RE_MACVER_30 ||
3232 			    sc->re_macver == RE_MACVER_31)
3233 				eaddr_off = RE_EE_EADDR1;
3234 			else
3235 				eaddr_off = RE_EE_EADDR0;
3236 
3237 			/*
3238 			 * Get station address from the EEPROM.
3239 			 */
3240 			re_read_eeprom(sc, (caddr_t)as, eaddr_off, 3);
3241 			for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3242 				as[i] = le16toh(as[i]);
3243 			bcopy(as, eaddr, sizeof(eaddr));
3244 			return;
3245 		}
3246 	}
3247 
3248 	/*
3249 	 * Get station address from IDRx.
3250 	 */
3251 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
3252 		eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3253 }
3254 
3255 static int
3256 re_jpool_alloc(struct re_softc *sc)
3257 {
3258 	struct re_list_data *ldata = &sc->re_ldata;
3259 	struct re_jbuf *jbuf;
3260 	bus_addr_t paddr;
3261 	bus_size_t jpool_size;
3262 	bus_dmamem_t dmem;
3263 	caddr_t buf;
3264 	int i, error;
3265 
3266 	lwkt_serialize_init(&ldata->re_jbuf_serializer);
3267 
3268 	ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3269 				 M_DEVBUF, M_WAITOK | M_ZERO);
3270 
3271 	jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3272 
3273 	error = bus_dmamem_coherent(sc->re_parent_tag,
3274 			RE_RXBUF_ALIGN, 0,
3275 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3276 			jpool_size, BUS_DMA_WAITOK, &dmem);
3277 	if (error) {
3278 		device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3279 		return error;
3280 	}
3281 	ldata->re_jpool_tag = dmem.dmem_tag;
3282 	ldata->re_jpool_map = dmem.dmem_map;
3283 	ldata->re_jpool = dmem.dmem_addr;
3284 	paddr = dmem.dmem_busaddr;
3285 
3286 	/* ..and split it into 9KB chunks */
3287 	SLIST_INIT(&ldata->re_jbuf_free);
3288 
3289 	buf = ldata->re_jpool;
3290 	for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3291 		jbuf = &ldata->re_jbuf[i];
3292 
3293 		jbuf->re_sc = sc;
3294 		jbuf->re_inuse = 0;
3295 		jbuf->re_slot = i;
3296 		jbuf->re_buf = buf;
3297 		jbuf->re_paddr = paddr;
3298 
3299 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3300 
3301 		buf += RE_JBUF_SIZE;
3302 		paddr += RE_JBUF_SIZE;
3303 	}
3304 	return 0;
3305 }
3306 
3307 static void
3308 re_jpool_free(struct re_softc *sc)
3309 {
3310 	struct re_list_data *ldata = &sc->re_ldata;
3311 
3312 	if (ldata->re_jpool_tag != NULL) {
3313 		bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3314 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3315 				ldata->re_jpool_map);
3316 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3317 		ldata->re_jpool_tag = NULL;
3318 	}
3319 
3320 	if (ldata->re_jbuf != NULL) {
3321 		kfree(ldata->re_jbuf, M_DEVBUF);
3322 		ldata->re_jbuf = NULL;
3323 	}
3324 }
3325 
3326 static struct re_jbuf *
3327 re_jbuf_alloc(struct re_softc *sc)
3328 {
3329 	struct re_list_data *ldata = &sc->re_ldata;
3330 	struct re_jbuf *jbuf;
3331 
3332 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3333 
3334 	jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3335 	if (jbuf != NULL) {
3336 		SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3337 		jbuf->re_inuse = 1;
3338 	}
3339 
3340 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3341 
3342 	return jbuf;
3343 }
3344 
3345 static void
3346 re_jbuf_free(void *arg)
3347 {
3348 	struct re_jbuf *jbuf = arg;
3349 	struct re_softc *sc = jbuf->re_sc;
3350 	struct re_list_data *ldata = &sc->re_ldata;
3351 
3352 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3353 		panic("%s: free wrong jumbo buffer",
3354 		      sc->arpcom.ac_if.if_xname);
3355 	} else if (jbuf->re_inuse == 0) {
3356 		panic("%s: jumbo buffer already freed",
3357 		      sc->arpcom.ac_if.if_xname);
3358 	}
3359 
3360 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3361 	atomic_subtract_int(&jbuf->re_inuse, 1);
3362 	if (jbuf->re_inuse == 0)
3363 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3364 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3365 }
3366 
3367 static void
3368 re_jbuf_ref(void *arg)
3369 {
3370 	struct re_jbuf *jbuf = arg;
3371 	struct re_softc *sc = jbuf->re_sc;
3372 	struct re_list_data *ldata = &sc->re_ldata;
3373 
3374 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3375 		panic("%s: ref wrong jumbo buffer",
3376 		      sc->arpcom.ac_if.if_xname);
3377 	} else if (jbuf->re_inuse == 0) {
3378 		panic("%s: jumbo buffer already freed",
3379 		      sc->arpcom.ac_if.if_xname);
3380 	}
3381 	atomic_add_int(&jbuf->re_inuse, 1);
3382 }
3383