xref: /dragonfly/sys/dev/netif/re/if_re.c (revision a615f06f)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  * $DragonFly: src/sys/dev/netif/re/if_re.c,v 1.99 2008/10/30 11:27:40 sephe Exp $
37  */
38 
39 /*
40  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
41  *
42  * Written by Bill Paul <wpaul@windriver.com>
43  * Senior Networking Software Engineer
44  * Wind River Systems
45  */
46 
47 /*
48  * This driver is designed to support RealTek's next generation of
49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
52  *
53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54  * with the older 8139 family, however it also supports a special
55  * C+ mode of operation that provides several new performance enhancing
56  * features. These include:
57  *
58  *	o Descriptor based DMA mechanism. Each descriptor represents
59  *	  a single packet fragment. Data buffers may be aligned on
60  *	  any byte boundary.
61  *
62  *	o 64-bit DMA
63  *
64  *	o TCP/IP checksum offload for both RX and TX
65  *
66  *	o High and normal priority transmit DMA rings
67  *
68  *	o VLAN tag insertion and extraction
69  *
70  *	o TCP large send (segmentation offload)
71  *
72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73  * programming API is fairly straightforward. The RX filtering, EEPROM
74  * access and PHY access is the same as it is on the older 8139 series
75  * chips.
76  *
77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78  * same programming API and feature set as the 8139C+ with the following
79  * differences and additions:
80  *
81  *	o 1000Mbps mode
82  *
83  *	o Jumbo frames
84  *
85  * 	o GMII and TBI ports/registers for interfacing with copper
86  *	  or fiber PHYs
87  *
88  *      o RX and TX DMA rings can have up to 1024 descriptors
89  *        (the 8139C+ allows a maximum of 64)
90  *
91  *	o Slight differences in register layout from the 8139C+
92  *
93  * The TX start and timer interrupt registers are at different locations
94  * on the 8169 than they are on the 8139C+. Also, the status word in the
95  * RX descriptor has a slightly different bit layout. The 8169 does not
96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97  * copper gigE PHY.
98  *
99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100  * (the 'S' stands for 'single-chip'). These devices have the same
101  * programming API as the older 8169, but also have some vendor-specific
102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104  *
105  * This driver takes advantage of the RX and TX checksum offload and
106  * VLAN tag insertion/extraction features. It also implements TX
107  * interrupt moderation using the timer interrupt registers, which
108  * significantly reduces TX interrupt load. There is also support
109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
110  * jumbo frames larger than 7440, so the max MTU possible with this
111  * driver is 7422 bytes.
112  */
113 
114 #define _IP_VHL
115 
116 #include "opt_polling.h"
117 
118 #include <sys/param.h>
119 #include <sys/bus.h>
120 #include <sys/endian.h>
121 #include <sys/kernel.h>
122 #include <sys/in_cksum.h>
123 #include <sys/interrupt.h>
124 #include <sys/malloc.h>
125 #include <sys/mbuf.h>
126 #include <sys/rman.h>
127 #include <sys/serialize.h>
128 #include <sys/socket.h>
129 #include <sys/sockio.h>
130 #include <sys/sysctl.h>
131 
132 #include <net/bpf.h>
133 #include <net/ethernet.h>
134 #include <net/if.h>
135 #include <net/ifq_var.h>
136 #include <net/if_arp.h>
137 #include <net/if_dl.h>
138 #include <net/if_media.h>
139 #include <net/if_types.h>
140 #include <net/vlan/if_vlan_var.h>
141 #include <net/vlan/if_vlan_ether.h>
142 
143 #include <netinet/ip.h>
144 
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
147 
148 #include <bus/pci/pcidevs.h>
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 #include <dev/netif/re/if_rereg.h>
156 #include <dev/netif/re/if_revar.h>
157 
158 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
159 
160 /*
161  * Various supported device vendors/types and their names.
162  */
163 static const struct re_type {
164 	uint16_t	re_vid;
165 	uint16_t	re_did;
166 	const char	*re_name;
167 } re_devs[] = {
168 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
169 	  "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170 
171 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
172 	  "RealTek 8139C+ 10/100BaseTX" },
173 
174 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
175 	  "RealTek 810x PCIe 10/100baseTX" },
176 
177 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
178 	  "RealTek 8111/8168 PCIe Gigabit Ethernet" },
179 
180 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
181 	  "RealTek 8110/8169 Gigabit Ethernet" },
182 
183 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
184 	  "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
185 
186 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
187 	  "Corega CG-LAPCIGT Gigabit Ethernet" },
188 
189 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
190 	  "Linksys EG1032 Gigabit Ethernet" },
191 
192 	{ PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
193 	  "US Robotics 997902 Gigabit Ethernet" },
194 
195 	{ PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
196 	  "TTTech MC322 Gigabit Ethernet" },
197 
198 	{ 0, 0, NULL }
199 };
200 
201 static const struct re_hwrev re_hwrevs[] = {
202 	{ RE_HWREV_8139CPLUS,	RE_MACVER_UNKN,		ETHERMTU,
203 	  RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
204 
205 	{ RE_HWREV_8169,	RE_MACVER_UNKN,		ETHERMTU,
206 	  RE_C_HWCSUM | RE_C_8169 },
207 
208 	{ RE_HWREV_8110S,	RE_MACVER_03,		RE_MTU_6K,
209 	  RE_C_HWCSUM | RE_C_8169 },
210 
211 	{ RE_HWREV_8169S,	RE_MACVER_03,		RE_MTU_6K,
212 	  RE_C_HWCSUM | RE_C_8169 },
213 
214 	{ RE_HWREV_8169SB,	RE_MACVER_04,		RE_MTU_6K,
215 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
216 
217 	{ RE_HWREV_8169SC1,	RE_MACVER_05,		RE_MTU_6K,
218 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
219 
220 	{ RE_HWREV_8169SC2,	RE_MACVER_06,		RE_MTU_6K,
221 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
222 
223 	{ RE_HWREV_8168B1,	RE_MACVER_21,		RE_MTU_6K,
224 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
225 
226 	{ RE_HWREV_8168B2,	RE_MACVER_23,		RE_MTU_6K,
227 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
228 
229 	{ RE_HWREV_8168B3,	RE_MACVER_23,		RE_MTU_6K,
230 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
231 
232 	{ RE_HWREV_8168C,	RE_MACVER_29,		RE_MTU_6K,
233 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
234 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
235 
236 	{ RE_HWREV_8168CP,	RE_MACVER_2B,		RE_MTU_6K,
237 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
238 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
239 
240 	{ RE_HWREV_8168D,	RE_MACVER_2A,		RE_MTU_9K,
241 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
242 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
243 
244 	{ RE_HWREV_8100E,	RE_MACVER_UNKN,		ETHERMTU,
245 	  RE_C_HWCSUM | RE_C_FASTE },
246 
247 	{ RE_HWREV_8101E1,	RE_MACVER_16,		ETHERMTU,
248 	  RE_C_HWCSUM | RE_C_FASTE },
249 
250 	{ RE_HWREV_8101E2,	RE_MACVER_16,		ETHERMTU,
251 	  RE_C_HWCSUM | RE_C_FASTE },
252 
253 	{ RE_HWREV_8102E,	RE_MACVER_15,		ETHERMTU,
254 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
255 	  RE_C_FASTE },
256 
257 	{ RE_HWREV_8102EL,	RE_MACVER_15,		ETHERMTU,
258 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
259 	  RE_C_FASTE },
260 
261 	{ RE_HWREV_NULL, 0, 0, 0 }
262 };
263 
264 static int	re_probe(device_t);
265 static int	re_attach(device_t);
266 static int	re_detach(device_t);
267 static int	re_suspend(device_t);
268 static int	re_resume(device_t);
269 static void	re_shutdown(device_t);
270 
271 static void	re_dma_map_addr(void *, bus_dma_segment_t *, int, int);
272 static void	re_dma_map_desc(void *, bus_dma_segment_t *, int,
273 				bus_size_t, int);
274 static int	re_allocmem(device_t);
275 static void	re_freemem(device_t);
276 static void	re_freebufmem(struct re_softc *, int, int);
277 static int	re_encap(struct re_softc *, struct mbuf **, int *);
278 static int	re_newbuf_std(struct re_softc *, int, int);
279 static int	re_newbuf_jumbo(struct re_softc *, int, int);
280 static void	re_setup_rxdesc(struct re_softc *, int);
281 static int	re_rx_list_init(struct re_softc *);
282 static int	re_tx_list_init(struct re_softc *);
283 static int	re_rxeof(struct re_softc *);
284 static int	re_txeof(struct re_softc *);
285 static int	re_tx_collect(struct re_softc *);
286 static void	re_intr(void *);
287 static void	re_tick(void *);
288 static void	re_tick_serialized(void *);
289 
290 static void	re_start(struct ifnet *);
291 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
292 static void	re_init(void *);
293 static void	re_stop(struct re_softc *);
294 static void	re_watchdog(struct ifnet *);
295 static int	re_ifmedia_upd(struct ifnet *);
296 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
297 
298 static void	re_eeprom_putbyte(struct re_softc *, int);
299 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
300 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int);
301 static void	re_get_eewidth(struct re_softc *);
302 
303 static int	re_gmii_readreg(device_t, int, int);
304 static int	re_gmii_writereg(device_t, int, int, int);
305 
306 static int	re_miibus_readreg(device_t, int, int);
307 static int	re_miibus_writereg(device_t, int, int, int);
308 static void	re_miibus_statchg(device_t);
309 
310 static void	re_setmulti(struct re_softc *);
311 static void	re_reset(struct re_softc *, int);
312 static void	re_get_eaddr(struct re_softc *, uint8_t *);
313 
314 static void	re_setup_hw_im(struct re_softc *);
315 static void	re_setup_sim_im(struct re_softc *);
316 static void	re_disable_hw_im(struct re_softc *);
317 static void	re_disable_sim_im(struct re_softc *);
318 static void	re_config_imtype(struct re_softc *, int);
319 static void	re_setup_intr(struct re_softc *, int, int);
320 
321 static int	re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
322 static int	re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
323 static int	re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
324 static int	re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
325 static int	re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
326 
327 static int	re_jpool_alloc(struct re_softc *);
328 static void	re_jpool_free(struct re_softc *);
329 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
330 static void	re_jbuf_free(void *);
331 static void	re_jbuf_ref(void *);
332 
333 #ifdef RE_DIAG
334 static int	re_diag(struct re_softc *);
335 #endif
336 
337 #ifdef DEVICE_POLLING
338 static void	re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
339 #endif
340 
341 static device_method_t re_methods[] = {
342 	/* Device interface */
343 	DEVMETHOD(device_probe,		re_probe),
344 	DEVMETHOD(device_attach,	re_attach),
345 	DEVMETHOD(device_detach,	re_detach),
346 	DEVMETHOD(device_suspend,	re_suspend),
347 	DEVMETHOD(device_resume,	re_resume),
348 	DEVMETHOD(device_shutdown,	re_shutdown),
349 
350 	/* bus interface */
351 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
352 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
353 
354 	/* MII interface */
355 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
356 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
357 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
358 
359 	{ 0, 0 }
360 };
361 
362 static driver_t re_driver = {
363 	"re",
364 	re_methods,
365 	sizeof(struct re_softc)
366 };
367 
368 static devclass_t re_devclass;
369 
370 DECLARE_DUMMY_MODULE(if_re);
371 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, 0, 0);
372 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, 0, 0);
373 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
374 
375 static int	re_rx_desc_count = RE_RX_DESC_CNT_DEF;
376 static int	re_tx_desc_count = RE_TX_DESC_CNT_DEF;
377 
378 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
379 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
380 
381 #define EE_SET(x)	\
382 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
383 
384 #define EE_CLR(x)	\
385 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
386 
387 static __inline void
388 re_free_rxchain(struct re_softc *sc)
389 {
390 	if (sc->re_head != NULL) {
391 		m_freem(sc->re_head);
392 		sc->re_head = sc->re_tail = NULL;
393 	}
394 }
395 
396 /*
397  * Send a read command and address to the EEPROM, check for ACK.
398  */
399 static void
400 re_eeprom_putbyte(struct re_softc *sc, int addr)
401 {
402 	int d, i;
403 
404 	d = addr | (RE_9346_READ << sc->re_eewidth);
405 
406 	/*
407 	 * Feed in each bit and strobe the clock.
408 	 */
409 	for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
410 		if (d & i)
411 			EE_SET(RE_EE_DATAIN);
412 		else
413 			EE_CLR(RE_EE_DATAIN);
414 		DELAY(100);
415 		EE_SET(RE_EE_CLK);
416 		DELAY(150);
417 		EE_CLR(RE_EE_CLK);
418 		DELAY(100);
419 	}
420 }
421 
422 /*
423  * Read a word of data stored in the EEPROM at address 'addr.'
424  */
425 static void
426 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
427 {
428 	int i;
429 	uint16_t word = 0;
430 
431 	/*
432 	 * Send address of word we want to read.
433 	 */
434 	re_eeprom_putbyte(sc, addr);
435 
436 	/*
437 	 * Start reading bits from EEPROM.
438 	 */
439 	for (i = 0x8000; i != 0; i >>= 1) {
440 		EE_SET(RE_EE_CLK);
441 		DELAY(100);
442 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
443 			word |= i;
444 		EE_CLR(RE_EE_CLK);
445 		DELAY(100);
446 	}
447 
448 	*dest = word;
449 }
450 
451 /*
452  * Read a sequence of words from the EEPROM.
453  */
454 static void
455 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
456 {
457 	int i;
458 	uint16_t word = 0, *ptr;
459 
460 	CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
461 	DELAY(100);
462 
463 	for (i = 0; i < cnt; i++) {
464 		CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
465 		re_eeprom_getword(sc, off + i, &word);
466 		CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
467 		ptr = (uint16_t *)(dest + (i * 2));
468 		*ptr = word;
469 	}
470 
471 	CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
472 }
473 
474 static void
475 re_get_eewidth(struct re_softc *sc)
476 {
477 	uint16_t re_did = 0;
478 
479 	sc->re_eewidth = 6;
480 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
481 	if (re_did != 0x8129)
482 		sc->re_eewidth = 8;
483 }
484 
485 static int
486 re_gmii_readreg(device_t dev, int phy, int reg)
487 {
488 	struct re_softc *sc = device_get_softc(dev);
489 	u_int32_t rval;
490 	int i;
491 
492 	if (phy != 1)
493 		return(0);
494 
495 	/* Let the rgephy driver read the GMEDIASTAT register */
496 
497 	if (reg == RE_GMEDIASTAT)
498 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
499 
500 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
501 	DELAY(1000);
502 
503 	for (i = 0; i < RE_TIMEOUT; i++) {
504 		rval = CSR_READ_4(sc, RE_PHYAR);
505 		if (rval & RE_PHYAR_BUSY)
506 			break;
507 		DELAY(100);
508 	}
509 
510 	if (i == RE_TIMEOUT) {
511 		device_printf(dev, "PHY read failed\n");
512 		return(0);
513 	}
514 
515 	return(rval & RE_PHYAR_PHYDATA);
516 }
517 
518 static int
519 re_gmii_writereg(device_t dev, int phy, int reg, int data)
520 {
521 	struct re_softc *sc = device_get_softc(dev);
522 	uint32_t rval;
523 	int i;
524 
525 	CSR_WRITE_4(sc, RE_PHYAR,
526 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
527 	DELAY(1000);
528 
529 	for (i = 0; i < RE_TIMEOUT; i++) {
530 		rval = CSR_READ_4(sc, RE_PHYAR);
531 		if ((rval & RE_PHYAR_BUSY) == 0)
532 			break;
533 		DELAY(100);
534 	}
535 
536 	if (i == RE_TIMEOUT)
537 		device_printf(dev, "PHY write failed\n");
538 
539 	return(0);
540 }
541 
542 static int
543 re_miibus_readreg(device_t dev, int phy, int reg)
544 {
545 	struct re_softc	*sc = device_get_softc(dev);
546 	uint16_t rval = 0;
547 	uint16_t re8139_reg = 0;
548 
549 	if (!RE_IS_8139CP(sc)) {
550 		rval = re_gmii_readreg(dev, phy, reg);
551 		return(rval);
552 	}
553 
554 	/* Pretend the internal PHY is only at address 0 */
555 	if (phy)
556 		return(0);
557 
558 	switch(reg) {
559 	case MII_BMCR:
560 		re8139_reg = RE_BMCR;
561 		break;
562 	case MII_BMSR:
563 		re8139_reg = RE_BMSR;
564 		break;
565 	case MII_ANAR:
566 		re8139_reg = RE_ANAR;
567 		break;
568 	case MII_ANER:
569 		re8139_reg = RE_ANER;
570 		break;
571 	case MII_ANLPAR:
572 		re8139_reg = RE_LPAR;
573 		break;
574 	case MII_PHYIDR1:
575 	case MII_PHYIDR2:
576 		return(0);
577 	/*
578 	 * Allow the rlphy driver to read the media status
579 	 * register. If we have a link partner which does not
580 	 * support NWAY, this is the register which will tell
581 	 * us the results of parallel detection.
582 	 */
583 	case RE_MEDIASTAT:
584 		return(CSR_READ_1(sc, RE_MEDIASTAT));
585 	default:
586 		device_printf(dev, "bad phy register\n");
587 		return(0);
588 	}
589 	rval = CSR_READ_2(sc, re8139_reg);
590 	if (re8139_reg == RE_BMCR) {
591 		/* 8139C+ has different bit layout. */
592 		rval &= ~(BMCR_LOOP | BMCR_ISO);
593 	}
594 	return(rval);
595 }
596 
597 static int
598 re_miibus_writereg(device_t dev, int phy, int reg, int data)
599 {
600 	struct re_softc *sc= device_get_softc(dev);
601 	u_int16_t re8139_reg = 0;
602 
603 	if (!RE_IS_8139CP(sc))
604 		return(re_gmii_writereg(dev, phy, reg, data));
605 
606 	/* Pretend the internal PHY is only at address 0 */
607 	if (phy)
608 		return(0);
609 
610 	switch(reg) {
611 	case MII_BMCR:
612 		re8139_reg = RE_BMCR;
613 		/* 8139C+ has different bit layout. */
614 		data &= ~(BMCR_LOOP | BMCR_ISO);
615 		break;
616 	case MII_BMSR:
617 		re8139_reg = RE_BMSR;
618 		break;
619 	case MII_ANAR:
620 		re8139_reg = RE_ANAR;
621 		break;
622 	case MII_ANER:
623 		re8139_reg = RE_ANER;
624 		break;
625 	case MII_ANLPAR:
626 		re8139_reg = RE_LPAR;
627 		break;
628 	case MII_PHYIDR1:
629 	case MII_PHYIDR2:
630 		return(0);
631 	default:
632 		device_printf(dev, "bad phy register\n");
633 		return(0);
634 	}
635 	CSR_WRITE_2(sc, re8139_reg, data);
636 	return(0);
637 }
638 
639 static void
640 re_miibus_statchg(device_t dev)
641 {
642 }
643 
644 /*
645  * Program the 64-bit multicast hash filter.
646  */
647 static void
648 re_setmulti(struct re_softc *sc)
649 {
650 	struct ifnet *ifp = &sc->arpcom.ac_if;
651 	int h = 0;
652 	uint32_t hashes[2] = { 0, 0 };
653 	struct ifmultiaddr *ifma;
654 	uint32_t rxfilt;
655 	int mcnt = 0;
656 
657 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
658 
659 	/* Set the individual bit to receive frames for this host only. */
660 	rxfilt |= RE_RXCFG_RX_INDIV;
661 	/* Set capture broadcast bit to capture broadcast frames. */
662 	rxfilt |= RE_RXCFG_RX_BROAD;
663 
664 	rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
665 	if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
666 		rxfilt |= RE_RXCFG_RX_MULTI;
667 
668 		/* If we want promiscuous mode, set the allframes bit. */
669 		if (ifp->if_flags & IFF_PROMISC)
670 			rxfilt |= RE_RXCFG_RX_ALLPHYS;
671 
672 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
673 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
674 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
675 		return;
676 	}
677 
678 	/* first, zot all the existing hash bits */
679 	CSR_WRITE_4(sc, RE_MAR0, 0);
680 	CSR_WRITE_4(sc, RE_MAR4, 0);
681 
682 	/* now program new ones */
683 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
684 		if (ifma->ifma_addr->sa_family != AF_LINK)
685 			continue;
686 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
687 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
688 		if (h < 32)
689 			hashes[0] |= (1 << h);
690 		else
691 			hashes[1] |= (1 << (h - 32));
692 		mcnt++;
693 	}
694 
695 	if (mcnt)
696 		rxfilt |= RE_RXCFG_RX_MULTI;
697 	else
698 		rxfilt &= ~RE_RXCFG_RX_MULTI;
699 
700 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
701 
702 	/*
703 	 * For some unfathomable reason, RealTek decided to reverse
704 	 * the order of the multicast hash registers in the PCI Express
705 	 * parts. This means we have to write the hash pattern in reverse
706 	 * order for those devices.
707 	 */
708 	if (sc->re_caps & RE_C_PCIE) {
709 		CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[0]));
710 		CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[1]));
711 	} else {
712 		CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
713 		CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
714 	}
715 }
716 
717 static void
718 re_reset(struct re_softc *sc, int running)
719 {
720 	int i;
721 
722 	if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
723 		CSR_WRITE_1(sc, RE_COMMAND,
724 			    RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
725 		DELAY(100);
726 	}
727 
728 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
729 
730 	for (i = 0; i < RE_TIMEOUT; i++) {
731 		DELAY(10);
732 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
733 			break;
734 	}
735 	if (i == RE_TIMEOUT)
736 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
737 }
738 
739 #ifdef RE_DIAG
740 /*
741  * The following routine is designed to test for a defect on some
742  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
743  * lines connected to the bus, however for a 32-bit only card, they
744  * should be pulled high. The result of this defect is that the
745  * NIC will not work right if you plug it into a 64-bit slot: DMA
746  * operations will be done with 64-bit transfers, which will fail
747  * because the 64-bit data lines aren't connected.
748  *
749  * There's no way to work around this (short of talking a soldering
750  * iron to the board), however we can detect it. The method we use
751  * here is to put the NIC into digital loopback mode, set the receiver
752  * to promiscuous mode, and then try to send a frame. We then compare
753  * the frame data we sent to what was received. If the data matches,
754  * then the NIC is working correctly, otherwise we know the user has
755  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
756  * slot. In the latter case, there's no way the NIC can work correctly,
757  * so we print out a message on the console and abort the device attach.
758  */
759 
760 static int
761 re_diag(struct re_softc *sc)
762 {
763 	struct ifnet *ifp = &sc->arpcom.ac_if;
764 	struct mbuf *m0;
765 	struct ether_header *eh;
766 	struct re_desc *cur_rx;
767 	uint16_t status;
768 	uint32_t rxstat;
769 	int total_len, i, error = 0, phyaddr;
770 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
771 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
772 
773 	/* Allocate a single mbuf */
774 
775 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
776 	if (m0 == NULL)
777 		return(ENOBUFS);
778 
779 	/*
780 	 * Initialize the NIC in test mode. This sets the chip up
781 	 * so that it can send and receive frames, but performs the
782 	 * following special functions:
783 	 * - Puts receiver in promiscuous mode
784 	 * - Enables digital loopback mode
785 	 * - Leaves interrupts turned off
786 	 */
787 
788 	ifp->if_flags |= IFF_PROMISC;
789 	sc->re_flags |= RE_F_TESTMODE;
790 	re_init(sc);
791 	sc->re_flags |= RE_F_LINKED;
792 	if (!RE_IS_8139CP(sc))
793 		phyaddr = 1;
794 	else
795 		phyaddr = 0;
796 
797 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
798 	for (i = 0; i < RE_TIMEOUT; i++) {
799 		status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
800 		if (!(status & BMCR_RESET))
801 			break;
802 	}
803 
804 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
805 	CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
806 
807 	DELAY(100000);
808 
809 	/* Put some data in the mbuf */
810 
811 	eh = mtod(m0, struct ether_header *);
812 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
813 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
814 	eh->ether_type = htons(ETHERTYPE_IP);
815 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
816 
817 	/*
818 	 * Queue the packet, start transmission.
819 	 * Note: ifq_handoff() ultimately calls re_start() for us.
820 	 */
821 
822 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
823 	error = ifq_handoff(ifp, m0, NULL);
824 	if (error) {
825 		m0 = NULL;
826 		goto done;
827 	}
828 	m0 = NULL;
829 
830 	/* Wait for it to propagate through the chip */
831 
832 	DELAY(100000);
833 	for (i = 0; i < RE_TIMEOUT; i++) {
834 		status = CSR_READ_2(sc, RE_ISR);
835 		CSR_WRITE_2(sc, RE_ISR, status);
836 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
837 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
838 			break;
839 		DELAY(10);
840 	}
841 
842 	if (i == RE_TIMEOUT) {
843 		if_printf(ifp, "diagnostic failed to receive packet "
844 			  "in loopback mode\n");
845 		error = EIO;
846 		goto done;
847 	}
848 
849 	/*
850 	 * The packet should have been dumped into the first
851 	 * entry in the RX DMA ring. Grab it from there.
852 	 */
853 
854 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
855 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
856 	bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0],
857 			BUS_DMASYNC_POSTWRITE);
858 	bus_dmamap_unload(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0]);
859 
860 	m0 = sc->re_ldata.re_rx_mbuf[0];
861 	sc->re_ldata.re_rx_mbuf[0] = NULL;
862 	eh = mtod(m0, struct ether_header *);
863 
864 	cur_rx = &sc->re_ldata.re_rx_list[0];
865 	total_len = RE_RXBYTES(cur_rx);
866 	rxstat = le32toh(cur_rx->re_cmdstat);
867 
868 	if (total_len != ETHER_MIN_LEN) {
869 		if_printf(ifp, "diagnostic failed, received short packet\n");
870 		error = EIO;
871 		goto done;
872 	}
873 
874 	/* Test that the received packet data matches what we sent. */
875 
876 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
877 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
878 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
879 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
880 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
881 		    dst, ":", src, ":", ETHERTYPE_IP);
882 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
883 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
884 		    ntohs(eh->ether_type));
885 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
886 		    "into a 64-bit PCI slot.\n");
887 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
888 		    "for proper operation.\n");
889 		if_printf(ifp, "Read the re(4) man page for more details.\n");
890 		error = EIO;
891 	}
892 
893 done:
894 	/* Turn interface off, release resources */
895 
896 	sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
897 	ifp->if_flags &= ~IFF_PROMISC;
898 	re_stop(sc);
899 	if (m0 != NULL)
900 		m_freem(m0);
901 
902 	return (error);
903 }
904 #endif	/* RE_DIAG */
905 
906 /*
907  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
908  * IDs against our list and return a device name if we find a match.
909  */
910 static int
911 re_probe(device_t dev)
912 {
913 	const struct re_type *t;
914 	const struct re_hwrev *hw_rev;
915 	struct re_softc *sc;
916 	int rid;
917 	uint32_t hwrev, macmode, txcfg;
918 	uint16_t vendor, product;
919 
920 	vendor = pci_get_vendor(dev);
921 	product = pci_get_device(dev);
922 
923 	/*
924 	 * Only attach to rev.3 of the Linksys EG1032 adapter.
925 	 * Rev.2 is supported by sk(4).
926 	 */
927 	if (vendor == PCI_VENDOR_LINKSYS &&
928 	    product == PCI_PRODUCT_LINKSYS_EG1032 &&
929 	    pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
930 		return ENXIO;
931 
932 	if (vendor == PCI_VENDOR_REALTEK &&
933 	    product == PCI_PRODUCT_REALTEK_RT8139 &&
934 	    pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
935 		/* Poor 8139 */
936 		return ENXIO;
937 	}
938 
939 	for (t = re_devs; t->re_name != NULL; t++) {
940 		if (product == t->re_did && vendor == t->re_vid)
941 			break;
942 	}
943 
944 	/*
945 	 * Check if we found a RealTek device.
946 	 */
947 	if (t->re_name == NULL)
948 		return ENXIO;
949 
950 	/*
951 	 * Temporarily map the I/O space so we can read the chip ID register.
952 	 */
953 	sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
954 	rid = RE_PCI_LOIO;
955 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
956 					    RF_ACTIVE);
957 	if (sc->re_res == NULL) {
958 		device_printf(dev, "couldn't map ports/memory\n");
959 		kfree(sc, M_TEMP);
960 		return ENXIO;
961 	}
962 
963 	sc->re_btag = rman_get_bustag(sc->re_res);
964 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
965 
966 	txcfg = CSR_READ_4(sc, RE_TXCFG);
967 	hwrev = txcfg & RE_TXCFG_HWREV;
968 	macmode = txcfg & RE_TXCFG_MACMODE;
969 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
970 	kfree(sc, M_TEMP);
971 
972 	/*
973 	 * and continue matching for the specific chip...
974 	 */
975 	for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
976 		if (hw_rev->re_hwrev == hwrev) {
977 			sc = device_get_softc(dev);
978 
979 			sc->re_hwrev = hw_rev->re_hwrev;
980 			sc->re_macver = hw_rev->re_macver;
981 			sc->re_caps = hw_rev->re_caps;
982 			sc->re_maxmtu = hw_rev->re_maxmtu;
983 
984 			/*
985 			 * Apply chip property fixup
986 			 */
987 			switch (sc->re_hwrev) {
988 			case RE_HWREV_8101E1:
989 			case RE_HWREV_8101E2:
990 				if (macmode == 0)
991 					sc->re_macver = RE_MACVER_11;
992 				else if (macmode == 0x200000)
993 					sc->re_macver = RE_MACVER_12;
994 				break;
995 			case RE_HWREV_8102E:
996 			case RE_HWREV_8102EL:
997 				if (macmode == 0)
998 					sc->re_macver = RE_MACVER_13;
999 				else if (macmode == 0x100000)
1000 					sc->re_macver = RE_MACVER_14;
1001 				break;
1002 			case RE_HWREV_8168B2:
1003 			case RE_HWREV_8168B3:
1004 				if (macmode == 0)
1005 					sc->re_macver = RE_MACVER_22;
1006 				break;
1007 			case RE_HWREV_8168C:
1008 				if (macmode == 0)
1009 					sc->re_macver = RE_MACVER_24;
1010 				else if (macmode == 0x200000)
1011 					sc->re_macver = RE_MACVER_25;
1012 				else if (macmode == 0x300000)
1013 					sc->re_macver = RE_MACVER_27;
1014 				break;
1015 			case RE_HWREV_8168CP:
1016 				if (macmode == 0)
1017 					sc->re_macver = RE_MACVER_26;
1018 				else if (macmode == 0x100000)
1019 					sc->re_macver = RE_MACVER_28;
1020 				break;
1021 			}
1022 			if (pci_get_pciecap_ptr(dev) != 0)
1023 				sc->re_caps |= RE_C_PCIE;
1024 
1025 			device_set_desc(dev, t->re_name);
1026 			return 0;
1027 		}
1028 	}
1029 
1030 	if (bootverbose) {
1031 		device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1032 			      hwrev, macmode);
1033 	}
1034 	return ENXIO;
1035 }
1036 
1037 static void
1038 re_dma_map_desc(void *xarg, bus_dma_segment_t *segs, int nsegs,
1039 		bus_size_t mapsize, int error)
1040 {
1041 	struct re_dmaload_arg *arg = xarg;
1042 	int i;
1043 
1044 	if (error)
1045 		return;
1046 
1047 	if (nsegs > arg->re_nsegs) {
1048 		arg->re_nsegs = 0;
1049 		return;
1050 	}
1051 
1052 	arg->re_nsegs = nsegs;
1053 	for (i = 0; i < nsegs; ++i)
1054 		arg->re_segs[i] = segs[i];
1055 }
1056 
1057 /*
1058  * Map a single buffer address.
1059  */
1060 
1061 static void
1062 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1063 {
1064 	uint32_t *addr;
1065 
1066 	if (error)
1067 		return;
1068 
1069 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
1070 	addr = arg;
1071 	*addr = segs->ds_addr;
1072 }
1073 
1074 static int
1075 re_allocmem(device_t dev)
1076 {
1077 	struct re_softc *sc = device_get_softc(dev);
1078 	int error, i;
1079 
1080 	/*
1081 	 * Allocate list data
1082 	 */
1083 	sc->re_ldata.re_tx_mbuf =
1084 	kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1085 		M_DEVBUF, M_ZERO | M_WAITOK);
1086 
1087 	sc->re_ldata.re_rx_mbuf =
1088 	kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1089 		M_DEVBUF, M_ZERO | M_WAITOK);
1090 
1091 	sc->re_ldata.re_rx_paddr =
1092 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1093 		M_DEVBUF, M_ZERO | M_WAITOK);
1094 
1095 	sc->re_ldata.re_tx_dmamap =
1096 	kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1097 		M_DEVBUF, M_ZERO | M_WAITOK);
1098 
1099 	sc->re_ldata.re_rx_dmamap =
1100 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1101 		M_DEVBUF, M_ZERO | M_WAITOK);
1102 
1103 	/*
1104 	 * Allocate the parent bus DMA tag appropriate for PCI.
1105 	 */
1106 	error = bus_dma_tag_create(NULL,	/* parent */
1107 			1, 0,			/* alignment, boundary */
1108 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1109 			BUS_SPACE_MAXADDR,	/* highaddr */
1110 			NULL, NULL,		/* filter, filterarg */
1111 			MAXBSIZE, RE_MAXSEGS,	/* maxsize, nsegments */
1112 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1113 			BUS_DMA_ALLOCNOW,	/* flags */
1114 			&sc->re_parent_tag);
1115 	if (error) {
1116 		device_printf(dev, "could not allocate parent dma tag\n");
1117 		return error;
1118 	}
1119 
1120 	/* Allocate tag for TX descriptor list. */
1121 	error = bus_dma_tag_create(sc->re_parent_tag,
1122 			RE_RING_ALIGN, 0,
1123 			BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1124 			NULL, NULL,
1125 			RE_TX_LIST_SZ(sc), 1, RE_TX_LIST_SZ(sc),
1126 			BUS_DMA_ALLOCNOW,
1127 			&sc->re_ldata.re_tx_list_tag);
1128 	if (error) {
1129 		device_printf(dev, "could not allocate TX ring dma tag\n");
1130 		return(error);
1131 	}
1132 
1133 	/* Allocate DMA'able memory for the TX ring */
1134         error = bus_dmamem_alloc(sc->re_ldata.re_tx_list_tag,
1135 			(void **)&sc->re_ldata.re_tx_list,
1136 			BUS_DMA_WAITOK | BUS_DMA_ZERO,
1137 			&sc->re_ldata.re_tx_list_map);
1138         if (error) {
1139 		device_printf(dev, "could not allocate TX ring\n");
1140 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1141 		sc->re_ldata.re_tx_list_tag = NULL;
1142                 return(error);
1143 	}
1144 
1145 	/* Load the map for the TX ring. */
1146 	error = bus_dmamap_load(sc->re_ldata.re_tx_list_tag,
1147 			sc->re_ldata.re_tx_list_map,
1148 			sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc),
1149 			re_dma_map_addr, &sc->re_ldata.re_tx_list_addr,
1150 			BUS_DMA_NOWAIT);
1151 	if (error) {
1152 		device_printf(dev, "could not get address of TX ring\n");
1153 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1154 				sc->re_ldata.re_tx_list,
1155 				sc->re_ldata.re_tx_list_map);
1156 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1157 		sc->re_ldata.re_tx_list_tag = NULL;
1158 		return(error);
1159 	}
1160 
1161 	/* Allocate tag for RX descriptor list. */
1162 	error = bus_dma_tag_create(sc->re_parent_tag,
1163 			RE_RING_ALIGN, 0,
1164 			BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1165 			NULL, NULL,
1166 			RE_RX_LIST_SZ(sc), 1, RE_RX_LIST_SZ(sc),
1167 			BUS_DMA_ALLOCNOW,
1168 			&sc->re_ldata.re_rx_list_tag);
1169 	if (error) {
1170 		device_printf(dev, "could not allocate RX ring dma tag\n");
1171 		return(error);
1172 	}
1173 
1174 	/* Allocate DMA'able memory for the RX ring */
1175         error = bus_dmamem_alloc(sc->re_ldata.re_rx_list_tag,
1176 			(void **)&sc->re_ldata.re_rx_list,
1177 			BUS_DMA_WAITOK | BUS_DMA_ZERO,
1178 			&sc->re_ldata.re_rx_list_map);
1179         if (error) {
1180 		device_printf(dev, "could not allocate RX ring\n");
1181 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1182 		sc->re_ldata.re_rx_list_tag = NULL;
1183                 return(error);
1184 	}
1185 
1186 	/* Load the map for the RX ring. */
1187 	error = bus_dmamap_load(sc->re_ldata.re_rx_list_tag,
1188 			sc->re_ldata.re_rx_list_map,
1189 			sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc),
1190 			re_dma_map_addr, &sc->re_ldata.re_rx_list_addr,
1191 			BUS_DMA_NOWAIT);
1192 	if (error) {
1193 		device_printf(dev, "could not get address of RX ring\n");
1194 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1195 				sc->re_ldata.re_rx_list,
1196 				sc->re_ldata.re_rx_list_map);
1197 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1198 		sc->re_ldata.re_rx_list_tag = NULL;
1199 		return(error);
1200 	}
1201 
1202 	/* Allocate map for RX/TX mbufs. */
1203 	error = bus_dma_tag_create(sc->re_parent_tag,
1204 			ETHER_ALIGN, 0,
1205 			BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1206 			NULL, NULL,
1207 			RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1208 			BUS_DMA_ALLOCNOW,
1209 			&sc->re_ldata.re_mtag);
1210 	if (error) {
1211 		device_printf(dev, "could not allocate buf dma tag\n");
1212 		return(error);
1213 	}
1214 
1215 	/* Create spare DMA map for RX */
1216 	error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
1217 			&sc->re_ldata.re_rx_spare);
1218 	if (error) {
1219 		device_printf(dev, "can't create spare DMA map for RX\n");
1220 		bus_dma_tag_destroy(sc->re_ldata.re_mtag);
1221 		sc->re_ldata.re_mtag = NULL;
1222 		return error;
1223 	}
1224 
1225 	/* Create DMA maps for TX buffers */
1226 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1227 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
1228 				&sc->re_ldata.re_tx_dmamap[i]);
1229 		if (error) {
1230 			device_printf(dev, "can't create DMA map for TX buf\n");
1231 			re_freebufmem(sc, i, 0);
1232 			return(error);
1233 		}
1234 	}
1235 
1236 	/* Create DMA maps for RX buffers */
1237 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1238 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
1239 				&sc->re_ldata.re_rx_dmamap[i]);
1240 		if (error) {
1241 			device_printf(dev, "can't create DMA map for RX buf\n");
1242 			re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1243 			return(error);
1244 		}
1245 	}
1246 
1247 	/* Create jumbo buffer pool for RX if required */
1248 	if (sc->re_caps & RE_C_CONTIGRX) {
1249 		error = re_jpool_alloc(sc);
1250 		if (error) {
1251 			re_jpool_free(sc);
1252 			/* Disable jumbo frame support */
1253 			sc->re_maxmtu = ETHERMTU;
1254 		}
1255 	}
1256 	return(0);
1257 }
1258 
1259 static void
1260 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1261 {
1262 	int i;
1263 
1264 	/* Destroy all the RX and TX buffer maps */
1265 	if (sc->re_ldata.re_mtag) {
1266 		for (i = 0; i < tx_cnt; i++) {
1267 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1268 					   sc->re_ldata.re_tx_dmamap[i]);
1269 		}
1270 		for (i = 0; i < rx_cnt; i++) {
1271 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1272 					   sc->re_ldata.re_rx_dmamap[i]);
1273 		}
1274 		bus_dmamap_destroy(sc->re_ldata.re_mtag,
1275 				   sc->re_ldata.re_rx_spare);
1276 		bus_dma_tag_destroy(sc->re_ldata.re_mtag);
1277 		sc->re_ldata.re_mtag = NULL;
1278 	}
1279 }
1280 
1281 static void
1282 re_freemem(device_t dev)
1283 {
1284 	struct re_softc *sc = device_get_softc(dev);
1285 
1286 	/* Unload and free the RX DMA ring memory and map */
1287 	if (sc->re_ldata.re_rx_list_tag) {
1288 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1289 				  sc->re_ldata.re_rx_list_map);
1290 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1291 				sc->re_ldata.re_rx_list,
1292 				sc->re_ldata.re_rx_list_map);
1293 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1294 	}
1295 
1296 	/* Unload and free the TX DMA ring memory and map */
1297 	if (sc->re_ldata.re_tx_list_tag) {
1298 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1299 				  sc->re_ldata.re_tx_list_map);
1300 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1301 				sc->re_ldata.re_tx_list,
1302 				sc->re_ldata.re_tx_list_map);
1303 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1304 	}
1305 
1306 	/* Free RX/TX buf DMA stuffs */
1307 	re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1308 
1309 	/* Unload and free the stats buffer and map */
1310 	if (sc->re_ldata.re_stag) {
1311 		bus_dmamap_unload(sc->re_ldata.re_stag,
1312 				  sc->re_ldata.re_rx_list_map);
1313 		bus_dmamem_free(sc->re_ldata.re_stag,
1314 				sc->re_ldata.re_stats,
1315 				sc->re_ldata.re_smap);
1316 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1317 	}
1318 
1319 	if (sc->re_caps & RE_C_CONTIGRX)
1320 		re_jpool_free(sc);
1321 
1322 	if (sc->re_parent_tag)
1323 		bus_dma_tag_destroy(sc->re_parent_tag);
1324 
1325 	if (sc->re_ldata.re_tx_mbuf != NULL)
1326 		kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1327 	if (sc->re_ldata.re_rx_mbuf != NULL)
1328 		kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1329 	if (sc->re_ldata.re_rx_paddr != NULL)
1330 		kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1331 	if (sc->re_ldata.re_tx_dmamap != NULL)
1332 		kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1333 	if (sc->re_ldata.re_rx_dmamap != NULL)
1334 		kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1335 }
1336 
1337 /*
1338  * Attach the interface. Allocate softc structures, do ifmedia
1339  * setup and ethernet/BPF attach.
1340  */
1341 static int
1342 re_attach(device_t dev)
1343 {
1344 	struct re_softc	*sc = device_get_softc(dev);
1345 	struct ifnet *ifp;
1346 	uint8_t eaddr[ETHER_ADDR_LEN];
1347 	int error = 0, rid, qlen;
1348 
1349 	callout_init(&sc->re_timer);
1350 	sc->re_dev = dev;
1351 
1352 	if (RE_IS_8139CP(sc)) {
1353 		sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1354 		sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1355 	} else {
1356 		sc->re_rx_desc_cnt = re_rx_desc_count;
1357 		if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1358 			sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1359 
1360 		sc->re_tx_desc_cnt = re_tx_desc_count;
1361 		if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1362 			sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1363 	}
1364 
1365 	qlen = RE_IFQ_MAXLEN;
1366 	if (sc->re_tx_desc_cnt > qlen)
1367 		qlen = sc->re_tx_desc_cnt;
1368 
1369 	sc->re_rxbuf_size = MCLBYTES;
1370 	sc->re_newbuf = re_newbuf_std;
1371 
1372 	sc->re_tx_time = 5;		/* 125us */
1373 	sc->re_rx_time = 2;		/* 50us */
1374 	if (sc->re_caps & RE_C_PCIE)
1375 		sc->re_sim_time = 75;	/* 75us */
1376 	else
1377 		sc->re_sim_time = 125;	/* 125us */
1378 	if (!RE_IS_8139CP(sc)) {
1379 		/* simulated interrupt moderation */
1380 		sc->re_imtype = RE_IMTYPE_SIM;
1381 	} else {
1382 		sc->re_imtype = RE_IMTYPE_NONE;
1383 	}
1384 	re_config_imtype(sc, sc->re_imtype);
1385 
1386 	sysctl_ctx_init(&sc->re_sysctl_ctx);
1387 	sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1388 					     SYSCTL_STATIC_CHILDREN(_hw),
1389 					     OID_AUTO,
1390 					     device_get_nameunit(dev),
1391 					     CTLFLAG_RD, 0, "");
1392 	if (sc->re_sysctl_tree == NULL) {
1393 		device_printf(dev, "can't add sysctl node\n");
1394 		error = ENXIO;
1395 		goto fail;
1396 	}
1397 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1398 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1399 		       "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1400 		       0, "RX desc count");
1401 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1402 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1403 		       "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1404 		       0, "TX desc count");
1405 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1406 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1407 			OID_AUTO, "sim_time",
1408 			CTLTYPE_INT | CTLFLAG_RW,
1409 			sc, 0, re_sysctl_simtime, "I",
1410 			"Simulated interrupt moderation time (usec).");
1411 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1412 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1413 			OID_AUTO, "imtype",
1414 			CTLTYPE_INT | CTLFLAG_RW,
1415 			sc, 0, re_sysctl_imtype, "I",
1416 			"Interrupt moderation type -- "
1417 			"0:disable, 1:simulated, "
1418 			"2:hardware(if supported)");
1419 	if (sc->re_caps & RE_C_HWIM) {
1420 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1421 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1422 				OID_AUTO, "hw_rxtime",
1423 				CTLTYPE_INT | CTLFLAG_RW,
1424 				sc, 0, re_sysctl_rxtime, "I",
1425 				"Hardware interrupt moderation time "
1426 				"(unit: 25usec).");
1427 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1428 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1429 				OID_AUTO, "hw_txtime",
1430 				CTLTYPE_INT | CTLFLAG_RW,
1431 				sc, 0, re_sysctl_txtime, "I",
1432 				"Hardware interrupt moderation time "
1433 				"(unit: 25usec).");
1434 	}
1435 
1436 #ifndef BURN_BRIDGES
1437 	/*
1438 	 * Handle power management nonsense.
1439 	 */
1440 
1441 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1442 		uint32_t membase, irq;
1443 
1444 		/* Save important PCI config data. */
1445 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1446 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1447 
1448 		/* Reset the power state. */
1449 		device_printf(dev, "chip is in D%d power mode "
1450 		    "-- setting to D0\n", pci_get_powerstate(dev));
1451 
1452 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1453 
1454 		/* Restore PCI config data. */
1455 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1456 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1457 	}
1458 #endif
1459 	/*
1460 	 * Map control/status registers.
1461 	 */
1462 	pci_enable_busmaster(dev);
1463 
1464 	rid = RE_PCI_LOIO;
1465 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1466 					    RF_ACTIVE);
1467 
1468 	if (sc->re_res == NULL) {
1469 		device_printf(dev, "couldn't map ports\n");
1470 		error = ENXIO;
1471 		goto fail;
1472 	}
1473 
1474 	sc->re_btag = rman_get_bustag(sc->re_res);
1475 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1476 
1477 	/* Allocate interrupt */
1478 	rid = 0;
1479 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1480 					    RF_SHAREABLE | RF_ACTIVE);
1481 
1482 	if (sc->re_irq == NULL) {
1483 		device_printf(dev, "couldn't map interrupt\n");
1484 		error = ENXIO;
1485 		goto fail;
1486 	}
1487 
1488 	/* Reset the adapter. */
1489 	re_reset(sc, 0);
1490 
1491 	if (RE_IS_8139CP(sc)) {
1492 		sc->re_bus_speed = 33; /* XXX */
1493 	} else if (sc->re_caps & RE_C_PCIE) {
1494 		sc->re_bus_speed = 125;
1495 	} else {
1496 		uint8_t cfg2;
1497 
1498 		cfg2 = CSR_READ_1(sc, RE_CFG2);
1499 		switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1500 		case RE_CFG2_PCICLK_33MHZ:
1501 			sc->re_bus_speed = 33;
1502 			break;
1503 		case RE_CFG2_PCICLK_66MHZ:
1504 			sc->re_bus_speed = 66;
1505 			break;
1506 		default:
1507 			device_printf(dev, "unknown bus speed, assume 33MHz\n");
1508 			sc->re_bus_speed = 33;
1509 			break;
1510 		}
1511 		if (cfg2 & RE_CFG2_PCI64)
1512 			sc->re_caps |= RE_C_PCI64;
1513 	}
1514 	device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1515 		      "PCI%s %dMHz\n",
1516 		      sc->re_hwrev, sc->re_macver,
1517 		      (sc->re_caps & RE_C_PCIE) ?
1518 		      "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1519 		      sc->re_bus_speed);
1520 
1521 	/*
1522 	 * NOTE:
1523 	 * DO NOT try to adjust config1 and config5 which was spotted in
1524 	 * Realtek's Linux drivers.  It will _permanently_ damage certain
1525 	 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1526 	 */
1527 
1528 	re_get_eaddr(sc, eaddr);
1529 
1530 	if (!RE_IS_8139CP(sc)) {
1531 		/* Set RX length mask */
1532 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1533 		sc->re_txstart = RE_GTXSTART;
1534 	} else {
1535 		/* Set RX length mask */
1536 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1537 		sc->re_txstart = RE_TXSTART;
1538 	}
1539 
1540 	/* Allocate DMA stuffs */
1541 	error = re_allocmem(dev);
1542 	if (error)
1543 		goto fail;
1544 
1545 	/*
1546 	 * Apply some magic PCI settings from Realtek ...
1547 	 */
1548 	if (RE_IS_8169(sc)) {
1549 		CSR_WRITE_1(sc, 0x82, 1);
1550 		pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1551 	}
1552 	pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1553 
1554 	if (sc->re_caps & RE_C_MAC2) {
1555 		/*
1556 		 * Following part is extracted from Realtek BSD driver v176.
1557 		 * However, this does _not_ make much/any sense:
1558 		 * 8168C's PCI Express device control is located at 0x78,
1559 		 * so the reading from 0x79 (higher part of 0x78) and setting
1560 		 * the 4~6bits intend to enlarge the "max read request size"
1561 		 * (we will do it).  The content of the rest part of this
1562 		 * register is not meaningful to other PCI registers, so
1563 		 * writing the value to 0x54 could be completely wrong.
1564 		 * 0x80 is the lower part of PCI Express device status, non-
1565 		 * reserved bits are RW1C, writing 0 to them will not have
1566 		 * any effect at all.
1567 		 */
1568 #ifdef foo
1569 		uint8_t val;
1570 
1571 		val = pci_read_config(dev, 0x79, 1);
1572 		val = (val & ~0x70) | 0x50;
1573 		pci_write_config(dev, 0x54, val, 1);
1574 		pci_write_config(dev, 0x80, 0, 1);
1575 #endif
1576 	}
1577 
1578 	/*
1579 	 * Apply some PHY fixup from Realtek ...
1580 	 */
1581 	if (sc->re_hwrev == RE_HWREV_8110S) {
1582 		CSR_WRITE_1(sc, 0x82, 1);
1583 		re_miibus_writereg(dev, 1, 0xb, 0);
1584 	}
1585 	if (sc->re_caps & RE_C_PHYPMGT) {
1586 		/* Power up PHY */
1587 		re_miibus_writereg(dev, 1, 0x1f, 0);
1588 		re_miibus_writereg(dev, 1, 0xe, 0);
1589 	}
1590 
1591 	/* Do MII setup */
1592 	if (mii_phy_probe(dev, &sc->re_miibus,
1593 	    re_ifmedia_upd, re_ifmedia_sts)) {
1594 		device_printf(dev, "MII without any phy!\n");
1595 		error = ENXIO;
1596 		goto fail;
1597 	}
1598 
1599 	ifp = &sc->arpcom.ac_if;
1600 	ifp->if_softc = sc;
1601 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1602 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1603 	ifp->if_ioctl = re_ioctl;
1604 	ifp->if_start = re_start;
1605 #ifdef DEVICE_POLLING
1606 	ifp->if_poll = re_poll;
1607 #endif
1608 	ifp->if_watchdog = re_watchdog;
1609 	ifp->if_init = re_init;
1610 	if (!RE_IS_8139CP(sc)) /* XXX */
1611 		ifp->if_baudrate = 1000000000;
1612 	else
1613 		ifp->if_baudrate = 100000000;
1614 	ifq_set_maxlen(&ifp->if_snd, qlen);
1615 	ifq_set_ready(&ifp->if_snd);
1616 
1617 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1618 	if (sc->re_caps & RE_C_HWCSUM)
1619 		ifp->if_capabilities |= IFCAP_HWCSUM;
1620 
1621 	ifp->if_capenable = ifp->if_capabilities;
1622 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1623 		ifp->if_hwassist = RE_CSUM_FEATURES;
1624 	else
1625 		ifp->if_hwassist = 0;
1626 
1627 	/*
1628 	 * Call MI attach routine.
1629 	 */
1630 	ether_ifattach(ifp, eaddr, NULL);
1631 
1632 #ifdef RE_DIAG
1633 	/*
1634 	 * Perform hardware diagnostic on the original RTL8169.
1635 	 * Some 32-bit cards were incorrectly wired and would
1636 	 * malfunction if plugged into a 64-bit slot.
1637 	 */
1638 	if (sc->re_hwrev == RE_HWREV_8169) {
1639 		lwkt_serialize_enter(ifp->if_serializer);
1640 		error = re_diag(sc);
1641 		lwkt_serialize_exit(ifp->if_serializer);
1642 
1643 		if (error) {
1644 			device_printf(dev, "hardware diagnostic failure\n");
1645 			ether_ifdetach(ifp);
1646 			goto fail;
1647 		}
1648 	}
1649 #endif	/* RE_DIAG */
1650 
1651 	/* Hook interrupt last to avoid having to lock softc */
1652 	error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1653 			       &sc->re_intrhand, ifp->if_serializer);
1654 
1655 	if (error) {
1656 		device_printf(dev, "couldn't set up irq\n");
1657 		ether_ifdetach(ifp);
1658 		goto fail;
1659 	}
1660 
1661 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->re_irq));
1662 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1663 
1664 fail:
1665 	if (error)
1666 		re_detach(dev);
1667 
1668 	return (error);
1669 }
1670 
1671 /*
1672  * Shutdown hardware and free up resources. This can be called any
1673  * time after the mutex has been initialized. It is called in both
1674  * the error case in attach and the normal detach case so it needs
1675  * to be careful about only freeing resources that have actually been
1676  * allocated.
1677  */
1678 static int
1679 re_detach(device_t dev)
1680 {
1681 	struct re_softc *sc = device_get_softc(dev);
1682 	struct ifnet *ifp = &sc->arpcom.ac_if;
1683 
1684 	/* These should only be active if attach succeeded */
1685 	if (device_is_attached(dev)) {
1686 		lwkt_serialize_enter(ifp->if_serializer);
1687 		re_stop(sc);
1688 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1689 		lwkt_serialize_exit(ifp->if_serializer);
1690 
1691 		ether_ifdetach(ifp);
1692 	}
1693 	if (sc->re_miibus)
1694 		device_delete_child(dev, sc->re_miibus);
1695 	bus_generic_detach(dev);
1696 
1697 	if (sc->re_sysctl_tree != NULL)
1698 		sysctl_ctx_free(&sc->re_sysctl_ctx);
1699 
1700 	if (sc->re_irq)
1701 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1702 	if (sc->re_res) {
1703 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1704 				     sc->re_res);
1705 	}
1706 
1707 	/* Free DMA stuffs */
1708 	re_freemem(dev);
1709 
1710 	return(0);
1711 }
1712 
1713 static void
1714 re_setup_rxdesc(struct re_softc *sc, int idx)
1715 {
1716 	bus_addr_t paddr;
1717 	uint32_t cmdstat;
1718 	struct re_desc *d;
1719 
1720 	paddr = sc->re_ldata.re_rx_paddr[idx];
1721 	d = &sc->re_ldata.re_rx_list[idx];
1722 
1723 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1724 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1725 
1726 	cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1727 	if (idx == (sc->re_rx_desc_cnt - 1))
1728 		cmdstat |= RE_RDESC_CMD_EOR;
1729 	d->re_cmdstat = htole32(cmdstat);
1730 }
1731 
1732 static int
1733 re_newbuf_std(struct re_softc *sc, int idx, int init)
1734 {
1735 	struct re_dmaload_arg arg;
1736 	bus_dma_segment_t seg;
1737 	bus_dmamap_t map;
1738 	struct mbuf *m;
1739 	int error;
1740 
1741 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1742 	if (m == NULL) {
1743 		error = ENOBUFS;
1744 
1745 		if (init) {
1746 			if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1747 			return error;
1748 		} else {
1749 			goto back;
1750 		}
1751 	}
1752 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1753 
1754 	/*
1755 	 * NOTE:
1756 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1757 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1758 	 */
1759 
1760 	arg.re_nsegs = 1;
1761 	arg.re_segs = &seg;
1762         error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag,
1763 				     sc->re_ldata.re_rx_spare, m,
1764 				     re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1765 	if (error || arg.re_nsegs == 0) {
1766 		if (!error) {
1767 			if_printf(&sc->arpcom.ac_if, "too many segments?!\n");
1768 			bus_dmamap_unload(sc->re_ldata.re_mtag,
1769 					  sc->re_ldata.re_rx_spare);
1770 			error = EFBIG;
1771 		}
1772 		m_freem(m);
1773 
1774 		if (init) {
1775 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1776 			return error;
1777 		} else {
1778 			goto back;
1779 		}
1780 	}
1781 
1782 	if (!init) {
1783 		bus_dmamap_sync(sc->re_ldata.re_mtag,
1784 				sc->re_ldata.re_rx_dmamap[idx],
1785 				BUS_DMASYNC_POSTREAD);
1786 		bus_dmamap_unload(sc->re_ldata.re_mtag,
1787 				  sc->re_ldata.re_rx_dmamap[idx]);
1788 	}
1789 	sc->re_ldata.re_rx_mbuf[idx] = m;
1790 	sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1791 
1792 	map = sc->re_ldata.re_rx_dmamap[idx];
1793 	sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1794 	sc->re_ldata.re_rx_spare = map;
1795 back:
1796 	re_setup_rxdesc(sc, idx);
1797 	return error;
1798 }
1799 
1800 static int
1801 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1802 {
1803 	struct mbuf *m;
1804 	struct re_jbuf *jbuf;
1805 	int error = 0;
1806 
1807 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1808 	if (m == NULL) {
1809 		error = ENOBUFS;
1810 		if (init) {
1811 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1812 			return error;
1813 		} else {
1814 			goto back;
1815 		}
1816 	}
1817 
1818 	jbuf = re_jbuf_alloc(sc);
1819 	if (jbuf == NULL) {
1820 		m_freem(m);
1821 
1822 		error = ENOBUFS;
1823 		if (init) {
1824 			if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1825 			return error;
1826 		} else {
1827 			goto back;
1828 		}
1829 	}
1830 
1831 	m->m_ext.ext_arg = jbuf;
1832 	m->m_ext.ext_buf = jbuf->re_buf;
1833 	m->m_ext.ext_free = re_jbuf_free;
1834 	m->m_ext.ext_ref = re_jbuf_ref;
1835 	m->m_ext.ext_size = sc->re_rxbuf_size;
1836 
1837 	m->m_data = m->m_ext.ext_buf;
1838 	m->m_flags |= M_EXT;
1839 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1840 
1841 	/*
1842 	 * NOTE:
1843 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1844 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1845 	 */
1846 
1847 	sc->re_ldata.re_rx_mbuf[idx] = m;
1848 	sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1849 back:
1850 	re_setup_rxdesc(sc, idx);
1851 	return error;
1852 }
1853 
1854 static int
1855 re_tx_list_init(struct re_softc *sc)
1856 {
1857 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1858 
1859 	/* Flush the TX descriptors */
1860 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1861 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
1862 
1863 	sc->re_ldata.re_tx_prodidx = 0;
1864 	sc->re_ldata.re_tx_considx = 0;
1865 	sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1866 
1867 	return(0);
1868 }
1869 
1870 static int
1871 re_rx_list_init(struct re_softc *sc)
1872 {
1873 	int i, error;
1874 
1875 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1876 
1877 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1878 		error = sc->re_newbuf(sc, i, 1);
1879 		if (error)
1880 			return(error);
1881 	}
1882 
1883 	/* Flush the RX descriptors */
1884 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1885 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_PREWRITE);
1886 
1887 	sc->re_ldata.re_rx_prodidx = 0;
1888 	sc->re_head = sc->re_tail = NULL;
1889 
1890 	return(0);
1891 }
1892 
1893 #define RE_IP4_PACKET	0x1
1894 #define RE_TCP_PACKET	0x2
1895 #define RE_UDP_PACKET	0x4
1896 
1897 static __inline uint8_t
1898 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1899 {
1900 	uint8_t packet_type = 0;
1901 
1902 	if (sc->re_caps & RE_C_MAC2) {
1903 		if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1904 			packet_type |= RE_IP4_PACKET;
1905 	} else {
1906 		if (rxstat & RE_RDESC_STAT_PROTOID)
1907 			packet_type |= RE_IP4_PACKET;
1908 	}
1909 	if (RE_TCPPKT(rxstat))
1910 		packet_type |= RE_TCP_PACKET;
1911 	else if (RE_UDPPKT(rxstat))
1912 		packet_type |= RE_UDP_PACKET;
1913 	return packet_type;
1914 }
1915 
1916 /*
1917  * RX handler for C+ and 8169. For the gigE chips, we support
1918  * the reception of jumbo frames that have been fragmented
1919  * across multiple 2K mbuf cluster buffers.
1920  */
1921 static int
1922 re_rxeof(struct re_softc *sc)
1923 {
1924 	struct ifnet *ifp = &sc->arpcom.ac_if;
1925 	struct mbuf *m;
1926 	struct re_desc 	*cur_rx;
1927 	uint32_t rxstat, rxctrl;
1928 	int i, total_len, rx = 0;
1929 	struct mbuf_chain chain[MAXCPU];
1930 
1931 	/* Invalidate the descriptor memory */
1932 
1933 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1934 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
1935 
1936 	ether_input_chain_init(chain);
1937 
1938 	for (i = sc->re_ldata.re_rx_prodidx;
1939 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1940 		cur_rx = &sc->re_ldata.re_rx_list[i];
1941 		m = sc->re_ldata.re_rx_mbuf[i];
1942 		total_len = RE_RXBYTES(cur_rx);
1943 		rxstat = le32toh(cur_rx->re_cmdstat);
1944 		rxctrl = le32toh(cur_rx->re_control);
1945 
1946 		rx = 1;
1947 
1948 #ifdef INVARIANTS
1949 		if (sc->re_flags & RE_F_USE_JPOOL)
1950 			KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1951 #endif
1952 
1953 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1954 			if (sc->re_flags & RE_F_DROP_RXFRAG) {
1955 				re_setup_rxdesc(sc, i);
1956 				continue;
1957 			}
1958 
1959 			if (sc->re_newbuf(sc, i, 0)) {
1960 				/* Drop upcoming fragments */
1961 				sc->re_flags |= RE_F_DROP_RXFRAG;
1962 				continue;
1963 			}
1964 
1965 			m->m_len = MCLBYTES;
1966 			if (sc->re_head == NULL) {
1967 				sc->re_head = sc->re_tail = m;
1968 			} else {
1969 				sc->re_tail->m_next = m;
1970 				sc->re_tail = m;
1971 			}
1972 			continue;
1973 		} else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1974 			/*
1975 			 * Last fragment of a multi-fragment packet.
1976 			 *
1977 			 * Since error already happened, this fragment
1978 			 * must be dropped as well as the fragment chain.
1979 			 */
1980 			re_setup_rxdesc(sc, i);
1981 			re_free_rxchain(sc);
1982 			sc->re_flags &= ~RE_F_DROP_RXFRAG;
1983 			continue;
1984 		}
1985 
1986 		/*
1987 		 * NOTE: for the 8139C+, the frame length field
1988 		 * is always 12 bits in size, but for the gigE chips,
1989 		 * it is 13 bits (since the max RX frame length is 16K).
1990 		 * Unfortunately, all 32 bits in the status word
1991 		 * were already used, so to make room for the extra
1992 		 * length bit, RealTek took out the 'frame alignment
1993 		 * error' bit and shifted the other status bits
1994 		 * over one slot. The OWN, EOR, FS and LS bits are
1995 		 * still in the same places. We have already extracted
1996 		 * the frame length and checked the OWN bit, so rather
1997 		 * than using an alternate bit mapping, we shift the
1998 		 * status bits one space to the right so we can evaluate
1999 		 * them using the 8169 status as though it was in the
2000 		 * same format as that of the 8139C+.
2001 		 */
2002 		if (!RE_IS_8139CP(sc))
2003 			rxstat >>= 1;
2004 
2005 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
2006 			ifp->if_ierrors++;
2007 			/*
2008 			 * If this is part of a multi-fragment packet,
2009 			 * discard all the pieces.
2010 			 */
2011 			re_free_rxchain(sc);
2012 			re_setup_rxdesc(sc, i);
2013 			continue;
2014 		}
2015 
2016 		/*
2017 		 * If allocating a replacement mbuf fails,
2018 		 * reload the current one.
2019 		 */
2020 
2021 		if (sc->re_newbuf(sc, i, 0)) {
2022 			ifp->if_ierrors++;
2023 			continue;
2024 		}
2025 
2026 		if (sc->re_head != NULL) {
2027 			m->m_len = total_len % MCLBYTES;
2028 			/*
2029 			 * Special case: if there's 4 bytes or less
2030 			 * in this buffer, the mbuf can be discarded:
2031 			 * the last 4 bytes is the CRC, which we don't
2032 			 * care about anyway.
2033 			 */
2034 			if (m->m_len <= ETHER_CRC_LEN) {
2035 				sc->re_tail->m_len -=
2036 				    (ETHER_CRC_LEN - m->m_len);
2037 				m_freem(m);
2038 			} else {
2039 				m->m_len -= ETHER_CRC_LEN;
2040 				sc->re_tail->m_next = m;
2041 			}
2042 			m = sc->re_head;
2043 			sc->re_head = sc->re_tail = NULL;
2044 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2045 		} else {
2046 			m->m_pkthdr.len = m->m_len =
2047 			    (total_len - ETHER_CRC_LEN);
2048 		}
2049 
2050 		ifp->if_ipackets++;
2051 		m->m_pkthdr.rcvif = ifp;
2052 
2053 		/* Do RX checksumming if enabled */
2054 
2055 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2056 			uint8_t packet_type;
2057 
2058 			packet_type = re_packet_type(sc, rxstat, rxctrl);
2059 
2060 			/* Check IP header checksum */
2061 			if (packet_type & RE_IP4_PACKET) {
2062 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2063 				if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
2064 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2065 			}
2066 
2067 			/* Check TCP/UDP checksum */
2068 			if (((packet_type & RE_TCP_PACKET) &&
2069 			     (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2070 			    ((packet_type & RE_UDP_PACKET) &&
2071 			     (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2072 				m->m_pkthdr.csum_flags |=
2073 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2074 				    CSUM_FRAG_NOT_CHECKED;
2075 				m->m_pkthdr.csum_data = 0xffff;
2076 			}
2077 		}
2078 
2079 		if (rxctrl & RE_RDESC_CTL_HASTAG) {
2080 			m->m_flags |= M_VLANTAG;
2081 			m->m_pkthdr.ether_vlantag =
2082 				be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2083 		}
2084 		ether_input_chain(ifp, m, chain);
2085 	}
2086 
2087 	ether_input_dispatch(chain);
2088 
2089 	/* Flush the RX DMA ring */
2090 
2091 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
2092 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_PREWRITE);
2093 
2094 	sc->re_ldata.re_rx_prodidx = i;
2095 
2096 	return rx;
2097 }
2098 
2099 #undef RE_IP4_PACKET
2100 #undef RE_TCP_PACKET
2101 #undef RE_UDP_PACKET
2102 
2103 static int
2104 re_tx_collect(struct re_softc *sc)
2105 {
2106 	struct ifnet *ifp = &sc->arpcom.ac_if;
2107 	uint32_t txstat;
2108 	int idx, tx = 0;
2109 
2110 	/* Invalidate the TX descriptor list */
2111 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
2112 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_POSTREAD);
2113 
2114 	for (idx = sc->re_ldata.re_tx_considx;
2115 	     sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2116 	     RE_TXDESC_INC(sc, idx)) {
2117 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2118 		if (txstat & RE_TDESC_CMD_OWN)
2119 			break;
2120 
2121 		tx = 1;
2122 
2123 		sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2124 
2125 		/*
2126 		 * We only stash mbufs in the last descriptor
2127 		 * in a fragment chain, which also happens to
2128 		 * be the only place where the TX status bits
2129 		 * are valid.
2130 		 */
2131 		if (txstat & RE_TDESC_CMD_EOF) {
2132 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2133 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
2134 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2135 			    sc->re_ldata.re_tx_dmamap[idx]);
2136 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2137 			    RE_TDESC_STAT_COLCNT))
2138 				ifp->if_collisions++;
2139 			if (txstat & RE_TDESC_STAT_TXERRSUM)
2140 				ifp->if_oerrors++;
2141 			else
2142 				ifp->if_opackets++;
2143 		}
2144 		sc->re_ldata.re_tx_free++;
2145 	}
2146 	sc->re_ldata.re_tx_considx = idx;
2147 
2148 	return tx;
2149 }
2150 
2151 static int
2152 re_txeof(struct re_softc *sc)
2153 {
2154 	struct ifnet *ifp = &sc->arpcom.ac_if;
2155 	int tx;
2156 
2157 	tx = re_tx_collect(sc);
2158 
2159 	/* There is enough free TX descs */
2160 	if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2161 		ifp->if_flags &= ~IFF_OACTIVE;
2162 
2163 	/*
2164 	 * Some chips will ignore a second TX request issued while an
2165 	 * existing transmission is in progress. If the transmitter goes
2166 	 * idle but there are still packets waiting to be sent, we need
2167 	 * to restart the channel here to flush them out. This only seems
2168 	 * to be required with the PCIe devices.
2169 	 */
2170 	if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2171 		CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2172 	else
2173 		ifp->if_timer = 0;
2174 
2175 	return tx;
2176 }
2177 
2178 static void
2179 re_tick(void *xsc)
2180 {
2181 	struct re_softc *sc = xsc;
2182 
2183 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2184 	re_tick_serialized(xsc);
2185 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2186 }
2187 
2188 static void
2189 re_tick_serialized(void *xsc)
2190 {
2191 	struct re_softc *sc = xsc;
2192 	struct ifnet *ifp = &sc->arpcom.ac_if;
2193 	struct mii_data *mii;
2194 
2195 	ASSERT_SERIALIZED(ifp->if_serializer);
2196 
2197 	mii = device_get_softc(sc->re_miibus);
2198 	mii_tick(mii);
2199 	if (sc->re_flags & RE_F_LINKED) {
2200 		if (!(mii->mii_media_status & IFM_ACTIVE))
2201 			sc->re_flags &= ~RE_F_LINKED;
2202 	} else {
2203 		if (mii->mii_media_status & IFM_ACTIVE &&
2204 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2205 			sc->re_flags |= RE_F_LINKED;
2206 			if (!ifq_is_empty(&ifp->if_snd))
2207 				if_devstart(ifp);
2208 		}
2209 	}
2210 
2211 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2212 }
2213 
2214 #ifdef DEVICE_POLLING
2215 
2216 static void
2217 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2218 {
2219 	struct re_softc *sc = ifp->if_softc;
2220 
2221 	ASSERT_SERIALIZED(ifp->if_serializer);
2222 
2223 	switch(cmd) {
2224 	case POLL_REGISTER:
2225 		/* disable interrupts */
2226 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2227 		break;
2228 
2229 	case POLL_DEREGISTER:
2230 		/* enable interrupts */
2231 		re_setup_intr(sc, 1, sc->re_imtype);
2232 		break;
2233 
2234 	default:
2235 		sc->rxcycles = count;
2236 		re_rxeof(sc);
2237 		re_txeof(sc);
2238 
2239 		if (!ifq_is_empty(&ifp->if_snd))
2240 			if_devstart(ifp);
2241 
2242 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2243 			uint16_t       status;
2244 
2245 			status = CSR_READ_2(sc, RE_ISR);
2246 			if (status == 0xffff)
2247 				return;
2248 			if (status)
2249 				CSR_WRITE_2(sc, RE_ISR, status);
2250 
2251 			/*
2252 			 * XXX check behaviour on receiver stalls.
2253 			 */
2254 
2255 			if (status & RE_ISR_SYSTEM_ERR)
2256 				re_init(sc);
2257 		}
2258 		break;
2259 	}
2260 }
2261 #endif /* DEVICE_POLLING */
2262 
2263 static void
2264 re_intr(void *arg)
2265 {
2266 	struct re_softc	*sc = arg;
2267 	struct ifnet *ifp = &sc->arpcom.ac_if;
2268 	uint16_t status;
2269 	int rx, tx;
2270 
2271 	ASSERT_SERIALIZED(ifp->if_serializer);
2272 
2273 	if ((sc->re_flags & RE_F_SUSPENDED) ||
2274 	    (ifp->if_flags & IFF_RUNNING) == 0)
2275 		return;
2276 
2277 	rx = tx = 0;
2278 	for (;;) {
2279 		status = CSR_READ_2(sc, RE_ISR);
2280 		/* If the card has gone away the read returns 0xffff. */
2281 		if (status == 0xffff)
2282 			break;
2283 		if (status)
2284 			CSR_WRITE_2(sc, RE_ISR, status);
2285 
2286 		if ((status & sc->re_intrs) == 0)
2287 			break;
2288 
2289 		if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2290 			rx |= re_rxeof(sc);
2291 
2292 		if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2293 			tx |= re_txeof(sc);
2294 
2295 		if (status & RE_ISR_SYSTEM_ERR)
2296 			re_init(sc);
2297 
2298 		if (status & RE_ISR_LINKCHG) {
2299 			callout_stop(&sc->re_timer);
2300 			re_tick_serialized(sc);
2301 		}
2302 	}
2303 
2304 	if (sc->re_imtype == RE_IMTYPE_SIM) {
2305 		if ((sc->re_flags & RE_F_TIMER_INTR)) {
2306 			if ((tx | rx) == 0) {
2307 				/*
2308 				 * Nothing needs to be processed, fallback
2309 				 * to use TX/RX interrupts.
2310 				 */
2311 				re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2312 
2313 				/*
2314 				 * Recollect, mainly to avoid the possible
2315 				 * race introduced by changing interrupt
2316 				 * masks.
2317 				 */
2318 				re_rxeof(sc);
2319 				tx = re_txeof(sc);
2320 			} else {
2321 				CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2322 			}
2323 		} else if (tx | rx) {
2324 			/*
2325 			 * Assume that using simulated interrupt moderation
2326 			 * (hardware timer based) could reduce the interript
2327 			 * rate.
2328 			 */
2329 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2330 		}
2331 	}
2332 
2333 	if (tx && !ifq_is_empty(&ifp->if_snd))
2334 		if_devstart(ifp);
2335 }
2336 
2337 static int
2338 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2339 {
2340 	struct ifnet *ifp = &sc->arpcom.ac_if;
2341 	struct mbuf *m;
2342 	struct re_dmaload_arg arg;
2343 	bus_dma_segment_t segs[RE_MAXSEGS];
2344 	bus_dmamap_t map;
2345 	int error, maxsegs, idx, i;
2346 	struct re_desc *d, *tx_ring;
2347 	uint32_t cmd_csum, ctl_csum, vlantag;
2348 
2349 	KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2350 		("not enough free TX desc\n"));
2351 
2352 	m = *m_head;
2353 	map = sc->re_ldata.re_tx_dmamap[*idx0];
2354 
2355 	/*
2356 	 * Set up checksum offload. Note: checksum offload bits must
2357 	 * appear in all descriptors of a multi-descriptor transmit
2358 	 * attempt. (This is according to testing done with an 8169
2359 	 * chip. I'm not sure if this is a requirement or a bug.)
2360 	 */
2361 	cmd_csum = ctl_csum = 0;
2362 	if (m->m_pkthdr.csum_flags & CSUM_IP) {
2363 		cmd_csum |= RE_TDESC_CMD_IPCSUM;
2364 		ctl_csum |= RE_TDESC_CTL_IPCSUM;
2365 	}
2366 	if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2367 		cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2368 		ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2369 	}
2370 	if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2371 		cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2372 		ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2373 	}
2374 
2375 	/* For MAC2 chips, csum flags are set on re_control */
2376 	if (sc->re_caps & RE_C_MAC2)
2377 		cmd_csum = 0;
2378 	else
2379 		ctl_csum = 0;
2380 
2381 	if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2382 		/*
2383 		 * With some of the RealTek chips, using the checksum offload
2384 		 * support in conjunction with the autopadding feature results
2385 		 * in the transmission of corrupt frames. For example, if we
2386 		 * need to send a really small IP fragment that's less than 60
2387 		 * bytes in size, and IP header checksumming is enabled, the
2388 		 * resulting ethernet frame that appears on the wire will
2389 		 * have garbled payload. To work around this, if TX checksum
2390 		 * offload is enabled, we always manually pad short frames out
2391 		 * to the minimum ethernet frame size.
2392 		 *
2393 		 * Note: this appears unnecessary for TCP, and doing it for TCP
2394 		 * with PCIe adapters seems to result in bad checksums.
2395 		 */
2396 		if ((m->m_pkthdr.csum_flags &
2397 		     (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2398 		    (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2399 		    m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2400 			error = m_devpad(m, RE_MIN_FRAMELEN);
2401 			if (error)
2402 				goto back;
2403 		}
2404 	}
2405 
2406 	vlantag = 0;
2407 	if (m->m_flags & M_VLANTAG) {
2408 		vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2409 			  RE_TDESC_CTL_INSTAG;
2410 	}
2411 
2412 	maxsegs = sc->re_ldata.re_tx_free;
2413 	if (maxsegs > RE_MAXSEGS)
2414 		maxsegs = RE_MAXSEGS;
2415 
2416 	arg.re_nsegs = maxsegs;
2417 	arg.re_segs = segs;
2418 	error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map, m,
2419 				     re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
2420 	if (error && error != EFBIG) {
2421 		if_printf(ifp, "can't map mbuf (error %d)\n", error);
2422 		goto back;
2423 	}
2424 
2425 	/*
2426 	 * Too many segments to map, coalesce into a single mbuf
2427 	 */
2428 	if (!error && arg.re_nsegs == 0) {
2429 		bus_dmamap_unload(sc->re_ldata.re_mtag, map);
2430 		error = EFBIG;
2431 	}
2432 	if (error) {
2433 		struct mbuf *m_new;
2434 
2435 		m_new = m_defrag(m, MB_DONTWAIT);
2436 		if (m_new == NULL) {
2437 			if_printf(ifp, "can't defrag TX mbuf\n");
2438 			error = ENOBUFS;
2439 			goto back;
2440 		} else {
2441 			*m_head = m = m_new;
2442 		}
2443 
2444 		arg.re_nsegs = maxsegs;
2445 		arg.re_segs = segs;
2446 		error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map, m,
2447 					     re_dma_map_desc, &arg,
2448 					     BUS_DMA_NOWAIT);
2449 		if (error || arg.re_nsegs == 0) {
2450 			if (!error) {
2451 				bus_dmamap_unload(sc->re_ldata.re_mtag, map);
2452 				error = EFBIG;
2453 			}
2454 			if_printf(ifp, "can't map mbuf (error %d)\n", error);
2455 			goto back;
2456 		}
2457 	}
2458 	bus_dmamap_sync(sc->re_ldata.re_mtag, map, BUS_DMASYNC_PREWRITE);
2459 
2460 	/*
2461 	 * Map the segment array into descriptors.  We also keep track
2462 	 * of the end of the ring and set the end-of-ring bits as needed,
2463 	 * and we set the ownership bits in all except the very first
2464 	 * descriptor, whose ownership bits will be turned on later.
2465 	 */
2466 	tx_ring = sc->re_ldata.re_tx_list;
2467 	idx = *idx0;
2468 	i = 0;
2469 	for (;;) {
2470 		uint32_t cmdstat;
2471 
2472 		d = &tx_ring[idx];
2473 
2474 		cmdstat = segs[i].ds_len;
2475 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2476 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2477 		if (i == 0)
2478 			cmdstat |= RE_TDESC_CMD_SOF;
2479 		else
2480 			cmdstat |= RE_TDESC_CMD_OWN;
2481 		if (idx == (sc->re_tx_desc_cnt - 1))
2482 			cmdstat |= RE_TDESC_CMD_EOR;
2483 		d->re_cmdstat = htole32(cmdstat | cmd_csum);
2484 		d->re_control = htole32(ctl_csum | vlantag);
2485 
2486 		i++;
2487 		if (i == arg.re_nsegs)
2488 			break;
2489 		RE_TXDESC_INC(sc, idx);
2490 	}
2491 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2492 
2493 	/* Transfer ownership of packet to the chip. */
2494 	d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2495 	if (*idx0 != idx)
2496 		tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2497 
2498 	/*
2499 	 * Insure that the map for this transmission
2500 	 * is placed at the array index of the last descriptor
2501 	 * in this chain.
2502 	 */
2503 	sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2504 	sc->re_ldata.re_tx_dmamap[idx] = map;
2505 
2506 	sc->re_ldata.re_tx_mbuf[idx] = m;
2507 	sc->re_ldata.re_tx_free -= arg.re_nsegs;
2508 
2509 	RE_TXDESC_INC(sc, idx);
2510 	*idx0 = idx;
2511 back:
2512 	if (error) {
2513 		m_freem(m);
2514 		*m_head = NULL;
2515 	}
2516 	return error;
2517 }
2518 
2519 /*
2520  * Main transmit routine for C+ and gigE NICs.
2521  */
2522 
2523 static void
2524 re_start(struct ifnet *ifp)
2525 {
2526 	struct re_softc	*sc = ifp->if_softc;
2527 	struct mbuf *m_head;
2528 	int idx, need_trans, oactive, error;
2529 
2530 	ASSERT_SERIALIZED(ifp->if_serializer);
2531 
2532 	if ((sc->re_flags & RE_F_LINKED) == 0) {
2533 		ifq_purge(&ifp->if_snd);
2534 		return;
2535 	}
2536 
2537 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
2538 		return;
2539 
2540 	idx = sc->re_ldata.re_tx_prodidx;
2541 
2542 	need_trans = 0;
2543 	oactive = 0;
2544 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2545 		if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2546 			if (!oactive) {
2547 				if (re_tx_collect(sc)) {
2548 					oactive = 1;
2549 					continue;
2550 				}
2551 			}
2552 			ifp->if_flags |= IFF_OACTIVE;
2553 			break;
2554 		}
2555 
2556 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2557 		if (m_head == NULL)
2558 			break;
2559 
2560 		error = re_encap(sc, &m_head, &idx);
2561 		if (error) {
2562 			/* m_head is freed by re_encap(), if we reach here */
2563 			ifp->if_oerrors++;
2564 
2565 			if (error == EFBIG && !oactive) {
2566 				if (re_tx_collect(sc)) {
2567 					oactive = 1;
2568 					continue;
2569 				}
2570 			}
2571 			ifp->if_flags |= IFF_OACTIVE;
2572 			break;
2573 		}
2574 
2575 		oactive = 0;
2576 		need_trans = 1;
2577 
2578 		/*
2579 		 * If there's a BPF listener, bounce a copy of this frame
2580 		 * to him.
2581 		 */
2582 		ETHER_BPF_MTAP(ifp, m_head);
2583 	}
2584 
2585 	if (!need_trans)
2586 		return;
2587 
2588 	/* Flush the TX descriptors */
2589 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
2590 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
2591 
2592 	sc->re_ldata.re_tx_prodidx = idx;
2593 
2594 	/*
2595 	 * RealTek put the TX poll request register in a different
2596 	 * location on the 8169 gigE chip. I don't know why.
2597 	 */
2598 	CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2599 
2600 	/*
2601 	 * Set a timeout in case the chip goes out to lunch.
2602 	 */
2603 	ifp->if_timer = 5;
2604 }
2605 
2606 static void
2607 re_init(void *xsc)
2608 {
2609 	struct re_softc *sc = xsc;
2610 	struct ifnet *ifp = &sc->arpcom.ac_if;
2611 	struct mii_data *mii;
2612 	int error, framelen;
2613 
2614 	ASSERT_SERIALIZED(ifp->if_serializer);
2615 
2616 	mii = device_get_softc(sc->re_miibus);
2617 
2618 	/*
2619 	 * Cancel pending I/O and free all RX/TX buffers.
2620 	 */
2621 	re_stop(sc);
2622 
2623 	if (sc->re_caps & RE_C_CONTIGRX) {
2624 		if (ifp->if_mtu > ETHERMTU) {
2625 			KKASSERT(sc->re_ldata.re_jbuf != NULL);
2626 			sc->re_flags |= RE_F_USE_JPOOL;
2627 			sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2628 			sc->re_newbuf = re_newbuf_jumbo;
2629 		} else {
2630 			sc->re_flags &= ~RE_F_USE_JPOOL;
2631 			sc->re_rxbuf_size = MCLBYTES;
2632 			sc->re_newbuf = re_newbuf_std;
2633 		}
2634 	}
2635 
2636 	/*
2637 	 * Adjust max read request size according to MTU; mainly to
2638 	 * improve TX performance for common case (ETHERMTU) on GigE
2639 	 * NICs.  However, this could _not_ be done on 10/100 only
2640 	 * NICs; their DMA engines will malfunction using non-default
2641 	 * max read request size.
2642 	 */
2643 	if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2644 		if (ifp->if_mtu > ETHERMTU) {
2645 			/*
2646 			 * 512 seems to be the only value that works
2647 			 * reliably with jumbo frame
2648 			 */
2649 			pcie_set_max_readrq(sc->re_dev,
2650 				PCIEM_DEVCTL_MAX_READRQ_512);
2651 		} else {
2652 			pcie_set_max_readrq(sc->re_dev,
2653 				PCIEM_DEVCTL_MAX_READRQ_4096);
2654 		}
2655 	}
2656 
2657 	/*
2658 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2659 	 * RX checksum offload. We must configure the C+ register
2660 	 * before all others.
2661 	 */
2662 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2663 		    RE_CPLUSCMD_PCI_MRW |
2664 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2665 		     RE_CPLUSCMD_VLANSTRIP : 0) |
2666 		    (ifp->if_capenable & IFCAP_RXCSUM ?
2667 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
2668 
2669 	/*
2670 	 * Init our MAC address.  Even though the chipset
2671 	 * documentation doesn't mention it, we need to enter "Config
2672 	 * register write enable" mode to modify the ID registers.
2673 	 */
2674 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2675 	CSR_WRITE_4(sc, RE_IDR0,
2676 	    htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2677 	CSR_WRITE_2(sc, RE_IDR4,
2678 	    htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2679 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2680 
2681 	/*
2682 	 * For C+ mode, initialize the RX descriptors and mbufs.
2683 	 */
2684 	error = re_rx_list_init(sc);
2685 	if (error) {
2686 		re_stop(sc);
2687 		return;
2688 	}
2689 	error = re_tx_list_init(sc);
2690 	if (error) {
2691 		re_stop(sc);
2692 		return;
2693 	}
2694 
2695 	/*
2696 	 * Load the addresses of the RX and TX lists into the chip.
2697 	 */
2698 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2699 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2700 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2701 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2702 
2703 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2704 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2705 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2706 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2707 
2708 	/*
2709 	 * Enable transmit and receive.
2710 	 */
2711 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2712 
2713 	/*
2714 	 * Set the initial TX and RX configuration.
2715 	 */
2716 	if (sc->re_flags & RE_F_TESTMODE) {
2717 		if (!RE_IS_8139CP(sc))
2718 			CSR_WRITE_4(sc, RE_TXCFG,
2719 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2720 		else
2721 			CSR_WRITE_4(sc, RE_TXCFG,
2722 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2723 	} else
2724 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2725 
2726 	framelen = RE_FRAMELEN(ifp->if_mtu);
2727 	if (framelen < MCLBYTES)
2728 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2729 	else
2730 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2731 
2732 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2733 
2734 	/*
2735 	 * Program the multicast filter, if necessary.
2736 	 */
2737 	re_setmulti(sc);
2738 
2739 #ifdef DEVICE_POLLING
2740 	/*
2741 	 * Disable interrupts if we are polling.
2742 	 */
2743 	if (ifp->if_flags & IFF_POLLING)
2744 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2745 	else	/* otherwise ... */
2746 #endif /* DEVICE_POLLING */
2747 	/*
2748 	 * Enable interrupts.
2749 	 */
2750 	if (sc->re_flags & RE_F_TESTMODE)
2751 		CSR_WRITE_2(sc, RE_IMR, 0);
2752 	else
2753 		re_setup_intr(sc, 1, sc->re_imtype);
2754 	CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2755 
2756 	/* Start RX/TX process. */
2757 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2758 
2759 #ifdef notdef
2760 	/* Enable receiver and transmitter. */
2761 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2762 #endif
2763 
2764 	/*
2765 	 * For 8169 gigE NICs, set the max allowed RX packet
2766 	 * size so we can receive jumbo frames.
2767 	 */
2768 	if (!RE_IS_8139CP(sc)) {
2769 		if (sc->re_caps & RE_C_CONTIGRX)
2770 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2771 		else
2772 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2773 	}
2774 
2775 	if (sc->re_flags & RE_F_TESTMODE)
2776 		return;
2777 
2778 	mii_mediachg(mii);
2779 
2780 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2781 
2782 	ifp->if_flags |= IFF_RUNNING;
2783 	ifp->if_flags &= ~IFF_OACTIVE;
2784 
2785 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2786 }
2787 
2788 /*
2789  * Set media options.
2790  */
2791 static int
2792 re_ifmedia_upd(struct ifnet *ifp)
2793 {
2794 	struct re_softc *sc = ifp->if_softc;
2795 	struct mii_data *mii;
2796 
2797 	ASSERT_SERIALIZED(ifp->if_serializer);
2798 
2799 	mii = device_get_softc(sc->re_miibus);
2800 	mii_mediachg(mii);
2801 
2802 	return(0);
2803 }
2804 
2805 /*
2806  * Report current media status.
2807  */
2808 static void
2809 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2810 {
2811 	struct re_softc *sc = ifp->if_softc;
2812 	struct mii_data *mii;
2813 
2814 	ASSERT_SERIALIZED(ifp->if_serializer);
2815 
2816 	mii = device_get_softc(sc->re_miibus);
2817 
2818 	mii_pollstat(mii);
2819 	ifmr->ifm_active = mii->mii_media_active;
2820 	ifmr->ifm_status = mii->mii_media_status;
2821 }
2822 
2823 static int
2824 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2825 {
2826 	struct re_softc *sc = ifp->if_softc;
2827 	struct ifreq *ifr = (struct ifreq *) data;
2828 	struct mii_data *mii;
2829 	int error = 0, mask;
2830 
2831 	ASSERT_SERIALIZED(ifp->if_serializer);
2832 
2833 	switch(command) {
2834 	case SIOCSIFMTU:
2835 		if (ifr->ifr_mtu > sc->re_maxmtu) {
2836 			error = EINVAL;
2837 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2838 			ifp->if_mtu = ifr->ifr_mtu;
2839 			if (ifp->if_flags & IFF_RUNNING)
2840 				ifp->if_init(sc);
2841 		}
2842 		break;
2843 
2844 	case SIOCSIFFLAGS:
2845 		if (ifp->if_flags & IFF_UP) {
2846 			if (ifp->if_flags & IFF_RUNNING) {
2847 				if ((ifp->if_flags ^ sc->re_if_flags) &
2848 				    (IFF_PROMISC | IFF_ALLMULTI))
2849 					re_setmulti(sc);
2850 			} else {
2851 				re_init(sc);
2852 			}
2853 		} else if (ifp->if_flags & IFF_RUNNING) {
2854 			re_stop(sc);
2855 		}
2856 		sc->re_if_flags = ifp->if_flags;
2857 		break;
2858 
2859 	case SIOCADDMULTI:
2860 	case SIOCDELMULTI:
2861 		re_setmulti(sc);
2862 		break;
2863 
2864 	case SIOCGIFMEDIA:
2865 	case SIOCSIFMEDIA:
2866 		mii = device_get_softc(sc->re_miibus);
2867 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2868 		break;
2869 
2870 	case SIOCSIFCAP:
2871 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2872 		       ifp->if_capabilities;
2873 		ifp->if_capenable ^= mask;
2874 
2875 		if (mask & IFCAP_HWCSUM) {
2876 			if (ifp->if_capenable & IFCAP_TXCSUM)
2877 				ifp->if_hwassist = RE_CSUM_FEATURES;
2878 			else
2879 				ifp->if_hwassist = 0;
2880 		}
2881 		if (mask && (ifp->if_flags & IFF_RUNNING))
2882 			re_init(sc);
2883 		break;
2884 
2885 	default:
2886 		error = ether_ioctl(ifp, command, data);
2887 		break;
2888 	}
2889 	return(error);
2890 }
2891 
2892 static void
2893 re_watchdog(struct ifnet *ifp)
2894 {
2895 	struct re_softc *sc = ifp->if_softc;
2896 
2897 	ASSERT_SERIALIZED(ifp->if_serializer);
2898 
2899 	if_printf(ifp, "watchdog timeout\n");
2900 
2901 	ifp->if_oerrors++;
2902 
2903 	re_txeof(sc);
2904 	re_rxeof(sc);
2905 
2906 	re_init(sc);
2907 
2908 	if (!ifq_is_empty(&ifp->if_snd))
2909 		if_devstart(ifp);
2910 }
2911 
2912 /*
2913  * Stop the adapter and free any mbufs allocated to the
2914  * RX and TX lists.
2915  */
2916 static void
2917 re_stop(struct re_softc *sc)
2918 {
2919 	struct ifnet *ifp = &sc->arpcom.ac_if;
2920 	int i;
2921 
2922 	ASSERT_SERIALIZED(ifp->if_serializer);
2923 
2924 	/* Reset the adapter. */
2925 	re_reset(sc, ifp->if_flags & IFF_RUNNING);
2926 
2927 	ifp->if_timer = 0;
2928 	callout_stop(&sc->re_timer);
2929 
2930 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2931 	sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2932 
2933 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2934 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2935 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2936 
2937 	re_free_rxchain(sc);
2938 
2939 	/* Free the TX list buffers. */
2940 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2941 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2942 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2943 					  sc->re_ldata.re_tx_dmamap[i]);
2944 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2945 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2946 		}
2947 	}
2948 
2949 	/* Free the RX list buffers. */
2950 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2951 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2952 			if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2953 				bus_dmamap_unload(sc->re_ldata.re_mtag,
2954 						  sc->re_ldata.re_rx_dmamap[i]);
2955 			}
2956 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2957 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2958 		}
2959 	}
2960 }
2961 
2962 /*
2963  * Device suspend routine.  Stop the interface and save some PCI
2964  * settings in case the BIOS doesn't restore them properly on
2965  * resume.
2966  */
2967 static int
2968 re_suspend(device_t dev)
2969 {
2970 #ifndef BURN_BRIDGES
2971 	int i;
2972 #endif
2973 	struct re_softc *sc = device_get_softc(dev);
2974 	struct ifnet *ifp = &sc->arpcom.ac_if;
2975 
2976 	lwkt_serialize_enter(ifp->if_serializer);
2977 
2978 	re_stop(sc);
2979 
2980 #ifndef BURN_BRIDGES
2981 	for (i = 0; i < 5; i++)
2982 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2983 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2984 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2985 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2986 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2987 #endif
2988 
2989 	sc->re_flags |= RE_F_SUSPENDED;
2990 
2991 	lwkt_serialize_exit(ifp->if_serializer);
2992 
2993 	return (0);
2994 }
2995 
2996 /*
2997  * Device resume routine.  Restore some PCI settings in case the BIOS
2998  * doesn't, re-enable busmastering, and restart the interface if
2999  * appropriate.
3000  */
3001 static int
3002 re_resume(device_t dev)
3003 {
3004 	struct re_softc *sc = device_get_softc(dev);
3005 	struct ifnet *ifp = &sc->arpcom.ac_if;
3006 #ifndef BURN_BRIDGES
3007 	int i;
3008 #endif
3009 
3010 	lwkt_serialize_enter(ifp->if_serializer);
3011 
3012 #ifndef BURN_BRIDGES
3013 	/* better way to do this? */
3014 	for (i = 0; i < 5; i++)
3015 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3016 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3017 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3018 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3019 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3020 
3021 	/* reenable busmastering */
3022 	pci_enable_busmaster(dev);
3023 	pci_enable_io(dev, SYS_RES_IOPORT);
3024 #endif
3025 
3026 	/* reinitialize interface if necessary */
3027 	if (ifp->if_flags & IFF_UP)
3028 		re_init(sc);
3029 
3030 	sc->re_flags &= ~RE_F_SUSPENDED;
3031 
3032 	lwkt_serialize_exit(ifp->if_serializer);
3033 
3034 	return (0);
3035 }
3036 
3037 /*
3038  * Stop all chip I/O so that the kernel's probe routines don't
3039  * get confused by errant DMAs when rebooting.
3040  */
3041 static void
3042 re_shutdown(device_t dev)
3043 {
3044 	struct re_softc *sc = device_get_softc(dev);
3045 	struct ifnet *ifp = &sc->arpcom.ac_if;
3046 
3047 	lwkt_serialize_enter(ifp->if_serializer);
3048 	re_stop(sc);
3049 	lwkt_serialize_exit(ifp->if_serializer);
3050 }
3051 
3052 static int
3053 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
3054 {
3055 	struct re_softc *sc = arg1;
3056 
3057 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
3058 }
3059 
3060 static int
3061 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
3062 {
3063 	struct re_softc *sc = arg1;
3064 
3065 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
3066 }
3067 
3068 static int
3069 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
3070 {
3071 	struct re_softc *sc = arg1;
3072 	struct ifnet *ifp = &sc->arpcom.ac_if;
3073 	int error, v;
3074 
3075 	lwkt_serialize_enter(ifp->if_serializer);
3076 
3077 	v = *hwtime;
3078 	error = sysctl_handle_int(oidp, &v, 0, req);
3079 	if (error || req->newptr == NULL)
3080 		goto back;
3081 
3082 	if (v <= 0) {
3083 		error = EINVAL;
3084 		goto back;
3085 	}
3086 
3087 	if (v != *hwtime) {
3088 		*hwtime = v;
3089 
3090 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3091 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
3092 			re_setup_hw_im(sc);
3093 	}
3094 back:
3095 	lwkt_serialize_exit(ifp->if_serializer);
3096 	return error;
3097 }
3098 
3099 static int
3100 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
3101 {
3102 	struct re_softc *sc = arg1;
3103 	struct ifnet *ifp = &sc->arpcom.ac_if;
3104 	int error, v;
3105 
3106 	lwkt_serialize_enter(ifp->if_serializer);
3107 
3108 	v = sc->re_sim_time;
3109 	error = sysctl_handle_int(oidp, &v, 0, req);
3110 	if (error || req->newptr == NULL)
3111 		goto back;
3112 
3113 	if (v <= 0) {
3114 		error = EINVAL;
3115 		goto back;
3116 	}
3117 
3118 	if (v != sc->re_sim_time) {
3119 		sc->re_sim_time = v;
3120 
3121 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3122 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3123 #ifdef foo
3124 			int reg;
3125 
3126 			/*
3127 			 * Following code causes various strange
3128 			 * performance problems.  Hmm ...
3129 			 */
3130 			CSR_WRITE_2(sc, RE_IMR, 0);
3131 			if (!RE_IS_8139CP(sc))
3132 				reg = RE_TIMERINT_8169;
3133 			else
3134 				reg = RE_TIMERINT;
3135 			CSR_WRITE_4(sc, reg, 0);
3136 			CSR_READ_4(sc, reg); /* flush */
3137 
3138 			CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3139 			re_setup_sim_im(sc);
3140 #else
3141 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3142 			DELAY(10);
3143 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3144 #endif
3145 		}
3146 	}
3147 back:
3148 	lwkt_serialize_exit(ifp->if_serializer);
3149 	return error;
3150 }
3151 
3152 static int
3153 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3154 {
3155 	struct re_softc *sc = arg1;
3156 	struct ifnet *ifp = &sc->arpcom.ac_if;
3157 	int error, v;
3158 
3159 	lwkt_serialize_enter(ifp->if_serializer);
3160 
3161 	v = sc->re_imtype;
3162 	error = sysctl_handle_int(oidp, &v, 0, req);
3163 	if (error || req->newptr == NULL)
3164 		goto back;
3165 
3166 	if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3167 		error = EINVAL;
3168 		goto back;
3169 	}
3170 	if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3171 		/* Can't do hardware interrupt moderation */
3172 		error = EOPNOTSUPP;
3173 		goto back;
3174 	}
3175 
3176 	if (v != sc->re_imtype) {
3177 		sc->re_imtype = v;
3178 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3179 		    IFF_RUNNING)
3180 			re_setup_intr(sc, 1, sc->re_imtype);
3181 	}
3182 back:
3183 	lwkt_serialize_exit(ifp->if_serializer);
3184 	return error;
3185 }
3186 
3187 static void
3188 re_setup_hw_im(struct re_softc *sc)
3189 {
3190 	KKASSERT(sc->re_caps & RE_C_HWIM);
3191 
3192 	/*
3193 	 * Interrupt moderation
3194 	 *
3195 	 * 0xABCD
3196 	 * A - unknown (maybe TX related)
3197 	 * B - TX timer (unit: 25us)
3198 	 * C - unknown (maybe RX related)
3199 	 * D - RX timer (unit: 25us)
3200 	 *
3201 	 *
3202 	 * re(4)'s interrupt moderation is actually controlled by
3203 	 * two variables, like most other NICs (bge, bce etc.)
3204 	 * o  timer
3205 	 * o  number of packets [P]
3206 	 *
3207 	 * The logic relationship between these two variables is
3208 	 * similar to other NICs too:
3209 	 * if (timer expire || packets > [P])
3210 	 *     Interrupt is delivered
3211 	 *
3212 	 * Currently we only know how to set 'timer', but not
3213 	 * 'number of packets', which should be ~30, as far as I
3214 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3215 	 */
3216 	CSR_WRITE_2(sc, RE_IM,
3217 		    RE_IM_RXTIME(sc->re_rx_time) |
3218 		    RE_IM_TXTIME(sc->re_tx_time) |
3219 		    RE_IM_MAGIC);
3220 }
3221 
3222 static void
3223 re_disable_hw_im(struct re_softc *sc)
3224 {
3225 	if (sc->re_caps & RE_C_HWIM)
3226 		CSR_WRITE_2(sc, RE_IM, 0);
3227 }
3228 
3229 static void
3230 re_setup_sim_im(struct re_softc *sc)
3231 {
3232 	if (!RE_IS_8139CP(sc)) {
3233 		uint32_t ticks;
3234 
3235 		/*
3236 		 * Datasheet says tick decreases at bus speed,
3237 		 * but it seems the clock runs a little bit
3238 		 * faster, so we do some compensation here.
3239 		 */
3240 		ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3241 		CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3242 	} else {
3243 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3244 	}
3245 	CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3246 	sc->re_flags |= RE_F_TIMER_INTR;
3247 }
3248 
3249 static void
3250 re_disable_sim_im(struct re_softc *sc)
3251 {
3252 	if (!RE_IS_8139CP(sc))
3253 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3254 	else
3255 		CSR_WRITE_4(sc, RE_TIMERINT, 0);
3256 	sc->re_flags &= ~RE_F_TIMER_INTR;
3257 }
3258 
3259 static void
3260 re_config_imtype(struct re_softc *sc, int imtype)
3261 {
3262 	switch (imtype) {
3263 	case RE_IMTYPE_HW:
3264 		KKASSERT(sc->re_caps & RE_C_HWIM);
3265 		/* FALL THROUGH */
3266 	case RE_IMTYPE_NONE:
3267 		sc->re_intrs = RE_INTRS;
3268 		sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3269 				RE_ISR_RX_OVERRUN;
3270 		sc->re_tx_ack = RE_ISR_TX_OK;
3271 		break;
3272 
3273 	case RE_IMTYPE_SIM:
3274 		sc->re_intrs = RE_INTRS_TIMER;
3275 		sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3276 		sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3277 		break;
3278 
3279 	default:
3280 		panic("%s: unknown imtype %d\n",
3281 		      sc->arpcom.ac_if.if_xname, imtype);
3282 	}
3283 }
3284 
3285 static void
3286 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3287 {
3288 	re_config_imtype(sc, imtype);
3289 
3290 	if (enable_intrs)
3291 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3292 	else
3293 		CSR_WRITE_2(sc, RE_IMR, 0);
3294 
3295 	switch (imtype) {
3296 	case RE_IMTYPE_NONE:
3297 		re_disable_sim_im(sc);
3298 		re_disable_hw_im(sc);
3299 		break;
3300 
3301 	case RE_IMTYPE_HW:
3302 		KKASSERT(sc->re_caps & RE_C_HWIM);
3303 		re_disable_sim_im(sc);
3304 		re_setup_hw_im(sc);
3305 		break;
3306 
3307 	case RE_IMTYPE_SIM:
3308 		re_disable_hw_im(sc);
3309 		re_setup_sim_im(sc);
3310 		break;
3311 
3312 	default:
3313 		panic("%s: unknown imtype %d\n",
3314 		      sc->arpcom.ac_if.if_xname, imtype);
3315 	}
3316 }
3317 
3318 static void
3319 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3320 {
3321 	int i;
3322 
3323 	if (sc->re_macver == RE_MACVER_11 || sc->re_macver == RE_MACVER_12) {
3324 		uint16_t re_did;
3325 
3326 		re_get_eewidth(sc);
3327 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3328 		if (re_did == 0x8128) {
3329 			uint16_t as[ETHER_ADDR_LEN / 2];
3330 
3331 			/*
3332 			 * Get station address from the EEPROM.
3333 			 */
3334 			re_read_eeprom(sc, (caddr_t)as, RE_EE_EADDR, 3);
3335 			for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3336 				as[i] = le16toh(as[i]);
3337 			bcopy(as, eaddr, sizeof(eaddr));
3338 			return;
3339 		}
3340 	}
3341 
3342 	/*
3343 	 * Get station address from IDRx.
3344 	 */
3345 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
3346 		eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3347 }
3348 
3349 static int
3350 re_jpool_alloc(struct re_softc *sc)
3351 {
3352 	struct re_list_data *ldata = &sc->re_ldata;
3353 	struct re_jbuf *jbuf;
3354 	bus_addr_t paddr;
3355 	bus_size_t jpool_size;
3356 	caddr_t buf;
3357 	int i, error;
3358 
3359 	lwkt_serialize_init(&ldata->re_jbuf_serializer);
3360 
3361 	ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3362 				 M_DEVBUF, M_WAITOK | M_ZERO);
3363 
3364 	jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3365 
3366 	error = bus_dma_tag_create(sc->re_parent_tag,
3367 			RE_BUF_ALIGN, 0,	/* alignment, boundary */
3368 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
3369 			BUS_SPACE_MAXADDR,	/* highaddr */
3370 			NULL, NULL,		/* filter, filterarg */
3371 			jpool_size, 1,		/* nsegments, maxsize */
3372 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
3373 			BUS_DMA_ALLOCNOW,	/* flags */
3374 			&ldata->re_jpool_tag);
3375 	if (error) {
3376 		device_printf(sc->re_dev, "could not allocate jumbo dma tag\n");
3377 		return error;
3378 	}
3379 
3380 	error = bus_dmamem_alloc(ldata->re_jpool_tag, (void **)&ldata->re_jpool,
3381 				 BUS_DMA_WAITOK, &ldata->re_jpool_map);
3382 	if (error) {
3383 		device_printf(sc->re_dev,
3384 			      "could not allocate jumbo dma memory\n");
3385 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3386 		ldata->re_jpool_tag = NULL;
3387 		return error;
3388 	}
3389 
3390 	error = bus_dmamap_load(ldata->re_jpool_tag, ldata->re_jpool_map,
3391 				ldata->re_jpool, jpool_size,
3392 				re_dma_map_addr, &paddr, BUS_DMA_WAITOK);
3393 	if (error) {
3394 		device_printf(sc->re_dev, "could not load jumbo dma map\n");
3395 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3396 				ldata->re_jpool_map);
3397 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3398 		ldata->re_jpool_tag = NULL;
3399 		return error;
3400 	}
3401 
3402 	/* ..and split it into 9KB chunks */
3403 	SLIST_INIT(&ldata->re_jbuf_free);
3404 
3405 	buf = ldata->re_jpool;
3406 	for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3407 		jbuf = &ldata->re_jbuf[i];
3408 
3409 		jbuf->re_sc = sc;
3410 		jbuf->re_inuse = 0;
3411 		jbuf->re_slot = i;
3412 		jbuf->re_buf = buf;
3413 		jbuf->re_paddr = paddr;
3414 
3415 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3416 
3417 		buf += RE_JBUF_SIZE;
3418 		paddr += RE_JBUF_SIZE;
3419 	}
3420 	return 0;
3421 }
3422 
3423 static void
3424 re_jpool_free(struct re_softc *sc)
3425 {
3426 	struct re_list_data *ldata = &sc->re_ldata;
3427 
3428 	if (ldata->re_jpool_tag != NULL) {
3429 		bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3430 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3431 				ldata->re_jpool_map);
3432 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3433 		ldata->re_jpool_tag = NULL;
3434 	}
3435 
3436 	if (ldata->re_jbuf != NULL) {
3437 		kfree(ldata->re_jbuf, M_DEVBUF);
3438 		ldata->re_jbuf = NULL;
3439 	}
3440 }
3441 
3442 static struct re_jbuf *
3443 re_jbuf_alloc(struct re_softc *sc)
3444 {
3445 	struct re_list_data *ldata = &sc->re_ldata;
3446 	struct re_jbuf *jbuf;
3447 
3448 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3449 
3450 	jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3451 	if (jbuf != NULL) {
3452 		SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3453 		jbuf->re_inuse = 1;
3454 	}
3455 
3456 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3457 
3458 	return jbuf;
3459 }
3460 
3461 static void
3462 re_jbuf_free(void *arg)
3463 {
3464 	struct re_jbuf *jbuf = arg;
3465 	struct re_softc *sc = jbuf->re_sc;
3466 	struct re_list_data *ldata = &sc->re_ldata;
3467 
3468 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3469 		panic("%s: free wrong jumbo buffer\n",
3470 		      sc->arpcom.ac_if.if_xname);
3471 	} else if (jbuf->re_inuse == 0) {
3472 		panic("%s: jumbo buffer already freed\n",
3473 		      sc->arpcom.ac_if.if_xname);
3474 	}
3475 
3476 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3477 	atomic_subtract_int(&jbuf->re_inuse, 1);
3478 	if (jbuf->re_inuse == 0)
3479 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3480 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3481 }
3482 
3483 static void
3484 re_jbuf_ref(void *arg)
3485 {
3486 	struct re_jbuf *jbuf = arg;
3487 	struct re_softc *sc = jbuf->re_sc;
3488 	struct re_list_data *ldata = &sc->re_ldata;
3489 
3490 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3491 		panic("%s: ref wrong jumbo buffer\n",
3492 		      sc->arpcom.ac_if.if_xname);
3493 	} else if (jbuf->re_inuse == 0) {
3494 		panic("%s: jumbo buffer already freed\n",
3495 		      sc->arpcom.ac_if.if_xname);
3496 	}
3497 	atomic_add_int(&jbuf->re_inuse, 1);
3498 }
3499