xref: /dragonfly/sys/dev/netif/re/if_re.c (revision a8ca8ac6)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  * $DragonFly: src/sys/dev/netif/re/if_re.c,v 1.99 2008/10/30 11:27:40 sephe Exp $
37  */
38 
39 /*
40  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
41  *
42  * Written by Bill Paul <wpaul@windriver.com>
43  * Senior Networking Software Engineer
44  * Wind River Systems
45  */
46 
47 /*
48  * This driver is designed to support RealTek's next generation of
49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
52  *
53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54  * with the older 8139 family, however it also supports a special
55  * C+ mode of operation that provides several new performance enhancing
56  * features. These include:
57  *
58  *	o Descriptor based DMA mechanism. Each descriptor represents
59  *	  a single packet fragment. Data buffers may be aligned on
60  *	  any byte boundary.
61  *
62  *	o 64-bit DMA
63  *
64  *	o TCP/IP checksum offload for both RX and TX
65  *
66  *	o High and normal priority transmit DMA rings
67  *
68  *	o VLAN tag insertion and extraction
69  *
70  *	o TCP large send (segmentation offload)
71  *
72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73  * programming API is fairly straightforward. The RX filtering, EEPROM
74  * access and PHY access is the same as it is on the older 8139 series
75  * chips.
76  *
77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78  * same programming API and feature set as the 8139C+ with the following
79  * differences and additions:
80  *
81  *	o 1000Mbps mode
82  *
83  *	o Jumbo frames
84  *
85  * 	o GMII and TBI ports/registers for interfacing with copper
86  *	  or fiber PHYs
87  *
88  *      o RX and TX DMA rings can have up to 1024 descriptors
89  *        (the 8139C+ allows a maximum of 64)
90  *
91  *	o Slight differences in register layout from the 8139C+
92  *
93  * The TX start and timer interrupt registers are at different locations
94  * on the 8169 than they are on the 8139C+. Also, the status word in the
95  * RX descriptor has a slightly different bit layout. The 8169 does not
96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97  * copper gigE PHY.
98  *
99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100  * (the 'S' stands for 'single-chip'). These devices have the same
101  * programming API as the older 8169, but also have some vendor-specific
102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104  *
105  * This driver takes advantage of the RX and TX checksum offload and
106  * VLAN tag insertion/extraction features. It also implements TX
107  * interrupt moderation using the timer interrupt registers, which
108  * significantly reduces TX interrupt load. There is also support
109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
110  * jumbo frames larger than 7440, so the max MTU possible with this
111  * driver is 7422 bytes.
112  */
113 
114 #define _IP_VHL
115 
116 #include "opt_polling.h"
117 
118 #include <sys/param.h>
119 #include <sys/bus.h>
120 #include <sys/endian.h>
121 #include <sys/kernel.h>
122 #include <sys/in_cksum.h>
123 #include <sys/interrupt.h>
124 #include <sys/malloc.h>
125 #include <sys/mbuf.h>
126 #include <sys/rman.h>
127 #include <sys/serialize.h>
128 #include <sys/socket.h>
129 #include <sys/sockio.h>
130 #include <sys/sysctl.h>
131 
132 #include <net/bpf.h>
133 #include <net/ethernet.h>
134 #include <net/if.h>
135 #include <net/ifq_var.h>
136 #include <net/if_arp.h>
137 #include <net/if_dl.h>
138 #include <net/if_media.h>
139 #include <net/if_types.h>
140 #include <net/vlan/if_vlan_var.h>
141 #include <net/vlan/if_vlan_ether.h>
142 
143 #include <netinet/ip.h>
144 
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
147 
148 #include <bus/pci/pcidevs.h>
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 #include <dev/netif/re/if_rereg.h>
156 #include <dev/netif/re/if_revar.h>
157 
158 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
159 
160 /*
161  * Various supported device vendors/types and their names.
162  */
163 static const struct re_type {
164 	uint16_t	re_vid;
165 	uint16_t	re_did;
166 	const char	*re_name;
167 } re_devs[] = {
168 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
169 	  "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170 
171 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
172 	  "RealTek 8139C+ 10/100BaseTX" },
173 
174 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
175 	  "RealTek 810x PCIe 10/100baseTX" },
176 
177 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
178 	  "RealTek 8111/8168 PCIe Gigabit Ethernet" },
179 
180 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
181 	  "RealTek 8110/8169 Gigabit Ethernet" },
182 
183 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
184 	  "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
185 
186 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
187 	  "Corega CG-LAPCIGT Gigabit Ethernet" },
188 
189 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
190 	  "Linksys EG1032 Gigabit Ethernet" },
191 
192 	{ PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
193 	  "US Robotics 997902 Gigabit Ethernet" },
194 
195 	{ PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
196 	  "TTTech MC322 Gigabit Ethernet" },
197 
198 	{ 0, 0, NULL }
199 };
200 
201 static const struct re_hwrev re_hwrevs[] = {
202 	{ RE_HWREV_8139CPLUS,	RE_MACVER_UNKN,		ETHERMTU,
203 	  RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
204 
205 	{ RE_HWREV_8169,	RE_MACVER_UNKN,		ETHERMTU,
206 	  RE_C_HWCSUM | RE_C_8169 },
207 
208 	{ RE_HWREV_8110S,	RE_MACVER_03,		RE_MTU_6K,
209 	  RE_C_HWCSUM | RE_C_8169 },
210 
211 	{ RE_HWREV_8169S,	RE_MACVER_03,		RE_MTU_6K,
212 	  RE_C_HWCSUM | RE_C_8169 },
213 
214 	{ RE_HWREV_8169SB,	RE_MACVER_04,		RE_MTU_6K,
215 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
216 
217 	{ RE_HWREV_8169SC1,	RE_MACVER_05,		RE_MTU_6K,
218 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
219 
220 	{ RE_HWREV_8169SC2,	RE_MACVER_06,		RE_MTU_6K,
221 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
222 
223 	{ RE_HWREV_8168B1,	RE_MACVER_21,		RE_MTU_6K,
224 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
225 
226 	{ RE_HWREV_8168B2,	RE_MACVER_23,		RE_MTU_6K,
227 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
228 
229 	{ RE_HWREV_8168B3,	RE_MACVER_23,		RE_MTU_6K,
230 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
231 
232 	{ RE_HWREV_8168C,	RE_MACVER_29,		RE_MTU_6K,
233 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
234 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
235 
236 	{ RE_HWREV_8168CP,	RE_MACVER_2B,		RE_MTU_6K,
237 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
238 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
239 
240 	{ RE_HWREV_8168D,	RE_MACVER_2A,		RE_MTU_9K,
241 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
242 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
243 
244 	{ RE_HWREV_8100E,	RE_MACVER_UNKN,		ETHERMTU,
245 	  RE_C_HWCSUM | RE_C_FASTE },
246 
247 	{ RE_HWREV_8101E1,	RE_MACVER_16,		ETHERMTU,
248 	  RE_C_HWCSUM | RE_C_FASTE },
249 
250 	{ RE_HWREV_8101E2,	RE_MACVER_16,		ETHERMTU,
251 	  RE_C_HWCSUM | RE_C_FASTE },
252 
253 	{ RE_HWREV_8102E,	RE_MACVER_15,		ETHERMTU,
254 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
255 	  RE_C_FASTE },
256 
257 	{ RE_HWREV_8102EL,	RE_MACVER_15,		ETHERMTU,
258 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
259 	  RE_C_FASTE },
260 
261 	{ RE_HWREV_NULL, 0, 0, 0 }
262 };
263 
264 static int	re_probe(device_t);
265 static int	re_attach(device_t);
266 static int	re_detach(device_t);
267 static int	re_suspend(device_t);
268 static int	re_resume(device_t);
269 static void	re_shutdown(device_t);
270 
271 static int	re_allocmem(device_t);
272 static void	re_freemem(device_t);
273 static void	re_freebufmem(struct re_softc *, int, int);
274 static int	re_encap(struct re_softc *, struct mbuf **, int *);
275 static int	re_newbuf_std(struct re_softc *, int, int);
276 static int	re_newbuf_jumbo(struct re_softc *, int, int);
277 static void	re_setup_rxdesc(struct re_softc *, int);
278 static int	re_rx_list_init(struct re_softc *);
279 static int	re_tx_list_init(struct re_softc *);
280 static int	re_rxeof(struct re_softc *);
281 static int	re_txeof(struct re_softc *);
282 static int	re_tx_collect(struct re_softc *);
283 static void	re_intr(void *);
284 static void	re_tick(void *);
285 static void	re_tick_serialized(void *);
286 
287 static void	re_start(struct ifnet *);
288 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
289 static void	re_init(void *);
290 static void	re_stop(struct re_softc *);
291 static void	re_watchdog(struct ifnet *);
292 static int	re_ifmedia_upd(struct ifnet *);
293 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
294 
295 static void	re_eeprom_putbyte(struct re_softc *, int);
296 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
297 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int);
298 static void	re_get_eewidth(struct re_softc *);
299 
300 static int	re_gmii_readreg(device_t, int, int);
301 static int	re_gmii_writereg(device_t, int, int, int);
302 
303 static int	re_miibus_readreg(device_t, int, int);
304 static int	re_miibus_writereg(device_t, int, int, int);
305 static void	re_miibus_statchg(device_t);
306 
307 static void	re_setmulti(struct re_softc *);
308 static void	re_reset(struct re_softc *, int);
309 static void	re_get_eaddr(struct re_softc *, uint8_t *);
310 
311 static void	re_setup_hw_im(struct re_softc *);
312 static void	re_setup_sim_im(struct re_softc *);
313 static void	re_disable_hw_im(struct re_softc *);
314 static void	re_disable_sim_im(struct re_softc *);
315 static void	re_config_imtype(struct re_softc *, int);
316 static void	re_setup_intr(struct re_softc *, int, int);
317 
318 static int	re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
319 static int	re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
320 static int	re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
321 static int	re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
322 static int	re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
323 
324 static int	re_jpool_alloc(struct re_softc *);
325 static void	re_jpool_free(struct re_softc *);
326 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
327 static void	re_jbuf_free(void *);
328 static void	re_jbuf_ref(void *);
329 
330 #ifdef RE_DIAG
331 static int	re_diag(struct re_softc *);
332 #endif
333 
334 #ifdef DEVICE_POLLING
335 static void	re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
336 #endif
337 
338 static device_method_t re_methods[] = {
339 	/* Device interface */
340 	DEVMETHOD(device_probe,		re_probe),
341 	DEVMETHOD(device_attach,	re_attach),
342 	DEVMETHOD(device_detach,	re_detach),
343 	DEVMETHOD(device_suspend,	re_suspend),
344 	DEVMETHOD(device_resume,	re_resume),
345 	DEVMETHOD(device_shutdown,	re_shutdown),
346 
347 	/* bus interface */
348 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
349 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
350 
351 	/* MII interface */
352 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
353 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
354 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
355 
356 	{ 0, 0 }
357 };
358 
359 static driver_t re_driver = {
360 	"re",
361 	re_methods,
362 	sizeof(struct re_softc)
363 };
364 
365 static devclass_t re_devclass;
366 
367 DECLARE_DUMMY_MODULE(if_re);
368 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
369 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, 0, 0);
370 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, 0, 0);
371 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
372 
373 static int	re_rx_desc_count = RE_RX_DESC_CNT_DEF;
374 static int	re_tx_desc_count = RE_TX_DESC_CNT_DEF;
375 
376 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
377 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
378 
379 #define EE_SET(x)	\
380 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
381 
382 #define EE_CLR(x)	\
383 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
384 
385 static __inline void
386 re_free_rxchain(struct re_softc *sc)
387 {
388 	if (sc->re_head != NULL) {
389 		m_freem(sc->re_head);
390 		sc->re_head = sc->re_tail = NULL;
391 	}
392 }
393 
394 /*
395  * Send a read command and address to the EEPROM, check for ACK.
396  */
397 static void
398 re_eeprom_putbyte(struct re_softc *sc, int addr)
399 {
400 	int d, i;
401 
402 	d = addr | (RE_9346_READ << sc->re_eewidth);
403 
404 	/*
405 	 * Feed in each bit and strobe the clock.
406 	 */
407 	for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
408 		if (d & i)
409 			EE_SET(RE_EE_DATAIN);
410 		else
411 			EE_CLR(RE_EE_DATAIN);
412 		DELAY(100);
413 		EE_SET(RE_EE_CLK);
414 		DELAY(150);
415 		EE_CLR(RE_EE_CLK);
416 		DELAY(100);
417 	}
418 }
419 
420 /*
421  * Read a word of data stored in the EEPROM at address 'addr.'
422  */
423 static void
424 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
425 {
426 	int i;
427 	uint16_t word = 0;
428 
429 	/*
430 	 * Send address of word we want to read.
431 	 */
432 	re_eeprom_putbyte(sc, addr);
433 
434 	/*
435 	 * Start reading bits from EEPROM.
436 	 */
437 	for (i = 0x8000; i != 0; i >>= 1) {
438 		EE_SET(RE_EE_CLK);
439 		DELAY(100);
440 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
441 			word |= i;
442 		EE_CLR(RE_EE_CLK);
443 		DELAY(100);
444 	}
445 
446 	*dest = word;
447 }
448 
449 /*
450  * Read a sequence of words from the EEPROM.
451  */
452 static void
453 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
454 {
455 	int i;
456 	uint16_t word = 0, *ptr;
457 
458 	CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
459 	DELAY(100);
460 
461 	for (i = 0; i < cnt; i++) {
462 		CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
463 		re_eeprom_getword(sc, off + i, &word);
464 		CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
465 		ptr = (uint16_t *)(dest + (i * 2));
466 		*ptr = word;
467 	}
468 
469 	CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
470 }
471 
472 static void
473 re_get_eewidth(struct re_softc *sc)
474 {
475 	uint16_t re_did = 0;
476 
477 	sc->re_eewidth = 6;
478 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
479 	if (re_did != 0x8129)
480 		sc->re_eewidth = 8;
481 }
482 
483 static int
484 re_gmii_readreg(device_t dev, int phy, int reg)
485 {
486 	struct re_softc *sc = device_get_softc(dev);
487 	u_int32_t rval;
488 	int i;
489 
490 	if (phy != 1)
491 		return(0);
492 
493 	/* Let the rgephy driver read the GMEDIASTAT register */
494 
495 	if (reg == RE_GMEDIASTAT)
496 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
497 
498 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
499 	DELAY(1000);
500 
501 	for (i = 0; i < RE_TIMEOUT; i++) {
502 		rval = CSR_READ_4(sc, RE_PHYAR);
503 		if (rval & RE_PHYAR_BUSY)
504 			break;
505 		DELAY(100);
506 	}
507 
508 	if (i == RE_TIMEOUT) {
509 		device_printf(dev, "PHY read failed\n");
510 		return(0);
511 	}
512 
513 	return(rval & RE_PHYAR_PHYDATA);
514 }
515 
516 static int
517 re_gmii_writereg(device_t dev, int phy, int reg, int data)
518 {
519 	struct re_softc *sc = device_get_softc(dev);
520 	uint32_t rval;
521 	int i;
522 
523 	CSR_WRITE_4(sc, RE_PHYAR,
524 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
525 	DELAY(1000);
526 
527 	for (i = 0; i < RE_TIMEOUT; i++) {
528 		rval = CSR_READ_4(sc, RE_PHYAR);
529 		if ((rval & RE_PHYAR_BUSY) == 0)
530 			break;
531 		DELAY(100);
532 	}
533 
534 	if (i == RE_TIMEOUT)
535 		device_printf(dev, "PHY write failed\n");
536 
537 	return(0);
538 }
539 
540 static int
541 re_miibus_readreg(device_t dev, int phy, int reg)
542 {
543 	struct re_softc	*sc = device_get_softc(dev);
544 	uint16_t rval = 0;
545 	uint16_t re8139_reg = 0;
546 
547 	if (!RE_IS_8139CP(sc)) {
548 		rval = re_gmii_readreg(dev, phy, reg);
549 		return(rval);
550 	}
551 
552 	/* Pretend the internal PHY is only at address 0 */
553 	if (phy)
554 		return(0);
555 
556 	switch(reg) {
557 	case MII_BMCR:
558 		re8139_reg = RE_BMCR;
559 		break;
560 	case MII_BMSR:
561 		re8139_reg = RE_BMSR;
562 		break;
563 	case MII_ANAR:
564 		re8139_reg = RE_ANAR;
565 		break;
566 	case MII_ANER:
567 		re8139_reg = RE_ANER;
568 		break;
569 	case MII_ANLPAR:
570 		re8139_reg = RE_LPAR;
571 		break;
572 	case MII_PHYIDR1:
573 	case MII_PHYIDR2:
574 		return(0);
575 	/*
576 	 * Allow the rlphy driver to read the media status
577 	 * register. If we have a link partner which does not
578 	 * support NWAY, this is the register which will tell
579 	 * us the results of parallel detection.
580 	 */
581 	case RE_MEDIASTAT:
582 		return(CSR_READ_1(sc, RE_MEDIASTAT));
583 	default:
584 		device_printf(dev, "bad phy register\n");
585 		return(0);
586 	}
587 	rval = CSR_READ_2(sc, re8139_reg);
588 	if (re8139_reg == RE_BMCR) {
589 		/* 8139C+ has different bit layout. */
590 		rval &= ~(BMCR_LOOP | BMCR_ISO);
591 	}
592 	return(rval);
593 }
594 
595 static int
596 re_miibus_writereg(device_t dev, int phy, int reg, int data)
597 {
598 	struct re_softc *sc= device_get_softc(dev);
599 	u_int16_t re8139_reg = 0;
600 
601 	if (!RE_IS_8139CP(sc))
602 		return(re_gmii_writereg(dev, phy, reg, data));
603 
604 	/* Pretend the internal PHY is only at address 0 */
605 	if (phy)
606 		return(0);
607 
608 	switch(reg) {
609 	case MII_BMCR:
610 		re8139_reg = RE_BMCR;
611 		/* 8139C+ has different bit layout. */
612 		data &= ~(BMCR_LOOP | BMCR_ISO);
613 		break;
614 	case MII_BMSR:
615 		re8139_reg = RE_BMSR;
616 		break;
617 	case MII_ANAR:
618 		re8139_reg = RE_ANAR;
619 		break;
620 	case MII_ANER:
621 		re8139_reg = RE_ANER;
622 		break;
623 	case MII_ANLPAR:
624 		re8139_reg = RE_LPAR;
625 		break;
626 	case MII_PHYIDR1:
627 	case MII_PHYIDR2:
628 		return(0);
629 	default:
630 		device_printf(dev, "bad phy register\n");
631 		return(0);
632 	}
633 	CSR_WRITE_2(sc, re8139_reg, data);
634 	return(0);
635 }
636 
637 static void
638 re_miibus_statchg(device_t dev)
639 {
640 }
641 
642 /*
643  * Program the 64-bit multicast hash filter.
644  */
645 static void
646 re_setmulti(struct re_softc *sc)
647 {
648 	struct ifnet *ifp = &sc->arpcom.ac_if;
649 	int h = 0;
650 	uint32_t hashes[2] = { 0, 0 };
651 	struct ifmultiaddr *ifma;
652 	uint32_t rxfilt;
653 	int mcnt = 0;
654 
655 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
656 
657 	/* Set the individual bit to receive frames for this host only. */
658 	rxfilt |= RE_RXCFG_RX_INDIV;
659 	/* Set capture broadcast bit to capture broadcast frames. */
660 	rxfilt |= RE_RXCFG_RX_BROAD;
661 
662 	rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
663 	if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
664 		rxfilt |= RE_RXCFG_RX_MULTI;
665 
666 		/* If we want promiscuous mode, set the allframes bit. */
667 		if (ifp->if_flags & IFF_PROMISC)
668 			rxfilt |= RE_RXCFG_RX_ALLPHYS;
669 
670 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
671 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
672 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
673 		return;
674 	}
675 
676 	/* first, zot all the existing hash bits */
677 	CSR_WRITE_4(sc, RE_MAR0, 0);
678 	CSR_WRITE_4(sc, RE_MAR4, 0);
679 
680 	/* now program new ones */
681 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
682 		if (ifma->ifma_addr->sa_family != AF_LINK)
683 			continue;
684 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
685 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
686 		if (h < 32)
687 			hashes[0] |= (1 << h);
688 		else
689 			hashes[1] |= (1 << (h - 32));
690 		mcnt++;
691 	}
692 
693 	if (mcnt)
694 		rxfilt |= RE_RXCFG_RX_MULTI;
695 	else
696 		rxfilt &= ~RE_RXCFG_RX_MULTI;
697 
698 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
699 
700 	/*
701 	 * For some unfathomable reason, RealTek decided to reverse
702 	 * the order of the multicast hash registers in the PCI Express
703 	 * parts. This means we have to write the hash pattern in reverse
704 	 * order for those devices.
705 	 */
706 	if (sc->re_caps & RE_C_PCIE) {
707 		CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[1]));
708 		CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[0]));
709 	} else {
710 		CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
711 		CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
712 	}
713 }
714 
715 static void
716 re_reset(struct re_softc *sc, int running)
717 {
718 	int i;
719 
720 	if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
721 		CSR_WRITE_1(sc, RE_COMMAND,
722 			    RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
723 		DELAY(100);
724 	}
725 
726 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
727 
728 	for (i = 0; i < RE_TIMEOUT; i++) {
729 		DELAY(10);
730 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
731 			break;
732 	}
733 	if (i == RE_TIMEOUT)
734 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
735 }
736 
737 #ifdef RE_DIAG
738 /*
739  * The following routine is designed to test for a defect on some
740  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
741  * lines connected to the bus, however for a 32-bit only card, they
742  * should be pulled high. The result of this defect is that the
743  * NIC will not work right if you plug it into a 64-bit slot: DMA
744  * operations will be done with 64-bit transfers, which will fail
745  * because the 64-bit data lines aren't connected.
746  *
747  * There's no way to work around this (short of talking a soldering
748  * iron to the board), however we can detect it. The method we use
749  * here is to put the NIC into digital loopback mode, set the receiver
750  * to promiscuous mode, and then try to send a frame. We then compare
751  * the frame data we sent to what was received. If the data matches,
752  * then the NIC is working correctly, otherwise we know the user has
753  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
754  * slot. In the latter case, there's no way the NIC can work correctly,
755  * so we print out a message on the console and abort the device attach.
756  */
757 
758 static int
759 re_diag(struct re_softc *sc)
760 {
761 	struct ifnet *ifp = &sc->arpcom.ac_if;
762 	struct mbuf *m0;
763 	struct ether_header *eh;
764 	struct re_desc *cur_rx;
765 	uint16_t status;
766 	uint32_t rxstat;
767 	int total_len, i, error = 0, phyaddr;
768 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
769 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
770 
771 	/* Allocate a single mbuf */
772 
773 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
774 	if (m0 == NULL)
775 		return(ENOBUFS);
776 
777 	/*
778 	 * Initialize the NIC in test mode. This sets the chip up
779 	 * so that it can send and receive frames, but performs the
780 	 * following special functions:
781 	 * - Puts receiver in promiscuous mode
782 	 * - Enables digital loopback mode
783 	 * - Leaves interrupts turned off
784 	 */
785 
786 	ifp->if_flags |= IFF_PROMISC;
787 	sc->re_flags |= RE_F_TESTMODE;
788 	re_init(sc);
789 	sc->re_flags |= RE_F_LINKED;
790 	if (!RE_IS_8139CP(sc))
791 		phyaddr = 1;
792 	else
793 		phyaddr = 0;
794 
795 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
796 	for (i = 0; i < RE_TIMEOUT; i++) {
797 		status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
798 		if (!(status & BMCR_RESET))
799 			break;
800 	}
801 
802 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
803 	CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
804 
805 	DELAY(100000);
806 
807 	/* Put some data in the mbuf */
808 
809 	eh = mtod(m0, struct ether_header *);
810 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
811 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
812 	eh->ether_type = htons(ETHERTYPE_IP);
813 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
814 
815 	/*
816 	 * Queue the packet, start transmission.
817 	 * Note: ifq_handoff() ultimately calls re_start() for us.
818 	 */
819 
820 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
821 	error = ifq_handoff(ifp, m0, NULL);
822 	if (error) {
823 		m0 = NULL;
824 		goto done;
825 	}
826 	m0 = NULL;
827 
828 	/* Wait for it to propagate through the chip */
829 
830 	DELAY(100000);
831 	for (i = 0; i < RE_TIMEOUT; i++) {
832 		status = CSR_READ_2(sc, RE_ISR);
833 		CSR_WRITE_2(sc, RE_ISR, status);
834 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
835 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
836 			break;
837 		DELAY(10);
838 	}
839 
840 	if (i == RE_TIMEOUT) {
841 		if_printf(ifp, "diagnostic failed to receive packet "
842 			  "in loopback mode\n");
843 		error = EIO;
844 		goto done;
845 	}
846 
847 	/*
848 	 * The packet should have been dumped into the first
849 	 * entry in the RX DMA ring. Grab it from there.
850 	 */
851 
852 	bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
853 			BUS_DMASYNC_POSTREAD);
854 	bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
855 			  sc->re_ldata.re_rx_dmamap[0]);
856 
857 	m0 = sc->re_ldata.re_rx_mbuf[0];
858 	sc->re_ldata.re_rx_mbuf[0] = NULL;
859 	eh = mtod(m0, struct ether_header *);
860 
861 	cur_rx = &sc->re_ldata.re_rx_list[0];
862 	total_len = RE_RXBYTES(cur_rx);
863 	rxstat = le32toh(cur_rx->re_cmdstat);
864 
865 	if (total_len != ETHER_MIN_LEN) {
866 		if_printf(ifp, "diagnostic failed, received short packet\n");
867 		error = EIO;
868 		goto done;
869 	}
870 
871 	/* Test that the received packet data matches what we sent. */
872 
873 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
874 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
875 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
876 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
877 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
878 		    dst, ":", src, ":", ETHERTYPE_IP);
879 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
880 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
881 		    ntohs(eh->ether_type));
882 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
883 		    "into a 64-bit PCI slot.\n");
884 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
885 		    "for proper operation.\n");
886 		if_printf(ifp, "Read the re(4) man page for more details.\n");
887 		error = EIO;
888 	}
889 
890 done:
891 	/* Turn interface off, release resources */
892 
893 	sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
894 	ifp->if_flags &= ~IFF_PROMISC;
895 	re_stop(sc);
896 	if (m0 != NULL)
897 		m_freem(m0);
898 
899 	return (error);
900 }
901 #endif	/* RE_DIAG */
902 
903 /*
904  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
905  * IDs against our list and return a device name if we find a match.
906  */
907 static int
908 re_probe(device_t dev)
909 {
910 	const struct re_type *t;
911 	const struct re_hwrev *hw_rev;
912 	struct re_softc *sc;
913 	int rid;
914 	uint32_t hwrev, macmode, txcfg;
915 	uint16_t vendor, product;
916 
917 	vendor = pci_get_vendor(dev);
918 	product = pci_get_device(dev);
919 
920 	/*
921 	 * Only attach to rev.3 of the Linksys EG1032 adapter.
922 	 * Rev.2 is supported by sk(4).
923 	 */
924 	if (vendor == PCI_VENDOR_LINKSYS &&
925 	    product == PCI_PRODUCT_LINKSYS_EG1032 &&
926 	    pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
927 		return ENXIO;
928 
929 	if (vendor == PCI_VENDOR_REALTEK &&
930 	    product == PCI_PRODUCT_REALTEK_RT8139 &&
931 	    pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
932 		/* Poor 8139 */
933 		return ENXIO;
934 	}
935 
936 	for (t = re_devs; t->re_name != NULL; t++) {
937 		if (product == t->re_did && vendor == t->re_vid)
938 			break;
939 	}
940 
941 	/*
942 	 * Check if we found a RealTek device.
943 	 */
944 	if (t->re_name == NULL)
945 		return ENXIO;
946 
947 	/*
948 	 * Temporarily map the I/O space so we can read the chip ID register.
949 	 */
950 	sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
951 	rid = RE_PCI_LOIO;
952 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
953 					    RF_ACTIVE);
954 	if (sc->re_res == NULL) {
955 		device_printf(dev, "couldn't map ports/memory\n");
956 		kfree(sc, M_TEMP);
957 		return ENXIO;
958 	}
959 
960 	sc->re_btag = rman_get_bustag(sc->re_res);
961 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
962 
963 	txcfg = CSR_READ_4(sc, RE_TXCFG);
964 	hwrev = txcfg & RE_TXCFG_HWREV;
965 	macmode = txcfg & RE_TXCFG_MACMODE;
966 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
967 	kfree(sc, M_TEMP);
968 
969 	/*
970 	 * and continue matching for the specific chip...
971 	 */
972 	for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
973 		if (hw_rev->re_hwrev == hwrev) {
974 			sc = device_get_softc(dev);
975 
976 			sc->re_hwrev = hw_rev->re_hwrev;
977 			sc->re_macver = hw_rev->re_macver;
978 			sc->re_caps = hw_rev->re_caps;
979 			sc->re_maxmtu = hw_rev->re_maxmtu;
980 
981 			/*
982 			 * Apply chip property fixup
983 			 */
984 			switch (sc->re_hwrev) {
985 			case RE_HWREV_8101E1:
986 			case RE_HWREV_8101E2:
987 				if (macmode == 0)
988 					sc->re_macver = RE_MACVER_11;
989 				else if (macmode == 0x200000)
990 					sc->re_macver = RE_MACVER_12;
991 				break;
992 			case RE_HWREV_8102E:
993 			case RE_HWREV_8102EL:
994 				if (macmode == 0)
995 					sc->re_macver = RE_MACVER_13;
996 				else if (macmode == 0x100000)
997 					sc->re_macver = RE_MACVER_14;
998 				break;
999 			case RE_HWREV_8168B2:
1000 			case RE_HWREV_8168B3:
1001 				if (macmode == 0)
1002 					sc->re_macver = RE_MACVER_22;
1003 				break;
1004 			case RE_HWREV_8168C:
1005 				if (macmode == 0)
1006 					sc->re_macver = RE_MACVER_24;
1007 				else if (macmode == 0x200000)
1008 					sc->re_macver = RE_MACVER_25;
1009 				else if (macmode == 0x300000)
1010 					sc->re_macver = RE_MACVER_27;
1011 				break;
1012 			case RE_HWREV_8168CP:
1013 				if (macmode == 0)
1014 					sc->re_macver = RE_MACVER_26;
1015 				else if (macmode == 0x100000)
1016 					sc->re_macver = RE_MACVER_28;
1017 				break;
1018 			}
1019 			if (pci_is_pcie(dev))
1020 				sc->re_caps |= RE_C_PCIE;
1021 
1022 			device_set_desc(dev, t->re_name);
1023 			return 0;
1024 		}
1025 	}
1026 
1027 	if (bootverbose) {
1028 		device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1029 			      hwrev, macmode);
1030 	}
1031 	return ENXIO;
1032 }
1033 
1034 static int
1035 re_allocmem(device_t dev)
1036 {
1037 	struct re_softc *sc = device_get_softc(dev);
1038 	bus_dmamem_t dmem;
1039 	int error, i;
1040 
1041 	/*
1042 	 * Allocate list data
1043 	 */
1044 	sc->re_ldata.re_tx_mbuf =
1045 	kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1046 		M_DEVBUF, M_ZERO | M_WAITOK);
1047 
1048 	sc->re_ldata.re_rx_mbuf =
1049 	kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1050 		M_DEVBUF, M_ZERO | M_WAITOK);
1051 
1052 	sc->re_ldata.re_rx_paddr =
1053 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1054 		M_DEVBUF, M_ZERO | M_WAITOK);
1055 
1056 	sc->re_ldata.re_tx_dmamap =
1057 	kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1058 		M_DEVBUF, M_ZERO | M_WAITOK);
1059 
1060 	sc->re_ldata.re_rx_dmamap =
1061 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1062 		M_DEVBUF, M_ZERO | M_WAITOK);
1063 
1064 	/*
1065 	 * Allocate the parent bus DMA tag appropriate for PCI.
1066 	 */
1067 	error = bus_dma_tag_create(NULL,	/* parent */
1068 			1, 0,			/* alignment, boundary */
1069 			BUS_SPACE_MAXADDR,	/* lowaddr */
1070 			BUS_SPACE_MAXADDR,	/* highaddr */
1071 			NULL, NULL,		/* filter, filterarg */
1072 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1073 			0,			/* nsegments */
1074 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1075 			0,			/* flags */
1076 			&sc->re_parent_tag);
1077 	if (error) {
1078 		device_printf(dev, "could not allocate parent dma tag\n");
1079 		return error;
1080 	}
1081 
1082 	/* Allocate TX descriptor list. */
1083 	error = bus_dmamem_coherent(sc->re_parent_tag,
1084 			RE_RING_ALIGN, 0,
1085 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1086 			RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1087 			&dmem);
1088 	if (error) {
1089 		device_printf(dev, "could not allocate TX ring\n");
1090 		return error;
1091 	}
1092 	sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1093 	sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1094 	sc->re_ldata.re_tx_list = dmem.dmem_addr;
1095 	sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1096 
1097 	/* Allocate RX descriptor list. */
1098 	error = bus_dmamem_coherent(sc->re_parent_tag,
1099 			RE_RING_ALIGN, 0,
1100 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1101 			RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1102 			&dmem);
1103 	if (error) {
1104 		device_printf(dev, "could not allocate RX ring\n");
1105 		return error;
1106 	}
1107 	sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1108 	sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1109 	sc->re_ldata.re_rx_list = dmem.dmem_addr;
1110 	sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1111 
1112 	/* Allocate maps for TX mbufs. */
1113 	error = bus_dma_tag_create(sc->re_parent_tag,
1114 			1, 0,
1115 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1116 			NULL, NULL,
1117 			RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1118 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1119 			&sc->re_ldata.re_tx_mtag);
1120 	if (error) {
1121 		device_printf(dev, "could not allocate TX buf dma tag\n");
1122 		return(error);
1123 	}
1124 
1125 	/* Create DMA maps for TX buffers */
1126 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1127 		error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1128 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1129 				&sc->re_ldata.re_tx_dmamap[i]);
1130 		if (error) {
1131 			device_printf(dev, "can't create DMA map for TX buf\n");
1132 			re_freebufmem(sc, i, 0);
1133 			return(error);
1134 		}
1135 	}
1136 
1137 	/* Allocate maps for RX mbufs. */
1138 	error = bus_dma_tag_create(sc->re_parent_tag,
1139 			RE_RXBUF_ALIGN, 0,
1140 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1141 			NULL, NULL,
1142 			MCLBYTES, 1, MCLBYTES,
1143 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1144 			&sc->re_ldata.re_rx_mtag);
1145 	if (error) {
1146 		device_printf(dev, "could not allocate RX buf dma tag\n");
1147 		return(error);
1148 	}
1149 
1150 	/* Create spare DMA map for RX */
1151 	error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1152 			&sc->re_ldata.re_rx_spare);
1153 	if (error) {
1154 		device_printf(dev, "can't create spare DMA map for RX\n");
1155 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1156 		sc->re_ldata.re_rx_mtag = NULL;
1157 		return error;
1158 	}
1159 
1160 	/* Create DMA maps for RX buffers */
1161 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1162 		error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1163 				BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1164 		if (error) {
1165 			device_printf(dev, "can't create DMA map for RX buf\n");
1166 			re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1167 			return(error);
1168 		}
1169 	}
1170 
1171 	/* Create jumbo buffer pool for RX if required */
1172 	if (sc->re_caps & RE_C_CONTIGRX) {
1173 		error = re_jpool_alloc(sc);
1174 		if (error) {
1175 			re_jpool_free(sc);
1176 			/* Disable jumbo frame support */
1177 			sc->re_maxmtu = ETHERMTU;
1178 		}
1179 	}
1180 	return(0);
1181 }
1182 
1183 static void
1184 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1185 {
1186 	int i;
1187 
1188 	/* Destroy all the RX and TX buffer maps */
1189 	if (sc->re_ldata.re_tx_mtag) {
1190 		for (i = 0; i < tx_cnt; i++) {
1191 			bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1192 					   sc->re_ldata.re_tx_dmamap[i]);
1193 		}
1194 		bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1195 		sc->re_ldata.re_tx_mtag = NULL;
1196 	}
1197 
1198 	if (sc->re_ldata.re_rx_mtag) {
1199 		for (i = 0; i < rx_cnt; i++) {
1200 			bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1201 					   sc->re_ldata.re_rx_dmamap[i]);
1202 		}
1203 		bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1204 				   sc->re_ldata.re_rx_spare);
1205 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1206 		sc->re_ldata.re_rx_mtag = NULL;
1207 	}
1208 }
1209 
1210 static void
1211 re_freemem(device_t dev)
1212 {
1213 	struct re_softc *sc = device_get_softc(dev);
1214 
1215 	/* Unload and free the RX DMA ring memory and map */
1216 	if (sc->re_ldata.re_rx_list_tag) {
1217 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1218 				  sc->re_ldata.re_rx_list_map);
1219 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1220 				sc->re_ldata.re_rx_list,
1221 				sc->re_ldata.re_rx_list_map);
1222 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1223 	}
1224 
1225 	/* Unload and free the TX DMA ring memory and map */
1226 	if (sc->re_ldata.re_tx_list_tag) {
1227 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1228 				  sc->re_ldata.re_tx_list_map);
1229 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1230 				sc->re_ldata.re_tx_list,
1231 				sc->re_ldata.re_tx_list_map);
1232 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1233 	}
1234 
1235 	/* Free RX/TX buf DMA stuffs */
1236 	re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1237 
1238 	/* Unload and free the stats buffer and map */
1239 	if (sc->re_ldata.re_stag) {
1240 		bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
1241 		bus_dmamem_free(sc->re_ldata.re_stag,
1242 				sc->re_ldata.re_stats,
1243 				sc->re_ldata.re_smap);
1244 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1245 	}
1246 
1247 	if (sc->re_caps & RE_C_CONTIGRX)
1248 		re_jpool_free(sc);
1249 
1250 	if (sc->re_parent_tag)
1251 		bus_dma_tag_destroy(sc->re_parent_tag);
1252 
1253 	if (sc->re_ldata.re_tx_mbuf != NULL)
1254 		kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1255 	if (sc->re_ldata.re_rx_mbuf != NULL)
1256 		kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1257 	if (sc->re_ldata.re_rx_paddr != NULL)
1258 		kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1259 	if (sc->re_ldata.re_tx_dmamap != NULL)
1260 		kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1261 	if (sc->re_ldata.re_rx_dmamap != NULL)
1262 		kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1263 }
1264 
1265 /*
1266  * Attach the interface. Allocate softc structures, do ifmedia
1267  * setup and ethernet/BPF attach.
1268  */
1269 static int
1270 re_attach(device_t dev)
1271 {
1272 	struct re_softc	*sc = device_get_softc(dev);
1273 	struct ifnet *ifp;
1274 	uint8_t eaddr[ETHER_ADDR_LEN];
1275 	int error = 0, rid, qlen;
1276 
1277 	callout_init(&sc->re_timer);
1278 	sc->re_dev = dev;
1279 
1280 	if (RE_IS_8139CP(sc)) {
1281 		sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1282 		sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1283 	} else {
1284 		sc->re_rx_desc_cnt = re_rx_desc_count;
1285 		if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1286 			sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1287 
1288 		sc->re_tx_desc_cnt = re_tx_desc_count;
1289 		if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1290 			sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1291 	}
1292 
1293 	qlen = RE_IFQ_MAXLEN;
1294 	if (sc->re_tx_desc_cnt > qlen)
1295 		qlen = sc->re_tx_desc_cnt;
1296 
1297 	sc->re_rxbuf_size = MCLBYTES;
1298 	sc->re_newbuf = re_newbuf_std;
1299 
1300 	sc->re_tx_time = 5;		/* 125us */
1301 	sc->re_rx_time = 2;		/* 50us */
1302 	if (sc->re_caps & RE_C_PCIE)
1303 		sc->re_sim_time = 75;	/* 75us */
1304 	else
1305 		sc->re_sim_time = 125;	/* 125us */
1306 	if (!RE_IS_8139CP(sc)) {
1307 		/* simulated interrupt moderation */
1308 		sc->re_imtype = RE_IMTYPE_SIM;
1309 	} else {
1310 		sc->re_imtype = RE_IMTYPE_NONE;
1311 	}
1312 	re_config_imtype(sc, sc->re_imtype);
1313 
1314 	sysctl_ctx_init(&sc->re_sysctl_ctx);
1315 	sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1316 					     SYSCTL_STATIC_CHILDREN(_hw),
1317 					     OID_AUTO,
1318 					     device_get_nameunit(dev),
1319 					     CTLFLAG_RD, 0, "");
1320 	if (sc->re_sysctl_tree == NULL) {
1321 		device_printf(dev, "can't add sysctl node\n");
1322 		error = ENXIO;
1323 		goto fail;
1324 	}
1325 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1326 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1327 		       "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1328 		       0, "RX desc count");
1329 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1330 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1331 		       "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1332 		       0, "TX desc count");
1333 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1334 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1335 			OID_AUTO, "sim_time",
1336 			CTLTYPE_INT | CTLFLAG_RW,
1337 			sc, 0, re_sysctl_simtime, "I",
1338 			"Simulated interrupt moderation time (usec).");
1339 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1340 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1341 			OID_AUTO, "imtype",
1342 			CTLTYPE_INT | CTLFLAG_RW,
1343 			sc, 0, re_sysctl_imtype, "I",
1344 			"Interrupt moderation type -- "
1345 			"0:disable, 1:simulated, "
1346 			"2:hardware(if supported)");
1347 	if (sc->re_caps & RE_C_HWIM) {
1348 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1349 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1350 				OID_AUTO, "hw_rxtime",
1351 				CTLTYPE_INT | CTLFLAG_RW,
1352 				sc, 0, re_sysctl_rxtime, "I",
1353 				"Hardware interrupt moderation time "
1354 				"(unit: 25usec).");
1355 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1356 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1357 				OID_AUTO, "hw_txtime",
1358 				CTLTYPE_INT | CTLFLAG_RW,
1359 				sc, 0, re_sysctl_txtime, "I",
1360 				"Hardware interrupt moderation time "
1361 				"(unit: 25usec).");
1362 	}
1363 
1364 #ifndef BURN_BRIDGES
1365 	/*
1366 	 * Handle power management nonsense.
1367 	 */
1368 
1369 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1370 		uint32_t membase, irq;
1371 
1372 		/* Save important PCI config data. */
1373 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1374 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1375 
1376 		/* Reset the power state. */
1377 		device_printf(dev, "chip is in D%d power mode "
1378 		    "-- setting to D0\n", pci_get_powerstate(dev));
1379 
1380 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1381 
1382 		/* Restore PCI config data. */
1383 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1384 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1385 	}
1386 #endif
1387 	/*
1388 	 * Map control/status registers.
1389 	 */
1390 	pci_enable_busmaster(dev);
1391 
1392 	rid = RE_PCI_LOIO;
1393 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1394 					    RF_ACTIVE);
1395 
1396 	if (sc->re_res == NULL) {
1397 		device_printf(dev, "couldn't map ports\n");
1398 		error = ENXIO;
1399 		goto fail;
1400 	}
1401 
1402 	sc->re_btag = rman_get_bustag(sc->re_res);
1403 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1404 
1405 	/* Allocate interrupt */
1406 	rid = 0;
1407 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1408 					    RF_SHAREABLE | RF_ACTIVE);
1409 
1410 	if (sc->re_irq == NULL) {
1411 		device_printf(dev, "couldn't map interrupt\n");
1412 		error = ENXIO;
1413 		goto fail;
1414 	}
1415 
1416 	/* Reset the adapter. */
1417 	re_reset(sc, 0);
1418 
1419 	if (RE_IS_8139CP(sc)) {
1420 		sc->re_bus_speed = 33; /* XXX */
1421 	} else if (sc->re_caps & RE_C_PCIE) {
1422 		sc->re_bus_speed = 125;
1423 	} else {
1424 		uint8_t cfg2;
1425 
1426 		cfg2 = CSR_READ_1(sc, RE_CFG2);
1427 		switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1428 		case RE_CFG2_PCICLK_33MHZ:
1429 			sc->re_bus_speed = 33;
1430 			break;
1431 		case RE_CFG2_PCICLK_66MHZ:
1432 			sc->re_bus_speed = 66;
1433 			break;
1434 		default:
1435 			device_printf(dev, "unknown bus speed, assume 33MHz\n");
1436 			sc->re_bus_speed = 33;
1437 			break;
1438 		}
1439 		if (cfg2 & RE_CFG2_PCI64)
1440 			sc->re_caps |= RE_C_PCI64;
1441 	}
1442 	device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1443 		      "PCI%s %dMHz\n",
1444 		      sc->re_hwrev, sc->re_macver,
1445 		      (sc->re_caps & RE_C_PCIE) ?
1446 		      "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1447 		      sc->re_bus_speed);
1448 
1449 	/*
1450 	 * NOTE:
1451 	 * DO NOT try to adjust config1 and config5 which was spotted in
1452 	 * Realtek's Linux drivers.  It will _permanently_ damage certain
1453 	 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1454 	 */
1455 
1456 	re_get_eaddr(sc, eaddr);
1457 
1458 	if (!RE_IS_8139CP(sc)) {
1459 		/* Set RX length mask */
1460 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1461 		sc->re_txstart = RE_GTXSTART;
1462 	} else {
1463 		/* Set RX length mask */
1464 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1465 		sc->re_txstart = RE_TXSTART;
1466 	}
1467 
1468 	/* Allocate DMA stuffs */
1469 	error = re_allocmem(dev);
1470 	if (error)
1471 		goto fail;
1472 
1473 	/*
1474 	 * Apply some magic PCI settings from Realtek ...
1475 	 */
1476 	if (RE_IS_8169(sc)) {
1477 		CSR_WRITE_1(sc, 0x82, 1);
1478 		pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1479 	}
1480 	pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1481 
1482 	if (sc->re_caps & RE_C_MAC2) {
1483 		/*
1484 		 * Following part is extracted from Realtek BSD driver v176.
1485 		 * However, this does _not_ make much/any sense:
1486 		 * 8168C's PCI Express device control is located at 0x78,
1487 		 * so the reading from 0x79 (higher part of 0x78) and setting
1488 		 * the 4~6bits intend to enlarge the "max read request size"
1489 		 * (we will do it).  The content of the rest part of this
1490 		 * register is not meaningful to other PCI registers, so
1491 		 * writing the value to 0x54 could be completely wrong.
1492 		 * 0x80 is the lower part of PCI Express device status, non-
1493 		 * reserved bits are RW1C, writing 0 to them will not have
1494 		 * any effect at all.
1495 		 */
1496 #ifdef foo
1497 		uint8_t val;
1498 
1499 		val = pci_read_config(dev, 0x79, 1);
1500 		val = (val & ~0x70) | 0x50;
1501 		pci_write_config(dev, 0x54, val, 1);
1502 		pci_write_config(dev, 0x80, 0, 1);
1503 #endif
1504 	}
1505 
1506 	/*
1507 	 * Apply some PHY fixup from Realtek ...
1508 	 */
1509 	if (sc->re_hwrev == RE_HWREV_8110S) {
1510 		CSR_WRITE_1(sc, 0x82, 1);
1511 		re_miibus_writereg(dev, 1, 0xb, 0);
1512 	}
1513 	if (sc->re_caps & RE_C_PHYPMGT) {
1514 		/* Power up PHY */
1515 		re_miibus_writereg(dev, 1, 0x1f, 0);
1516 		re_miibus_writereg(dev, 1, 0xe, 0);
1517 	}
1518 
1519 	/* Do MII setup */
1520 	if (mii_phy_probe(dev, &sc->re_miibus,
1521 	    re_ifmedia_upd, re_ifmedia_sts)) {
1522 		device_printf(dev, "MII without any phy!\n");
1523 		error = ENXIO;
1524 		goto fail;
1525 	}
1526 
1527 	ifp = &sc->arpcom.ac_if;
1528 	ifp->if_softc = sc;
1529 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1530 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1531 	ifp->if_ioctl = re_ioctl;
1532 	ifp->if_start = re_start;
1533 #ifdef DEVICE_POLLING
1534 	ifp->if_poll = re_poll;
1535 #endif
1536 	ifp->if_watchdog = re_watchdog;
1537 	ifp->if_init = re_init;
1538 	if (!RE_IS_8139CP(sc)) /* XXX */
1539 		ifp->if_baudrate = 1000000000;
1540 	else
1541 		ifp->if_baudrate = 100000000;
1542 	ifq_set_maxlen(&ifp->if_snd, qlen);
1543 	ifq_set_ready(&ifp->if_snd);
1544 
1545 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1546 	if (sc->re_caps & RE_C_HWCSUM)
1547 		ifp->if_capabilities |= IFCAP_HWCSUM;
1548 
1549 	ifp->if_capenable = ifp->if_capabilities;
1550 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1551 		ifp->if_hwassist = RE_CSUM_FEATURES;
1552 	else
1553 		ifp->if_hwassist = 0;
1554 
1555 	/*
1556 	 * Call MI attach routine.
1557 	 */
1558 	ether_ifattach(ifp, eaddr, NULL);
1559 
1560 #ifdef RE_DIAG
1561 	/*
1562 	 * Perform hardware diagnostic on the original RTL8169.
1563 	 * Some 32-bit cards were incorrectly wired and would
1564 	 * malfunction if plugged into a 64-bit slot.
1565 	 */
1566 	if (sc->re_hwrev == RE_HWREV_8169) {
1567 		lwkt_serialize_enter(ifp->if_serializer);
1568 		error = re_diag(sc);
1569 		lwkt_serialize_exit(ifp->if_serializer);
1570 
1571 		if (error) {
1572 			device_printf(dev, "hardware diagnostic failure\n");
1573 			ether_ifdetach(ifp);
1574 			goto fail;
1575 		}
1576 	}
1577 #endif	/* RE_DIAG */
1578 
1579 	/* Hook interrupt last to avoid having to lock softc */
1580 	error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1581 			       &sc->re_intrhand, ifp->if_serializer);
1582 
1583 	if (error) {
1584 		device_printf(dev, "couldn't set up irq\n");
1585 		ether_ifdetach(ifp);
1586 		goto fail;
1587 	}
1588 
1589 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->re_irq));
1590 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1591 
1592 fail:
1593 	if (error)
1594 		re_detach(dev);
1595 
1596 	return (error);
1597 }
1598 
1599 /*
1600  * Shutdown hardware and free up resources. This can be called any
1601  * time after the mutex has been initialized. It is called in both
1602  * the error case in attach and the normal detach case so it needs
1603  * to be careful about only freeing resources that have actually been
1604  * allocated.
1605  */
1606 static int
1607 re_detach(device_t dev)
1608 {
1609 	struct re_softc *sc = device_get_softc(dev);
1610 	struct ifnet *ifp = &sc->arpcom.ac_if;
1611 
1612 	/* These should only be active if attach succeeded */
1613 	if (device_is_attached(dev)) {
1614 		lwkt_serialize_enter(ifp->if_serializer);
1615 		re_stop(sc);
1616 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1617 		lwkt_serialize_exit(ifp->if_serializer);
1618 
1619 		ether_ifdetach(ifp);
1620 	}
1621 	if (sc->re_miibus)
1622 		device_delete_child(dev, sc->re_miibus);
1623 	bus_generic_detach(dev);
1624 
1625 	if (sc->re_sysctl_tree != NULL)
1626 		sysctl_ctx_free(&sc->re_sysctl_ctx);
1627 
1628 	if (sc->re_irq)
1629 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1630 	if (sc->re_res) {
1631 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1632 				     sc->re_res);
1633 	}
1634 
1635 	/* Free DMA stuffs */
1636 	re_freemem(dev);
1637 
1638 	return(0);
1639 }
1640 
1641 static void
1642 re_setup_rxdesc(struct re_softc *sc, int idx)
1643 {
1644 	bus_addr_t paddr;
1645 	uint32_t cmdstat;
1646 	struct re_desc *d;
1647 
1648 	paddr = sc->re_ldata.re_rx_paddr[idx];
1649 	d = &sc->re_ldata.re_rx_list[idx];
1650 
1651 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1652 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1653 
1654 	cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1655 	if (idx == (sc->re_rx_desc_cnt - 1))
1656 		cmdstat |= RE_RDESC_CMD_EOR;
1657 	d->re_cmdstat = htole32(cmdstat);
1658 }
1659 
1660 static int
1661 re_newbuf_std(struct re_softc *sc, int idx, int init)
1662 {
1663 	bus_dma_segment_t seg;
1664 	bus_dmamap_t map;
1665 	struct mbuf *m;
1666 	int error, nsegs;
1667 
1668 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1669 	if (m == NULL) {
1670 		error = ENOBUFS;
1671 
1672 		if (init) {
1673 			if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1674 			return error;
1675 		} else {
1676 			goto back;
1677 		}
1678 	}
1679 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1680 
1681 	/*
1682 	 * NOTE:
1683 	 * re(4) chips need address of the receive buffer to be 8-byte
1684 	 * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1685 	 */
1686 
1687 	error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1688 			sc->re_ldata.re_rx_spare, m,
1689 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1690 	if (error) {
1691 		m_freem(m);
1692 		if (init) {
1693 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1694 			return error;
1695 		} else {
1696 			goto back;
1697 		}
1698 	}
1699 
1700 	if (!init) {
1701 		bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1702 				sc->re_ldata.re_rx_dmamap[idx],
1703 				BUS_DMASYNC_POSTREAD);
1704 		bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1705 				  sc->re_ldata.re_rx_dmamap[idx]);
1706 	}
1707 	sc->re_ldata.re_rx_mbuf[idx] = m;
1708 	sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1709 
1710 	map = sc->re_ldata.re_rx_dmamap[idx];
1711 	sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1712 	sc->re_ldata.re_rx_spare = map;
1713 back:
1714 	re_setup_rxdesc(sc, idx);
1715 	return error;
1716 }
1717 
1718 static int
1719 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1720 {
1721 	struct mbuf *m;
1722 	struct re_jbuf *jbuf;
1723 	int error = 0;
1724 
1725 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1726 	if (m == NULL) {
1727 		error = ENOBUFS;
1728 		if (init) {
1729 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1730 			return error;
1731 		} else {
1732 			goto back;
1733 		}
1734 	}
1735 
1736 	jbuf = re_jbuf_alloc(sc);
1737 	if (jbuf == NULL) {
1738 		m_freem(m);
1739 
1740 		error = ENOBUFS;
1741 		if (init) {
1742 			if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1743 			return error;
1744 		} else {
1745 			goto back;
1746 		}
1747 	}
1748 
1749 	m->m_ext.ext_arg = jbuf;
1750 	m->m_ext.ext_buf = jbuf->re_buf;
1751 	m->m_ext.ext_free = re_jbuf_free;
1752 	m->m_ext.ext_ref = re_jbuf_ref;
1753 	m->m_ext.ext_size = sc->re_rxbuf_size;
1754 
1755 	m->m_data = m->m_ext.ext_buf;
1756 	m->m_flags |= M_EXT;
1757 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1758 
1759 	/*
1760 	 * NOTE:
1761 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1762 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1763 	 */
1764 
1765 	sc->re_ldata.re_rx_mbuf[idx] = m;
1766 	sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1767 back:
1768 	re_setup_rxdesc(sc, idx);
1769 	return error;
1770 }
1771 
1772 static int
1773 re_tx_list_init(struct re_softc *sc)
1774 {
1775 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1776 
1777 	sc->re_ldata.re_tx_prodidx = 0;
1778 	sc->re_ldata.re_tx_considx = 0;
1779 	sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1780 
1781 	return(0);
1782 }
1783 
1784 static int
1785 re_rx_list_init(struct re_softc *sc)
1786 {
1787 	int i, error;
1788 
1789 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1790 
1791 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1792 		error = sc->re_newbuf(sc, i, 1);
1793 		if (error)
1794 			return(error);
1795 	}
1796 
1797 	sc->re_ldata.re_rx_prodidx = 0;
1798 	sc->re_head = sc->re_tail = NULL;
1799 
1800 	return(0);
1801 }
1802 
1803 #define RE_IP4_PACKET	0x1
1804 #define RE_TCP_PACKET	0x2
1805 #define RE_UDP_PACKET	0x4
1806 
1807 static __inline uint8_t
1808 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1809 {
1810 	uint8_t packet_type = 0;
1811 
1812 	if (sc->re_caps & RE_C_MAC2) {
1813 		if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1814 			packet_type |= RE_IP4_PACKET;
1815 	} else {
1816 		if (rxstat & RE_RDESC_STAT_PROTOID)
1817 			packet_type |= RE_IP4_PACKET;
1818 	}
1819 	if (RE_TCPPKT(rxstat))
1820 		packet_type |= RE_TCP_PACKET;
1821 	else if (RE_UDPPKT(rxstat))
1822 		packet_type |= RE_UDP_PACKET;
1823 	return packet_type;
1824 }
1825 
1826 /*
1827  * RX handler for C+ and 8169. For the gigE chips, we support
1828  * the reception of jumbo frames that have been fragmented
1829  * across multiple 2K mbuf cluster buffers.
1830  */
1831 static int
1832 re_rxeof(struct re_softc *sc)
1833 {
1834 	struct ifnet *ifp = &sc->arpcom.ac_if;
1835 	struct mbuf *m;
1836 	struct re_desc 	*cur_rx;
1837 	uint32_t rxstat, rxctrl;
1838 	int i, total_len, rx = 0;
1839 	struct mbuf_chain chain[MAXCPU];
1840 
1841 	ether_input_chain_init(chain);
1842 
1843 	for (i = sc->re_ldata.re_rx_prodidx;
1844 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1845 		cur_rx = &sc->re_ldata.re_rx_list[i];
1846 		m = sc->re_ldata.re_rx_mbuf[i];
1847 		total_len = RE_RXBYTES(cur_rx);
1848 		rxstat = le32toh(cur_rx->re_cmdstat);
1849 		rxctrl = le32toh(cur_rx->re_control);
1850 
1851 		rx = 1;
1852 
1853 #ifdef INVARIANTS
1854 		if (sc->re_flags & RE_F_USE_JPOOL)
1855 			KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1856 #endif
1857 
1858 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1859 			if (sc->re_flags & RE_F_DROP_RXFRAG) {
1860 				re_setup_rxdesc(sc, i);
1861 				continue;
1862 			}
1863 
1864 			if (sc->re_newbuf(sc, i, 0)) {
1865 				/* Drop upcoming fragments */
1866 				sc->re_flags |= RE_F_DROP_RXFRAG;
1867 				continue;
1868 			}
1869 
1870 			m->m_len = MCLBYTES;
1871 			if (sc->re_head == NULL) {
1872 				sc->re_head = sc->re_tail = m;
1873 			} else {
1874 				sc->re_tail->m_next = m;
1875 				sc->re_tail = m;
1876 			}
1877 			continue;
1878 		} else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1879 			/*
1880 			 * Last fragment of a multi-fragment packet.
1881 			 *
1882 			 * Since error already happened, this fragment
1883 			 * must be dropped as well as the fragment chain.
1884 			 */
1885 			re_setup_rxdesc(sc, i);
1886 			re_free_rxchain(sc);
1887 			sc->re_flags &= ~RE_F_DROP_RXFRAG;
1888 			continue;
1889 		}
1890 
1891 		/*
1892 		 * NOTE: for the 8139C+, the frame length field
1893 		 * is always 12 bits in size, but for the gigE chips,
1894 		 * it is 13 bits (since the max RX frame length is 16K).
1895 		 * Unfortunately, all 32 bits in the status word
1896 		 * were already used, so to make room for the extra
1897 		 * length bit, RealTek took out the 'frame alignment
1898 		 * error' bit and shifted the other status bits
1899 		 * over one slot. The OWN, EOR, FS and LS bits are
1900 		 * still in the same places. We have already extracted
1901 		 * the frame length and checked the OWN bit, so rather
1902 		 * than using an alternate bit mapping, we shift the
1903 		 * status bits one space to the right so we can evaluate
1904 		 * them using the 8169 status as though it was in the
1905 		 * same format as that of the 8139C+.
1906 		 */
1907 		if (!RE_IS_8139CP(sc))
1908 			rxstat >>= 1;
1909 
1910 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1911 			ifp->if_ierrors++;
1912 			/*
1913 			 * If this is part of a multi-fragment packet,
1914 			 * discard all the pieces.
1915 			 */
1916 			re_free_rxchain(sc);
1917 			re_setup_rxdesc(sc, i);
1918 			continue;
1919 		}
1920 
1921 		/*
1922 		 * If allocating a replacement mbuf fails,
1923 		 * reload the current one.
1924 		 */
1925 
1926 		if (sc->re_newbuf(sc, i, 0)) {
1927 			ifp->if_ierrors++;
1928 			continue;
1929 		}
1930 
1931 		if (sc->re_head != NULL) {
1932 			m->m_len = total_len % MCLBYTES;
1933 			/*
1934 			 * Special case: if there's 4 bytes or less
1935 			 * in this buffer, the mbuf can be discarded:
1936 			 * the last 4 bytes is the CRC, which we don't
1937 			 * care about anyway.
1938 			 */
1939 			if (m->m_len <= ETHER_CRC_LEN) {
1940 				sc->re_tail->m_len -=
1941 				    (ETHER_CRC_LEN - m->m_len);
1942 				m_freem(m);
1943 			} else {
1944 				m->m_len -= ETHER_CRC_LEN;
1945 				sc->re_tail->m_next = m;
1946 			}
1947 			m = sc->re_head;
1948 			sc->re_head = sc->re_tail = NULL;
1949 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1950 		} else {
1951 			m->m_pkthdr.len = m->m_len =
1952 			    (total_len - ETHER_CRC_LEN);
1953 		}
1954 
1955 		ifp->if_ipackets++;
1956 		m->m_pkthdr.rcvif = ifp;
1957 
1958 		/* Do RX checksumming if enabled */
1959 
1960 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1961 			uint8_t packet_type;
1962 
1963 			packet_type = re_packet_type(sc, rxstat, rxctrl);
1964 
1965 			/* Check IP header checksum */
1966 			if (packet_type & RE_IP4_PACKET) {
1967 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1968 				if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
1969 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1970 			}
1971 
1972 			/* Check TCP/UDP checksum */
1973 			if (((packet_type & RE_TCP_PACKET) &&
1974 			     (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
1975 			    ((packet_type & RE_UDP_PACKET) &&
1976 			     (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
1977 				m->m_pkthdr.csum_flags |=
1978 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1979 				    CSUM_FRAG_NOT_CHECKED;
1980 				m->m_pkthdr.csum_data = 0xffff;
1981 			}
1982 		}
1983 
1984 		if (rxctrl & RE_RDESC_CTL_HASTAG) {
1985 			m->m_flags |= M_VLANTAG;
1986 			m->m_pkthdr.ether_vlantag =
1987 				be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
1988 		}
1989 		ether_input_chain(ifp, m, NULL, chain);
1990 	}
1991 
1992 	ether_input_dispatch(chain);
1993 
1994 	sc->re_ldata.re_rx_prodidx = i;
1995 
1996 	return rx;
1997 }
1998 
1999 #undef RE_IP4_PACKET
2000 #undef RE_TCP_PACKET
2001 #undef RE_UDP_PACKET
2002 
2003 static int
2004 re_tx_collect(struct re_softc *sc)
2005 {
2006 	struct ifnet *ifp = &sc->arpcom.ac_if;
2007 	uint32_t txstat;
2008 	int idx, tx = 0;
2009 
2010 	for (idx = sc->re_ldata.re_tx_considx;
2011 	     sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2012 	     RE_TXDESC_INC(sc, idx)) {
2013 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2014 		if (txstat & RE_TDESC_CMD_OWN)
2015 			break;
2016 
2017 		tx = 1;
2018 
2019 		sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2020 
2021 		/*
2022 		 * We only stash mbufs in the last descriptor
2023 		 * in a fragment chain, which also happens to
2024 		 * be the only place where the TX status bits
2025 		 * are valid.
2026 		 */
2027 		if (txstat & RE_TDESC_CMD_EOF) {
2028 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2029 			    sc->re_ldata.re_tx_dmamap[idx]);
2030 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2031 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
2032 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2033 			    RE_TDESC_STAT_COLCNT))
2034 				ifp->if_collisions++;
2035 			if (txstat & RE_TDESC_STAT_TXERRSUM)
2036 				ifp->if_oerrors++;
2037 			else
2038 				ifp->if_opackets++;
2039 		}
2040 		sc->re_ldata.re_tx_free++;
2041 	}
2042 	sc->re_ldata.re_tx_considx = idx;
2043 
2044 	return tx;
2045 }
2046 
2047 static int
2048 re_txeof(struct re_softc *sc)
2049 {
2050 	struct ifnet *ifp = &sc->arpcom.ac_if;
2051 	int tx;
2052 
2053 	tx = re_tx_collect(sc);
2054 
2055 	/* There is enough free TX descs */
2056 	if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2057 		ifp->if_flags &= ~IFF_OACTIVE;
2058 
2059 	/*
2060 	 * Some chips will ignore a second TX request issued while an
2061 	 * existing transmission is in progress. If the transmitter goes
2062 	 * idle but there are still packets waiting to be sent, we need
2063 	 * to restart the channel here to flush them out. This only seems
2064 	 * to be required with the PCIe devices.
2065 	 */
2066 	if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2067 		CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2068 	else
2069 		ifp->if_timer = 0;
2070 
2071 	return tx;
2072 }
2073 
2074 static void
2075 re_tick(void *xsc)
2076 {
2077 	struct re_softc *sc = xsc;
2078 
2079 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2080 	re_tick_serialized(xsc);
2081 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2082 }
2083 
2084 static void
2085 re_tick_serialized(void *xsc)
2086 {
2087 	struct re_softc *sc = xsc;
2088 	struct ifnet *ifp = &sc->arpcom.ac_if;
2089 	struct mii_data *mii;
2090 
2091 	ASSERT_SERIALIZED(ifp->if_serializer);
2092 
2093 	mii = device_get_softc(sc->re_miibus);
2094 	mii_tick(mii);
2095 	if (sc->re_flags & RE_F_LINKED) {
2096 		if (!(mii->mii_media_status & IFM_ACTIVE))
2097 			sc->re_flags &= ~RE_F_LINKED;
2098 	} else {
2099 		if (mii->mii_media_status & IFM_ACTIVE &&
2100 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2101 			sc->re_flags |= RE_F_LINKED;
2102 			if (!ifq_is_empty(&ifp->if_snd))
2103 				if_devstart(ifp);
2104 		}
2105 	}
2106 
2107 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2108 }
2109 
2110 #ifdef DEVICE_POLLING
2111 
2112 static void
2113 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2114 {
2115 	struct re_softc *sc = ifp->if_softc;
2116 
2117 	ASSERT_SERIALIZED(ifp->if_serializer);
2118 
2119 	switch(cmd) {
2120 	case POLL_REGISTER:
2121 		/* disable interrupts */
2122 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2123 		break;
2124 
2125 	case POLL_DEREGISTER:
2126 		/* enable interrupts */
2127 		re_setup_intr(sc, 1, sc->re_imtype);
2128 		break;
2129 
2130 	default:
2131 		sc->rxcycles = count;
2132 		re_rxeof(sc);
2133 		re_txeof(sc);
2134 
2135 		if (!ifq_is_empty(&ifp->if_snd))
2136 			if_devstart(ifp);
2137 
2138 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2139 			uint16_t       status;
2140 
2141 			status = CSR_READ_2(sc, RE_ISR);
2142 			if (status == 0xffff)
2143 				return;
2144 			if (status)
2145 				CSR_WRITE_2(sc, RE_ISR, status);
2146 
2147 			/*
2148 			 * XXX check behaviour on receiver stalls.
2149 			 */
2150 
2151 			if (status & RE_ISR_SYSTEM_ERR)
2152 				re_init(sc);
2153 		}
2154 		break;
2155 	}
2156 }
2157 #endif /* DEVICE_POLLING */
2158 
2159 static void
2160 re_intr(void *arg)
2161 {
2162 	struct re_softc	*sc = arg;
2163 	struct ifnet *ifp = &sc->arpcom.ac_if;
2164 	uint16_t status;
2165 	int rx, tx;
2166 
2167 	ASSERT_SERIALIZED(ifp->if_serializer);
2168 
2169 	if ((sc->re_flags & RE_F_SUSPENDED) ||
2170 	    (ifp->if_flags & IFF_RUNNING) == 0)
2171 		return;
2172 
2173 	rx = tx = 0;
2174 	for (;;) {
2175 		status = CSR_READ_2(sc, RE_ISR);
2176 		/* If the card has gone away the read returns 0xffff. */
2177 		if (status == 0xffff)
2178 			break;
2179 		if (status)
2180 			CSR_WRITE_2(sc, RE_ISR, status);
2181 
2182 		if ((status & sc->re_intrs) == 0)
2183 			break;
2184 
2185 		if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2186 			rx |= re_rxeof(sc);
2187 
2188 		if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2189 			tx |= re_txeof(sc);
2190 
2191 		if (status & RE_ISR_SYSTEM_ERR)
2192 			re_init(sc);
2193 
2194 		if (status & RE_ISR_LINKCHG) {
2195 			callout_stop(&sc->re_timer);
2196 			re_tick_serialized(sc);
2197 		}
2198 	}
2199 
2200 	if (sc->re_imtype == RE_IMTYPE_SIM) {
2201 		if ((sc->re_flags & RE_F_TIMER_INTR)) {
2202 			if ((tx | rx) == 0) {
2203 				/*
2204 				 * Nothing needs to be processed, fallback
2205 				 * to use TX/RX interrupts.
2206 				 */
2207 				re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2208 
2209 				/*
2210 				 * Recollect, mainly to avoid the possible
2211 				 * race introduced by changing interrupt
2212 				 * masks.
2213 				 */
2214 				re_rxeof(sc);
2215 				tx = re_txeof(sc);
2216 			} else {
2217 				CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2218 			}
2219 		} else if (tx | rx) {
2220 			/*
2221 			 * Assume that using simulated interrupt moderation
2222 			 * (hardware timer based) could reduce the interript
2223 			 * rate.
2224 			 */
2225 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2226 		}
2227 	}
2228 
2229 	if (tx && !ifq_is_empty(&ifp->if_snd))
2230 		if_devstart(ifp);
2231 }
2232 
2233 static int
2234 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2235 {
2236 	struct mbuf *m = *m_head;
2237 	bus_dma_segment_t segs[RE_MAXSEGS];
2238 	bus_dmamap_t map;
2239 	int error, maxsegs, idx, i, nsegs;
2240 	struct re_desc *d, *tx_ring;
2241 	uint32_t cmd_csum, ctl_csum, vlantag;
2242 
2243 	KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2244 		("not enough free TX desc\n"));
2245 
2246 	map = sc->re_ldata.re_tx_dmamap[*idx0];
2247 
2248 	/*
2249 	 * Set up checksum offload. Note: checksum offload bits must
2250 	 * appear in all descriptors of a multi-descriptor transmit
2251 	 * attempt. (This is according to testing done with an 8169
2252 	 * chip. I'm not sure if this is a requirement or a bug.)
2253 	 */
2254 	cmd_csum = ctl_csum = 0;
2255 	if (m->m_pkthdr.csum_flags & CSUM_IP) {
2256 		cmd_csum |= RE_TDESC_CMD_IPCSUM;
2257 		ctl_csum |= RE_TDESC_CTL_IPCSUM;
2258 	}
2259 	if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2260 		cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2261 		ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2262 	}
2263 	if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2264 		cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2265 		ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2266 	}
2267 
2268 	/* For MAC2 chips, csum flags are set on re_control */
2269 	if (sc->re_caps & RE_C_MAC2)
2270 		cmd_csum = 0;
2271 	else
2272 		ctl_csum = 0;
2273 
2274 	if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2275 		/*
2276 		 * With some of the RealTek chips, using the checksum offload
2277 		 * support in conjunction with the autopadding feature results
2278 		 * in the transmission of corrupt frames. For example, if we
2279 		 * need to send a really small IP fragment that's less than 60
2280 		 * bytes in size, and IP header checksumming is enabled, the
2281 		 * resulting ethernet frame that appears on the wire will
2282 		 * have garbled payload. To work around this, if TX checksum
2283 		 * offload is enabled, we always manually pad short frames out
2284 		 * to the minimum ethernet frame size.
2285 		 *
2286 		 * Note: this appears unnecessary for TCP, and doing it for TCP
2287 		 * with PCIe adapters seems to result in bad checksums.
2288 		 */
2289 		if ((m->m_pkthdr.csum_flags &
2290 		     (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2291 		    (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2292 		    m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2293 			error = m_devpad(m, RE_MIN_FRAMELEN);
2294 			if (error)
2295 				goto back;
2296 		}
2297 	}
2298 
2299 	vlantag = 0;
2300 	if (m->m_flags & M_VLANTAG) {
2301 		vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2302 			  RE_TDESC_CTL_INSTAG;
2303 	}
2304 
2305 	maxsegs = sc->re_ldata.re_tx_free;
2306 	if (maxsegs > RE_MAXSEGS)
2307 		maxsegs = RE_MAXSEGS;
2308 
2309 	error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2310 			m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2311 	if (error)
2312 		goto back;
2313 
2314 	m = *m_head;
2315 	bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2316 
2317 	/*
2318 	 * Map the segment array into descriptors.  We also keep track
2319 	 * of the end of the ring and set the end-of-ring bits as needed,
2320 	 * and we set the ownership bits in all except the very first
2321 	 * descriptor, whose ownership bits will be turned on later.
2322 	 */
2323 	tx_ring = sc->re_ldata.re_tx_list;
2324 	idx = *idx0;
2325 	i = 0;
2326 	for (;;) {
2327 		uint32_t cmdstat;
2328 
2329 		d = &tx_ring[idx];
2330 
2331 		cmdstat = segs[i].ds_len;
2332 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2333 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2334 		if (i == 0)
2335 			cmdstat |= RE_TDESC_CMD_SOF;
2336 		else
2337 			cmdstat |= RE_TDESC_CMD_OWN;
2338 		if (idx == (sc->re_tx_desc_cnt - 1))
2339 			cmdstat |= RE_TDESC_CMD_EOR;
2340 		d->re_cmdstat = htole32(cmdstat | cmd_csum);
2341 		d->re_control = htole32(ctl_csum | vlantag);
2342 
2343 		i++;
2344 		if (i == nsegs)
2345 			break;
2346 		RE_TXDESC_INC(sc, idx);
2347 	}
2348 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2349 
2350 	/* Transfer ownership of packet to the chip. */
2351 	d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2352 	if (*idx0 != idx)
2353 		tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2354 
2355 	/*
2356 	 * Insure that the map for this transmission
2357 	 * is placed at the array index of the last descriptor
2358 	 * in this chain.
2359 	 */
2360 	sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2361 	sc->re_ldata.re_tx_dmamap[idx] = map;
2362 
2363 	sc->re_ldata.re_tx_mbuf[idx] = m;
2364 	sc->re_ldata.re_tx_free -= nsegs;
2365 
2366 	RE_TXDESC_INC(sc, idx);
2367 	*idx0 = idx;
2368 back:
2369 	if (error) {
2370 		m_freem(*m_head);
2371 		*m_head = NULL;
2372 	}
2373 	return error;
2374 }
2375 
2376 /*
2377  * Main transmit routine for C+ and gigE NICs.
2378  */
2379 
2380 static void
2381 re_start(struct ifnet *ifp)
2382 {
2383 	struct re_softc	*sc = ifp->if_softc;
2384 	struct mbuf *m_head;
2385 	int idx, need_trans, oactive, error;
2386 
2387 	ASSERT_SERIALIZED(ifp->if_serializer);
2388 
2389 	if ((sc->re_flags & RE_F_LINKED) == 0) {
2390 		ifq_purge(&ifp->if_snd);
2391 		return;
2392 	}
2393 
2394 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
2395 		return;
2396 
2397 	idx = sc->re_ldata.re_tx_prodidx;
2398 
2399 	need_trans = 0;
2400 	oactive = 0;
2401 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2402 		if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2403 			if (!oactive) {
2404 				if (re_tx_collect(sc)) {
2405 					oactive = 1;
2406 					continue;
2407 				}
2408 			}
2409 			ifp->if_flags |= IFF_OACTIVE;
2410 			break;
2411 		}
2412 
2413 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2414 		if (m_head == NULL)
2415 			break;
2416 
2417 		error = re_encap(sc, &m_head, &idx);
2418 		if (error) {
2419 			/* m_head is freed by re_encap(), if we reach here */
2420 			ifp->if_oerrors++;
2421 
2422 			if (error == EFBIG && !oactive) {
2423 				if (re_tx_collect(sc)) {
2424 					oactive = 1;
2425 					continue;
2426 				}
2427 			}
2428 			ifp->if_flags |= IFF_OACTIVE;
2429 			break;
2430 		}
2431 
2432 		oactive = 0;
2433 		need_trans = 1;
2434 
2435 		/*
2436 		 * If there's a BPF listener, bounce a copy of this frame
2437 		 * to him.
2438 		 */
2439 		ETHER_BPF_MTAP(ifp, m_head);
2440 	}
2441 
2442 	if (!need_trans)
2443 		return;
2444 
2445 	sc->re_ldata.re_tx_prodidx = idx;
2446 
2447 	/*
2448 	 * RealTek put the TX poll request register in a different
2449 	 * location on the 8169 gigE chip. I don't know why.
2450 	 */
2451 	CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2452 
2453 	/*
2454 	 * Set a timeout in case the chip goes out to lunch.
2455 	 */
2456 	ifp->if_timer = 5;
2457 }
2458 
2459 static void
2460 re_init(void *xsc)
2461 {
2462 	struct re_softc *sc = xsc;
2463 	struct ifnet *ifp = &sc->arpcom.ac_if;
2464 	struct mii_data *mii;
2465 	int error, framelen;
2466 
2467 	ASSERT_SERIALIZED(ifp->if_serializer);
2468 
2469 	mii = device_get_softc(sc->re_miibus);
2470 
2471 	/*
2472 	 * Cancel pending I/O and free all RX/TX buffers.
2473 	 */
2474 	re_stop(sc);
2475 
2476 	if (sc->re_caps & RE_C_CONTIGRX) {
2477 		if (ifp->if_mtu > ETHERMTU) {
2478 			KKASSERT(sc->re_ldata.re_jbuf != NULL);
2479 			sc->re_flags |= RE_F_USE_JPOOL;
2480 			sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2481 			sc->re_newbuf = re_newbuf_jumbo;
2482 		} else {
2483 			sc->re_flags &= ~RE_F_USE_JPOOL;
2484 			sc->re_rxbuf_size = MCLBYTES;
2485 			sc->re_newbuf = re_newbuf_std;
2486 		}
2487 	}
2488 
2489 	/*
2490 	 * Adjust max read request size according to MTU; mainly to
2491 	 * improve TX performance for common case (ETHERMTU) on GigE
2492 	 * NICs.  However, this could _not_ be done on 10/100 only
2493 	 * NICs; their DMA engines will malfunction using non-default
2494 	 * max read request size.
2495 	 */
2496 	if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2497 		if (ifp->if_mtu > ETHERMTU) {
2498 			/*
2499 			 * 512 seems to be the only value that works
2500 			 * reliably with jumbo frame
2501 			 */
2502 			pcie_set_max_readrq(sc->re_dev,
2503 				PCIEM_DEVCTL_MAX_READRQ_512);
2504 		} else {
2505 			pcie_set_max_readrq(sc->re_dev,
2506 				PCIEM_DEVCTL_MAX_READRQ_4096);
2507 		}
2508 	}
2509 
2510 	/*
2511 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2512 	 * RX checksum offload. We must configure the C+ register
2513 	 * before all others.
2514 	 */
2515 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2516 		    RE_CPLUSCMD_PCI_MRW |
2517 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2518 		     RE_CPLUSCMD_VLANSTRIP : 0) |
2519 		    (ifp->if_capenable & IFCAP_RXCSUM ?
2520 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
2521 
2522 	/*
2523 	 * Init our MAC address.  Even though the chipset
2524 	 * documentation doesn't mention it, we need to enter "Config
2525 	 * register write enable" mode to modify the ID registers.
2526 	 */
2527 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2528 	CSR_WRITE_4(sc, RE_IDR0,
2529 	    htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2530 	CSR_WRITE_2(sc, RE_IDR4,
2531 	    htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2532 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2533 
2534 	/*
2535 	 * For C+ mode, initialize the RX descriptors and mbufs.
2536 	 */
2537 	error = re_rx_list_init(sc);
2538 	if (error) {
2539 		re_stop(sc);
2540 		return;
2541 	}
2542 	error = re_tx_list_init(sc);
2543 	if (error) {
2544 		re_stop(sc);
2545 		return;
2546 	}
2547 
2548 	/*
2549 	 * Load the addresses of the RX and TX lists into the chip.
2550 	 */
2551 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2552 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2553 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2554 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2555 
2556 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2557 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2558 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2559 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2560 
2561 	/*
2562 	 * Enable transmit and receive.
2563 	 */
2564 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2565 
2566 	/*
2567 	 * Set the initial TX and RX configuration.
2568 	 */
2569 	if (sc->re_flags & RE_F_TESTMODE) {
2570 		if (!RE_IS_8139CP(sc))
2571 			CSR_WRITE_4(sc, RE_TXCFG,
2572 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2573 		else
2574 			CSR_WRITE_4(sc, RE_TXCFG,
2575 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2576 	} else
2577 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2578 
2579 	framelen = RE_FRAMELEN(ifp->if_mtu);
2580 	if (framelen < MCLBYTES)
2581 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2582 	else
2583 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2584 
2585 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2586 
2587 	/*
2588 	 * Program the multicast filter, if necessary.
2589 	 */
2590 	re_setmulti(sc);
2591 
2592 #ifdef DEVICE_POLLING
2593 	/*
2594 	 * Disable interrupts if we are polling.
2595 	 */
2596 	if (ifp->if_flags & IFF_POLLING)
2597 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2598 	else	/* otherwise ... */
2599 #endif /* DEVICE_POLLING */
2600 	/*
2601 	 * Enable interrupts.
2602 	 */
2603 	if (sc->re_flags & RE_F_TESTMODE)
2604 		CSR_WRITE_2(sc, RE_IMR, 0);
2605 	else
2606 		re_setup_intr(sc, 1, sc->re_imtype);
2607 	CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2608 
2609 	/* Start RX/TX process. */
2610 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2611 
2612 #ifdef notdef
2613 	/* Enable receiver and transmitter. */
2614 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2615 #endif
2616 
2617 	/*
2618 	 * For 8169 gigE NICs, set the max allowed RX packet
2619 	 * size so we can receive jumbo frames.
2620 	 */
2621 	if (!RE_IS_8139CP(sc)) {
2622 		if (sc->re_caps & RE_C_CONTIGRX)
2623 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2624 		else
2625 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2626 	}
2627 
2628 	if (sc->re_flags & RE_F_TESTMODE)
2629 		return;
2630 
2631 	mii_mediachg(mii);
2632 
2633 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2634 
2635 	ifp->if_flags |= IFF_RUNNING;
2636 	ifp->if_flags &= ~IFF_OACTIVE;
2637 
2638 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2639 }
2640 
2641 /*
2642  * Set media options.
2643  */
2644 static int
2645 re_ifmedia_upd(struct ifnet *ifp)
2646 {
2647 	struct re_softc *sc = ifp->if_softc;
2648 	struct mii_data *mii;
2649 
2650 	ASSERT_SERIALIZED(ifp->if_serializer);
2651 
2652 	mii = device_get_softc(sc->re_miibus);
2653 	mii_mediachg(mii);
2654 
2655 	return(0);
2656 }
2657 
2658 /*
2659  * Report current media status.
2660  */
2661 static void
2662 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2663 {
2664 	struct re_softc *sc = ifp->if_softc;
2665 	struct mii_data *mii;
2666 
2667 	ASSERT_SERIALIZED(ifp->if_serializer);
2668 
2669 	mii = device_get_softc(sc->re_miibus);
2670 
2671 	mii_pollstat(mii);
2672 	ifmr->ifm_active = mii->mii_media_active;
2673 	ifmr->ifm_status = mii->mii_media_status;
2674 }
2675 
2676 static int
2677 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2678 {
2679 	struct re_softc *sc = ifp->if_softc;
2680 	struct ifreq *ifr = (struct ifreq *) data;
2681 	struct mii_data *mii;
2682 	int error = 0, mask;
2683 
2684 	ASSERT_SERIALIZED(ifp->if_serializer);
2685 
2686 	switch(command) {
2687 	case SIOCSIFMTU:
2688 		if (ifr->ifr_mtu > sc->re_maxmtu) {
2689 			error = EINVAL;
2690 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2691 			ifp->if_mtu = ifr->ifr_mtu;
2692 			if (ifp->if_flags & IFF_RUNNING)
2693 				ifp->if_init(sc);
2694 		}
2695 		break;
2696 
2697 	case SIOCSIFFLAGS:
2698 		if (ifp->if_flags & IFF_UP) {
2699 			if (ifp->if_flags & IFF_RUNNING) {
2700 				if ((ifp->if_flags ^ sc->re_if_flags) &
2701 				    (IFF_PROMISC | IFF_ALLMULTI))
2702 					re_setmulti(sc);
2703 			} else {
2704 				re_init(sc);
2705 			}
2706 		} else if (ifp->if_flags & IFF_RUNNING) {
2707 			re_stop(sc);
2708 		}
2709 		sc->re_if_flags = ifp->if_flags;
2710 		break;
2711 
2712 	case SIOCADDMULTI:
2713 	case SIOCDELMULTI:
2714 		re_setmulti(sc);
2715 		break;
2716 
2717 	case SIOCGIFMEDIA:
2718 	case SIOCSIFMEDIA:
2719 		mii = device_get_softc(sc->re_miibus);
2720 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2721 		break;
2722 
2723 	case SIOCSIFCAP:
2724 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2725 		       ifp->if_capabilities;
2726 		ifp->if_capenable ^= mask;
2727 
2728 		if (mask & IFCAP_HWCSUM) {
2729 			if (ifp->if_capenable & IFCAP_TXCSUM)
2730 				ifp->if_hwassist = RE_CSUM_FEATURES;
2731 			else
2732 				ifp->if_hwassist = 0;
2733 		}
2734 		if (mask && (ifp->if_flags & IFF_RUNNING))
2735 			re_init(sc);
2736 		break;
2737 
2738 	default:
2739 		error = ether_ioctl(ifp, command, data);
2740 		break;
2741 	}
2742 	return(error);
2743 }
2744 
2745 static void
2746 re_watchdog(struct ifnet *ifp)
2747 {
2748 	struct re_softc *sc = ifp->if_softc;
2749 
2750 	ASSERT_SERIALIZED(ifp->if_serializer);
2751 
2752 	if_printf(ifp, "watchdog timeout\n");
2753 
2754 	ifp->if_oerrors++;
2755 
2756 	re_txeof(sc);
2757 	re_rxeof(sc);
2758 
2759 	re_init(sc);
2760 
2761 	if (!ifq_is_empty(&ifp->if_snd))
2762 		if_devstart(ifp);
2763 }
2764 
2765 /*
2766  * Stop the adapter and free any mbufs allocated to the
2767  * RX and TX lists.
2768  */
2769 static void
2770 re_stop(struct re_softc *sc)
2771 {
2772 	struct ifnet *ifp = &sc->arpcom.ac_if;
2773 	int i;
2774 
2775 	ASSERT_SERIALIZED(ifp->if_serializer);
2776 
2777 	/* Reset the adapter. */
2778 	re_reset(sc, ifp->if_flags & IFF_RUNNING);
2779 
2780 	ifp->if_timer = 0;
2781 	callout_stop(&sc->re_timer);
2782 
2783 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2784 	sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2785 
2786 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2787 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2788 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2789 
2790 	re_free_rxchain(sc);
2791 
2792 	/* Free the TX list buffers. */
2793 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2794 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2795 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2796 					  sc->re_ldata.re_tx_dmamap[i]);
2797 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2798 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2799 		}
2800 	}
2801 
2802 	/* Free the RX list buffers. */
2803 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2804 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2805 			if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2806 				bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2807 						  sc->re_ldata.re_rx_dmamap[i]);
2808 			}
2809 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2810 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2811 		}
2812 	}
2813 }
2814 
2815 /*
2816  * Device suspend routine.  Stop the interface and save some PCI
2817  * settings in case the BIOS doesn't restore them properly on
2818  * resume.
2819  */
2820 static int
2821 re_suspend(device_t dev)
2822 {
2823 #ifndef BURN_BRIDGES
2824 	int i;
2825 #endif
2826 	struct re_softc *sc = device_get_softc(dev);
2827 	struct ifnet *ifp = &sc->arpcom.ac_if;
2828 
2829 	lwkt_serialize_enter(ifp->if_serializer);
2830 
2831 	re_stop(sc);
2832 
2833 #ifndef BURN_BRIDGES
2834 	for (i = 0; i < 5; i++)
2835 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2836 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2837 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2838 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2839 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2840 #endif
2841 
2842 	sc->re_flags |= RE_F_SUSPENDED;
2843 
2844 	lwkt_serialize_exit(ifp->if_serializer);
2845 
2846 	return (0);
2847 }
2848 
2849 /*
2850  * Device resume routine.  Restore some PCI settings in case the BIOS
2851  * doesn't, re-enable busmastering, and restart the interface if
2852  * appropriate.
2853  */
2854 static int
2855 re_resume(device_t dev)
2856 {
2857 	struct re_softc *sc = device_get_softc(dev);
2858 	struct ifnet *ifp = &sc->arpcom.ac_if;
2859 #ifndef BURN_BRIDGES
2860 	int i;
2861 #endif
2862 
2863 	lwkt_serialize_enter(ifp->if_serializer);
2864 
2865 #ifndef BURN_BRIDGES
2866 	/* better way to do this? */
2867 	for (i = 0; i < 5; i++)
2868 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2869 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2870 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2871 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2872 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2873 
2874 	/* reenable busmastering */
2875 	pci_enable_busmaster(dev);
2876 	pci_enable_io(dev, SYS_RES_IOPORT);
2877 #endif
2878 
2879 	/* reinitialize interface if necessary */
2880 	if (ifp->if_flags & IFF_UP)
2881 		re_init(sc);
2882 
2883 	sc->re_flags &= ~RE_F_SUSPENDED;
2884 
2885 	lwkt_serialize_exit(ifp->if_serializer);
2886 
2887 	return (0);
2888 }
2889 
2890 /*
2891  * Stop all chip I/O so that the kernel's probe routines don't
2892  * get confused by errant DMAs when rebooting.
2893  */
2894 static void
2895 re_shutdown(device_t dev)
2896 {
2897 	struct re_softc *sc = device_get_softc(dev);
2898 	struct ifnet *ifp = &sc->arpcom.ac_if;
2899 
2900 	lwkt_serialize_enter(ifp->if_serializer);
2901 	re_stop(sc);
2902 	lwkt_serialize_exit(ifp->if_serializer);
2903 }
2904 
2905 static int
2906 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
2907 {
2908 	struct re_softc *sc = arg1;
2909 
2910 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
2911 }
2912 
2913 static int
2914 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
2915 {
2916 	struct re_softc *sc = arg1;
2917 
2918 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
2919 }
2920 
2921 static int
2922 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
2923 {
2924 	struct re_softc *sc = arg1;
2925 	struct ifnet *ifp = &sc->arpcom.ac_if;
2926 	int error, v;
2927 
2928 	lwkt_serialize_enter(ifp->if_serializer);
2929 
2930 	v = *hwtime;
2931 	error = sysctl_handle_int(oidp, &v, 0, req);
2932 	if (error || req->newptr == NULL)
2933 		goto back;
2934 
2935 	if (v <= 0) {
2936 		error = EINVAL;
2937 		goto back;
2938 	}
2939 
2940 	if (v != *hwtime) {
2941 		*hwtime = v;
2942 
2943 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
2944 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
2945 			re_setup_hw_im(sc);
2946 	}
2947 back:
2948 	lwkt_serialize_exit(ifp->if_serializer);
2949 	return error;
2950 }
2951 
2952 static int
2953 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
2954 {
2955 	struct re_softc *sc = arg1;
2956 	struct ifnet *ifp = &sc->arpcom.ac_if;
2957 	int error, v;
2958 
2959 	lwkt_serialize_enter(ifp->if_serializer);
2960 
2961 	v = sc->re_sim_time;
2962 	error = sysctl_handle_int(oidp, &v, 0, req);
2963 	if (error || req->newptr == NULL)
2964 		goto back;
2965 
2966 	if (v <= 0) {
2967 		error = EINVAL;
2968 		goto back;
2969 	}
2970 
2971 	if (v != sc->re_sim_time) {
2972 		sc->re_sim_time = v;
2973 
2974 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
2975 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
2976 #ifdef foo
2977 			int reg;
2978 
2979 			/*
2980 			 * Following code causes various strange
2981 			 * performance problems.  Hmm ...
2982 			 */
2983 			CSR_WRITE_2(sc, RE_IMR, 0);
2984 			if (!RE_IS_8139CP(sc))
2985 				reg = RE_TIMERINT_8169;
2986 			else
2987 				reg = RE_TIMERINT;
2988 			CSR_WRITE_4(sc, reg, 0);
2989 			CSR_READ_4(sc, reg); /* flush */
2990 
2991 			CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
2992 			re_setup_sim_im(sc);
2993 #else
2994 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2995 			DELAY(10);
2996 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2997 #endif
2998 		}
2999 	}
3000 back:
3001 	lwkt_serialize_exit(ifp->if_serializer);
3002 	return error;
3003 }
3004 
3005 static int
3006 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3007 {
3008 	struct re_softc *sc = arg1;
3009 	struct ifnet *ifp = &sc->arpcom.ac_if;
3010 	int error, v;
3011 
3012 	lwkt_serialize_enter(ifp->if_serializer);
3013 
3014 	v = sc->re_imtype;
3015 	error = sysctl_handle_int(oidp, &v, 0, req);
3016 	if (error || req->newptr == NULL)
3017 		goto back;
3018 
3019 	if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3020 		error = EINVAL;
3021 		goto back;
3022 	}
3023 	if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3024 		/* Can't do hardware interrupt moderation */
3025 		error = EOPNOTSUPP;
3026 		goto back;
3027 	}
3028 
3029 	if (v != sc->re_imtype) {
3030 		sc->re_imtype = v;
3031 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3032 		    IFF_RUNNING)
3033 			re_setup_intr(sc, 1, sc->re_imtype);
3034 	}
3035 back:
3036 	lwkt_serialize_exit(ifp->if_serializer);
3037 	return error;
3038 }
3039 
3040 static void
3041 re_setup_hw_im(struct re_softc *sc)
3042 {
3043 	KKASSERT(sc->re_caps & RE_C_HWIM);
3044 
3045 	/*
3046 	 * Interrupt moderation
3047 	 *
3048 	 * 0xABCD
3049 	 * A - unknown (maybe TX related)
3050 	 * B - TX timer (unit: 25us)
3051 	 * C - unknown (maybe RX related)
3052 	 * D - RX timer (unit: 25us)
3053 	 *
3054 	 *
3055 	 * re(4)'s interrupt moderation is actually controlled by
3056 	 * two variables, like most other NICs (bge, bce etc.)
3057 	 * o  timer
3058 	 * o  number of packets [P]
3059 	 *
3060 	 * The logic relationship between these two variables is
3061 	 * similar to other NICs too:
3062 	 * if (timer expire || packets > [P])
3063 	 *     Interrupt is delivered
3064 	 *
3065 	 * Currently we only know how to set 'timer', but not
3066 	 * 'number of packets', which should be ~30, as far as I
3067 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3068 	 */
3069 	CSR_WRITE_2(sc, RE_IM,
3070 		    RE_IM_RXTIME(sc->re_rx_time) |
3071 		    RE_IM_TXTIME(sc->re_tx_time) |
3072 		    RE_IM_MAGIC);
3073 }
3074 
3075 static void
3076 re_disable_hw_im(struct re_softc *sc)
3077 {
3078 	if (sc->re_caps & RE_C_HWIM)
3079 		CSR_WRITE_2(sc, RE_IM, 0);
3080 }
3081 
3082 static void
3083 re_setup_sim_im(struct re_softc *sc)
3084 {
3085 	if (!RE_IS_8139CP(sc)) {
3086 		uint32_t ticks;
3087 
3088 		/*
3089 		 * Datasheet says tick decreases at bus speed,
3090 		 * but it seems the clock runs a little bit
3091 		 * faster, so we do some compensation here.
3092 		 */
3093 		ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3094 		CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3095 	} else {
3096 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3097 	}
3098 	CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3099 	sc->re_flags |= RE_F_TIMER_INTR;
3100 }
3101 
3102 static void
3103 re_disable_sim_im(struct re_softc *sc)
3104 {
3105 	if (!RE_IS_8139CP(sc))
3106 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3107 	else
3108 		CSR_WRITE_4(sc, RE_TIMERINT, 0);
3109 	sc->re_flags &= ~RE_F_TIMER_INTR;
3110 }
3111 
3112 static void
3113 re_config_imtype(struct re_softc *sc, int imtype)
3114 {
3115 	switch (imtype) {
3116 	case RE_IMTYPE_HW:
3117 		KKASSERT(sc->re_caps & RE_C_HWIM);
3118 		/* FALL THROUGH */
3119 	case RE_IMTYPE_NONE:
3120 		sc->re_intrs = RE_INTRS;
3121 		sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3122 				RE_ISR_RX_OVERRUN;
3123 		sc->re_tx_ack = RE_ISR_TX_OK;
3124 		break;
3125 
3126 	case RE_IMTYPE_SIM:
3127 		sc->re_intrs = RE_INTRS_TIMER;
3128 		sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3129 		sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3130 		break;
3131 
3132 	default:
3133 		panic("%s: unknown imtype %d\n",
3134 		      sc->arpcom.ac_if.if_xname, imtype);
3135 	}
3136 }
3137 
3138 static void
3139 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3140 {
3141 	re_config_imtype(sc, imtype);
3142 
3143 	if (enable_intrs)
3144 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3145 	else
3146 		CSR_WRITE_2(sc, RE_IMR, 0);
3147 
3148 	switch (imtype) {
3149 	case RE_IMTYPE_NONE:
3150 		re_disable_sim_im(sc);
3151 		re_disable_hw_im(sc);
3152 		break;
3153 
3154 	case RE_IMTYPE_HW:
3155 		KKASSERT(sc->re_caps & RE_C_HWIM);
3156 		re_disable_sim_im(sc);
3157 		re_setup_hw_im(sc);
3158 		break;
3159 
3160 	case RE_IMTYPE_SIM:
3161 		re_disable_hw_im(sc);
3162 		re_setup_sim_im(sc);
3163 		break;
3164 
3165 	default:
3166 		panic("%s: unknown imtype %d\n",
3167 		      sc->arpcom.ac_if.if_xname, imtype);
3168 	}
3169 }
3170 
3171 static void
3172 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3173 {
3174 	int i;
3175 
3176 	if (sc->re_macver == RE_MACVER_11 || sc->re_macver == RE_MACVER_12) {
3177 		uint16_t re_did;
3178 
3179 		re_get_eewidth(sc);
3180 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3181 		if (re_did == 0x8128) {
3182 			uint16_t as[ETHER_ADDR_LEN / 2];
3183 
3184 			/*
3185 			 * Get station address from the EEPROM.
3186 			 */
3187 			re_read_eeprom(sc, (caddr_t)as, RE_EE_EADDR, 3);
3188 			for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3189 				as[i] = le16toh(as[i]);
3190 			bcopy(as, eaddr, sizeof(eaddr));
3191 			return;
3192 		}
3193 	}
3194 
3195 	/*
3196 	 * Get station address from IDRx.
3197 	 */
3198 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
3199 		eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3200 }
3201 
3202 static int
3203 re_jpool_alloc(struct re_softc *sc)
3204 {
3205 	struct re_list_data *ldata = &sc->re_ldata;
3206 	struct re_jbuf *jbuf;
3207 	bus_addr_t paddr;
3208 	bus_size_t jpool_size;
3209 	bus_dmamem_t dmem;
3210 	caddr_t buf;
3211 	int i, error;
3212 
3213 	lwkt_serialize_init(&ldata->re_jbuf_serializer);
3214 
3215 	ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3216 				 M_DEVBUF, M_WAITOK | M_ZERO);
3217 
3218 	jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3219 
3220 	error = bus_dmamem_coherent(sc->re_parent_tag,
3221 			RE_RXBUF_ALIGN, 0,
3222 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3223 			jpool_size, BUS_DMA_WAITOK, &dmem);
3224 	if (error) {
3225 		device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3226 		return error;
3227 	}
3228 	ldata->re_jpool_tag = dmem.dmem_tag;
3229 	ldata->re_jpool_map = dmem.dmem_map;
3230 	ldata->re_jpool = dmem.dmem_addr;
3231 	paddr = dmem.dmem_busaddr;
3232 
3233 	/* ..and split it into 9KB chunks */
3234 	SLIST_INIT(&ldata->re_jbuf_free);
3235 
3236 	buf = ldata->re_jpool;
3237 	for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3238 		jbuf = &ldata->re_jbuf[i];
3239 
3240 		jbuf->re_sc = sc;
3241 		jbuf->re_inuse = 0;
3242 		jbuf->re_slot = i;
3243 		jbuf->re_buf = buf;
3244 		jbuf->re_paddr = paddr;
3245 
3246 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3247 
3248 		buf += RE_JBUF_SIZE;
3249 		paddr += RE_JBUF_SIZE;
3250 	}
3251 	return 0;
3252 }
3253 
3254 static void
3255 re_jpool_free(struct re_softc *sc)
3256 {
3257 	struct re_list_data *ldata = &sc->re_ldata;
3258 
3259 	if (ldata->re_jpool_tag != NULL) {
3260 		bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3261 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3262 				ldata->re_jpool_map);
3263 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3264 		ldata->re_jpool_tag = NULL;
3265 	}
3266 
3267 	if (ldata->re_jbuf != NULL) {
3268 		kfree(ldata->re_jbuf, M_DEVBUF);
3269 		ldata->re_jbuf = NULL;
3270 	}
3271 }
3272 
3273 static struct re_jbuf *
3274 re_jbuf_alloc(struct re_softc *sc)
3275 {
3276 	struct re_list_data *ldata = &sc->re_ldata;
3277 	struct re_jbuf *jbuf;
3278 
3279 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3280 
3281 	jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3282 	if (jbuf != NULL) {
3283 		SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3284 		jbuf->re_inuse = 1;
3285 	}
3286 
3287 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3288 
3289 	return jbuf;
3290 }
3291 
3292 static void
3293 re_jbuf_free(void *arg)
3294 {
3295 	struct re_jbuf *jbuf = arg;
3296 	struct re_softc *sc = jbuf->re_sc;
3297 	struct re_list_data *ldata = &sc->re_ldata;
3298 
3299 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3300 		panic("%s: free wrong jumbo buffer\n",
3301 		      sc->arpcom.ac_if.if_xname);
3302 	} else if (jbuf->re_inuse == 0) {
3303 		panic("%s: jumbo buffer already freed\n",
3304 		      sc->arpcom.ac_if.if_xname);
3305 	}
3306 
3307 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3308 	atomic_subtract_int(&jbuf->re_inuse, 1);
3309 	if (jbuf->re_inuse == 0)
3310 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3311 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3312 }
3313 
3314 static void
3315 re_jbuf_ref(void *arg)
3316 {
3317 	struct re_jbuf *jbuf = arg;
3318 	struct re_softc *sc = jbuf->re_sc;
3319 	struct re_list_data *ldata = &sc->re_ldata;
3320 
3321 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3322 		panic("%s: ref wrong jumbo buffer\n",
3323 		      sc->arpcom.ac_if.if_xname);
3324 	} else if (jbuf->re_inuse == 0) {
3325 		panic("%s: jumbo buffer already freed\n",
3326 		      sc->arpcom.ac_if.if_xname);
3327 	}
3328 	atomic_add_int(&jbuf->re_inuse, 1);
3329 }
3330