xref: /dragonfly/sys/dev/netif/re/if_re.c (revision b40e316c)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  * $DragonFly: src/sys/dev/netif/re/if_re.c,v 1.7 2005/01/25 19:35:11 dillon Exp $
37  */
38 
39 /*
40  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41  *
42  * Written by Bill Paul <wpaul@windriver.com>
43  * Senior Networking Software Engineer
44  * Wind River Systems
45  */
46 
47 /*
48  * This driver is designed to support RealTek's next generation of
49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51  * and the RTL8110S.
52  *
53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54  * with the older 8139 family, however it also supports a special
55  * C+ mode of operation that provides several new performance enhancing
56  * features. These include:
57  *
58  *	o Descriptor based DMA mechanism. Each descriptor represents
59  *	  a single packet fragment. Data buffers may be aligned on
60  *	  any byte boundary.
61  *
62  *	o 64-bit DMA
63  *
64  *	o TCP/IP checksum offload for both RX and TX
65  *
66  *	o High and normal priority transmit DMA rings
67  *
68  *	o VLAN tag insertion and extraction
69  *
70  *	o TCP large send (segmentation offload)
71  *
72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73  * programming API is fairly straightforward. The RX filtering, EEPROM
74  * access and PHY access is the same as it is on the older 8139 series
75  * chips.
76  *
77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78  * same programming API and feature set as the 8139C+ with the following
79  * differences and additions:
80  *
81  *	o 1000Mbps mode
82  *
83  *	o Jumbo frames
84  *
85  * 	o GMII and TBI ports/registers for interfacing with copper
86  *	  or fiber PHYs
87  *
88  *      o RX and TX DMA rings can have up to 1024 descriptors
89  *        (the 8139C+ allows a maximum of 64)
90  *
91  *	o Slight differences in register layout from the 8139C+
92  *
93  * The TX start and timer interrupt registers are at different locations
94  * on the 8169 than they are on the 8139C+. Also, the status word in the
95  * RX descriptor has a slightly different bit layout. The 8169 does not
96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97  * copper gigE PHY.
98  *
99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100  * (the 'S' stands for 'single-chip'). These devices have the same
101  * programming API as the older 8169, but also have some vendor-specific
102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104  *
105  * This driver takes advantage of the RX and TX checksum offload and
106  * VLAN tag insertion/extraction features. It also implements TX
107  * interrupt moderation using the timer interrupt registers, which
108  * significantly reduces TX interrupt load. There is also support
109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
110  * jumbo frames larger than 7.5K, so the max MTU possible with this
111  * driver is 7500 bytes.
112  */
113 
114 #include <sys/param.h>
115 #include <sys/endian.h>
116 #include <sys/systm.h>
117 #include <sys/sockio.h>
118 #include <sys/mbuf.h>
119 #include <sys/malloc.h>
120 #include <sys/module.h>
121 #include <sys/kernel.h>
122 #include <sys/socket.h>
123 
124 #include <net/if.h>
125 #include <net/if_arp.h>
126 #include <net/ethernet.h>
127 #include <net/if_dl.h>
128 #include <net/if_media.h>
129 #include <net/if_types.h>
130 #include <net/vlan/if_vlan_var.h>
131 
132 #include <net/bpf.h>
133 
134 #include <machine/bus_pio.h>
135 #include <machine/bus_memio.h>
136 #include <machine/bus.h>
137 #include <machine/resource.h>
138 #include <sys/bus.h>
139 #include <sys/rman.h>
140 
141 #include <dev/netif/mii_layer/mii.h>
142 #include <dev/netif/mii_layer/miivar.h>
143 
144 #include <bus/pci/pcireg.h>
145 #include <bus/pci/pcivar.h>
146 
147 /* "controller miibus0" required.  See GENERIC if you get errors here. */
148 #include "miibus_if.h"
149 
150 #include <dev/netif/re/if_rereg.h>
151 
152 /*
153  * The hardware supports checksumming but, as usual, some chipsets screw it
154  * all up and produce bogus packets, so we disable it by default.
155  */
156 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
157 #define RE_DISABLE_HWCSUM
158 
159 /*
160  * Various supported device vendors/types and their names.
161  */
162 static struct re_type re_devs[] = {
163 	{ RT_VENDORID, RT_DEVICEID_8139, RE_HWREV_8139CPLUS,
164 		"RealTek 8139C+ 10/100BaseTX" },
165 	{ RT_VENDORID, RT_DEVICEID_8169, RE_HWREV_8169,
166 		"RealTek 8169 Gigabit Ethernet" },
167 	{ RT_VENDORID, RT_DEVICEID_8169, RE_HWREV_8169S,
168 		"RealTek 8169S Single-chip Gigabit Ethernet" },
169 	{ RT_VENDORID, RT_DEVICEID_8169, RE_HWREV_8110S,
170 		"RealTek 8110S Single-chip Gigabit Ethernet" },
171 	{ 0, 0, 0, NULL }
172 };
173 
174 static struct re_hwrev re_hwrevs[] = {
175 	{ RE_HWREV_8139CPLUS, RE_8139CPLUS, "C+"},
176 	{ RE_HWREV_8169, RE_8169, "8169"},
177 	{ RE_HWREV_8169S, RE_8169, "8169S"},
178 	{ RE_HWREV_8110S, RE_8169, "8110S"},
179 	{ 0, 0, NULL }
180 };
181 
182 static int	re_probe(device_t);
183 static int	re_attach(device_t);
184 static int	re_detach(device_t);
185 
186 static int	re_encap(struct re_softc *, struct mbuf *, int *);
187 
188 static void	re_dma_map_addr(void *, bus_dma_segment_t *, int, int);
189 static void	re_dma_map_desc(void *, bus_dma_segment_t *, int,
190 				bus_size_t, int);
191 static int	re_allocmem(device_t, struct re_softc *);
192 static int	re_newbuf(struct re_softc *, int, struct mbuf *);
193 static int	re_rx_list_init(struct re_softc *);
194 static int	re_tx_list_init(struct re_softc *);
195 static void	re_rxeof(struct re_softc *);
196 static void	re_txeof(struct re_softc *);
197 static void	re_intr(void *);
198 static void	re_tick(void *);
199 static void	re_start(struct ifnet *);
200 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
201 static void	re_init(void *);
202 static void	re_stop(struct re_softc *);
203 static void	re_watchdog(struct ifnet *);
204 static int	re_suspend(device_t);
205 static int	re_resume(device_t);
206 static void	re_shutdown(device_t);
207 static int	re_ifmedia_upd(struct ifnet *);
208 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
209 
210 static void	re_eeprom_putbyte(struct re_softc *, int);
211 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
212 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int, int);
213 static int	re_gmii_readreg(device_t, int, int);
214 static int	re_gmii_writereg(device_t, int, int, int);
215 
216 static int	re_miibus_readreg(device_t, int, int);
217 static int	re_miibus_writereg(device_t, int, int, int);
218 static void	re_miibus_statchg(device_t);
219 
220 static void	re_setmulti(struct re_softc *);
221 static void	re_reset(struct re_softc *);
222 
223 static int	re_diag(struct re_softc *);
224 
225 static device_method_t re_methods[] = {
226 	/* Device interface */
227 	DEVMETHOD(device_probe,		re_probe),
228 	DEVMETHOD(device_attach,	re_attach),
229 	DEVMETHOD(device_detach,	re_detach),
230 	DEVMETHOD(device_suspend,	re_suspend),
231 	DEVMETHOD(device_resume,	re_resume),
232 	DEVMETHOD(device_shutdown,	re_shutdown),
233 
234 	/* bus interface */
235 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
236 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
237 
238 	/* MII interface */
239 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
240 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
241 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
242 
243 	{ 0, 0 }
244 };
245 
246 static driver_t re_driver = {
247 	"re",
248 	re_methods,
249 	sizeof(struct re_softc)
250 };
251 
252 static devclass_t re_devclass;
253 
254 DECLARE_DUMMY_MODULE(if_re);
255 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, 0, 0);
256 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, 0, 0);
257 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
258 
259 #define EE_SET(x)	\
260 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
261 
262 #define EE_CLR(x)	\
263 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
264 
265 /*
266  * Send a read command and address to the EEPROM, check for ACK.
267  */
268 static void
269 re_eeprom_putbyte(struct re_softc *sc, int addr)
270 {
271 	int d, i;
272 
273 	d = addr | sc->re_eecmd_read;
274 
275 	/*
276 	 * Feed in each bit and strobe the clock.
277 	 */
278 	for (i = 0x400; i != 0; i >>= 1) {
279 		if (d & i)
280 			EE_SET(RE_EE_DATAIN);
281 		else
282 			EE_CLR(RE_EE_DATAIN);
283 		DELAY(100);
284 		EE_SET(RE_EE_CLK);
285 		DELAY(150);
286 		EE_CLR(RE_EE_CLK);
287 		DELAY(100);
288 	}
289 }
290 
291 /*
292  * Read a word of data stored in the EEPROM at address 'addr.'
293  */
294 static void
295 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
296 {
297 	int i;
298 	uint16_t word = 0;
299 
300 	/* Enter EEPROM access mode. */
301 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_PROGRAM|RE_EE_SEL);
302 
303 	/*
304 	 * Send address of word we want to read.
305 	 */
306 	re_eeprom_putbyte(sc, addr);
307 
308 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_PROGRAM|RE_EE_SEL);
309 
310 	/*
311 	 * Start reading bits from EEPROM.
312 	 */
313 	for (i = 0x8000; i != 0; i >>= 1) {
314 		EE_SET(RE_EE_CLK);
315 		DELAY(100);
316 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
317 			word |= i;
318 		EE_CLR(RE_EE_CLK);
319 		DELAY(100);
320 	}
321 
322 	/* Turn off EEPROM access mode. */
323 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
324 
325 	*dest = word;
326 }
327 
328 /*
329  * Read a sequence of words from the EEPROM.
330  */
331 static void
332 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt, int swap)
333 {
334 	int i;
335 	uint16_t word = 0, *ptr;
336 
337 	for (i = 0; i < cnt; i++) {
338 		re_eeprom_getword(sc, off + i, &word);
339 		ptr = (u_int16_t *)(dest + (i * 2));
340 		if (swap)
341 			*ptr = be16toh(word);
342 		else
343 			*ptr = word;
344 	}
345 }
346 
347 static int
348 re_gmii_readreg(device_t dev, int phy, int reg)
349 {
350 	struct re_softc *sc = device_get_softc(dev);
351 	u_int32_t rval;
352 	int i;
353 
354 	if (phy != 1)
355 		return(0);
356 
357 	/* Let the rgephy driver read the GMEDIASTAT register */
358 
359 	if (reg == RE_GMEDIASTAT)
360 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
361 
362 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
363 	DELAY(1000);
364 
365 	for (i = 0; i < RE_TIMEOUT; i++) {
366 		rval = CSR_READ_4(sc, RE_PHYAR);
367 		if (rval & RE_PHYAR_BUSY)
368 			break;
369 		DELAY(100);
370 	}
371 
372 	if (i == RE_TIMEOUT) {
373 		device_printf(dev, "PHY read failed\n");
374 		return(0);
375 	}
376 
377 	return(rval & RE_PHYAR_PHYDATA);
378 }
379 
380 static int
381 re_gmii_writereg(device_t dev, int phy, int reg, int data)
382 {
383 	struct re_softc *sc = device_get_softc(dev);
384 	uint32_t rval;
385 	int i;
386 
387 	CSR_WRITE_4(sc, RE_PHYAR,
388 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
389 	DELAY(1000);
390 
391 	for (i = 0; i < RE_TIMEOUT; i++) {
392 		rval = CSR_READ_4(sc, RE_PHYAR);
393 		if ((rval & RE_PHYAR_BUSY) == 0)
394 			break;
395 		DELAY(100);
396 	}
397 
398 	if (i == RE_TIMEOUT)
399 		device_printf(dev, "PHY write failed\n");
400 
401 	return(0);
402 }
403 
404 static int
405 re_miibus_readreg(device_t dev, int phy, int reg)
406 {
407 	struct re_softc	*sc = device_get_softc(dev);
408 	uint16_t rval = 0;
409 	uint16_t re8139_reg = 0;
410 
411 	if (sc->re_type == RE_8169) {
412 		rval = re_gmii_readreg(dev, phy, reg);
413 		return(rval);
414 	}
415 
416 	/* Pretend the internal PHY is only at address 0 */
417 	if (phy)
418 		return(0);
419 
420 	switch(reg) {
421 	case MII_BMCR:
422 		re8139_reg = RE_BMCR;
423 		break;
424 	case MII_BMSR:
425 		re8139_reg = RE_BMSR;
426 		break;
427 	case MII_ANAR:
428 		re8139_reg = RE_ANAR;
429 		break;
430 	case MII_ANER:
431 		re8139_reg = RE_ANER;
432 		break;
433 	case MII_ANLPAR:
434 		re8139_reg = RE_LPAR;
435 		break;
436 	case MII_PHYIDR1:
437 	case MII_PHYIDR2:
438 		return(0);
439 	/*
440 	 * Allow the rlphy driver to read the media status
441 	 * register. If we have a link partner which does not
442 	 * support NWAY, this is the register which will tell
443 	 * us the results of parallel detection.
444 	 */
445 	case RE_MEDIASTAT:
446 		return(CSR_READ_1(sc, RE_MEDIASTAT));
447 	default:
448 		device_printf(dev, "bad phy register\n");
449 		return(0);
450 	}
451 	rval = CSR_READ_2(sc, re8139_reg);
452 	return(rval);
453 }
454 
455 static int
456 re_miibus_writereg(device_t dev, int phy, int reg, int data)
457 {
458 	struct re_softc *sc= device_get_softc(dev);
459 	u_int16_t re8139_reg = 0;
460 
461 	if (sc->re_type == RE_8169)
462 		return(re_gmii_writereg(dev, phy, reg, data));
463 
464 	/* Pretend the internal PHY is only at address 0 */
465 	if (phy)
466 		return(0);
467 
468 	switch(reg) {
469 	case MII_BMCR:
470 		re8139_reg = RE_BMCR;
471 		break;
472 	case MII_BMSR:
473 		re8139_reg = RE_BMSR;
474 		break;
475 	case MII_ANAR:
476 		re8139_reg = RE_ANAR;
477 		break;
478 	case MII_ANER:
479 		re8139_reg = RE_ANER;
480 		break;
481 	case MII_ANLPAR:
482 		re8139_reg = RE_LPAR;
483 		break;
484 	case MII_PHYIDR1:
485 	case MII_PHYIDR2:
486 		return(0);
487 	default:
488 		device_printf(dev, "bad phy register\n");
489 		return(0);
490 	}
491 	CSR_WRITE_2(sc, re8139_reg, data);
492 	return(0);
493 }
494 
495 static void
496 re_miibus_statchg(device_t dev)
497 {
498 }
499 
500 /*
501  * Program the 64-bit multicast hash filter.
502  */
503 static void
504 re_setmulti(struct re_softc *sc)
505 {
506 	struct ifnet *ifp = &sc->arpcom.ac_if;
507 	int h = 0;
508 	uint32_t hashes[2] = { 0, 0 };
509 	struct ifmultiaddr *ifma;
510 	uint32_t rxfilt;
511 	int mcnt = 0;
512 
513 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
514 
515 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
516 		rxfilt |= RE_RXCFG_RX_MULTI;
517 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
518 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
519 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
520 		return;
521 	}
522 
523 	/* first, zot all the existing hash bits */
524 	CSR_WRITE_4(sc, RE_MAR0, 0);
525 	CSR_WRITE_4(sc, RE_MAR4, 0);
526 
527 	/* now program new ones */
528 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
529 		if (ifma->ifma_addr->sa_family != AF_LINK)
530 			continue;
531 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
532 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
533 		if (h < 32)
534 			hashes[0] |= (1 << h);
535 		else
536 			hashes[1] |= (1 << (h - 32));
537 		mcnt++;
538 	}
539 
540 	if (mcnt)
541 		rxfilt |= RE_RXCFG_RX_MULTI;
542 	else
543 		rxfilt &= ~RE_RXCFG_RX_MULTI;
544 
545 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
546 	CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
547 	CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
548 }
549 
550 static void
551 re_reset(struct re_softc *sc)
552 {
553 	int i;
554 
555 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
556 
557 	for (i = 0; i < RE_TIMEOUT; i++) {
558 		DELAY(10);
559 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
560 			break;
561 	}
562 	if (i == RE_TIMEOUT)
563 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
564 
565 	CSR_WRITE_1(sc, 0x82, 1);
566 }
567 
568 /*
569  * The following routine is designed to test for a defect on some
570  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
571  * lines connected to the bus, however for a 32-bit only card, they
572  * should be pulled high. The result of this defect is that the
573  * NIC will not work right if you plug it into a 64-bit slot: DMA
574  * operations will be done with 64-bit transfers, which will fail
575  * because the 64-bit data lines aren't connected.
576  *
577  * There's no way to work around this (short of talking a soldering
578  * iron to the board), however we can detect it. The method we use
579  * here is to put the NIC into digital loopback mode, set the receiver
580  * to promiscuous mode, and then try to send a frame. We then compare
581  * the frame data we sent to what was received. If the data matches,
582  * then the NIC is working correctly, otherwise we know the user has
583  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
584  * slot. In the latter case, there's no way the NIC can work correctly,
585  * so we print out a message on the console and abort the device attach.
586  */
587 
588 static int
589 re_diag(struct re_softc *sc)
590 {
591 	struct ifnet *ifp = &sc->arpcom.ac_if;
592 	struct mbuf *m0;
593 	struct ether_header *eh;
594 	struct re_desc *cur_rx;
595 	uint16_t status;
596 	uint32_t rxstat;
597 	int total_len, i, error = 0;
598 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
599 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
600 
601 	/* Allocate a single mbuf */
602 
603 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
604 	if (m0 == NULL)
605 		return(ENOBUFS);
606 
607 	/*
608 	 * Initialize the NIC in test mode. This sets the chip up
609 	 * so that it can send and receive frames, but performs the
610 	 * following special functions:
611 	 * - Puts receiver in promiscuous mode
612 	 * - Enables digital loopback mode
613 	 * - Leaves interrupts turned off
614 	 */
615 
616 	ifp->if_flags |= IFF_PROMISC;
617 	sc->re_testmode = 1;
618 	re_init(sc);
619 	re_stop(sc);
620 	DELAY(100000);
621 	re_init(sc);
622 
623 	/* Put some data in the mbuf */
624 
625 	eh = mtod(m0, struct ether_header *);
626 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
627 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
628 	eh->ether_type = htons(ETHERTYPE_IP);
629 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
630 
631 	/*
632 	 * Queue the packet, start transmission.
633 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
634 	 */
635 
636 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
637 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
638 	m0 = NULL;
639 
640 	/* Wait for it to propagate through the chip */
641 
642 	DELAY(100000);
643 	for (i = 0; i < RE_TIMEOUT; i++) {
644 		status = CSR_READ_2(sc, RE_ISR);
645 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
646 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
647 			break;
648 		DELAY(10);
649 	}
650 
651 	if (i == RE_TIMEOUT) {
652 		if_printf(ifp, "diagnostic failed to receive packet "
653 			  "in loopback mode\n");
654 		error = EIO;
655 		goto done;
656 	}
657 
658 	/*
659 	 * The packet should have been dumped into the first
660 	 * entry in the RX DMA ring. Grab it from there.
661 	 */
662 
663 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
664 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
665 	bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0],
666 			BUS_DMASYNC_POSTWRITE);
667 	bus_dmamap_unload(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0]);
668 
669 	m0 = sc->re_ldata.re_rx_mbuf[0];
670 	sc->re_ldata.re_rx_mbuf[0] = NULL;
671 	eh = mtod(m0, struct ether_header *);
672 
673 	cur_rx = &sc->re_ldata.re_rx_list[0];
674 	total_len = RE_RXBYTES(cur_rx);
675 	rxstat = le32toh(cur_rx->re_cmdstat);
676 
677 	if (total_len != ETHER_MIN_LEN) {
678 		if_printf(ifp, "diagnostic failed, received short packet\n");
679 		error = EIO;
680 		goto done;
681 	}
682 
683 	/* Test that the received packet data matches what we sent. */
684 
685 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
686 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
687 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
688 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
689 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
690 		    dst, ":", src, ":", ETHERTYPE_IP);
691 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
692 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
693 		    ntohs(eh->ether_type));
694 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
695 		    "into a 64-bit PCI slot.\n");
696 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
697 		    "for proper operation.\n");
698 		if_printf(ifp, "Read the re(4) man page for more details.\n");
699 		error = EIO;
700 	}
701 
702 done:
703 	/* Turn interface off, release resources */
704 
705 	sc->re_testmode = 0;
706 	ifp->if_flags &= ~IFF_PROMISC;
707 	re_stop(sc);
708 	if (m0 != NULL)
709 		m_freem(m0);
710 
711 	return (error);
712 }
713 
714 /*
715  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
716  * IDs against our list and return a device name if we find a match.
717  */
718 static int
719 re_probe(device_t dev)
720 {
721 	struct re_type *t;
722 	struct re_softc *sc;
723 	int rid;
724 	uint32_t hwrev;
725 	uint16_t vendor, product;
726 
727 	t = re_devs;
728 
729 	vendor = pci_get_vendor(dev);
730 	product = pci_get_device(dev);
731 
732 	for (t = re_devs; t->re_name != NULL; t++) {
733 		if (product == t->re_did && vendor == t->re_vid)
734 			break;
735 	}
736 
737 	/*
738 	 * Check if we found a RealTek device.
739 	 */
740 	if (t->re_name == NULL)
741 		return(ENXIO);
742 
743 	/*
744 	 * Temporarily map the I/O space so we can read the chip ID register.
745 	 */
746 	sc = malloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
747 	rid = RE_PCI_LOIO;
748 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
749 					    RF_ACTIVE);
750 	if (sc->re_res == NULL) {
751 		device_printf(dev, "couldn't map ports/memory\n");
752 		free(sc, M_TEMP);
753 		return(ENXIO);
754 	}
755 
756 	sc->re_btag = rman_get_bustag(sc->re_res);
757 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
758 
759 	hwrev = CSR_READ_4(sc, RE_TXCFG) & RE_TXCFG_HWREV;
760 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
761 	free(sc, M_TEMP);
762 
763 	/*
764 	 * and continue matching for the specific chip...
765 	 */
766 	for (; t->re_name != NULL; t++) {
767 		if (product == t->re_did && vendor == t->re_vid &&
768 		    t->re_basetype == hwrev) {
769 			device_set_desc(dev, t->re_name);
770 			return(0);
771 		}
772 	}
773 	return(ENXIO);
774 }
775 
776 /*
777  * This routine takes the segment list provided as the result of
778  * a bus_dma_map_load() operation and assigns the addresses/lengths
779  * to RealTek DMA descriptors. This can be called either by the RX
780  * code or the TX code. In the RX case, we'll probably wind up mapping
781  * at most one segment. For the TX case, there could be any number of
782  * segments since TX packets may span multiple mbufs. In either case,
783  * if the number of segments is larger than the re_maxsegs limit
784  * specified by the caller, we abort the mapping operation. Sadly,
785  * whoever designed the buffer mapping API did not provide a way to
786  * return an error from here, so we have to fake it a bit.
787  */
788 
789 static void
790 re_dma_map_desc(void *arg, bus_dma_segment_t *segs, int nseg,
791 		bus_size_t mapsize, int error)
792 {
793 	struct re_dmaload_arg *ctx;
794 	struct re_desc *d = NULL;
795 	int i = 0, idx;
796 	uint32_t cmdstat;
797 
798 	if (error)
799 		return;
800 
801 	ctx = arg;
802 
803 	/* Signal error to caller if there's too many segments */
804 	if (nseg > ctx->re_maxsegs) {
805 		ctx->re_maxsegs = 0;
806 		return;
807 	}
808 
809 	/*
810 	 * Map the segment array into descriptors. Note that we set the
811 	 * start-of-frame and end-of-frame markers for either TX or RX, but
812 	 * they really only have meaning in the TX case. (In the RX case,
813 	 * it's the chip that tells us where packets begin and end.)
814 	 * We also keep track of the end of the ring and set the
815 	 * end-of-ring bits as needed, and we set the ownership bits
816 	 * in all except the very first descriptor. (The caller will
817 	 * set this descriptor later when it start transmission or
818 	 * reception.)
819 	 */
820 	idx = ctx->re_idx;
821 	for (;;) {
822 		d = &ctx->re_ring[idx];
823 		if (le32toh(d->re_cmdstat) & RE_RDESC_STAT_OWN) {
824 			ctx->re_maxsegs = 0;
825 			return;
826 		}
827 		cmdstat = segs[i].ds_len;
828 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
829 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
830 		if (i == 0)
831 			cmdstat |= RE_TDESC_CMD_SOF;
832 		else
833 			cmdstat |= RE_TDESC_CMD_OWN;
834 		if (idx == (RE_RX_DESC_CNT - 1))
835 			cmdstat |= RE_TDESC_CMD_EOR;
836 		d->re_cmdstat = htole32(cmdstat | ctx->re_flags);
837 		i++;
838 		if (i == nseg)
839 			break;
840 		RE_DESC_INC(idx);
841 	}
842 
843 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
844 	ctx->re_maxsegs = nseg;
845 	ctx->re_idx = idx;
846 }
847 
848 /*
849  * Map a single buffer address.
850  */
851 
852 static void
853 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
854 {
855 	uint32_t *addr;
856 
857 	if (error)
858 		return;
859 
860 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
861 	addr = arg;
862 	*addr = segs->ds_addr;
863 }
864 
865 static int
866 re_allocmem(device_t dev, struct re_softc *sc)
867 {
868 	int error, i, nseg;
869 
870 	/*
871 	 * Allocate map for RX mbufs.
872 	 */
873 	nseg = 32;
874 	error = bus_dma_tag_create(sc->re_parent_tag, ETHER_ALIGN, 0,
875 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
876 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
877 	    &sc->re_ldata.re_mtag);
878 	if (error) {
879 		device_printf(dev, "could not allocate dma tag\n");
880 		return(error);
881 	}
882 
883 	/*
884 	 * Allocate map for TX descriptor list.
885 	 */
886 	error = bus_dma_tag_create(sc->re_parent_tag, RE_RING_ALIGN,
887 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
888             NULL, RE_TX_LIST_SZ, 1, RE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
889 	    &sc->re_ldata.re_tx_list_tag);
890 	if (error) {
891 		device_printf(dev, "could not allocate dma tag\n");
892 		return(error);
893 	}
894 
895 	/* Allocate DMA'able memory for the TX ring */
896 
897         error = bus_dmamem_alloc(sc->re_ldata.re_tx_list_tag,
898 	    (void **)&sc->re_ldata.re_tx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO,
899             &sc->re_ldata.re_tx_list_map);
900         if (error) {
901 		device_printf(dev, "could not allocate TX ring\n");
902                 return(error);
903 	}
904 
905 	/* Load the map for the TX ring. */
906 
907 	error = bus_dmamap_load(sc->re_ldata.re_tx_list_tag,
908 	     sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
909 	     RE_TX_LIST_SZ, re_dma_map_addr,
910 	     &sc->re_ldata.re_tx_list_addr, BUS_DMA_NOWAIT);
911 	if (error) {
912 		device_printf(dev, "could not get addres of TX ring\n");
913 		return(error);
914 	}
915 
916 	/* Create DMA maps for TX buffers */
917 
918 	for (i = 0; i < RE_TX_DESC_CNT; i++) {
919 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
920 			    &sc->re_ldata.re_tx_dmamap[i]);
921 		if (error) {
922 			device_printf(dev, "can't create DMA map for TX\n");
923 			return(error);
924 		}
925 	}
926 
927 	/*
928 	 * Allocate map for RX descriptor list.
929 	 */
930 	error = bus_dma_tag_create(sc->re_parent_tag, RE_RING_ALIGN,
931 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
932             NULL, RE_TX_LIST_SZ, 1, RE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
933 	    &sc->re_ldata.re_rx_list_tag);
934 	if (error) {
935 		device_printf(dev, "could not allocate dma tag\n");
936 		return(error);
937 	}
938 
939 	/* Allocate DMA'able memory for the RX ring */
940 
941         error = bus_dmamem_alloc(sc->re_ldata.re_rx_list_tag,
942 	    (void **)&sc->re_ldata.re_rx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO,
943             &sc->re_ldata.re_rx_list_map);
944         if (error) {
945 		device_printf(dev, "could not allocate RX ring\n");
946                 return(error);
947 	}
948 
949 	/* Load the map for the RX ring. */
950 
951 	error = bus_dmamap_load(sc->re_ldata.re_rx_list_tag,
952 	     sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
953 	     RE_TX_LIST_SZ, re_dma_map_addr,
954 	     &sc->re_ldata.re_rx_list_addr, BUS_DMA_NOWAIT);
955 	if (error) {
956 		device_printf(dev, "could not get address of RX ring\n");
957 		return(error);
958 	}
959 
960 	/* Create DMA maps for RX buffers */
961 
962 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
963 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
964 			    &sc->re_ldata.re_rx_dmamap[i]);
965 		if (error) {
966 			device_printf(dev, "can't create DMA map for RX\n");
967 			return(ENOMEM);
968 		}
969 	}
970 
971 	return(0);
972 }
973 
974 /*
975  * Attach the interface. Allocate softc structures, do ifmedia
976  * setup and ethernet/BPF attach.
977  */
978 static int
979 re_attach(device_t dev)
980 {
981 	struct re_softc	*sc = device_get_softc(dev);
982 	struct ifnet *ifp;
983 	struct re_hwrev *hw_rev;
984 	uint8_t eaddr[ETHER_ADDR_LEN];
985 	int hwrev;
986 	u_int16_t re_did = 0;
987 	int error = 0, rid, i;
988 
989 	callout_init(&sc->re_timer);
990 
991 #ifndef BURN_BRIDGES
992 	/*
993 	 * Handle power management nonsense.
994 	 */
995 
996 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
997 		uint32_t membase, irq;
998 
999 		/* Save important PCI config data. */
1000 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1001 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1002 
1003 		/* Reset the power state. */
1004 		device_printf(dev, "chip is is in D%d power mode "
1005 		    "-- setting to D0\n", pci_get_powerstate(dev));
1006 
1007 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1008 
1009 		/* Restore PCI config data. */
1010 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1011 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1012 	}
1013 #endif
1014 	/*
1015 	 * Map control/status registers.
1016 	 */
1017 	pci_enable_busmaster(dev);
1018 
1019 	rid = RE_PCI_LOIO;
1020 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1021 					    RF_ACTIVE);
1022 
1023 	if (sc->re_res == NULL) {
1024 		device_printf(dev, "couldn't map ports/memory\n");
1025 		error = ENXIO;
1026 		goto fail;
1027 	}
1028 
1029 	sc->re_btag = rman_get_bustag(sc->re_res);
1030 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1031 
1032 	/* Allocate interrupt */
1033 	rid = 0;
1034 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1035 					    RF_SHAREABLE | RF_ACTIVE);
1036 
1037 	if (sc->re_irq == NULL) {
1038 		device_printf(dev, "couldn't map interrupt\n");
1039 		error = ENXIO;
1040 		goto fail;
1041 	}
1042 
1043 	/* Reset the adapter. */
1044 	re_reset(sc);
1045 
1046 	hwrev = CSR_READ_4(sc, RE_TXCFG) & RE_TXCFG_HWREV;
1047 	for (hw_rev = re_hwrevs; hw_rev->re_desc != NULL; hw_rev++) {
1048 		if (hw_rev->re_rev == hwrev) {
1049 			sc->re_type = hw_rev->re_type;
1050 			break;
1051 		}
1052 	}
1053 
1054 	if (sc->re_type == RE_8169) {
1055 		/* Set RX length mask */
1056 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1057 
1058 		/* Force station address autoload from the EEPROM */
1059 		CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_AUTOLOAD);
1060 		for (i = 0; i < RE_TIMEOUT; i++) {
1061 			if ((CSR_READ_1(sc, RE_EECMD) & RE_EEMODE_AUTOLOAD) == 0)
1062 				break;
1063 			DELAY(100);
1064 		}
1065 		if (i == RE_TIMEOUT)
1066 			device_printf(dev, "eeprom autoload timed out\n");
1067 
1068 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1069 			eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
1070 	} else {
1071 		uint16_t as[3];
1072 
1073 		/* Set RX length mask */
1074 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1075 
1076 		sc->re_eecmd_read = RE_EECMD_READ_6BIT;
1077 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1078 		if (re_did != 0x8129)
1079 			sc->re_eecmd_read = RE_EECMD_READ_8BIT;
1080 
1081 		/*
1082 		 * Get station address from the EEPROM.
1083 		 */
1084 		re_read_eeprom(sc, (caddr_t)as, RE_EE_EADDR, 3, 0);
1085 		for (i = 0; i < 3; i++) {
1086 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1087 			eaddr[(i * 2) + 1] = as[i] >> 8;
1088 		}
1089 	}
1090 
1091 	/*
1092 	 * Allocate the parent bus DMA tag appropriate for PCI.
1093 	 */
1094 #define RE_NSEG_NEW 32
1095 	error = bus_dma_tag_create(NULL,	/* parent */
1096 			1, 0,			/* alignment, boundary */
1097 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1098 			BUS_SPACE_MAXADDR,	/* highaddr */
1099 			NULL, NULL,		/* filter, filterarg */
1100 			MAXBSIZE, RE_NSEG_NEW,	/* maxsize, nsegments */
1101 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1102 			BUS_DMA_ALLOCNOW,	/* flags */
1103 			&sc->re_parent_tag);
1104 	if (error)
1105 		goto fail;
1106 
1107 	error = re_allocmem(dev, sc);
1108 
1109 	if (error)
1110 		goto fail;
1111 
1112 	/* Do MII setup */
1113 	if (mii_phy_probe(dev, &sc->re_miibus,
1114 	    re_ifmedia_upd, re_ifmedia_sts)) {
1115 		device_printf(dev, "MII without any phy!\n");
1116 		error = ENXIO;
1117 		goto fail;
1118 	}
1119 
1120 	ifp = &sc->arpcom.ac_if;
1121 	ifp->if_softc = sc;
1122 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1123 	ifp->if_mtu = ETHERMTU;
1124 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1125 	ifp->if_ioctl = re_ioctl;
1126 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1127 	ifp->if_start = re_start;
1128 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1129 #ifdef DEVICE_POLLING
1130 	ifp->if_capabilities |= IFCAP_POLLING;
1131 #endif
1132 	ifp->if_watchdog = re_watchdog;
1133 	ifp->if_init = re_init;
1134 	if (sc->re_type == RE_8169)
1135 		ifp->if_baudrate = 1000000000;
1136 	else
1137 		ifp->if_baudrate = 100000000;
1138 	ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
1139 #ifdef RE_DISABLE_HWCSUM
1140 	ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
1141 	ifp->if_hwassist = 0;
1142 #else
1143 	ifp->if_capenable = ifp->if_capabilities;
1144 	ifp->if_hwassist = RE_CSUM_FEATURES;
1145 #endif
1146 
1147 	/*
1148 	 * Call MI attach routine.
1149 	 */
1150 	ether_ifattach(ifp, eaddr);
1151 
1152 	/* Perform hardware diagnostic. */
1153 	error = re_diag(sc);
1154 
1155 	if (error) {
1156 		device_printf(dev, "hardware diagnostic failure\n");
1157 		ether_ifdetach(ifp);
1158 		goto fail;
1159 	}
1160 
1161 	/* Hook interrupt last to avoid having to lock softc */
1162 	error = bus_setup_intr(dev, sc->re_irq, INTR_TYPE_NET, re_intr, sc,
1163 			       &sc->re_intrhand);
1164 
1165 	if (error) {
1166 		device_printf(dev, "couldn't set up irq\n");
1167 		ether_ifdetach(ifp);
1168 		goto fail;
1169 	}
1170 
1171 fail:
1172 	if (error)
1173 		re_detach(dev);
1174 
1175 	return (error);
1176 }
1177 
1178 /*
1179  * Shutdown hardware and free up resources. This can be called any
1180  * time after the mutex has been initialized. It is called in both
1181  * the error case in attach and the normal detach case so it needs
1182  * to be careful about only freeing resources that have actually been
1183  * allocated.
1184  */
1185 static int
1186 re_detach(device_t dev)
1187 {
1188 	struct re_softc *sc = device_get_softc(dev);
1189 	struct ifnet *ifp = &sc->arpcom.ac_if;
1190 	int i, s;
1191 
1192 	s = splimp();
1193 
1194 	/* These should only be active if attach succeeded */
1195 	if (device_is_attached(dev)) {
1196 		re_stop(sc);
1197 		ether_ifdetach(ifp);
1198 	}
1199 	if (sc->re_miibus)
1200 		device_delete_child(dev, sc->re_miibus);
1201 	bus_generic_detach(dev);
1202 
1203 	if (sc->re_intrhand)
1204 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1205 	if (sc->re_irq)
1206 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1207 	if (sc->re_res)
1208 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1209 				     sc->re_res);
1210 
1211 	/* Unload and free the RX DMA ring memory and map */
1212 
1213 	if (sc->re_ldata.re_rx_list_tag) {
1214 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1215 		    sc->re_ldata.re_rx_list_map);
1216 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1217 		    sc->re_ldata.re_rx_list,
1218 		    sc->re_ldata.re_rx_list_map);
1219 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1220 	}
1221 
1222 	/* Unload and free the TX DMA ring memory and map */
1223 
1224 	if (sc->re_ldata.re_tx_list_tag) {
1225 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1226 		    sc->re_ldata.re_tx_list_map);
1227 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1228 		    sc->re_ldata.re_tx_list,
1229 		    sc->re_ldata.re_tx_list_map);
1230 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1231 	}
1232 
1233 	/* Destroy all the RX and TX buffer maps */
1234 
1235 	if (sc->re_ldata.re_mtag) {
1236 		for (i = 0; i < RE_TX_DESC_CNT; i++)
1237 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1238 			    sc->re_ldata.re_tx_dmamap[i]);
1239 		for (i = 0; i < RE_RX_DESC_CNT; i++)
1240 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1241 			    sc->re_ldata.re_rx_dmamap[i]);
1242 		bus_dma_tag_destroy(sc->re_ldata.re_mtag);
1243 	}
1244 
1245 	/* Unload and free the stats buffer and map */
1246 
1247 	if (sc->re_ldata.re_stag) {
1248 		bus_dmamap_unload(sc->re_ldata.re_stag,
1249 		    sc->re_ldata.re_rx_list_map);
1250 		bus_dmamem_free(sc->re_ldata.re_stag,
1251 		    sc->re_ldata.re_stats,
1252 		    sc->re_ldata.re_smap);
1253 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1254 	}
1255 
1256 	if (sc->re_parent_tag)
1257 		bus_dma_tag_destroy(sc->re_parent_tag);
1258 
1259 	splx(s);
1260 
1261 	return(0);
1262 }
1263 
1264 static int
1265 re_newbuf(struct re_softc *sc, int idx, struct mbuf *m)
1266 {
1267 	struct re_dmaload_arg arg;
1268 	struct mbuf *n = NULL;
1269 	int error;
1270 
1271 	if (m == NULL) {
1272 		n = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1273 		if (n == NULL)
1274 			return(ENOBUFS);
1275 		m = n;
1276 	} else
1277 		m->m_data = m->m_ext.ext_buf;
1278 
1279 	/*
1280 	 * Initialize mbuf length fields and fixup
1281 	 * alignment so that the frame payload is
1282 	 * longword aligned.
1283 	 */
1284 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1285 	m_adj(m, ETHER_ALIGN);
1286 
1287 	arg.sc = sc;
1288 	arg.re_idx = idx;
1289 	arg.re_maxsegs = 1;
1290 	arg.re_flags = 0;
1291 	arg.re_ring = sc->re_ldata.re_rx_list;
1292 
1293         error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag,
1294 	    sc->re_ldata.re_rx_dmamap[idx], m, re_dma_map_desc,
1295 	    &arg, BUS_DMA_NOWAIT);
1296 	if (error || arg.re_maxsegs != 1) {
1297 		if (n != NULL)
1298 			m_freem(n);
1299 		return (ENOMEM);
1300 	}
1301 
1302 	sc->re_ldata.re_rx_list[idx].re_cmdstat |= htole32(RE_RDESC_CMD_OWN);
1303 	sc->re_ldata.re_rx_mbuf[idx] = m;
1304 
1305         bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[idx],
1306 		        BUS_DMASYNC_PREREAD);
1307 
1308 	return(0);
1309 }
1310 
1311 static int
1312 re_tx_list_init(struct re_softc *sc)
1313 {
1314 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ);
1315 	bzero(&sc->re_ldata.re_tx_mbuf, RE_TX_DESC_CNT * sizeof(struct mbuf *));
1316 
1317 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1318 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
1319 	sc->re_ldata.re_tx_prodidx = 0;
1320 	sc->re_ldata.re_tx_considx = 0;
1321 	sc->re_ldata.re_tx_free = RE_TX_DESC_CNT;
1322 
1323 	return(0);
1324 }
1325 
1326 static int
1327 re_rx_list_init(struct re_softc *sc)
1328 {
1329 	int i, error;
1330 
1331 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
1332 	bzero(&sc->re_ldata.re_rx_mbuf, RE_RX_DESC_CNT * sizeof(struct mbuf *));
1333 
1334 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
1335 		error = re_newbuf(sc, i, NULL);
1336 		if (error)
1337 			return(error);
1338 	}
1339 
1340 	/* Flush the RX descriptors */
1341 
1342 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1343 	    sc->re_ldata.re_rx_list_map,
1344 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1345 
1346 	sc->re_ldata.re_rx_prodidx = 0;
1347 	sc->re_head = sc->re_tail = NULL;
1348 
1349 	return(0);
1350 }
1351 
1352 /*
1353  * RX handler for C+ and 8169. For the gigE chips, we support
1354  * the reception of jumbo frames that have been fragmented
1355  * across multiple 2K mbuf cluster buffers.
1356  */
1357 static void
1358 re_rxeof(struct re_softc *sc)
1359 {
1360 	struct ifnet *ifp = &sc->arpcom.ac_if;
1361 	struct mbuf *m;
1362 	struct re_desc 	*cur_rx;
1363 	uint32_t rxstat, rxvlan;
1364 	int i, total_len;
1365 
1366 	/* Invalidate the descriptor memory */
1367 
1368 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1369 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
1370 
1371 	for (i = sc->re_ldata.re_rx_prodidx;
1372 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0 ; RE_DESC_INC(i)) {
1373 		cur_rx = &sc->re_ldata.re_rx_list[i];
1374 		m = sc->re_ldata.re_rx_mbuf[i];
1375 		total_len = RE_RXBYTES(cur_rx);
1376 		rxstat = le32toh(cur_rx->re_cmdstat);
1377 		rxvlan = le32toh(cur_rx->re_vlanctl);
1378 
1379 		/* Invalidate the RX mbuf and unload its map */
1380 
1381 		bus_dmamap_sync(sc->re_ldata.re_mtag,
1382 				sc->re_ldata.re_rx_dmamap[i],
1383 				BUS_DMASYNC_POSTWRITE);
1384 		bus_dmamap_unload(sc->re_ldata.re_mtag,
1385 				  sc->re_ldata.re_rx_dmamap[i]);
1386 
1387 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1388 			m->m_len = MCLBYTES - ETHER_ALIGN;
1389 			if (sc->re_head == NULL) {
1390 				sc->re_head = sc->re_tail = m;
1391 			} else {
1392 				m->m_flags &= ~M_PKTHDR;
1393 				sc->re_tail->m_next = m;
1394 				sc->re_tail = m;
1395 			}
1396 			re_newbuf(sc, i, NULL);
1397 			continue;
1398 		}
1399 
1400 		/*
1401 		 * NOTE: for the 8139C+, the frame length field
1402 		 * is always 12 bits in size, but for the gigE chips,
1403 		 * it is 13 bits (since the max RX frame length is 16K).
1404 		 * Unfortunately, all 32 bits in the status word
1405 		 * were already used, so to make room for the extra
1406 		 * length bit, RealTek took out the 'frame alignment
1407 		 * error' bit and shifted the other status bits
1408 		 * over one slot. The OWN, EOR, FS and LS bits are
1409 		 * still in the same places. We have already extracted
1410 		 * the frame length and checked the OWN bit, so rather
1411 		 * than using an alternate bit mapping, we shift the
1412 		 * status bits one space to the right so we can evaluate
1413 		 * them using the 8169 status as though it was in the
1414 		 * same format as that of the 8139C+.
1415 		 */
1416 		if (sc->re_type == RE_8169)
1417 			rxstat >>= 1;
1418 
1419 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1420 			ifp->if_ierrors++;
1421 			/*
1422 			 * If this is part of a multi-fragment packet,
1423 			 * discard all the pieces.
1424 			 */
1425 			if (sc->re_head != NULL) {
1426 				m_freem(sc->re_head);
1427 				sc->re_head = sc->re_tail = NULL;
1428 			}
1429 			re_newbuf(sc, i, m);
1430 			continue;
1431 		}
1432 
1433 		/*
1434 		 * If allocating a replacement mbuf fails,
1435 		 * reload the current one.
1436 		 */
1437 
1438 		if (re_newbuf(sc, i, NULL)) {
1439 			ifp->if_ierrors++;
1440 			if (sc->re_head != NULL) {
1441 				m_freem(sc->re_head);
1442 				sc->re_head = sc->re_tail = NULL;
1443 			}
1444 			re_newbuf(sc, i, m);
1445 			continue;
1446 		}
1447 
1448 		if (sc->re_head != NULL) {
1449 			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1450 			/*
1451 			 * Special case: if there's 4 bytes or less
1452 			 * in this buffer, the mbuf can be discarded:
1453 			 * the last 4 bytes is the CRC, which we don't
1454 			 * care about anyway.
1455 			 */
1456 			if (m->m_len <= ETHER_CRC_LEN) {
1457 				sc->re_tail->m_len -=
1458 				    (ETHER_CRC_LEN - m->m_len);
1459 				m_freem(m);
1460 			} else {
1461 				m->m_len -= ETHER_CRC_LEN;
1462 				m->m_flags &= ~M_PKTHDR;
1463 				sc->re_tail->m_next = m;
1464 			}
1465 			m = sc->re_head;
1466 			sc->re_head = sc->re_tail = NULL;
1467 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1468 		} else
1469 			m->m_pkthdr.len = m->m_len =
1470 			    (total_len - ETHER_CRC_LEN);
1471 
1472 		ifp->if_ipackets++;
1473 		m->m_pkthdr.rcvif = ifp;
1474 
1475 		/* Do RX checksumming if enabled */
1476 
1477 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1478 
1479 			/* Check IP header checksum */
1480 			if (rxstat & RE_RDESC_STAT_PROTOID)
1481 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1482 			if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
1483 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1484 
1485 			/* Check TCP/UDP checksum */
1486 			if ((RE_TCPPKT(rxstat) &&
1487 			    (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
1488 			    (RE_UDPPKT(rxstat) &&
1489 			    (rxstat & RE_RDESC_STAT_UDPSUMBAD)) == 0) {
1490 				m->m_pkthdr.csum_flags |=
1491 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1492 				m->m_pkthdr.csum_data = 0xffff;
1493 			}
1494 		}
1495 
1496 		if (rxvlan & RE_RDESC_VLANCTL_TAG)
1497 			VLAN_INPUT_TAG(m,
1498 			   be16toh((rxvlan & RE_RDESC_VLANCTL_DATA)));
1499 		else
1500 			(*ifp->if_input)(ifp, m);
1501 	}
1502 
1503 	/* Flush the RX DMA ring */
1504 
1505 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1506 			sc->re_ldata.re_rx_list_map,
1507 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1508 
1509 	sc->re_ldata.re_rx_prodidx = i;
1510 }
1511 
1512 static void
1513 re_txeof(struct re_softc *sc)
1514 {
1515 	struct ifnet *ifp = &sc->arpcom.ac_if;
1516 	uint32_t txstat;
1517 	int idx;
1518 
1519 	/* Invalidate the TX descriptor list */
1520 
1521 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1522 	    sc->re_ldata.re_tx_list_map,
1523 	    BUS_DMASYNC_POSTREAD);
1524 
1525 	for (idx = sc->re_ldata.re_tx_considx;
1526 	     idx != sc->re_ldata.re_tx_prodidx; RE_DESC_INC(idx)) {
1527 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
1528 		if (txstat & RE_TDESC_CMD_OWN)
1529 			break;
1530 
1531 		/*
1532 		 * We only stash mbufs in the last descriptor
1533 		 * in a fragment chain, which also happens to
1534 		 * be the only place where the TX status bits
1535 		 * are valid.
1536 		 */
1537 		if (txstat & RE_TDESC_CMD_EOF) {
1538 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
1539 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
1540 			bus_dmamap_unload(sc->re_ldata.re_mtag,
1541 			    sc->re_ldata.re_tx_dmamap[idx]);
1542 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
1543 			    RE_TDESC_STAT_COLCNT))
1544 				ifp->if_collisions++;
1545 			if (txstat & RE_TDESC_STAT_TXERRSUM)
1546 				ifp->if_oerrors++;
1547 			else
1548 				ifp->if_opackets++;
1549 		}
1550 		sc->re_ldata.re_tx_free++;
1551 	}
1552 
1553 	/* No changes made to the TX ring, so no flush needed */
1554 	if (idx != sc->re_ldata.re_tx_considx) {
1555 		sc->re_ldata.re_tx_considx = idx;
1556 		ifp->if_flags &= ~IFF_OACTIVE;
1557 		ifp->if_timer = 0;
1558 	}
1559 
1560 	/*
1561 	 * If not all descriptors have been released reaped yet,
1562 	 * reload the timer so that we will eventually get another
1563 	 * interrupt that will cause us to re-enter this routine.
1564 	 * This is done in case the transmitter has gone idle.
1565 	 */
1566 	if (sc->re_ldata.re_tx_free != RE_TX_DESC_CNT)
1567                 CSR_WRITE_4(sc, RE_TIMERCNT, 1);
1568 }
1569 
1570 static void
1571 re_tick(void *xsc)
1572 {
1573 	struct re_softc *sc = xsc;
1574 	struct mii_data *mii;
1575 	int s;
1576 
1577 	s = splimp();
1578 
1579 	mii = device_get_softc(sc->re_miibus);
1580 	mii_tick(mii);
1581 
1582 	callout_reset(&sc->re_timer, hz, re_tick, sc);
1583 	splx(s);
1584 }
1585 
1586 #ifdef DEVICE_POLLING
1587 static void
1588 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1589 {
1590 	struct re_softc *sc = ifp->if_softc;
1591 
1592 	if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1593 		ether_poll_deregister(ifp);
1594 		cmd = POLL_DEREGISTER;
1595 	}
1596 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1597 		CSR_WRITE_2(sc, RE_IMR, RE_INTRS_CPLUS);
1598 		return;
1599 	}
1600 
1601 	sc->rxcycles = count;
1602 	re_rxeof(sc);
1603 	re_txeof(sc);
1604 
1605 	if (ifp->if_snd.ifq_head != NULL)
1606 		(*ifp->if_start)(ifp);
1607 
1608 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1609 		uint16_t       status;
1610 
1611 		status = CSR_READ_2(sc, RE_ISR);
1612 		if (status == 0xffff)
1613 			return;
1614 		if (status)
1615 			CSR_WRITE_2(sc, RE_ISR, status);
1616 
1617 		/*
1618 		 * XXX check behaviour on receiver stalls.
1619 		 */
1620 
1621 		if (status & RE_ISR_SYSTEM_ERR) {
1622 			re_reset(sc);
1623 			re_init(sc);
1624 		}
1625 	}
1626 }
1627 #endif /* DEVICE_POLLING */
1628 
1629 static void
1630 re_intr(void *arg)
1631 {
1632 	struct re_softc	*sc = arg;
1633 	struct ifnet *ifp = &sc->arpcom.ac_if;
1634 	uint16_t status;
1635 	int s;
1636 
1637 	if (sc->suspended || (ifp->if_flags & IFF_UP) == 0)
1638 		return;
1639 
1640 #ifdef DEVICE_POLLING
1641 	if  (ifp->if_flags & IFF_POLLING)
1642 		return;
1643 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1644 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1645 		CSR_WRITE_2(sc, RE_IMR, 0x0000);
1646 		re_poll(ifp, 0, 1);
1647 		return;
1648 	}
1649 #endif /* DEVICE_POLLING */
1650 
1651 	s = splimp();
1652 
1653 	for (;;) {
1654 		status = CSR_READ_2(sc, RE_ISR);
1655 		/* If the card has gone away the read returns 0xffff. */
1656 		if (status == 0xffff)
1657 			break;
1658 		if (status)
1659 			CSR_WRITE_2(sc, RE_ISR, status);
1660 
1661 		if ((status & RE_INTRS_CPLUS) == 0)
1662 			break;
1663 
1664 		if (status & RE_ISR_RX_OK)
1665 			re_rxeof(sc);
1666 
1667 		if (status & RE_ISR_RX_ERR)
1668 			re_rxeof(sc);
1669 
1670 		if ((status & RE_ISR_TIMEOUT_EXPIRED) ||
1671 		    (status & RE_ISR_TX_ERR) ||
1672 		    (status & RE_ISR_TX_DESC_UNAVAIL))
1673 			re_txeof(sc);
1674 
1675 		if (status & RE_ISR_SYSTEM_ERR) {
1676 			re_reset(sc);
1677 			re_init(sc);
1678 		}
1679 
1680 		if (status & RE_ISR_LINKCHG)
1681 			re_tick(sc);
1682 	}
1683 
1684 	if (ifp->if_snd.ifq_head != NULL)
1685 		(*ifp->if_start)(ifp);
1686 
1687 	splx(s);
1688 }
1689 
1690 static int
1691 re_encap(sc, m_head, idx)
1692 	struct re_softc		*sc;
1693 	struct mbuf		*m_head;
1694 	int			*idx;
1695 {
1696 	struct ifnet *ifp = &sc->arpcom.ac_if;
1697 	struct mbuf		*m_new = NULL;
1698 	struct re_dmaload_arg	arg;
1699 	bus_dmamap_t		map;
1700 	int			error;
1701 
1702 	if (sc->re_ldata.re_tx_free <= 4)
1703 		return(EFBIG);
1704 
1705 	/*
1706 	 * Set up checksum offload. Note: checksum offload bits must
1707 	 * appear in all descriptors of a multi-descriptor transmit
1708 	 * attempt. (This is according to testing done with an 8169
1709 	 * chip. I'm not sure if this is a requirement or a bug.)
1710 	 */
1711 
1712 	arg.re_flags = 0;
1713 
1714 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1715 		arg.re_flags |= RE_TDESC_CMD_IPCSUM;
1716 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1717 		arg.re_flags |= RE_TDESC_CMD_TCPCSUM;
1718 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1719 		arg.re_flags |= RE_TDESC_CMD_UDPCSUM;
1720 
1721 	arg.sc = sc;
1722 	arg.re_idx = *idx;
1723 	arg.re_maxsegs = sc->re_ldata.re_tx_free;
1724 	if (arg.re_maxsegs > 4)
1725 		arg.re_maxsegs -= 4;
1726 	arg.re_ring = sc->re_ldata.re_tx_list;
1727 
1728 	map = sc->re_ldata.re_tx_dmamap[*idx];
1729 	error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map,
1730 	    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1731 
1732 	if (error && error != EFBIG) {
1733 		if_printf(ifp, "can't map mbuf (error %d)\n", error);
1734 		return(ENOBUFS);
1735 	}
1736 
1737 	/* Too many segments to map, coalesce into a single mbuf */
1738 
1739 	if (error || arg.re_maxsegs == 0) {
1740 		m_new = m_defrag(m_head, MB_DONTWAIT);
1741 		if (m_new == NULL)
1742 			return(1);
1743 		else
1744 			m_head = m_new;
1745 
1746 		arg.sc = sc;
1747 		arg.re_idx = *idx;
1748 		arg.re_maxsegs = sc->re_ldata.re_tx_free;
1749 		arg.re_ring = sc->re_ldata.re_tx_list;
1750 
1751 		error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map,
1752 		    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1753 		if (error) {
1754 			if_printf(ifp, "can't map mbuf (error %d)\n", error);
1755 			return(EFBIG);
1756 		}
1757 	}
1758 
1759 	/*
1760 	 * Insure that the map for this transmission
1761 	 * is placed at the array index of the last descriptor
1762 	 * in this chain.
1763 	 */
1764 	sc->re_ldata.re_tx_dmamap[*idx] =
1765 	    sc->re_ldata.re_tx_dmamap[arg.re_idx];
1766 	sc->re_ldata.re_tx_dmamap[arg.re_idx] = map;
1767 
1768 	sc->re_ldata.re_tx_mbuf[arg.re_idx] = m_head;
1769 	sc->re_ldata.re_tx_free -= arg.re_maxsegs;
1770 
1771 	/*
1772 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1773 	 * appear in the first descriptor of a multi-descriptor
1774 	 * transmission attempt.
1775 	 */
1776 
1777 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1778 	    m_head->m_pkthdr.rcvif != NULL &&
1779 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN) {
1780 	    	struct ifvlan *ifv;
1781 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1782 		if (ifv != NULL)
1783 			sc->re_ldata.re_tx_list[*idx].re_vlanctl =
1784 			    htole32(htobe16(ifv->ifv_tag) | RE_TDESC_VLANCTL_TAG);
1785 	}
1786 
1787 	/* Transfer ownership of packet to the chip. */
1788 
1789 	sc->re_ldata.re_tx_list[arg.re_idx].re_cmdstat |=
1790 	    htole32(RE_TDESC_CMD_OWN);
1791 	if (*idx != arg.re_idx)
1792 		sc->re_ldata.re_tx_list[*idx].re_cmdstat |=
1793 		    htole32(RE_TDESC_CMD_OWN);
1794 
1795 	RE_DESC_INC(arg.re_idx);
1796 	*idx = arg.re_idx;
1797 
1798 	return(0);
1799 }
1800 
1801 /*
1802  * Main transmit routine for C+ and gigE NICs.
1803  */
1804 
1805 static void
1806 re_start(struct ifnet *ifp)
1807 {
1808 	struct re_softc	*sc = ifp->if_softc;
1809 	struct mbuf *m_head = NULL;
1810 	int idx, s;
1811 
1812 	s = splimp();
1813 
1814 	idx = sc->re_ldata.re_tx_prodidx;
1815 
1816 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
1817 		IF_DEQUEUE(&ifp->if_snd, m_head);
1818 		if (m_head == NULL)
1819 			break;
1820 
1821 		if (re_encap(sc, m_head, &idx)) {
1822 			IF_PREPEND(&ifp->if_snd, m_head);
1823 			ifp->if_flags |= IFF_OACTIVE;
1824 			break;
1825 		}
1826 
1827 		/*
1828 		 * If there's a BPF listener, bounce a copy of this frame
1829 		 * to him.
1830 		 */
1831 		BPF_MTAP(ifp, m_head);
1832 	}
1833 
1834 	/* Flush the TX descriptors */
1835 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1836 			sc->re_ldata.re_tx_list_map,
1837 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1838 
1839 	sc->re_ldata.re_tx_prodidx = idx;
1840 
1841 	/*
1842 	 * RealTek put the TX poll request register in a different
1843 	 * location on the 8169 gigE chip. I don't know why.
1844 	 */
1845 	if (sc->re_type == RE_8169)
1846 		CSR_WRITE_2(sc, RE_GTXSTART, RE_TXSTART_START);
1847 	else
1848 		CSR_WRITE_2(sc, RE_TXSTART, RE_TXSTART_START);
1849 
1850 	/*
1851 	 * Use the countdown timer for interrupt moderation.
1852 	 * 'TX done' interrupts are disabled. Instead, we reset the
1853 	 * countdown timer, which will begin counting until it hits
1854 	 * the value in the TIMERINT register, and then trigger an
1855 	 * interrupt. Each time we write to the TIMERCNT register,
1856 	 * the timer count is reset to 0.
1857 	 */
1858 	CSR_WRITE_4(sc, RE_TIMERCNT, 1);
1859 
1860 	splx(s);
1861 
1862 	/*
1863 	 * Set a timeout in case the chip goes out to lunch.
1864 	 */
1865 	ifp->if_timer = 5;
1866 }
1867 
1868 static void
1869 re_init(void *xsc)
1870 {
1871 	struct re_softc *sc = xsc;
1872 	struct ifnet *ifp = &sc->arpcom.ac_if;
1873 	struct mii_data *mii;
1874 	uint32_t rxcfg = 0;
1875 	int s;
1876 
1877 	s = splimp();
1878 	mii = device_get_softc(sc->re_miibus);
1879 
1880 	/*
1881 	 * Cancel pending I/O and free all RX/TX buffers.
1882 	 */
1883 	re_stop(sc);
1884 
1885 	/*
1886 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
1887 	 * RX checksum offload. We must configure the C+ register
1888 	 * before all others.
1889 	 */
1890 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
1891 		    RE_CPLUSCMD_PCI_MRW | RE_CPLUSCMD_VLANSTRIP |
1892 		    (ifp->if_capenable & IFCAP_RXCSUM ?
1893 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
1894 
1895 	/*
1896 	 * Init our MAC address.  Even though the chipset
1897 	 * documentation doesn't mention it, we need to enter "Config
1898 	 * register write enable" mode to modify the ID registers.
1899 	 */
1900 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
1901 	CSR_WRITE_STREAM_4(sc, RE_IDR0,
1902 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1903 	CSR_WRITE_STREAM_4(sc, RE_IDR4,
1904 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1905 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
1906 
1907 	/*
1908 	 * For C+ mode, initialize the RX descriptors and mbufs.
1909 	 */
1910 	re_rx_list_init(sc);
1911 	re_tx_list_init(sc);
1912 
1913 	/*
1914 	 * Enable transmit and receive.
1915 	 */
1916 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
1917 
1918 	/*
1919 	 * Set the initial TX and RX configuration.
1920 	 */
1921 	if (sc->re_testmode) {
1922 		if (sc->re_type == RE_8169)
1923 			CSR_WRITE_4(sc, RE_TXCFG,
1924 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
1925 		else
1926 			CSR_WRITE_4(sc, RE_TXCFG,
1927 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
1928 	} else
1929 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
1930 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
1931 
1932 	/* Set the individual bit to receive frames for this host only. */
1933 	rxcfg = CSR_READ_4(sc, RE_RXCFG);
1934 	rxcfg |= RE_RXCFG_RX_INDIV;
1935 
1936 	/* If we want promiscuous mode, set the allframes bit. */
1937 	if (ifp->if_flags & IFF_PROMISC) {
1938 		rxcfg |= RE_RXCFG_RX_ALLPHYS;
1939 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1940 	} else {
1941 		rxcfg &= ~RE_RXCFG_RX_ALLPHYS;
1942 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1943 	}
1944 
1945 	/*
1946 	 * Set capture broadcast bit to capture broadcast frames.
1947 	 */
1948 	if (ifp->if_flags & IFF_BROADCAST) {
1949 		rxcfg |= RE_RXCFG_RX_BROAD;
1950 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1951 	} else {
1952 		rxcfg &= ~RE_RXCFG_RX_BROAD;
1953 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1954 	}
1955 
1956 	/*
1957 	 * Program the multicast filter, if necessary.
1958 	 */
1959 	re_setmulti(sc);
1960 
1961 #ifdef DEVICE_POLLING
1962 	/*
1963 	 * Disable interrupts if we are polling.
1964 	 */
1965 	if (ifp->if_flags & IFF_POLLING)
1966 		CSR_WRITE_2(sc, RE_IMR, 0);
1967 	else	/* otherwise ... */
1968 #endif /* DEVICE_POLLING */
1969 	/*
1970 	 * Enable interrupts.
1971 	 */
1972 	if (sc->re_testmode)
1973 		CSR_WRITE_2(sc, RE_IMR, 0);
1974 	else
1975 		CSR_WRITE_2(sc, RE_IMR, RE_INTRS_CPLUS);
1976 
1977 	/* Set initial TX threshold */
1978 	sc->re_txthresh = RE_TX_THRESH_INIT;
1979 
1980 	/* Start RX/TX process. */
1981 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
1982 #ifdef notdef
1983 	/* Enable receiver and transmitter. */
1984 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
1985 #endif
1986 	/*
1987 	 * Load the addresses of the RX and TX lists into the chip.
1988 	 */
1989 
1990 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
1991 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
1992 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
1993 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
1994 
1995 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
1996 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
1997 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
1998 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
1999 
2000 	CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, 16);
2001 
2002 	/*
2003 	 * Initialize the timer interrupt register so that
2004 	 * a timer interrupt will be generated once the timer
2005 	 * reaches a certain number of ticks. The timer is
2006 	 * reloaded on each transmit. This gives us TX interrupt
2007 	 * moderation, which dramatically improves TX frame rate.
2008 	 */
2009 
2010 	if (sc->re_type == RE_8169)
2011 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0x800);
2012 	else
2013 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400);
2014 
2015 	/*
2016 	 * For 8169 gigE NICs, set the max allowed RX packet
2017 	 * size so we can receive jumbo frames.
2018 	 */
2019 	if (sc->re_type == RE_8169)
2020 		CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2021 
2022 	if (sc->re_testmode) {
2023 		splx(s);
2024 		return;
2025 	}
2026 
2027 	mii_mediachg(mii);
2028 
2029 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2030 
2031 	ifp->if_flags |= IFF_RUNNING;
2032 	ifp->if_flags &= ~IFF_OACTIVE;
2033 
2034 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2035 	splx(s);
2036 }
2037 
2038 /*
2039  * Set media options.
2040  */
2041 static int
2042 re_ifmedia_upd(struct ifnet *ifp)
2043 {
2044 	struct re_softc *sc = ifp->if_softc;
2045 	struct mii_data *mii;
2046 
2047 	mii = device_get_softc(sc->re_miibus);
2048 	mii_mediachg(mii);
2049 
2050 	return(0);
2051 }
2052 
2053 /*
2054  * Report current media status.
2055  */
2056 static void
2057 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2058 {
2059 	struct re_softc *sc = ifp->if_softc;
2060 	struct mii_data *mii;
2061 
2062 	mii = device_get_softc(sc->re_miibus);
2063 
2064 	mii_pollstat(mii);
2065 	ifmr->ifm_active = mii->mii_media_active;
2066 	ifmr->ifm_status = mii->mii_media_status;
2067 }
2068 
2069 static int
2070 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2071 {
2072 	struct re_softc *sc = ifp->if_softc;
2073 	struct ifreq *ifr = (struct ifreq *) data;
2074 	struct mii_data *mii;
2075 	int error = 0, s;
2076 
2077 	s = splimp();
2078 
2079 	switch(command) {
2080 	case SIOCSIFMTU:
2081 		if (ifr->ifr_mtu > RE_JUMBO_MTU)
2082 			error = EINVAL;
2083 		ifp->if_mtu = ifr->ifr_mtu;
2084 		break;
2085 	case SIOCSIFFLAGS:
2086 		if (ifp->if_flags & IFF_UP)
2087 			re_init(sc);
2088 		else if (ifp->if_flags & IFF_RUNNING)
2089 				re_stop(sc);
2090 		error = 0;
2091 		break;
2092 	case SIOCADDMULTI:
2093 	case SIOCDELMULTI:
2094 		re_setmulti(sc);
2095 		error = 0;
2096 		break;
2097 	case SIOCGIFMEDIA:
2098 	case SIOCSIFMEDIA:
2099 		mii = device_get_softc(sc->re_miibus);
2100 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2101 		break;
2102 	case SIOCSIFCAP:
2103 		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2104 		ifp->if_capenable |=
2105 		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2106 		if (ifp->if_capenable & IFCAP_TXCSUM)
2107 			ifp->if_hwassist = RE_CSUM_FEATURES;
2108 		else
2109 			ifp->if_hwassist = 0;
2110 		if (ifp->if_flags & IFF_RUNNING)
2111 			re_init(sc);
2112 		break;
2113 	default:
2114 		error = ether_ioctl(ifp, command, data);
2115 		break;
2116 	}
2117 
2118 	splx(s);
2119 
2120 	return(error);
2121 }
2122 
2123 static void
2124 re_watchdog(struct ifnet *ifp)
2125 {
2126 	struct re_softc *sc = ifp->if_softc;
2127 	int s;
2128 
2129 	s = splimp();
2130 	if_printf(ifp, "watchdog timeout\n");
2131 	ifp->if_oerrors++;
2132 
2133 	re_txeof(sc);
2134 	re_rxeof(sc);
2135 
2136 	re_init(sc);
2137 
2138 	splx(s);
2139 }
2140 
2141 /*
2142  * Stop the adapter and free any mbufs allocated to the
2143  * RX and TX lists.
2144  */
2145 static void
2146 re_stop(struct re_softc *sc)
2147 {
2148 	struct ifnet *ifp = &sc->arpcom.ac_if;
2149 	int i, s;
2150 
2151 	s = splimp();
2152 	ifp->if_timer = 0;
2153 	callout_stop(&sc->re_timer);
2154 
2155 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2156 #ifdef DEVICE_POLLING
2157 	ether_poll_deregister(ifp);
2158 #endif /* DEVICE_POLLING */
2159 
2160 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2161 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2162 
2163 	if (sc->re_head != NULL) {
2164 		m_freem(sc->re_head);
2165 		sc->re_head = sc->re_tail = NULL;
2166 	}
2167 
2168 	/* Free the TX list buffers. */
2169 	for (i = 0; i < RE_TX_DESC_CNT; i++) {
2170 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2171 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2172 					  sc->re_ldata.re_tx_dmamap[i]);
2173 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2174 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2175 		}
2176 	}
2177 
2178 	/* Free the RX list buffers. */
2179 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
2180 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2181 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2182 					  sc->re_ldata.re_rx_dmamap[i]);
2183 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2184 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2185 		}
2186 	}
2187 
2188 	splx(s);
2189 }
2190 
2191 /*
2192  * Device suspend routine.  Stop the interface and save some PCI
2193  * settings in case the BIOS doesn't restore them properly on
2194  * resume.
2195  */
2196 static int
2197 re_suspend(device_t dev)
2198 {
2199 #ifndef BURN_BRIDGES
2200 	int i;
2201 #endif
2202 	struct re_softc *sc = device_get_softc(dev);
2203 
2204 	re_stop(sc);
2205 
2206 #ifndef BURN_BRIDGES
2207 	for (i = 0; i < 5; i++)
2208 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2209 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2210 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2211 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2212 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2213 #endif
2214 
2215 	sc->suspended = 1;
2216 
2217 	return (0);
2218 }
2219 
2220 /*
2221  * Device resume routine.  Restore some PCI settings in case the BIOS
2222  * doesn't, re-enable busmastering, and restart the interface if
2223  * appropriate.
2224  */
2225 static int
2226 re_resume(device_t dev)
2227 {
2228 	struct re_softc *sc = device_get_softc(dev);
2229 	struct ifnet *ifp = &sc->arpcom.ac_if;
2230 #ifndef BURN_BRIDGES
2231 	int i;
2232 #endif
2233 
2234 #ifndef BURN_BRIDGES
2235 	/* better way to do this? */
2236 	for (i = 0; i < 5; i++)
2237 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2238 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2239 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2240 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2241 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2242 
2243 	/* reenable busmastering */
2244 	pci_enable_busmaster(dev);
2245 	pci_enable_io(dev, SYS_RES_IOPORT);
2246 #endif
2247 
2248 	/* reinitialize interface if necessary */
2249 	if (ifp->if_flags & IFF_UP)
2250 		re_init(sc);
2251 
2252 	sc->suspended = 0;
2253 
2254 	return (0);
2255 }
2256 
2257 /*
2258  * Stop all chip I/O so that the kernel's probe routines don't
2259  * get confused by errant DMAs when rebooting.
2260  */
2261 static void
2262 re_shutdown(device_t dev)
2263 {
2264 	struct re_softc *sc = device_get_softc(dev);
2265 
2266 	re_stop(sc);
2267 }
2268