xref: /dragonfly/sys/dev/netif/rl/if_rl.c (revision 0bb9290e)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_rl.c,v 1.38.2.16 2003/03/05 18:42:33 njl Exp $
33  * $DragonFly: src/sys/dev/netif/rl/if_rl.c,v 1.32 2006/08/06 12:49:06 swildner Exp $
34  */
35 
36 /*
37  * RealTek 8129/8139 PCI NIC driver
38  *
39  * Supports several extremely cheap PCI 10/100 adapters based on
40  * the RealTek chipset. Datasheets can be obtained from
41  * www.realtek.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
50  * probably the worst PCI ethernet controller ever made, with the possible
51  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
52  * DMA, but it has a terrible interface that nullifies any performance
53  * gains that bus-master DMA usually offers.
54  *
55  * For transmission, the chip offers a series of four TX descriptor
56  * registers. Each transmit frame must be in a contiguous buffer, aligned
57  * on a longword (32-bit) boundary. This means we almost always have to
58  * do mbuf copies in order to transmit a frame, except in the unlikely
59  * case where a) the packet fits into a single mbuf, and b) the packet
60  * is 32-bit aligned within the mbuf's data area. The presence of only
61  * four descriptor registers means that we can never have more than four
62  * packets queued for transmission at any one time.
63  *
64  * Reception is not much better. The driver has to allocate a single large
65  * buffer area (up to 64K in size) into which the chip will DMA received
66  * frames. Because we don't know where within this region received packets
67  * will begin or end, we have no choice but to copy data from the buffer
68  * area into mbufs in order to pass the packets up to the higher protocol
69  * levels.
70  *
71  * It's impossible given this rotten design to really achieve decent
72  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
73  * some equally overmuscled CPU to drive it.
74  *
75  * On the bright side, the 8139 does have a built-in PHY, although
76  * rather than using an MDIO serial interface like most other NICs, the
77  * PHY registers are directly accessible through the 8139's register
78  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
79  * filter.
80  *
81  * The 8129 chip is an older version of the 8139 that uses an external PHY
82  * chip. The 8129 has a serial MDIO interface for accessing the MII where
83  * the 8139 lets you directly access the on-board PHY registers. We need
84  * to select which interface to use depending on the chip type.
85  */
86 
87 #include "opt_polling.h"
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/module.h>
97 #include <sys/socket.h>
98 #include <sys/serialize.h>
99 #include <sys/thread2.h>
100 
101 #include <net/if.h>
102 #include <net/ifq_var.h>
103 #include <net/if_arp.h>
104 #include <net/ethernet.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 
108 #include <net/bpf.h>
109 
110 #include <machine/bus_pio.h>
111 #include <machine/bus_memio.h>
112 #include <machine/bus.h>
113 #include <machine/resource.h>
114 #include <sys/bus.h>
115 #include <sys/rman.h>
116 
117 #include <dev/netif/mii_layer/mii.h>
118 #include <dev/netif/mii_layer/miivar.h>
119 
120 #include <bus/pci/pcidevs.h>
121 #include <bus/pci/pcireg.h>
122 #include <bus/pci/pcivar.h>
123 
124 /* "controller miibus0" required.  See GENERIC if you get errors here. */
125 #include "miibus_if.h"
126 
127 /*
128  * Default to using PIO access for this driver. On SMP systems,
129  * there appear to be problems with memory mapped mode: it looks like
130  * doing too many memory mapped access back to back in rapid succession
131  * can hang the bus. I'm inclined to blame this on crummy design/construction
132  * on the part of RealTek. Memory mapped mode does appear to work on
133  * uniprocessor systems though.
134  */
135 #define RL_USEIOSPACE
136 
137 #include <dev/netif/rl/if_rlreg.h>
138 
139 /*
140  * Various supported device vendors/types and their names.
141  */
142 static struct rl_type {
143 	uint16_t	 rl_vid;
144 	uint16_t	 rl_did;
145 	const char	*rl_name;
146 } rl_devs[] = {
147 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8129,
148 		"RealTek 8129 10/100BaseTX" },
149 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
150 		"RealTek 8139 10/100BaseTX" },
151 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139B,
152 		"RealTek 8139 10/100BaseTX CardBus" },
153 	{ PCI_VENDOR_ACCTON, PCI_PRODUCT_ACCTON_MPX5030,
154 		"Accton MPX 5030/5038 10/100BaseTX" },
155 	{ PCI_VENDOR_DELTA, PCI_PRODUCT_DELTA_8139,
156 		"Delta Electronics 8139 10/100BaseTX" },
157 	{ PCI_VENDOR_ADDTRON, PCI_PRODUCT_ADDTRON_8139,
158 		"Addtron Technolgy 8139 10/100BaseTX" },
159 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DFE530TXPLUS,
160 		"D-Link DFE-530TX+ 10/100BaseTX" },
161 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DFE690TXD,
162 		"D-Link DFE-690TX 10/100BaseTX" },
163 	{ PCI_VENDOR_NORTEL, PCI_PRODUCT_NORTEL_BAYSTACK_21,
164 		"Nortel Networks 10/100BaseTX" },
165 	{ PCI_VENDOR_PEPPERCON, PCI_PRODUCT_PEPPERCON_ROLF,
166 		"Peppercon AG ROL/F" },
167 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CB_TXD,
168 		"Corega FEther CB-TXD" },
169 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_2CB_TXD,
170 		"Corega FEtherII CB-TXD" },
171 	{ PCI_VENDOR_PLANEX, PCI_PRODUCT_PLANEX_FNW_3800_TX,
172 		"Planex FNW-3800-TX" },
173 	{ 0, 0, NULL }
174 };
175 
176 static int	rl_probe(device_t);
177 static int	rl_attach(device_t);
178 static int	rl_detach(device_t);
179 
180 static int	rl_encap(struct rl_softc *, struct mbuf * );
181 
182 static void	rl_rxeof(struct rl_softc *);
183 static void	rl_txeof(struct rl_softc *);
184 static void	rl_intr(void *);
185 static void	rl_tick(void *);
186 static void	rl_start(struct ifnet *);
187 static int	rl_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
188 static void	rl_init(void *);
189 static void	rl_stop	(struct rl_softc *);
190 static void	rl_watchdog(struct ifnet *);
191 static int	rl_suspend(device_t);
192 static int	rl_resume(device_t);
193 static void	rl_shutdown(device_t);
194 static int	rl_ifmedia_upd(struct ifnet *);
195 static void	rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
196 
197 static void	rl_eeprom_putbyte(struct rl_softc *, int);
198 static void	rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
199 static void	rl_read_eeprom(struct rl_softc *, caddr_t, int, int, int);
200 static void	rl_mii_sync(struct rl_softc *);
201 static void	rl_mii_send(struct rl_softc *, uint32_t, int);
202 static int	rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
203 static int	rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
204 
205 static int	rl_miibus_readreg(device_t, int, int);
206 static int	rl_miibus_writereg(device_t, int, int, int);
207 static void	rl_miibus_statchg(device_t);
208 
209 static void	rl_setmulti(struct rl_softc *);
210 static void	rl_reset(struct rl_softc *);
211 static void	rl_list_tx_init(struct rl_softc *);
212 
213 static void	rl_dma_map_rxbuf(void *, bus_dma_segment_t *, int, int);
214 static void	rl_dma_map_txbuf(void *, bus_dma_segment_t *, int, int);
215 #ifdef DEVICE_POLLING
216 static poll_handler_t rl_poll;
217 #endif
218 
219 #ifdef RL_USEIOSPACE
220 #define	RL_RES			SYS_RES_IOPORT
221 #define	RL_RID			RL_PCI_LOIO
222 #else
223 #define	RL_RES			SYS_RES_MEMORY
224 #define	RL_RID			RL_PCI_LOMEM
225 #endif
226 
227 static device_method_t rl_methods[] = {
228 	/* Device interface */
229 	DEVMETHOD(device_probe,		rl_probe),
230 	DEVMETHOD(device_attach,	rl_attach),
231 	DEVMETHOD(device_detach,	rl_detach),
232 	DEVMETHOD(device_suspend,	rl_suspend),
233 	DEVMETHOD(device_resume,	rl_resume),
234 	DEVMETHOD(device_shutdown,	rl_shutdown),
235 
236 	/* bus interface */
237 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
238 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
239 
240 	/* MII interface */
241 	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
242 	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
243 	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
244 
245 	{ 0, 0 }
246 };
247 
248 static DEFINE_CLASS_0(rl, rl_driver, rl_methods, sizeof(struct rl_softc));
249 static devclass_t rl_devclass;
250 
251 DECLARE_DUMMY_MODULE(if_rl);
252 DRIVER_MODULE(if_rl, pci, rl_driver, rl_devclass, 0, 0);
253 DRIVER_MODULE(if_rl, cardbus, rl_driver, rl_devclass, 0, 0);
254 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
255 MODULE_DEPEND(if_rl, miibus, 1, 1, 1);
256 
257 #define EE_SET(x)					\
258 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) | (x))
259 
260 #define EE_CLR(x)					\
261 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) & ~(x))
262 
263 static void
264 rl_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
265 {
266 	struct rl_softc *sc = arg;
267 
268 	CSR_WRITE_4(sc, RL_RXADDR, segs->ds_addr & 0xFFFFFFFF);
269 }
270 
271 static void
272 rl_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
273 {
274 	struct rl_softc *sc = arg;
275 
276 	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), segs->ds_addr & 0xFFFFFFFF);
277 }
278 
279 /*
280  * Send a read command and address to the EEPROM, check for ACK.
281  */
282 static void
283 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
284 {
285 	int d, i;
286 
287 	d = addr | sc->rl_eecmd_read;
288 
289 	/*
290 	 * Feed in each bit and strobe the clock.
291 	 */
292 	for (i = 0x400; i; i >>= 1) {
293 		if (d & i)
294 			EE_SET(RL_EE_DATAIN);
295 		else
296 			EE_CLR(RL_EE_DATAIN);
297 		DELAY(100);
298 		EE_SET(RL_EE_CLK);
299 		DELAY(150);
300 		EE_CLR(RL_EE_CLK);
301 		DELAY(100);
302 	}
303 }
304 
305 /*
306  * Read a word of data stored in the EEPROM at address 'addr.'
307  */
308 static void
309 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
310 {
311 	int i;
312 	uint16_t word = 0;
313 
314 	/* Enter EEPROM access mode. */
315 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
316 
317 	/*
318 	 * Send address of word we want to read.
319 	 */
320 	rl_eeprom_putbyte(sc, addr);
321 
322 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
323 
324 	/*
325 	 * Start reading bits from EEPROM.
326 	 */
327 	for (i = 0x8000; i; i >>= 1) {
328 		EE_SET(RL_EE_CLK);
329 		DELAY(100);
330 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
331 			word |= i;
332 		EE_CLR(RL_EE_CLK);
333 		DELAY(100);
334 	}
335 
336 	/* Turn off EEPROM access mode. */
337 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
338 
339 	*dest = word;
340 }
341 
342 /*
343  * Read a sequence of words from the EEPROM.
344  */
345 static void
346 rl_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt, int swap)
347 {
348 	int i;
349 	u_int16_t word = 0, *ptr;
350 
351 	for (i = 0; i < cnt; i++) {
352 		rl_eeprom_getword(sc, off + i, &word);
353 		ptr = (u_int16_t *)(dest + (i * 2));
354 		if (swap)
355 			*ptr = ntohs(word);
356 		else
357 			*ptr = word;
358 	}
359 }
360 
361 
362 /*
363  * MII access routines are provided for the 8129, which
364  * doesn't have a built-in PHY. For the 8139, we fake things
365  * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
366  * direct access PHY registers.
367  */
368 #define MII_SET(x)							\
369 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) | x)
370 
371 #define MII_CLR(x)							\
372 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) & ~x)
373 
374 /*
375  * Sync the PHYs by setting data bit and strobing the clock 32 times.
376  */
377 static void
378 rl_mii_sync(struct rl_softc *sc)
379 {
380 	int i;
381 
382 	MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
383 
384 	for (i = 0; i < 32; i++) {
385 		MII_SET(RL_MII_CLK);
386 		DELAY(1);
387 		MII_CLR(RL_MII_CLK);
388 		DELAY(1);
389 	}
390 }
391 
392 /*
393  * Clock a series of bits through the MII.
394  */
395 static void
396 rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
397 {
398 	int i;
399 
400 	MII_CLR(RL_MII_CLK);
401 
402 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
403 		if (bits & i)
404 			MII_SET(RL_MII_DATAOUT);
405 		else
406 			MII_CLR(RL_MII_DATAOUT);
407 		DELAY(1);
408 		MII_CLR(RL_MII_CLK);
409 		DELAY(1);
410 		MII_SET(RL_MII_CLK);
411 	}
412 }
413 
414 /*
415  * Read an PHY register through the MII.
416  */
417 static int
418 rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
419 {
420 	int ack, i;
421 
422 	/*
423 	 * Set up frame for RX.
424 	 */
425 	frame->mii_stdelim = RL_MII_STARTDELIM;
426 	frame->mii_opcode = RL_MII_READOP;
427 	frame->mii_turnaround = 0;
428 	frame->mii_data = 0;
429 
430 	CSR_WRITE_2(sc, RL_MII, 0);
431 
432 	/*
433  	 * Turn on data xmit.
434 	 */
435 	MII_SET(RL_MII_DIR);
436 
437 	rl_mii_sync(sc);
438 
439 	/*
440 	 * Send command/address info.
441 	 */
442 	rl_mii_send(sc, frame->mii_stdelim, 2);
443 	rl_mii_send(sc, frame->mii_opcode, 2);
444 	rl_mii_send(sc, frame->mii_phyaddr, 5);
445 	rl_mii_send(sc, frame->mii_regaddr, 5);
446 
447 	/* Idle bit */
448 	MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
449 	DELAY(1);
450 	MII_SET(RL_MII_CLK);
451 	DELAY(1);
452 
453 	/* Turn off xmit. */
454 	MII_CLR(RL_MII_DIR);
455 
456 	/* Check for ack */
457 	MII_CLR(RL_MII_CLK);
458 	DELAY(1);
459 	ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
460 	MII_SET(RL_MII_CLK);
461 	DELAY(1);
462 
463 	/*
464 	 * Now try reading data bits. If the ack failed, we still
465 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
466 	 */
467 	if (ack) {
468 		for(i = 0; i < 16; i++) {
469 			MII_CLR(RL_MII_CLK);
470 			DELAY(1);
471 			MII_SET(RL_MII_CLK);
472 			DELAY(1);
473 		}
474 	} else {
475 		for (i = 0x8000; i; i >>= 1) {
476 			MII_CLR(RL_MII_CLK);
477 			DELAY(1);
478 			if (!ack) {
479 				if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
480 					frame->mii_data |= i;
481 				DELAY(1);
482 			}
483 			MII_SET(RL_MII_CLK);
484 			DELAY(1);
485 		}
486 	}
487 
488 	MII_CLR(RL_MII_CLK);
489 	DELAY(1);
490 	MII_SET(RL_MII_CLK);
491 	DELAY(1);
492 
493 	return(ack ? 1 : 0);
494 }
495 
496 /*
497  * Write to a PHY register through the MII.
498  */
499 static int
500 rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
501 {
502 	/*
503 	 * Set up frame for TX.
504 	 */
505 	frame->mii_stdelim = RL_MII_STARTDELIM;
506 	frame->mii_opcode = RL_MII_WRITEOP;
507 	frame->mii_turnaround = RL_MII_TURNAROUND;
508 
509 	/*
510  	 * Turn on data output.
511 	 */
512 	MII_SET(RL_MII_DIR);
513 
514 	rl_mii_sync(sc);
515 
516 	rl_mii_send(sc, frame->mii_stdelim, 2);
517 	rl_mii_send(sc, frame->mii_opcode, 2);
518 	rl_mii_send(sc, frame->mii_phyaddr, 5);
519 	rl_mii_send(sc, frame->mii_regaddr, 5);
520 	rl_mii_send(sc, frame->mii_turnaround, 2);
521 	rl_mii_send(sc, frame->mii_data, 16);
522 
523 	/* Idle bit. */
524 	MII_SET(RL_MII_CLK);
525 	DELAY(1);
526 	MII_CLR(RL_MII_CLK);
527 	DELAY(1);
528 
529 	/*
530 	 * Turn off xmit.
531 	 */
532 	MII_CLR(RL_MII_DIR);
533 
534 	return(0);
535 }
536 
537 static int
538 rl_miibus_readreg(device_t dev, int phy, int reg)
539 {
540 	struct rl_softc *sc;
541 	struct rl_mii_frame frame;
542 	uint16_t rval = 0;
543 	uint16_t rl8139_reg = 0;
544 
545 	sc = device_get_softc(dev);
546 
547 	if (sc->rl_type == RL_8139) {
548 		/* Pretend the internal PHY is only at address 0 */
549 		if (phy)
550 			return(0);
551 		switch (reg) {
552 		case MII_BMCR:
553 			rl8139_reg = RL_BMCR;
554 			break;
555 		case MII_BMSR:
556 			rl8139_reg = RL_BMSR;
557 			break;
558 		case MII_ANAR:
559 			rl8139_reg = RL_ANAR;
560 			break;
561 		case MII_ANER:
562 			rl8139_reg = RL_ANER;
563 			break;
564 		case MII_ANLPAR:
565 			rl8139_reg = RL_LPAR;
566 			break;
567 		case MII_PHYIDR1:
568 		case MII_PHYIDR2:
569 			return(0);
570 			break;
571 		/*
572 		 * Allow the rlphy driver to read the media status
573 		 * register. If we have a link partner which does not
574 		 * support NWAY, this is the register which will tell
575 		 * us the results of parallel detection.
576 		 */
577 		case RL_MEDIASTAT:
578 			rval = CSR_READ_1(sc, RL_MEDIASTAT);
579 			return(rval);
580 		default:
581 			device_printf(dev, "bad phy register\n");
582 			return(0);
583 		}
584 		rval = CSR_READ_2(sc, rl8139_reg);
585 		return(rval);
586 	}
587 
588 	bzero(&frame, sizeof(frame));
589 
590 	frame.mii_phyaddr = phy;
591 	frame.mii_regaddr = reg;
592 	rl_mii_readreg(sc, &frame);
593 
594 	return(frame.mii_data);
595 }
596 
597 static int
598 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
599 {
600 	struct rl_softc *sc;
601 	struct rl_mii_frame frame;
602 	u_int16_t rl8139_reg = 0;
603 
604 	sc = device_get_softc(dev);
605 
606 	if (sc->rl_type == RL_8139) {
607 		/* Pretend the internal PHY is only at address 0 */
608 		if (phy)
609 			return(0);
610 		switch (reg) {
611 		case MII_BMCR:
612 			rl8139_reg = RL_BMCR;
613 			break;
614 		case MII_BMSR:
615 			rl8139_reg = RL_BMSR;
616 			break;
617 		case MII_ANAR:
618 			rl8139_reg = RL_ANAR;
619 			break;
620 		case MII_ANER:
621 			rl8139_reg = RL_ANER;
622 			break;
623 		case MII_ANLPAR:
624 			rl8139_reg = RL_LPAR;
625 			break;
626 		case MII_PHYIDR1:
627 		case MII_PHYIDR2:
628 			return(0);
629 		default:
630 			device_printf(dev, "bad phy register\n");
631 			return(0);
632 		}
633 		CSR_WRITE_2(sc, rl8139_reg, data);
634 		return(0);
635 	}
636 
637 	bzero(&frame, sizeof(frame));
638 
639 	frame.mii_phyaddr = phy;
640 	frame.mii_regaddr = reg;
641 	frame.mii_data = data;
642 
643 	rl_mii_writereg(sc, &frame);
644 
645 	return(0);
646 }
647 
648 static void
649 rl_miibus_statchg(device_t dev)
650 {
651 }
652 
653 /*
654  * Program the 64-bit multicast hash filter.
655  */
656 static void
657 rl_setmulti(struct rl_softc *sc)
658 {
659 	struct ifnet *ifp;
660 	int h = 0;
661 	uint32_t hashes[2] = { 0, 0 };
662 	struct ifmultiaddr *ifma;
663 	uint32_t rxfilt;
664 	int mcnt = 0;
665 
666 	ifp = &sc->arpcom.ac_if;
667 
668 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
669 
670 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
671 		rxfilt |= RL_RXCFG_RX_MULTI;
672 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
673 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
674 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
675 		return;
676 	}
677 
678 	/* first, zot all the existing hash bits */
679 	CSR_WRITE_4(sc, RL_MAR0, 0);
680 	CSR_WRITE_4(sc, RL_MAR4, 0);
681 
682 	/* now program new ones */
683 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
684 		if (ifma->ifma_addr->sa_family != AF_LINK)
685 			continue;
686 		h = ether_crc32_be(
687 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
688 		    ETHER_ADDR_LEN) >> 26;
689 		if (h < 32)
690 			hashes[0] |= (1 << h);
691 		else
692 			hashes[1] |= (1 << (h - 32));
693 		mcnt++;
694 	}
695 
696 	if (mcnt)
697 		rxfilt |= RL_RXCFG_RX_MULTI;
698 	else
699 		rxfilt &= ~RL_RXCFG_RX_MULTI;
700 
701 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
702 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
703 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
704 }
705 
706 static void
707 rl_reset(struct rl_softc *sc)
708 {
709 	int i;
710 
711 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
712 
713 	for (i = 0; i < RL_TIMEOUT; i++) {
714 		DELAY(10);
715 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
716 			break;
717 	}
718 	if (i == RL_TIMEOUT)
719 		device_printf(sc->rl_dev, "reset never completed!\n");
720 }
721 
722 /*
723  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
724  * IDs against our list and return a device name if we find a match.
725  *
726  * Return with a value < 0 to give re(4) a change to attach.
727  */
728 static int
729 rl_probe(device_t dev)
730 {
731 	struct rl_type *t;
732 	uint16_t product = pci_get_device(dev);
733 	uint16_t vendor = pci_get_vendor(dev);
734 
735 	for (t = rl_devs; t->rl_name != NULL; t++) {
736 		if (vendor == t->rl_vid && product == t->rl_did) {
737 			device_set_desc(dev, t->rl_name);
738 			return(-100);
739 		}
740 	}
741 
742 	return(ENXIO);
743 }
744 
745 /*
746  * Attach the interface. Allocate softc structures, do ifmedia
747  * setup and ethernet/BPF attach.
748  */
749 static int
750 rl_attach(device_t dev)
751 {
752 	uint8_t eaddr[ETHER_ADDR_LEN];
753 	uint16_t as[3];
754 	struct rl_softc *sc;
755 	struct ifnet *ifp;
756 	uint16_t rl_did = 0;
757 	int error = 0, rid, i;
758 
759 	sc = device_get_softc(dev);
760 	sc->rl_dev = dev;
761 
762 	/*
763 	 * Handle power management nonsense.
764 	 */
765 
766 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
767 		uint32_t iobase, membase, irq;
768 
769 		/* Save important PCI config data. */
770 		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
771 		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
772 		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
773 
774 		/* Reset the power state. */
775 		device_printf(dev, "chip is is in D%d power mode "
776 			      "-- setting to D0\n", pci_get_powerstate(dev));
777 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
778 
779 		/* Restore PCI config data. */
780 		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
781 		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
782 		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
783 	}
784 
785 	pci_enable_busmaster(dev);
786 
787 	rid = RL_RID;
788 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, RF_ACTIVE);
789 
790 	if (sc->rl_res == NULL) {
791 		device_printf(dev, "couldn't map ports/memory\n");
792 		error = ENXIO;
793 		goto fail;
794 	}
795 
796 	sc->rl_btag = rman_get_bustag(sc->rl_res);
797 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
798 
799 	rid = 0;
800 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
801 					    RF_SHAREABLE | RF_ACTIVE);
802 
803 	if (sc->rl_irq == NULL) {
804 		device_printf(dev, "couldn't map interrupt\n");
805 		error = ENXIO;
806 		goto fail;
807 	}
808 
809 	callout_init(&sc->rl_stat_timer);
810 
811 	/* Reset the adapter. */
812 	rl_reset(sc);
813 
814 	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
815 	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
816 	if (rl_did != 0x8129)
817 		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
818 
819 	/*
820 	 * Get station address from the EEPROM.
821 	 */
822 	rl_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
823 	for (i = 0; i < 3; i++) {
824 		eaddr[(i * 2) + 0] = as[i] & 0xff;
825 		eaddr[(i * 2) + 1] = as[i] >> 8;
826 	}
827 
828 	/*
829 	 * Now read the exact device type from the EEPROM to find
830 	 * out if it's an 8129 or 8139.
831 	 */
832 	rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, 1, 0);
833 
834 	if (rl_did == PCI_PRODUCT_REALTEK_RT8139 ||
835 	    rl_did == PCI_PRODUCT_ACCTON_MPX5030 ||
836 	    rl_did == PCI_PRODUCT_DELTA_8139 ||
837 	    rl_did == PCI_PRODUCT_ADDTRON_8139 ||
838 	    rl_did == PCI_PRODUCT_DLINK_DFE530TXPLUS ||
839 	    rl_did == PCI_PRODUCT_REALTEK_RT8139B ||
840 	    rl_did == PCI_PRODUCT_DLINK_DFE690TXD ||
841 	    rl_did == PCI_PRODUCT_COREGA_CB_TXD ||
842 	    rl_did == PCI_PRODUCT_COREGA_2CB_TXD ||
843 	    rl_did == PCI_PRODUCT_PLANEX_FNW_3800_TX)
844 		sc->rl_type = RL_8139;
845 	else if (rl_did == PCI_PRODUCT_REALTEK_RT8129)
846 		sc->rl_type = RL_8129;
847 	else {
848 		device_printf(dev, "unknown device ID: %x\n", rl_did);
849 		error = ENXIO;
850 		goto fail;
851 	}
852 
853 #define	RL_NSEG_NEW 32
854 	error = bus_dma_tag_create(NULL,			/* parent */
855 				   1, 0,			/* alignment, boundary */
856 				   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
857 				   BUS_SPACE_MAXADDR,		/* highaddr */
858 				   NULL, NULL,			/* filter, filterarg */
859 				   MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
860 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
861 				   BUS_DMA_ALLOCNOW,		/* flags */
862 				   &sc->rl_parent_tag);
863 
864 	if (error) {
865 		device_printf(dev, "can't create parent tag\n");
866 		goto fail;
867 	}
868 
869 	/*
870 	 * Now allocate a tag for the DMA descriptor lists.
871 	 * All of our lists are allocated as a contiguous block
872 	 * of memory.
873 	 */
874 	error = bus_dma_tag_create(sc->rl_parent_tag,		/* parent */
875 				   1, 0,			/* alignment, boundary */
876 				   BUS_SPACE_MAXADDR,		/* lowaddr */
877 				   BUS_SPACE_MAXADDR,		/* highaddr */
878 				   NULL, NULL,			/* filter, filterarg */
879 				   RL_RXBUFLEN + 1518, 1,	/* maxsize, nsegments */
880 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
881 				   0,				/* flags */
882 				   &sc->rl_tag);
883 
884 	if (error) {
885 		device_printf(dev, "can't create RX tag\n");
886 		goto fail;
887 	}
888 
889 	/*
890 	 * Now allocate a chunk of DMA-able memory based on the tag
891 	 * we just created.
892 	 */
893 	error = bus_dmamem_alloc(sc->rl_tag, (void **)&sc->rl_cdata.rl_rx_buf,
894 				 BUS_DMA_WAITOK, &sc->rl_cdata.rl_rx_dmamap);
895 
896 	if (error) {
897 		device_printf(dev, "can't allocate RX memory!\n");
898 		error = ENXIO;
899 		goto fail;
900 	}
901 
902 	/* Leave a few bytes before the start of the RX ring buffer. */
903 	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
904 	sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t);
905 
906 	/* Do MII setup */
907 	if (mii_phy_probe(dev, &sc->rl_miibus, rl_ifmedia_upd,
908 			  rl_ifmedia_sts)) {
909 		device_printf(dev, "MII without any phy!\n");
910 		error = ENXIO;
911 		goto fail;
912 	}
913 
914 	ifp = &sc->arpcom.ac_if;
915 	ifp->if_softc = sc;
916 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
917 	ifp->if_mtu = ETHERMTU;
918 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
919 	ifp->if_ioctl = rl_ioctl;
920 	ifp->if_start = rl_start;
921 	ifp->if_watchdog = rl_watchdog;
922 	ifp->if_init = rl_init;
923 	ifp->if_baudrate = 10000000;
924 	ifp->if_capabilities = IFCAP_VLAN_MTU;
925 #ifdef DEVICE_POLLING
926 	ifp->if_poll = rl_poll;
927 #endif
928 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
929 	ifq_set_ready(&ifp->if_snd);
930 
931 	/*
932 	 * Call MI attach routine.
933 	 */
934 	ether_ifattach(ifp, eaddr, NULL);
935 
936 	error = bus_setup_intr(dev, sc->rl_irq, INTR_NETSAFE, rl_intr,
937 			       sc, &sc->rl_intrhand, ifp->if_serializer);
938 
939 	if (error) {
940 		device_printf(dev, "couldn't set up irq\n");
941 		ether_ifdetach(ifp);
942 		goto fail;
943 	}
944 
945 	return(0);
946 
947 fail:
948 	rl_detach(dev);
949 	return(error);
950 }
951 
952 static int
953 rl_detach(device_t dev)
954 {
955 	struct rl_softc *sc;
956 	struct ifnet *ifp;
957 
958 	sc = device_get_softc(dev);
959 	ifp = &sc->arpcom.ac_if;
960 
961 	if (device_is_attached(dev)) {
962 		lwkt_serialize_enter(ifp->if_serializer);
963 		rl_stop(sc);
964 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
965 		lwkt_serialize_exit(ifp->if_serializer);
966 
967 		ether_ifdetach(ifp);
968 	}
969 
970 	if (sc->rl_miibus)
971 		device_delete_child(dev, sc->rl_miibus);
972 	bus_generic_detach(dev);
973 
974 	if (sc->rl_irq)
975 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
976 	if (sc->rl_res)
977 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
978 
979 	if (sc->rl_cdata.rl_rx_buf) {
980 		bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
981 		bus_dmamem_free(sc->rl_tag, sc->rl_cdata.rl_rx_buf,
982 				sc->rl_cdata.rl_rx_dmamap);
983 	}
984 	if (sc->rl_tag)
985 		bus_dma_tag_destroy(sc->rl_tag);
986 	if (sc->rl_parent_tag)
987 		bus_dma_tag_destroy(sc->rl_parent_tag);
988 
989 	return(0);
990 }
991 
992 /*
993  * Initialize the transmit descriptors.
994  */
995 static void
996 rl_list_tx_init(struct rl_softc *sc)
997 {
998 	struct rl_chain_data *cd;
999 	int i;
1000 
1001 	cd = &sc->rl_cdata;
1002 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1003 		cd->rl_tx_chain[i] = NULL;
1004 		CSR_WRITE_4(sc,
1005 		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1006 	}
1007 
1008 	sc->rl_cdata.cur_tx = 0;
1009 	sc->rl_cdata.last_tx = 0;
1010 }
1011 
1012 /*
1013  * A frame has been uploaded: pass the resulting mbuf chain up to
1014  * the higher level protocols.
1015  *
1016  * You know there's something wrong with a PCI bus-master chip design
1017  * when you have to use m_devget().
1018  *
1019  * The receive operation is badly documented in the datasheet, so I'll
1020  * attempt to document it here. The driver provides a buffer area and
1021  * places its base address in the RX buffer start address register.
1022  * The chip then begins copying frames into the RX buffer. Each frame
1023  * is preceded by a 32-bit RX status word which specifies the length
1024  * of the frame and certain other status bits. Each frame (starting with
1025  * the status word) is also 32-bit aligned. The frame length is in the
1026  * first 16 bits of the status word; the lower 15 bits correspond with
1027  * the 'rx status register' mentioned in the datasheet.
1028  *
1029  * Note: to make the Alpha happy, the frame payload needs to be aligned
1030  * on a 32-bit boundary. To achieve this, we cheat a bit by copying from
1031  * the ring buffer starting at an address two bytes before the actual
1032  * data location. We can then shave off the first two bytes using m_adj().
1033  * The reason we do this is because m_devget() doesn't let us specify an
1034  * offset into the mbuf storage space, so we have to artificially create
1035  * one. The ring is allocated in such a way that there are a few unused
1036  * bytes of space preceecing it so that it will be safe for us to do the
1037  * 2-byte backstep even if reading from the ring at offset 0.
1038  */
1039 static void
1040 rl_rxeof(struct rl_softc *sc)
1041 {
1042         struct mbuf *m;
1043         struct ifnet *ifp;
1044 	int total_len = 0;
1045 	uint32_t rxstat;
1046 	caddr_t rxbufpos;
1047 	int wrap = 0;
1048 	uint16_t cur_rx, limit, max_bytes, rx_bytes = 0;
1049 
1050 	ifp = &sc->arpcom.ac_if;
1051 
1052 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1053 			BUS_DMASYNC_POSTREAD);
1054 
1055 	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1056 
1057 	/* Do not try to read past this point. */
1058 	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1059 
1060 	if (limit < cur_rx)
1061 		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1062 	else
1063 		max_bytes = limit - cur_rx;
1064 
1065 	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1066 #ifdef DEVICE_POLLING
1067 		if (ifp->if_flags & IFF_POLLING) {
1068 			if (sc->rxcycles <= 0)
1069 				break;
1070 			sc->rxcycles--;
1071 		}
1072 #endif /* DEVICE_POLLING */
1073 		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1074 		rxstat = le32toh(*(uint32_t *)rxbufpos);
1075 
1076 		/*
1077 		 * Here's a totally undocumented fact for you. When the
1078 		 * RealTek chip is in the process of copying a packet into
1079 		 * RAM for you, the length will be 0xfff0. If you spot a
1080 		 * packet header with this value, you need to stop. The
1081 		 * datasheet makes absolutely no mention of this and
1082 		 * RealTek should be shot for this.
1083 		 */
1084 		if ((uint16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
1085 			break;
1086 
1087 		if ((rxstat & RL_RXSTAT_RXOK) == 0) {
1088 			ifp->if_ierrors++;
1089 			rl_init(sc);
1090 			return;
1091 		}
1092 
1093 		/* No errors; receive the packet. */
1094 		total_len = rxstat >> 16;
1095 		rx_bytes += total_len + 4;
1096 
1097 		/*
1098 		 * XXX The RealTek chip includes the CRC with every
1099 		 * received frame, and there's no way to turn this
1100 		 * behavior off (at least, I can't find anything in
1101 	 	 * the manual that explains how to do it) so we have
1102 		 * to trim off the CRC manually.
1103 		 */
1104 		total_len -= ETHER_CRC_LEN;
1105 
1106 		/*
1107 		 * Avoid trying to read more bytes than we know
1108 		 * the chip has prepared for us.
1109 		 */
1110 		if (rx_bytes > max_bytes)
1111 			break;
1112 
1113 		rxbufpos = sc->rl_cdata.rl_rx_buf +
1114 			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1115 
1116 		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1117 			rxbufpos = sc->rl_cdata.rl_rx_buf;
1118 
1119 		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1120 
1121 		if (total_len > wrap) {
1122 			/*
1123 			 * Fool m_devget() into thinking we want to copy
1124 			 * the whole buffer so we don't end up fragmenting
1125 			 * the data.
1126 			 */
1127 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1128 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1129 			if (m == NULL) {
1130 				ifp->if_ierrors++;
1131 			} else {
1132 				m_adj(m, RL_ETHER_ALIGN);
1133 				m_copyback(m, wrap, total_len - wrap,
1134 					sc->rl_cdata.rl_rx_buf);
1135 			}
1136 			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1137 		} else {
1138 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1139 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1140 			if (m == NULL) {
1141 				ifp->if_ierrors++;
1142 			} else
1143 				m_adj(m, RL_ETHER_ALIGN);
1144 			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1145 		}
1146 
1147 		/*
1148 		 * Round up to 32-bit boundary.
1149 		 */
1150 		cur_rx = (cur_rx + 3) & ~3;
1151 		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1152 
1153 		if (m == NULL)
1154 			continue;
1155 
1156 		ifp->if_ipackets++;
1157 
1158 		ifp->if_input(ifp, m);
1159 	}
1160 }
1161 
1162 /*
1163  * A frame was downloaded to the chip. It's safe for us to clean up
1164  * the list buffers.
1165  */
1166 static void
1167 rl_txeof(struct rl_softc *sc)
1168 {
1169 	struct ifnet *ifp;
1170 	uint32_t txstat;
1171 
1172 	ifp = &sc->arpcom.ac_if;
1173 
1174 	/*
1175 	 * Go through our tx list and free mbufs for those
1176 	 * frames that have been uploaded.
1177 	 */
1178 	do {
1179 		if (RL_LAST_TXMBUF(sc) == NULL)
1180 			break;
1181 		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1182 		if ((txstat & (RL_TXSTAT_TX_OK | RL_TXSTAT_TX_UNDERRUN |
1183 			       RL_TXSTAT_TXABRT)) == 0)
1184 			break;
1185 
1186 		ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1187 
1188 		bus_dmamap_unload(sc->rl_tag, RL_LAST_DMAMAP(sc));
1189 		bus_dmamap_destroy(sc->rl_tag, RL_LAST_DMAMAP(sc));
1190 		m_freem(RL_LAST_TXMBUF(sc));
1191 		RL_LAST_TXMBUF(sc) = NULL;
1192 		RL_INC(sc->rl_cdata.last_tx);
1193 
1194 		if (txstat & RL_TXSTAT_TX_UNDERRUN) {
1195 			sc->rl_txthresh += 32;
1196 			if (sc->rl_txthresh > RL_TX_THRESH_MAX)
1197 				sc->rl_txthresh = RL_TX_THRESH_MAX;
1198 		}
1199 
1200 		if (txstat & RL_TXSTAT_TX_OK) {
1201 			ifp->if_opackets++;
1202 		} else {
1203 			ifp->if_oerrors++;
1204 			if (txstat & (RL_TXSTAT_TXABRT | RL_TXSTAT_OUTOFWIN))
1205 				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1206 		}
1207 		ifp->if_flags &= ~IFF_OACTIVE;
1208 	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1209 
1210 	if (RL_LAST_TXMBUF(sc) == NULL)
1211 		ifp->if_timer = 0;
1212 	else if (ifp->if_timer == 0)
1213 		ifp->if_timer = 5;
1214 }
1215 
1216 static void
1217 rl_tick(void *xsc)
1218 {
1219 	struct rl_softc *sc = xsc;
1220 	struct mii_data *mii;
1221 
1222 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1223 
1224 	mii = device_get_softc(sc->rl_miibus);
1225 	mii_tick(mii);
1226 
1227 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1228 
1229 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1230 }
1231 
1232 #ifdef DEVICE_POLLING
1233 
1234 static void
1235 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1236 {
1237 	struct rl_softc *sc = ifp->if_softc;
1238 
1239 	switch(cmd) {
1240 	case POLL_REGISTER:
1241 		/* disable interrupts */
1242                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
1243 		break;
1244 	case POLL_DEREGISTER:
1245 		/* enable interrupts */
1246 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1247 		break;
1248 	default:
1249 		sc->rxcycles = count;
1250 		rl_rxeof(sc);
1251 		rl_txeof(sc);
1252 		if (!ifq_is_empty(&ifp->if_snd))
1253 			rl_start(ifp);
1254 
1255 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1256 			uint16_t status;
1257 
1258 			status = CSR_READ_2(sc, RL_ISR);
1259 			if (status == 0xffff)
1260 				return;
1261 			if (status)
1262 				CSR_WRITE_2(sc, RL_ISR, status);
1263 
1264 			/*
1265 			 * XXX check behaviour on receiver stalls.
1266 			 */
1267 
1268 			if (status & RL_ISR_SYSTEM_ERR) {
1269 				rl_reset(sc);
1270 				rl_init(sc);
1271 			}
1272 		}
1273 		break;
1274 	}
1275 }
1276 #endif /* DEVICE_POLLING */
1277 
1278 static void
1279 rl_intr(void *arg)
1280 {
1281 	struct rl_softc *sc;
1282 	struct ifnet *ifp;
1283 	uint16_t status;
1284 
1285 	sc = arg;
1286 
1287 	if (sc->suspended)
1288 		return;
1289 
1290 	ifp = &sc->arpcom.ac_if;
1291 
1292 	for (;;) {
1293 		status = CSR_READ_2(sc, RL_ISR);
1294 		/* If the card has gone away, the read returns 0xffff. */
1295 		if (status == 0xffff)
1296 			break;
1297 
1298 		if (status != 0)
1299 			CSR_WRITE_2(sc, RL_ISR, status);
1300 
1301 		if ((status & RL_INTRS) == 0)
1302 			break;
1303 
1304 		if (status & RL_ISR_RX_OK)
1305 			rl_rxeof(sc);
1306 
1307 		if (status & RL_ISR_RX_ERR)
1308 			rl_rxeof(sc);
1309 
1310 		if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
1311 			rl_txeof(sc);
1312 
1313 		if (status & RL_ISR_SYSTEM_ERR) {
1314 			rl_reset(sc);
1315 			rl_init(sc);
1316 		}
1317 
1318 	}
1319 
1320 	if (!ifq_is_empty(&ifp->if_snd))
1321 		rl_start(ifp);
1322 }
1323 
1324 /*
1325  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1326  * pointers to the fragment pointers.
1327  */
1328 static int
1329 rl_encap(struct rl_softc *sc, struct mbuf *m_head)
1330 {
1331 	struct mbuf *m_new = NULL;
1332 
1333 	/*
1334 	 * The RealTek is brain damaged and wants longword-aligned
1335 	 * TX buffers, plus we can only have one fragment buffer
1336 	 * per packet. We have to copy pretty much all the time.
1337 	 */
1338 	m_new = m_defrag(m_head, MB_DONTWAIT);
1339 
1340 	if (m_new == NULL) {
1341 		m_freem(m_head);
1342 		return(1);
1343 	}
1344 	m_head = m_new;
1345 
1346 	/* Pad frames to at least 60 bytes. */
1347 	if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) {
1348 		/*
1349 		 * Make security concious people happy: zero out the
1350 		 * bytes in the pad area, since we don't know what
1351 		 * this mbuf cluster buffer's previous user might
1352 		 * have left in it.
1353 	 	 */
1354 		bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
1355 		     RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1356 		m_head->m_pkthdr.len +=
1357 		    (RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1358 		m_head->m_len = m_head->m_pkthdr.len;
1359 	}
1360 
1361 	RL_CUR_TXMBUF(sc) = m_head;
1362 
1363 	return(0);
1364 }
1365 
1366 /*
1367  * Main transmit routine.
1368  */
1369 
1370 static void
1371 rl_start(struct ifnet *ifp)
1372 {
1373 	struct rl_softc *sc;
1374 	struct mbuf *m_head = NULL;
1375 
1376 	sc = ifp->if_softc;
1377 
1378 	while(RL_CUR_TXMBUF(sc) == NULL) {
1379 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1380 		if (m_head == NULL)
1381 			break;
1382 
1383 		if (rl_encap(sc, m_head))
1384 			break;
1385 
1386 		/*
1387 		 * If there's a BPF listener, bounce a copy of this frame
1388 		 * to him.
1389 		 */
1390 		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1391 
1392 		/*
1393 		 * Transmit the frame.
1394 	 	 */
1395 		bus_dmamap_create(sc->rl_tag, 0, &RL_CUR_DMAMAP(sc));
1396 		bus_dmamap_load(sc->rl_tag, RL_CUR_DMAMAP(sc),
1397 				mtod(RL_CUR_TXMBUF(sc), void *),
1398 				RL_CUR_TXMBUF(sc)->m_pkthdr.len,
1399 				rl_dma_map_txbuf, sc, 0);
1400 		bus_dmamap_sync(sc->rl_tag, RL_CUR_DMAMAP(sc),
1401 				BUS_DMASYNC_PREREAD);
1402 		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1403 		    RL_TXTHRESH(sc->rl_txthresh) |
1404 		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1405 
1406 		RL_INC(sc->rl_cdata.cur_tx);
1407 
1408 		/*
1409 		 * Set a timeout in case the chip goes out to lunch.
1410 		 */
1411 		ifp->if_timer = 5;
1412 	}
1413 
1414 	/*
1415 	 * We broke out of the loop because all our TX slots are
1416 	 * full. Mark the NIC as busy until it drains some of the
1417 	 * packets from the queue.
1418 	 */
1419 	if (RL_CUR_TXMBUF(sc) != NULL)
1420 		ifp->if_flags |= IFF_OACTIVE;
1421 }
1422 
1423 static void
1424 rl_init(void *xsc)
1425 {
1426 	struct rl_softc *sc = xsc;
1427 	struct ifnet *ifp = &sc->arpcom.ac_if;
1428 	struct mii_data *mii;
1429 	uint32_t rxcfg = 0;
1430 
1431 	mii = device_get_softc(sc->rl_miibus);
1432 
1433 	/*
1434 	 * Cancel pending I/O and free all RX/TX buffers.
1435 	 */
1436 	rl_stop(sc);
1437 
1438 	/*
1439 	 * Init our MAC address.  Even though the chipset documentation
1440 	 * doesn't mention it, we need to enter "Config register write enable"
1441 	 * mode to modify the ID registers.
1442 	 */
1443 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1444 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
1445 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1446 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
1447 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1448 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1449 
1450 	/* Init the RX buffer pointer register. */
1451 	bus_dmamap_load(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1452 			sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN, rl_dma_map_rxbuf,
1453 			sc, 0);
1454 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1455 			BUS_DMASYNC_PREWRITE);
1456 
1457 	/* Init TX descriptors. */
1458 	rl_list_tx_init(sc);
1459 
1460 	/*
1461 	 * Enable transmit and receive.
1462 	 */
1463 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1464 
1465 	/*
1466 	 * Set the initial TX and RX configuration.
1467 	 */
1468 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1469 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1470 
1471 	/* Set the individual bit to receive frames for this host only. */
1472 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
1473 	rxcfg |= RL_RXCFG_RX_INDIV;
1474 
1475 	/* If we want promiscuous mode, set the allframes bit. */
1476 	if (ifp->if_flags & IFF_PROMISC) {
1477 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
1478 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1479 	} else {
1480 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1481 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1482 	}
1483 
1484 	/*
1485 	 * Set capture broadcast bit to capture broadcast frames.
1486 	 */
1487 	if (ifp->if_flags & IFF_BROADCAST) {
1488 		rxcfg |= RL_RXCFG_RX_BROAD;
1489 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1490 	} else {
1491 		rxcfg &= ~RL_RXCFG_RX_BROAD;
1492 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1493 	}
1494 
1495 	/*
1496 	 * Program the multicast filter, if necessary.
1497 	 */
1498 	rl_setmulti(sc);
1499 
1500 #ifdef DEVICE_POLLING
1501 	/*
1502 	 * Only enable interrupts if we are polling, keep them off otherwise.
1503 	 */
1504 	if (ifp->if_flags & IFF_POLLING)
1505 		CSR_WRITE_2(sc, RL_IMR, 0);
1506 	else
1507 #endif /* DEVICE_POLLING */
1508 	/*
1509 	 * Enable interrupts.
1510 	 */
1511 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1512 
1513 	/* Set initial TX threshold */
1514 	sc->rl_txthresh = RL_TX_THRESH_INIT;
1515 
1516 	/* Start RX/TX process. */
1517 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1518 
1519 	/* Enable receiver and transmitter. */
1520 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1521 
1522 	mii_mediachg(mii);
1523 
1524 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1525 
1526 	ifp->if_flags |= IFF_RUNNING;
1527 	ifp->if_flags &= ~IFF_OACTIVE;
1528 
1529 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1530 }
1531 
1532 /*
1533  * Set media options.
1534  */
1535 static int
1536 rl_ifmedia_upd(struct ifnet *ifp)
1537 {
1538 	struct rl_softc *sc;
1539 	struct mii_data *mii;
1540 
1541 	sc = ifp->if_softc;
1542 	mii = device_get_softc(sc->rl_miibus);
1543 	mii_mediachg(mii);
1544 
1545 	return(0);
1546 }
1547 
1548 /*
1549  * Report current media status.
1550  */
1551 static void
1552 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1553 {
1554 	struct rl_softc *sc = ifp->if_softc;
1555 	struct mii_data *mii = device_get_softc(sc->rl_miibus);
1556 
1557 	mii_pollstat(mii);
1558 	ifmr->ifm_active = mii->mii_media_active;
1559 	ifmr->ifm_status = mii->mii_media_status;
1560 }
1561 
1562 static int
1563 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1564 {
1565 	struct rl_softc *sc = ifp->if_softc;
1566 	struct ifreq *ifr = (struct ifreq *) data;
1567 	struct mii_data	*mii;
1568 	int error = 0;
1569 
1570 	switch (command) {
1571 	case SIOCSIFFLAGS:
1572 		if (ifp->if_flags & IFF_UP) {
1573 			rl_init(sc);
1574 		} else {
1575 			if (ifp->if_flags & IFF_RUNNING)
1576 				rl_stop(sc);
1577 		}
1578 		error = 0;
1579 		break;
1580 	case SIOCADDMULTI:
1581 	case SIOCDELMULTI:
1582 		rl_setmulti(sc);
1583 		error = 0;
1584 		break;
1585 	case SIOCGIFMEDIA:
1586 	case SIOCSIFMEDIA:
1587 		mii = device_get_softc(sc->rl_miibus);
1588 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1589 		break;
1590 	case SIOCSIFCAP:
1591 		break;
1592 	default:
1593 		error = ether_ioctl(ifp, command, data);
1594 		break;
1595 	}
1596 
1597 	return(error);
1598 }
1599 
1600 static void
1601 rl_watchdog(struct ifnet *ifp)
1602 {
1603 	struct rl_softc *sc = ifp->if_softc;
1604 
1605 	device_printf(sc->rl_dev, "watchdog timeout\n");
1606 
1607 	lwkt_serialize_enter(ifp->if_serializer);
1608 
1609 	ifp->if_oerrors++;
1610 
1611 	rl_txeof(sc);
1612 	rl_rxeof(sc);
1613 	rl_init(sc);
1614 
1615 	lwkt_serialize_exit(ifp->if_serializer);
1616 }
1617 
1618 /*
1619  * Stop the adapter and free any mbufs allocated to the
1620  * RX and TX lists.
1621  */
1622 static void
1623 rl_stop(struct rl_softc *sc)
1624 {
1625 	struct ifnet *ifp = &sc->arpcom.ac_if;
1626 	int i;
1627 
1628 	ifp->if_timer = 0;
1629 
1630 	callout_stop(&sc->rl_stat_timer);
1631 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1632 
1633 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1634 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1635 	bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
1636 
1637 	/*
1638 	 * Free the TX list buffers.
1639 	 */
1640 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1641 		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1642 			bus_dmamap_unload(sc->rl_tag,
1643 					  sc->rl_cdata.rl_tx_dmamap[i]);
1644 			bus_dmamap_destroy(sc->rl_tag,
1645 					   sc->rl_cdata.rl_tx_dmamap[i]);
1646 			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1647 			sc->rl_cdata.rl_tx_chain[i] = NULL;
1648 			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1649 				    0x0000000);
1650 		}
1651 	}
1652 }
1653 
1654 /*
1655  * Stop all chip I/O so that the kernel's probe routines don't
1656  * get confused by errant DMAs when rebooting.
1657  */
1658 static void
1659 rl_shutdown(device_t dev)
1660 {
1661 	struct rl_softc *sc;
1662 
1663 	sc = device_get_softc(dev);
1664 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1665 	rl_stop(sc);
1666 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1667 }
1668 
1669 /*
1670  * Device suspend routine.  Stop the interface and save some PCI
1671  * settings in case the BIOS doesn't restore them properly on
1672  * resume.
1673  */
1674 static int
1675 rl_suspend(device_t dev)
1676 {
1677 	struct rl_softc	*sc = device_get_softc(dev);
1678 	int i;
1679 
1680 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1681 	rl_stop(sc);
1682 
1683 	for (i = 0; i < 5; i++)
1684 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
1685 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
1686 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
1687 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1688 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1689 
1690 	sc->suspended = 1;
1691 
1692 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1693 	return (0);
1694 }
1695 
1696 /*
1697  * Device resume routine.  Restore some PCI settings in case the BIOS
1698  * doesn't, re-enable busmastering, and restart the interface if
1699  * appropriate.
1700  */
1701 static int
1702 rl_resume(device_t dev)
1703 {
1704 	struct rl_softc *sc = device_get_softc(dev);
1705 	struct ifnet *ifp = &sc->arpcom.ac_if;
1706 	int		i;
1707 
1708 	lwkt_serialize_enter(ifp->if_serializer);
1709 
1710 	/* better way to do this? */
1711 	for (i = 0; i < 5; i++)
1712 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1713 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1714 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1715 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1716 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1717 
1718 	/* reenable busmastering */
1719 	pci_enable_busmaster(dev);
1720 	pci_enable_io(dev, RL_RES);
1721 
1722         /* reinitialize interface if necessary */
1723         if (ifp->if_flags & IFF_UP)
1724                 rl_init(sc);
1725 
1726 	sc->suspended = 0;
1727 	lwkt_serialize_exit(ifp->if_serializer);
1728 	return (0);
1729 }
1730