xref: /dragonfly/sys/dev/netif/rl/if_rl.c (revision 2e3ed54d)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_rl.c,v 1.38.2.16 2003/03/05 18:42:33 njl Exp $
33  * $DragonFly: src/sys/dev/netif/rl/if_rl.c,v 1.28 2005/11/22 00:24:33 dillon Exp $
34  */
35 
36 /*
37  * RealTek 8129/8139 PCI NIC driver
38  *
39  * Supports several extremely cheap PCI 10/100 adapters based on
40  * the RealTek chipset. Datasheets can be obtained from
41  * www.realtek.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
50  * probably the worst PCI ethernet controller ever made, with the possible
51  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
52  * DMA, but it has a terrible interface that nullifies any performance
53  * gains that bus-master DMA usually offers.
54  *
55  * For transmission, the chip offers a series of four TX descriptor
56  * registers. Each transmit frame must be in a contiguous buffer, aligned
57  * on a longword (32-bit) boundary. This means we almost always have to
58  * do mbuf copies in order to transmit a frame, except in the unlikely
59  * case where a) the packet fits into a single mbuf, and b) the packet
60  * is 32-bit aligned within the mbuf's data area. The presence of only
61  * four descriptor registers means that we can never have more than four
62  * packets queued for transmission at any one time.
63  *
64  * Reception is not much better. The driver has to allocate a single large
65  * buffer area (up to 64K in size) into which the chip will DMA received
66  * frames. Because we don't know where within this region received packets
67  * will begin or end, we have no choice but to copy data from the buffer
68  * area into mbufs in order to pass the packets up to the higher protocol
69  * levels.
70  *
71  * It's impossible given this rotten design to really achieve decent
72  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
73  * some equally overmuscled CPU to drive it.
74  *
75  * On the bright side, the 8139 does have a built-in PHY, although
76  * rather than using an MDIO serial interface like most other NICs, the
77  * PHY registers are directly accessible through the 8139's register
78  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
79  * filter.
80  *
81  * The 8129 chip is an older version of the 8139 that uses an external PHY
82  * chip. The 8129 has a serial MDIO interface for accessing the MII where
83  * the 8139 lets you directly access the on-board PHY registers. We need
84  * to select which interface to use depending on the chip type.
85  */
86 
87 #include "opt_polling.h"
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/module.h>
97 #include <sys/socket.h>
98 #include <sys/thread2.h>
99 
100 #include <net/if.h>
101 #include <net/ifq_var.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 
107 #include <net/bpf.h>
108 
109 #include <machine/bus_pio.h>
110 #include <machine/bus_memio.h>
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #include <dev/netif/mii_layer/mii.h>
117 #include <dev/netif/mii_layer/miivar.h>
118 
119 #include <bus/pci/pcireg.h>
120 #include <bus/pci/pcivar.h>
121 
122 /* "controller miibus0" required.  See GENERIC if you get errors here. */
123 #include "miibus_if.h"
124 
125 /*
126  * Default to using PIO access for this driver. On SMP systems,
127  * there appear to be problems with memory mapped mode: it looks like
128  * doing too many memory mapped access back to back in rapid succession
129  * can hang the bus. I'm inclined to blame this on crummy design/construction
130  * on the part of RealTek. Memory mapped mode does appear to work on
131  * uniprocessor systems though.
132  */
133 #define RL_USEIOSPACE
134 
135 #include <dev/netif/rl/if_rlreg.h>
136 
137 /*
138  * Various supported device vendors/types and their names.
139  */
140 static struct rl_type {
141 	uint16_t	 rl_vid;
142 	uint16_t	 rl_did;
143 	const char	*rl_name;
144 } rl_devs[] = {
145 	{ RT_VENDORID, RT_DEVICEID_8129,
146 		"RealTek 8129 10/100BaseTX" },
147 	{ RT_VENDORID, RT_DEVICEID_8139,
148 		"RealTek 8139 10/100BaseTX" },
149 	{ RT_VENDORID, RT_DEVICEID_8138,
150 		"RealTek 8139 10/100BaseTX CardBus" },
151 	{ ACCTON_VENDORID, ACCTON_DEVICEID_5030,
152 		"Accton MPX 5030/5038 10/100BaseTX" },
153 	{ DELTA_VENDORID, DELTA_DEVICEID_8139,
154 		"Delta Electronics 8139 10/100BaseTX" },
155 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139,
156 		"Addtron Technolgy 8139 10/100BaseTX" },
157 	{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS,
158 		"D-Link DFE-530TX+ 10/100BaseTX" },
159 	{ DLINK_VENDORID, DLINK_DEVICEID_690TXD,
160 		"D-Link DFE-690TX 10/100BaseTX" },
161 	{ NORTEL_VENDORID, ACCTON_DEVICEID_5030,
162 		"Nortel Networks 10/100BaseTX" },
163 	{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF,
164 		"Peppercon AG ROL/F" },
165 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD,
166 		"Corega FEther CB-TXD" },
167 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD,
168 		"Corega FEtherII CB-TXD" },
169 	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX,
170 		"Planex FNW-3800-TX" },
171 	{ 0, 0, NULL }
172 };
173 
174 static int	rl_probe(device_t);
175 static int	rl_attach(device_t);
176 static int	rl_detach(device_t);
177 
178 static int	rl_encap(struct rl_softc *, struct mbuf * );
179 
180 static void	rl_rxeof(struct rl_softc *);
181 static void	rl_txeof(struct rl_softc *);
182 static void	rl_intr(void *);
183 static void	rl_tick(void *);
184 static void	rl_start(struct ifnet *);
185 static int	rl_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
186 static void	rl_init(void *);
187 static void	rl_stop	(struct rl_softc *);
188 static void	rl_watchdog(struct ifnet *);
189 static int	rl_suspend(device_t);
190 static int	rl_resume(device_t);
191 static void	rl_shutdown(device_t);
192 static int	rl_ifmedia_upd(struct ifnet *);
193 static void	rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
194 
195 static void	rl_eeprom_putbyte(struct rl_softc *, int);
196 static void	rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
197 static void	rl_read_eeprom(struct rl_softc *, caddr_t, int, int, int);
198 static void	rl_mii_sync(struct rl_softc *);
199 static void	rl_mii_send(struct rl_softc *, uint32_t, int);
200 static int	rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
201 static int	rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
202 
203 static int	rl_miibus_readreg(device_t, int, int);
204 static int	rl_miibus_writereg(device_t, int, int, int);
205 static void	rl_miibus_statchg(device_t);
206 
207 static void	rl_setmulti(struct rl_softc *);
208 static void	rl_reset(struct rl_softc *);
209 static void	rl_list_tx_init(struct rl_softc *);
210 
211 static void	rl_dma_map_rxbuf(void *, bus_dma_segment_t *, int, int);
212 static void	rl_dma_map_txbuf(void *, bus_dma_segment_t *, int, int);
213 #ifdef DEVICE_POLLING
214 static poll_handler_t rl_poll;
215 #endif
216 
217 #ifdef RL_USEIOSPACE
218 #define	RL_RES			SYS_RES_IOPORT
219 #define	RL_RID			RL_PCI_LOIO
220 #else
221 #define	RL_RES			SYS_RES_MEMORY
222 #define	RL_RID			RL_PCI_LOMEM
223 #endif
224 
225 static device_method_t rl_methods[] = {
226 	/* Device interface */
227 	DEVMETHOD(device_probe,		rl_probe),
228 	DEVMETHOD(device_attach,	rl_attach),
229 	DEVMETHOD(device_detach,	rl_detach),
230 	DEVMETHOD(device_suspend,	rl_suspend),
231 	DEVMETHOD(device_resume,	rl_resume),
232 	DEVMETHOD(device_shutdown,	rl_shutdown),
233 
234 	/* bus interface */
235 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
236 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
237 
238 	/* MII interface */
239 	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
240 	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
241 	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
242 
243 	{ 0, 0 }
244 };
245 
246 static DEFINE_CLASS_0(rl, rl_driver, rl_methods, sizeof(struct rl_softc));
247 static devclass_t rl_devclass;
248 
249 DECLARE_DUMMY_MODULE(if_rl);
250 DRIVER_MODULE(if_rl, pci, rl_driver, rl_devclass, 0, 0);
251 DRIVER_MODULE(if_rl, cardbus, rl_driver, rl_devclass, 0, 0);
252 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
253 MODULE_DEPEND(if_rl, miibus, 1, 1, 1);
254 
255 #define EE_SET(x)					\
256 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) | (x))
257 
258 #define EE_CLR(x)					\
259 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) & ~(x))
260 
261 static void
262 rl_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
263 {
264 	struct rl_softc *sc = arg;
265 
266 	CSR_WRITE_4(sc, RL_RXADDR, segs->ds_addr & 0xFFFFFFFF);
267 }
268 
269 static void
270 rl_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
271 {
272 	struct rl_softc *sc = arg;
273 
274 	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), segs->ds_addr & 0xFFFFFFFF);
275 }
276 
277 /*
278  * Send a read command and address to the EEPROM, check for ACK.
279  */
280 static void
281 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
282 {
283 	int d, i;
284 
285 	d = addr | sc->rl_eecmd_read;
286 
287 	/*
288 	 * Feed in each bit and strobe the clock.
289 	 */
290 	for (i = 0x400; i; i >>= 1) {
291 		if (d & i)
292 			EE_SET(RL_EE_DATAIN);
293 		else
294 			EE_CLR(RL_EE_DATAIN);
295 		DELAY(100);
296 		EE_SET(RL_EE_CLK);
297 		DELAY(150);
298 		EE_CLR(RL_EE_CLK);
299 		DELAY(100);
300 	}
301 }
302 
303 /*
304  * Read a word of data stored in the EEPROM at address 'addr.'
305  */
306 static void
307 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
308 {
309 	int i;
310 	uint16_t word = 0;
311 
312 	/* Enter EEPROM access mode. */
313 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
314 
315 	/*
316 	 * Send address of word we want to read.
317 	 */
318 	rl_eeprom_putbyte(sc, addr);
319 
320 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
321 
322 	/*
323 	 * Start reading bits from EEPROM.
324 	 */
325 	for (i = 0x8000; i; i >>= 1) {
326 		EE_SET(RL_EE_CLK);
327 		DELAY(100);
328 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
329 			word |= i;
330 		EE_CLR(RL_EE_CLK);
331 		DELAY(100);
332 	}
333 
334 	/* Turn off EEPROM access mode. */
335 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
336 
337 	*dest = word;
338 }
339 
340 /*
341  * Read a sequence of words from the EEPROM.
342  */
343 static void
344 rl_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt, int swap)
345 {
346 	int i;
347 	u_int16_t word = 0, *ptr;
348 
349 	for (i = 0; i < cnt; i++) {
350 		rl_eeprom_getword(sc, off + i, &word);
351 		ptr = (u_int16_t *)(dest + (i * 2));
352 		if (swap)
353 			*ptr = ntohs(word);
354 		else
355 			*ptr = word;
356 	}
357 }
358 
359 
360 /*
361  * MII access routines are provided for the 8129, which
362  * doesn't have a built-in PHY. For the 8139, we fake things
363  * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
364  * direct access PHY registers.
365  */
366 #define MII_SET(x)							\
367 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) | x)
368 
369 #define MII_CLR(x)							\
370 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) & ~x)
371 
372 /*
373  * Sync the PHYs by setting data bit and strobing the clock 32 times.
374  */
375 static void
376 rl_mii_sync(struct rl_softc *sc)
377 {
378 	int i;
379 
380 	MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
381 
382 	for (i = 0; i < 32; i++) {
383 		MII_SET(RL_MII_CLK);
384 		DELAY(1);
385 		MII_CLR(RL_MII_CLK);
386 		DELAY(1);
387 	}
388 }
389 
390 /*
391  * Clock a series of bits through the MII.
392  */
393 static void
394 rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
395 {
396 	int i;
397 
398 	MII_CLR(RL_MII_CLK);
399 
400 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
401 		if (bits & i)
402 			MII_SET(RL_MII_DATAOUT);
403 		else
404 			MII_CLR(RL_MII_DATAOUT);
405 		DELAY(1);
406 		MII_CLR(RL_MII_CLK);
407 		DELAY(1);
408 		MII_SET(RL_MII_CLK);
409 	}
410 }
411 
412 /*
413  * Read an PHY register through the MII.
414  */
415 static int
416 rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
417 {
418 	int ack, i;
419 
420 	crit_enter();
421 
422 	/*
423 	 * Set up frame for RX.
424 	 */
425 	frame->mii_stdelim = RL_MII_STARTDELIM;
426 	frame->mii_opcode = RL_MII_READOP;
427 	frame->mii_turnaround = 0;
428 	frame->mii_data = 0;
429 
430 	CSR_WRITE_2(sc, RL_MII, 0);
431 
432 	/*
433  	 * Turn on data xmit.
434 	 */
435 	MII_SET(RL_MII_DIR);
436 
437 	rl_mii_sync(sc);
438 
439 	/*
440 	 * Send command/address info.
441 	 */
442 	rl_mii_send(sc, frame->mii_stdelim, 2);
443 	rl_mii_send(sc, frame->mii_opcode, 2);
444 	rl_mii_send(sc, frame->mii_phyaddr, 5);
445 	rl_mii_send(sc, frame->mii_regaddr, 5);
446 
447 	/* Idle bit */
448 	MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
449 	DELAY(1);
450 	MII_SET(RL_MII_CLK);
451 	DELAY(1);
452 
453 	/* Turn off xmit. */
454 	MII_CLR(RL_MII_DIR);
455 
456 	/* Check for ack */
457 	MII_CLR(RL_MII_CLK);
458 	DELAY(1);
459 	ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
460 	MII_SET(RL_MII_CLK);
461 	DELAY(1);
462 
463 	/*
464 	 * Now try reading data bits. If the ack failed, we still
465 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
466 	 */
467 	if (ack) {
468 		for(i = 0; i < 16; i++) {
469 			MII_CLR(RL_MII_CLK);
470 			DELAY(1);
471 			MII_SET(RL_MII_CLK);
472 			DELAY(1);
473 		}
474 	} else {
475 		for (i = 0x8000; i; i >>= 1) {
476 			MII_CLR(RL_MII_CLK);
477 			DELAY(1);
478 			if (!ack) {
479 				if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
480 					frame->mii_data |= i;
481 				DELAY(1);
482 			}
483 			MII_SET(RL_MII_CLK);
484 			DELAY(1);
485 		}
486 	}
487 
488 	MII_CLR(RL_MII_CLK);
489 	DELAY(1);
490 	MII_SET(RL_MII_CLK);
491 	DELAY(1);
492 
493 	crit_exit();
494 
495 	return(ack ? 1 : 0);
496 }
497 
498 /*
499  * Write to a PHY register through the MII.
500  */
501 static int
502 rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
503 {
504 	crit_enter();
505 
506 	/*
507 	 * Set up frame for TX.
508 	 */
509 	frame->mii_stdelim = RL_MII_STARTDELIM;
510 	frame->mii_opcode = RL_MII_WRITEOP;
511 	frame->mii_turnaround = RL_MII_TURNAROUND;
512 
513 	/*
514  	 * Turn on data output.
515 	 */
516 	MII_SET(RL_MII_DIR);
517 
518 	rl_mii_sync(sc);
519 
520 	rl_mii_send(sc, frame->mii_stdelim, 2);
521 	rl_mii_send(sc, frame->mii_opcode, 2);
522 	rl_mii_send(sc, frame->mii_phyaddr, 5);
523 	rl_mii_send(sc, frame->mii_regaddr, 5);
524 	rl_mii_send(sc, frame->mii_turnaround, 2);
525 	rl_mii_send(sc, frame->mii_data, 16);
526 
527 	/* Idle bit. */
528 	MII_SET(RL_MII_CLK);
529 	DELAY(1);
530 	MII_CLR(RL_MII_CLK);
531 	DELAY(1);
532 
533 	/*
534 	 * Turn off xmit.
535 	 */
536 	MII_CLR(RL_MII_DIR);
537 
538 	crit_exit();
539 
540 	return(0);
541 }
542 
543 static int
544 rl_miibus_readreg(device_t dev, int phy, int reg)
545 {
546 	struct rl_softc *sc;
547 	struct rl_mii_frame frame;
548 	uint16_t rval = 0;
549 	uint16_t rl8139_reg = 0;
550 
551 	sc = device_get_softc(dev);
552 
553 	if (sc->rl_type == RL_8139) {
554 		/* Pretend the internal PHY is only at address 0 */
555 		if (phy)
556 			return(0);
557 		switch (reg) {
558 		case MII_BMCR:
559 			rl8139_reg = RL_BMCR;
560 			break;
561 		case MII_BMSR:
562 			rl8139_reg = RL_BMSR;
563 			break;
564 		case MII_ANAR:
565 			rl8139_reg = RL_ANAR;
566 			break;
567 		case MII_ANER:
568 			rl8139_reg = RL_ANER;
569 			break;
570 		case MII_ANLPAR:
571 			rl8139_reg = RL_LPAR;
572 			break;
573 		case MII_PHYIDR1:
574 		case MII_PHYIDR2:
575 			return(0);
576 			break;
577 		/*
578 		 * Allow the rlphy driver to read the media status
579 		 * register. If we have a link partner which does not
580 		 * support NWAY, this is the register which will tell
581 		 * us the results of parallel detection.
582 		 */
583 		case RL_MEDIASTAT:
584 			rval = CSR_READ_1(sc, RL_MEDIASTAT);
585 			return(rval);
586 		default:
587 			device_printf(dev, "bad phy register\n");
588 			return(0);
589 		}
590 		rval = CSR_READ_2(sc, rl8139_reg);
591 		return(rval);
592 	}
593 
594 	bzero(&frame, sizeof(frame));
595 
596 	frame.mii_phyaddr = phy;
597 	frame.mii_regaddr = reg;
598 	rl_mii_readreg(sc, &frame);
599 
600 	return(frame.mii_data);
601 }
602 
603 static int
604 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
605 {
606 	struct rl_softc *sc;
607 	struct rl_mii_frame frame;
608 	u_int16_t rl8139_reg = 0;
609 
610 	sc = device_get_softc(dev);
611 
612 	if (sc->rl_type == RL_8139) {
613 		/* Pretend the internal PHY is only at address 0 */
614 		if (phy)
615 			return(0);
616 		switch (reg) {
617 		case MII_BMCR:
618 			rl8139_reg = RL_BMCR;
619 			break;
620 		case MII_BMSR:
621 			rl8139_reg = RL_BMSR;
622 			break;
623 		case MII_ANAR:
624 			rl8139_reg = RL_ANAR;
625 			break;
626 		case MII_ANER:
627 			rl8139_reg = RL_ANER;
628 			break;
629 		case MII_ANLPAR:
630 			rl8139_reg = RL_LPAR;
631 			break;
632 		case MII_PHYIDR1:
633 		case MII_PHYIDR2:
634 			return(0);
635 		default:
636 			device_printf(dev, "bad phy register\n");
637 			return(0);
638 		}
639 		CSR_WRITE_2(sc, rl8139_reg, data);
640 		return(0);
641 	}
642 
643 	bzero(&frame, sizeof(frame));
644 
645 	frame.mii_phyaddr = phy;
646 	frame.mii_regaddr = reg;
647 	frame.mii_data = data;
648 
649 	rl_mii_writereg(sc, &frame);
650 
651 	return(0);
652 }
653 
654 static void
655 rl_miibus_statchg(device_t dev)
656 {
657 }
658 
659 /*
660  * Program the 64-bit multicast hash filter.
661  */
662 static void
663 rl_setmulti(struct rl_softc *sc)
664 {
665 	struct ifnet *ifp;
666 	int h = 0;
667 	uint32_t hashes[2] = { 0, 0 };
668 	struct ifmultiaddr *ifma;
669 	uint32_t rxfilt;
670 	int mcnt = 0;
671 
672 	ifp = &sc->arpcom.ac_if;
673 
674 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
675 
676 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
677 		rxfilt |= RL_RXCFG_RX_MULTI;
678 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
679 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
680 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
681 		return;
682 	}
683 
684 	/* first, zot all the existing hash bits */
685 	CSR_WRITE_4(sc, RL_MAR0, 0);
686 	CSR_WRITE_4(sc, RL_MAR4, 0);
687 
688 	/* now program new ones */
689 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
690 		if (ifma->ifma_addr->sa_family != AF_LINK)
691 			continue;
692 		h = ether_crc32_be(
693 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
694 		    ETHER_ADDR_LEN) >> 26;
695 		if (h < 32)
696 			hashes[0] |= (1 << h);
697 		else
698 			hashes[1] |= (1 << (h - 32));
699 		mcnt++;
700 	}
701 
702 	if (mcnt)
703 		rxfilt |= RL_RXCFG_RX_MULTI;
704 	else
705 		rxfilt &= ~RL_RXCFG_RX_MULTI;
706 
707 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
708 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
709 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
710 }
711 
712 static void
713 rl_reset(struct rl_softc *sc)
714 {
715 	int i;
716 
717 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
718 
719 	for (i = 0; i < RL_TIMEOUT; i++) {
720 		DELAY(10);
721 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
722 			break;
723 	}
724 	if (i == RL_TIMEOUT)
725 		device_printf(sc->rl_dev, "reset never completed!\n");
726 }
727 
728 /*
729  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
730  * IDs against our list and return a device name if we find a match.
731  *
732  * Return with a value < 0 to give re(4) a change to attach.
733  */
734 static int
735 rl_probe(device_t dev)
736 {
737 	struct rl_type *t;
738 	uint16_t product = pci_get_device(dev);
739 	uint16_t vendor = pci_get_vendor(dev);
740 
741 	for (t = rl_devs; t->rl_name != NULL; t++) {
742 		if (vendor == t->rl_vid && product == t->rl_did) {
743 			device_set_desc(dev, t->rl_name);
744 			return(-100);
745 		}
746 	}
747 
748 	return(ENXIO);
749 }
750 
751 /*
752  * Attach the interface. Allocate softc structures, do ifmedia
753  * setup and ethernet/BPF attach.
754  */
755 static int
756 rl_attach(device_t dev)
757 {
758 	uint8_t eaddr[ETHER_ADDR_LEN];
759 	uint16_t as[3];
760 	struct rl_softc *sc;
761 	struct ifnet *ifp;
762 	uint16_t rl_did = 0;
763 	int error = 0, rid, i;
764 
765 	sc = device_get_softc(dev);
766 	sc->rl_dev = dev;
767 
768 	/*
769 	 * Handle power management nonsense.
770 	 */
771 
772 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
773 		uint32_t iobase, membase, irq;
774 
775 		/* Save important PCI config data. */
776 		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
777 		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
778 		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
779 
780 		/* Reset the power state. */
781 		device_printf(dev, "chip is is in D%d power mode "
782 			      "-- setting to D0\n", pci_get_powerstate(dev));
783 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
784 
785 		/* Restore PCI config data. */
786 		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
787 		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
788 		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
789 	}
790 
791 	pci_enable_busmaster(dev);
792 
793 	rid = RL_RID;
794 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, RF_ACTIVE);
795 
796 	if (sc->rl_res == NULL) {
797 		device_printf(dev, "couldn't map ports/memory\n");
798 		error = ENXIO;
799 		goto fail;
800 	}
801 
802 	sc->rl_btag = rman_get_bustag(sc->rl_res);
803 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
804 
805 	rid = 0;
806 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
807 					    RF_SHAREABLE | RF_ACTIVE);
808 
809 	if (sc->rl_irq == NULL) {
810 		device_printf(dev, "couldn't map interrupt\n");
811 		error = ENXIO;
812 		goto fail;
813 	}
814 
815 	callout_init(&sc->rl_stat_timer);
816 
817 	/* Reset the adapter. */
818 	rl_reset(sc);
819 
820 	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
821 	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
822 	if (rl_did != 0x8129)
823 		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
824 
825 	/*
826 	 * Get station address from the EEPROM.
827 	 */
828 	rl_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
829 	for (i = 0; i < 3; i++) {
830 		eaddr[(i * 2) + 0] = as[i] & 0xff;
831 		eaddr[(i * 2) + 1] = as[i] >> 8;
832 	}
833 
834 	/*
835 	 * Now read the exact device type from the EEPROM to find
836 	 * out if it's an 8129 or 8139.
837 	 */
838 	rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, 1, 0);
839 
840 	if (rl_did == RT_DEVICEID_8139 || rl_did == ACCTON_DEVICEID_5030 ||
841 	    rl_did == DELTA_DEVICEID_8139 || rl_did == ADDTRON_DEVICEID_8139 ||
842 	    rl_did == DLINK_DEVICEID_530TXPLUS || rl_did == RT_DEVICEID_8138 ||
843 	    rl_did == DLINK_DEVICEID_690TXD ||
844 	    rl_did == COREGA_DEVICEID_FETHERCBTXD ||
845 	    rl_did == COREGA_DEVICEID_FETHERIICBTXD ||
846 	    rl_did == PLANEX_DEVICEID_FNW3800TX)
847 		sc->rl_type = RL_8139;
848 	else if (rl_did == RT_DEVICEID_8129)
849 		sc->rl_type = RL_8129;
850 	else {
851 		device_printf(dev, "unknown device ID: %x\n", rl_did);
852 		error = ENXIO;
853 		goto fail;
854 	}
855 
856 #define	RL_NSEG_NEW 32
857 	error = bus_dma_tag_create(NULL,			/* parent */
858 				   1, 0,			/* alignment, boundary */
859 				   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
860 				   BUS_SPACE_MAXADDR,		/* highaddr */
861 				   NULL, NULL,			/* filter, filterarg */
862 				   MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
863 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
864 				   BUS_DMA_ALLOCNOW,		/* flags */
865 				   &sc->rl_parent_tag);
866 
867 	if (error) {
868 		device_printf(dev, "can't create parent tag\n");
869 		goto fail;
870 	}
871 
872 	/*
873 	 * Now allocate a tag for the DMA descriptor lists.
874 	 * All of our lists are allocated as a contiguous block
875 	 * of memory.
876 	 */
877 	error = bus_dma_tag_create(sc->rl_parent_tag,		/* parent */
878 				   1, 0,			/* alignment, boundary */
879 				   BUS_SPACE_MAXADDR,		/* lowaddr */
880 				   BUS_SPACE_MAXADDR,		/* highaddr */
881 				   NULL, NULL,			/* filter, filterarg */
882 				   RL_RXBUFLEN + 1518, 1,	/* maxsize, nsegments */
883 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
884 				   0,				/* flags */
885 				   &sc->rl_tag);
886 
887 	if (error) {
888 		device_printf(dev, "can't create RX tag\n");
889 		goto fail;
890 	}
891 
892 	/*
893 	 * Now allocate a chunk of DMA-able memory based on the tag
894 	 * we just created.
895 	 */
896 	error = bus_dmamem_alloc(sc->rl_tag, (void **)&sc->rl_cdata.rl_rx_buf,
897 				 BUS_DMA_WAITOK, &sc->rl_cdata.rl_rx_dmamap);
898 
899 	if (error) {
900 		device_printf(dev, "can't allocate RX memory!\n");
901 		error = ENXIO;
902 		goto fail;
903 	}
904 
905 	/* Leave a few bytes before the start of the RX ring buffer. */
906 	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
907 	sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t);
908 
909 	/* Do MII setup */
910 	if (mii_phy_probe(dev, &sc->rl_miibus, rl_ifmedia_upd,
911 			  rl_ifmedia_sts)) {
912 		device_printf(dev, "MII without any phy!\n");
913 		error = ENXIO;
914 		goto fail;
915 	}
916 
917 	ifp = &sc->arpcom.ac_if;
918 	ifp->if_softc = sc;
919 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
920 	ifp->if_mtu = ETHERMTU;
921 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
922 	ifp->if_ioctl = rl_ioctl;
923 	ifp->if_start = rl_start;
924 	ifp->if_watchdog = rl_watchdog;
925 	ifp->if_init = rl_init;
926 	ifp->if_baudrate = 10000000;
927 	ifp->if_capabilities = IFCAP_VLAN_MTU;
928 #ifdef DEVICE_POLLING
929 	ifp->if_poll = rl_poll;
930 #endif
931 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
932 	ifq_set_ready(&ifp->if_snd);
933 
934 	/*
935 	 * Call MI attach routine.
936 	 */
937 	ether_ifattach(ifp, eaddr);
938 
939 	error = bus_setup_intr(dev, sc->rl_irq, 0, rl_intr,
940 			       sc, &sc->rl_intrhand, NULL);
941 
942 	if (error) {
943 		device_printf(dev, "couldn't set up irq\n");
944 		ether_ifdetach(ifp);
945 		goto fail;
946 	}
947 
948 	return(0);
949 
950 fail:
951 	rl_detach(dev);
952 	return(error);
953 }
954 
955 static int
956 rl_detach(device_t dev)
957 {
958 	struct rl_softc *sc;
959 	struct ifnet *ifp;
960 
961 	sc = device_get_softc(dev);
962 	ifp = &sc->arpcom.ac_if;
963 
964 	crit_enter();
965 
966 	if (device_is_attached(dev)) {
967 		rl_stop(sc);
968 		ether_ifdetach(ifp);
969 	}
970 
971 	if (sc->rl_miibus)
972 		device_delete_child(dev, sc->rl_miibus);
973 	bus_generic_detach(dev);
974 
975 	if (sc->rl_intrhand)
976 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
977 
978 	crit_exit();
979 
980 	if (sc->rl_irq)
981 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
982 	if (sc->rl_res)
983 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
984 
985 	if (sc->rl_cdata.rl_rx_buf) {
986 		bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
987 		bus_dmamem_free(sc->rl_tag, sc->rl_cdata.rl_rx_buf,
988 				sc->rl_cdata.rl_rx_dmamap);
989 	}
990 	if (sc->rl_tag)
991 		bus_dma_tag_destroy(sc->rl_tag);
992 	if (sc->rl_parent_tag)
993 		bus_dma_tag_destroy(sc->rl_parent_tag);
994 
995 	return(0);
996 }
997 
998 /*
999  * Initialize the transmit descriptors.
1000  */
1001 static void
1002 rl_list_tx_init(struct rl_softc *sc)
1003 {
1004 	struct rl_chain_data *cd;
1005 	int i;
1006 
1007 	cd = &sc->rl_cdata;
1008 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1009 		cd->rl_tx_chain[i] = NULL;
1010 		CSR_WRITE_4(sc,
1011 		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1012 	}
1013 
1014 	sc->rl_cdata.cur_tx = 0;
1015 	sc->rl_cdata.last_tx = 0;
1016 }
1017 
1018 /*
1019  * A frame has been uploaded: pass the resulting mbuf chain up to
1020  * the higher level protocols.
1021  *
1022  * You know there's something wrong with a PCI bus-master chip design
1023  * when you have to use m_devget().
1024  *
1025  * The receive operation is badly documented in the datasheet, so I'll
1026  * attempt to document it here. The driver provides a buffer area and
1027  * places its base address in the RX buffer start address register.
1028  * The chip then begins copying frames into the RX buffer. Each frame
1029  * is preceded by a 32-bit RX status word which specifies the length
1030  * of the frame and certain other status bits. Each frame (starting with
1031  * the status word) is also 32-bit aligned. The frame length is in the
1032  * first 16 bits of the status word; the lower 15 bits correspond with
1033  * the 'rx status register' mentioned in the datasheet.
1034  *
1035  * Note: to make the Alpha happy, the frame payload needs to be aligned
1036  * on a 32-bit boundary. To achieve this, we cheat a bit by copying from
1037  * the ring buffer starting at an address two bytes before the actual
1038  * data location. We can then shave off the first two bytes using m_adj().
1039  * The reason we do this is because m_devget() doesn't let us specify an
1040  * offset into the mbuf storage space, so we have to artificially create
1041  * one. The ring is allocated in such a way that there are a few unused
1042  * bytes of space preceecing it so that it will be safe for us to do the
1043  * 2-byte backstep even if reading from the ring at offset 0.
1044  */
1045 static void
1046 rl_rxeof(struct rl_softc *sc)
1047 {
1048         struct mbuf *m;
1049         struct ifnet *ifp;
1050 	int total_len = 0;
1051 	uint32_t rxstat;
1052 	caddr_t rxbufpos;
1053 	int wrap = 0;
1054 	uint16_t cur_rx, limit, max_bytes, rx_bytes = 0;
1055 
1056 	ifp = &sc->arpcom.ac_if;
1057 
1058 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1059 			BUS_DMASYNC_POSTREAD);
1060 
1061 	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1062 
1063 	/* Do not try to read past this point. */
1064 	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1065 
1066 	if (limit < cur_rx)
1067 		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1068 	else
1069 		max_bytes = limit - cur_rx;
1070 
1071 	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1072 #ifdef DEVICE_POLLING
1073 		if (ifp->if_flags & IFF_POLLING) {
1074 			if (sc->rxcycles <= 0)
1075 				break;
1076 			sc->rxcycles--;
1077 		}
1078 #endif /* DEVICE_POLLING */
1079 		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1080 		rxstat = le32toh(*(uint32_t *)rxbufpos);
1081 
1082 		/*
1083 		 * Here's a totally undocumented fact for you. When the
1084 		 * RealTek chip is in the process of copying a packet into
1085 		 * RAM for you, the length will be 0xfff0. If you spot a
1086 		 * packet header with this value, you need to stop. The
1087 		 * datasheet makes absolutely no mention of this and
1088 		 * RealTek should be shot for this.
1089 		 */
1090 		if ((uint16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
1091 			break;
1092 
1093 		if ((rxstat & RL_RXSTAT_RXOK) == 0) {
1094 			ifp->if_ierrors++;
1095 			rl_init(sc);
1096 			return;
1097 		}
1098 
1099 		/* No errors; receive the packet. */
1100 		total_len = rxstat >> 16;
1101 		rx_bytes += total_len + 4;
1102 
1103 		/*
1104 		 * XXX The RealTek chip includes the CRC with every
1105 		 * received frame, and there's no way to turn this
1106 		 * behavior off (at least, I can't find anything in
1107 	 	 * the manual that explains how to do it) so we have
1108 		 * to trim off the CRC manually.
1109 		 */
1110 		total_len -= ETHER_CRC_LEN;
1111 
1112 		/*
1113 		 * Avoid trying to read more bytes than we know
1114 		 * the chip has prepared for us.
1115 		 */
1116 		if (rx_bytes > max_bytes)
1117 			break;
1118 
1119 		rxbufpos = sc->rl_cdata.rl_rx_buf +
1120 			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1121 
1122 		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1123 			rxbufpos = sc->rl_cdata.rl_rx_buf;
1124 
1125 		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1126 
1127 		if (total_len > wrap) {
1128 			/*
1129 			 * Fool m_devget() into thinking we want to copy
1130 			 * the whole buffer so we don't end up fragmenting
1131 			 * the data.
1132 			 */
1133 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1134 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1135 			if (m == NULL) {
1136 				ifp->if_ierrors++;
1137 			} else {
1138 				m_adj(m, RL_ETHER_ALIGN);
1139 				m_copyback(m, wrap, total_len - wrap,
1140 					sc->rl_cdata.rl_rx_buf);
1141 			}
1142 			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1143 		} else {
1144 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1145 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1146 			if (m == NULL) {
1147 				ifp->if_ierrors++;
1148 			} else
1149 				m_adj(m, RL_ETHER_ALIGN);
1150 			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1151 		}
1152 
1153 		/*
1154 		 * Round up to 32-bit boundary.
1155 		 */
1156 		cur_rx = (cur_rx + 3) & ~3;
1157 		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1158 
1159 		if (m == NULL)
1160 			continue;
1161 
1162 		ifp->if_ipackets++;
1163 
1164 		(*ifp->if_input)(ifp, m);
1165 	}
1166 }
1167 
1168 /*
1169  * A frame was downloaded to the chip. It's safe for us to clean up
1170  * the list buffers.
1171  */
1172 static void
1173 rl_txeof(struct rl_softc *sc)
1174 {
1175 	struct ifnet *ifp;
1176 	uint32_t txstat;
1177 
1178 	ifp = &sc->arpcom.ac_if;
1179 
1180 	/*
1181 	 * Go through our tx list and free mbufs for those
1182 	 * frames that have been uploaded.
1183 	 */
1184 	do {
1185 		if (RL_LAST_TXMBUF(sc) == NULL)
1186 			break;
1187 		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1188 		if ((txstat & (RL_TXSTAT_TX_OK | RL_TXSTAT_TX_UNDERRUN |
1189 			       RL_TXSTAT_TXABRT)) == 0)
1190 			break;
1191 
1192 		ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1193 
1194 		bus_dmamap_unload(sc->rl_tag, RL_LAST_DMAMAP(sc));
1195 		bus_dmamap_destroy(sc->rl_tag, RL_LAST_DMAMAP(sc));
1196 		m_freem(RL_LAST_TXMBUF(sc));
1197 		RL_LAST_TXMBUF(sc) = NULL;
1198 		RL_INC(sc->rl_cdata.last_tx);
1199 
1200 		if (txstat & RL_TXSTAT_TX_UNDERRUN) {
1201 			sc->rl_txthresh += 32;
1202 			if (sc->rl_txthresh > RL_TX_THRESH_MAX)
1203 				sc->rl_txthresh = RL_TX_THRESH_MAX;
1204 		}
1205 
1206 		if (txstat & RL_TXSTAT_TX_OK) {
1207 			ifp->if_opackets++;
1208 		} else {
1209 			ifp->if_oerrors++;
1210 			if (txstat & (RL_TXSTAT_TXABRT | RL_TXSTAT_OUTOFWIN))
1211 				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1212 		}
1213 		ifp->if_flags &= ~IFF_OACTIVE;
1214 	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1215 
1216 	if (RL_LAST_TXMBUF(sc) == NULL)
1217 		ifp->if_timer = 0;
1218 	else if (ifp->if_timer == 0)
1219 		ifp->if_timer = 5;
1220 }
1221 
1222 static void
1223 rl_tick(void *xsc)
1224 {
1225 	struct rl_softc *sc = xsc;
1226 	struct mii_data *mii;
1227 
1228 	crit_enter();
1229 
1230 	mii = device_get_softc(sc->rl_miibus);
1231 	mii_tick(mii);
1232 
1233 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1234 
1235 	crit_exit();
1236 }
1237 
1238 #ifdef DEVICE_POLLING
1239 
1240 static void
1241 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1242 {
1243 	struct rl_softc *sc = ifp->if_softc;
1244 
1245 	switch(cmd) {
1246 	case POLL_REGISTER:
1247 		/* disable interrupts */
1248                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
1249 		break;
1250 	case POLL_DEREGISTER:
1251 		/* enable interrupts */
1252 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1253 		break;
1254 	default:
1255 		sc->rxcycles = count;
1256 		rl_rxeof(sc);
1257 		rl_txeof(sc);
1258 		if (!ifq_is_empty(&ifp->if_snd))
1259 			rl_start(ifp);
1260 
1261 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1262 			uint16_t status;
1263 
1264 			status = CSR_READ_2(sc, RL_ISR);
1265 			if (status == 0xffff)
1266 				return;
1267 			if (status)
1268 				CSR_WRITE_2(sc, RL_ISR, status);
1269 
1270 			/*
1271 			 * XXX check behaviour on receiver stalls.
1272 			 */
1273 
1274 			if (status & RL_ISR_SYSTEM_ERR) {
1275 				rl_reset(sc);
1276 				rl_init(sc);
1277 			}
1278 		}
1279 		break;
1280 	}
1281 }
1282 #endif /* DEVICE_POLLING */
1283 
1284 static void
1285 rl_intr(void *arg)
1286 {
1287 	struct rl_softc *sc;
1288 	struct ifnet *ifp;
1289 	uint16_t status;
1290 
1291 	sc = arg;
1292 
1293 	if (sc->suspended)
1294 		return;
1295 
1296 	ifp = &sc->arpcom.ac_if;
1297 
1298 	for (;;) {
1299 		status = CSR_READ_2(sc, RL_ISR);
1300 		/* If the card has gone away, the read returns 0xffff. */
1301 		if (status == 0xffff)
1302 			break;
1303 
1304 		if (status != 0)
1305 			CSR_WRITE_2(sc, RL_ISR, status);
1306 
1307 		if ((status & RL_INTRS) == 0)
1308 			break;
1309 
1310 		if (status & RL_ISR_RX_OK)
1311 			rl_rxeof(sc);
1312 
1313 		if (status & RL_ISR_RX_ERR)
1314 			rl_rxeof(sc);
1315 
1316 		if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
1317 			rl_txeof(sc);
1318 
1319 		if (status & RL_ISR_SYSTEM_ERR) {
1320 			rl_reset(sc);
1321 			rl_init(sc);
1322 		}
1323 
1324 	}
1325 
1326 	if (!ifq_is_empty(&ifp->if_snd))
1327 		rl_start(ifp);
1328 }
1329 
1330 /*
1331  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1332  * pointers to the fragment pointers.
1333  */
1334 static int
1335 rl_encap(struct rl_softc *sc, struct mbuf *m_head)
1336 {
1337 	struct mbuf *m_new = NULL;
1338 
1339 	/*
1340 	 * The RealTek is brain damaged and wants longword-aligned
1341 	 * TX buffers, plus we can only have one fragment buffer
1342 	 * per packet. We have to copy pretty much all the time.
1343 	 */
1344 	m_new = m_defrag(m_head, MB_DONTWAIT);
1345 
1346 	if (m_new == NULL) {
1347 		m_freem(m_head);
1348 		return(1);
1349 	}
1350 	m_head = m_new;
1351 
1352 	/* Pad frames to at least 60 bytes. */
1353 	if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) {
1354 		/*
1355 		 * Make security concious people happy: zero out the
1356 		 * bytes in the pad area, since we don't know what
1357 		 * this mbuf cluster buffer's previous user might
1358 		 * have left in it.
1359 	 	 */
1360 		bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
1361 		     RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1362 		m_head->m_pkthdr.len +=
1363 		    (RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1364 		m_head->m_len = m_head->m_pkthdr.len;
1365 	}
1366 
1367 	RL_CUR_TXMBUF(sc) = m_head;
1368 
1369 	return(0);
1370 }
1371 
1372 /*
1373  * Main transmit routine.
1374  */
1375 
1376 static void
1377 rl_start(struct ifnet *ifp)
1378 {
1379 	struct rl_softc *sc;
1380 	struct mbuf *m_head = NULL;
1381 
1382 	sc = ifp->if_softc;
1383 
1384 	while(RL_CUR_TXMBUF(sc) == NULL) {
1385 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1386 		if (m_head == NULL)
1387 			break;
1388 
1389 		if (rl_encap(sc, m_head))
1390 			break;
1391 
1392 		/*
1393 		 * If there's a BPF listener, bounce a copy of this frame
1394 		 * to him.
1395 		 */
1396 		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1397 
1398 		/*
1399 		 * Transmit the frame.
1400 	 	 */
1401 		bus_dmamap_create(sc->rl_tag, 0, &RL_CUR_DMAMAP(sc));
1402 		bus_dmamap_load(sc->rl_tag, RL_CUR_DMAMAP(sc),
1403 				mtod(RL_CUR_TXMBUF(sc), void *),
1404 				RL_CUR_TXMBUF(sc)->m_pkthdr.len,
1405 				rl_dma_map_txbuf, sc, 0);
1406 		bus_dmamap_sync(sc->rl_tag, RL_CUR_DMAMAP(sc),
1407 				BUS_DMASYNC_PREREAD);
1408 		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1409 		    RL_TXTHRESH(sc->rl_txthresh) |
1410 		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1411 
1412 		RL_INC(sc->rl_cdata.cur_tx);
1413 
1414 		/*
1415 		 * Set a timeout in case the chip goes out to lunch.
1416 		 */
1417 		ifp->if_timer = 5;
1418 	}
1419 
1420 	/*
1421 	 * We broke out of the loop because all our TX slots are
1422 	 * full. Mark the NIC as busy until it drains some of the
1423 	 * packets from the queue.
1424 	 */
1425 	if (RL_CUR_TXMBUF(sc) != NULL)
1426 		ifp->if_flags |= IFF_OACTIVE;
1427 }
1428 
1429 static void
1430 rl_init(void *xsc)
1431 {
1432 	struct rl_softc *sc = xsc;
1433 	struct ifnet *ifp = &sc->arpcom.ac_if;
1434 	struct mii_data *mii;
1435 	uint32_t rxcfg = 0;
1436 
1437 	crit_enter();
1438 
1439 	mii = device_get_softc(sc->rl_miibus);
1440 
1441 	/*
1442 	 * Cancel pending I/O and free all RX/TX buffers.
1443 	 */
1444 	rl_stop(sc);
1445 
1446 	/*
1447 	 * Init our MAC address.  Even though the chipset documentation
1448 	 * doesn't mention it, we need to enter "Config register write enable"
1449 	 * mode to modify the ID registers.
1450 	 */
1451 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1452 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
1453 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1454 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
1455 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1456 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1457 
1458 	/* Init the RX buffer pointer register. */
1459 	bus_dmamap_load(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1460 			sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN, rl_dma_map_rxbuf,
1461 			sc, 0);
1462 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1463 			BUS_DMASYNC_PREWRITE);
1464 
1465 	/* Init TX descriptors. */
1466 	rl_list_tx_init(sc);
1467 
1468 	/*
1469 	 * Enable transmit and receive.
1470 	 */
1471 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1472 
1473 	/*
1474 	 * Set the initial TX and RX configuration.
1475 	 */
1476 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1477 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1478 
1479 	/* Set the individual bit to receive frames for this host only. */
1480 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
1481 	rxcfg |= RL_RXCFG_RX_INDIV;
1482 
1483 	/* If we want promiscuous mode, set the allframes bit. */
1484 	if (ifp->if_flags & IFF_PROMISC) {
1485 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
1486 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1487 	} else {
1488 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1489 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1490 	}
1491 
1492 	/*
1493 	 * Set capture broadcast bit to capture broadcast frames.
1494 	 */
1495 	if (ifp->if_flags & IFF_BROADCAST) {
1496 		rxcfg |= RL_RXCFG_RX_BROAD;
1497 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1498 	} else {
1499 		rxcfg &= ~RL_RXCFG_RX_BROAD;
1500 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1501 	}
1502 
1503 	/*
1504 	 * Program the multicast filter, if necessary.
1505 	 */
1506 	rl_setmulti(sc);
1507 
1508 #ifdef DEVICE_POLLING
1509 	/*
1510 	 * Only enable interrupts if we are polling, keep them off otherwise.
1511 	 */
1512 	if (ifp->if_flags & IFF_POLLING)
1513 		CSR_WRITE_2(sc, RL_IMR, 0);
1514 	else
1515 #endif /* DEVICE_POLLING */
1516 	/*
1517 	 * Enable interrupts.
1518 	 */
1519 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1520 
1521 	/* Set initial TX threshold */
1522 	sc->rl_txthresh = RL_TX_THRESH_INIT;
1523 
1524 	/* Start RX/TX process. */
1525 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1526 
1527 	/* Enable receiver and transmitter. */
1528 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1529 
1530 	mii_mediachg(mii);
1531 
1532 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1533 
1534 	ifp->if_flags |= IFF_RUNNING;
1535 	ifp->if_flags &= ~IFF_OACTIVE;
1536 
1537 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1538 
1539 	crit_exit();
1540 }
1541 
1542 /*
1543  * Set media options.
1544  */
1545 static int
1546 rl_ifmedia_upd(struct ifnet *ifp)
1547 {
1548 	struct rl_softc *sc;
1549 	struct mii_data *mii;
1550 
1551 	sc = ifp->if_softc;
1552 	mii = device_get_softc(sc->rl_miibus);
1553 	mii_mediachg(mii);
1554 
1555 	return(0);
1556 }
1557 
1558 /*
1559  * Report current media status.
1560  */
1561 static void
1562 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1563 {
1564 	struct rl_softc *sc = ifp->if_softc;
1565 	struct mii_data *mii = device_get_softc(sc->rl_miibus);
1566 
1567 	mii_pollstat(mii);
1568 	ifmr->ifm_active = mii->mii_media_active;
1569 	ifmr->ifm_status = mii->mii_media_status;
1570 }
1571 
1572 static int
1573 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1574 {
1575 	struct rl_softc *sc = ifp->if_softc;
1576 	struct ifreq *ifr = (struct ifreq *) data;
1577 	struct mii_data	*mii;
1578 	int error = 0;
1579 
1580 	crit_enter();
1581 
1582 	switch (command) {
1583 	case SIOCSIFFLAGS:
1584 		if (ifp->if_flags & IFF_UP) {
1585 			rl_init(sc);
1586 		} else {
1587 			if (ifp->if_flags & IFF_RUNNING)
1588 				rl_stop(sc);
1589 		}
1590 		error = 0;
1591 		break;
1592 	case SIOCADDMULTI:
1593 	case SIOCDELMULTI:
1594 		rl_setmulti(sc);
1595 		error = 0;
1596 		break;
1597 	case SIOCGIFMEDIA:
1598 	case SIOCSIFMEDIA:
1599 		mii = device_get_softc(sc->rl_miibus);
1600 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1601 		break;
1602 	case SIOCSIFCAP:
1603 		break;
1604 	default:
1605 		error = ether_ioctl(ifp, command, data);
1606 		break;
1607 	}
1608 
1609 	crit_exit();
1610 
1611 	return(error);
1612 }
1613 
1614 static void
1615 rl_watchdog(struct ifnet *ifp)
1616 {
1617 	struct rl_softc *sc = ifp->if_softc;
1618 
1619 	device_printf(sc->rl_dev, "watchdog timeout\n");
1620 
1621 	crit_enter();
1622 
1623 	ifp->if_oerrors++;
1624 
1625 	rl_txeof(sc);
1626 	rl_rxeof(sc);
1627 	rl_init(sc);
1628 
1629 	crit_exit();
1630 }
1631 
1632 /*
1633  * Stop the adapter and free any mbufs allocated to the
1634  * RX and TX lists.
1635  */
1636 static void
1637 rl_stop(struct rl_softc *sc)
1638 {
1639 	struct ifnet *ifp = &sc->arpcom.ac_if;
1640 	int i;
1641 
1642 	ifp->if_timer = 0;
1643 
1644 	callout_stop(&sc->rl_stat_timer);
1645 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1646 
1647 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1648 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1649 	bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
1650 
1651 	/*
1652 	 * Free the TX list buffers.
1653 	 */
1654 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1655 		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1656 			bus_dmamap_unload(sc->rl_tag,
1657 					  sc->rl_cdata.rl_tx_dmamap[i]);
1658 			bus_dmamap_destroy(sc->rl_tag,
1659 					   sc->rl_cdata.rl_tx_dmamap[i]);
1660 			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1661 			sc->rl_cdata.rl_tx_chain[i] = NULL;
1662 			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1663 				    0x0000000);
1664 		}
1665 	}
1666 }
1667 
1668 /*
1669  * Stop all chip I/O so that the kernel's probe routines don't
1670  * get confused by errant DMAs when rebooting.
1671  */
1672 static void
1673 rl_shutdown(device_t dev)
1674 {
1675 	struct rl_softc *sc;
1676 
1677 	sc = device_get_softc(dev);
1678 
1679 	rl_stop(sc);
1680 }
1681 
1682 /*
1683  * Device suspend routine.  Stop the interface and save some PCI
1684  * settings in case the BIOS doesn't restore them properly on
1685  * resume.
1686  */
1687 static int
1688 rl_suspend(device_t dev)
1689 {
1690 	struct rl_softc	*sc = device_get_softc(dev);
1691 	int i;
1692 
1693 	rl_stop(sc);
1694 
1695 	for (i = 0; i < 5; i++)
1696 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
1697 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
1698 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
1699 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1700 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1701 
1702 	sc->suspended = 1;
1703 
1704 	return (0);
1705 }
1706 
1707 /*
1708  * Device resume routine.  Restore some PCI settings in case the BIOS
1709  * doesn't, re-enable busmastering, and restart the interface if
1710  * appropriate.
1711  */
1712 static int rl_resume(device_t dev)
1713 {
1714 	struct rl_softc *sc = device_get_softc(dev);
1715 	struct ifnet *ifp = &sc->arpcom.ac_if;
1716 	int		i;
1717 
1718 	/* better way to do this? */
1719 	for (i = 0; i < 5; i++)
1720 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1721 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1722 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1723 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1724 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1725 
1726 	/* reenable busmastering */
1727 	pci_enable_busmaster(dev);
1728 	pci_enable_io(dev, RL_RES);
1729 
1730         /* reinitialize interface if necessary */
1731         if (ifp->if_flags & IFF_UP)
1732                 rl_init(sc);
1733 
1734 	sc->suspended = 0;
1735 
1736 	return (0);
1737 }
1738