xref: /dragonfly/sys/dev/netif/rl/if_rl.c (revision 3f625015)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_rl.c,v 1.38.2.16 2003/03/05 18:42:33 njl Exp $
33  * $DragonFly: src/sys/dev/netif/rl/if_rl.c,v 1.35 2007/05/13 18:33:57 swildner Exp $
34  */
35 
36 /*
37  * RealTek 8129/8139 PCI NIC driver
38  *
39  * Supports several extremely cheap PCI 10/100 adapters based on
40  * the RealTek chipset. Datasheets can be obtained from
41  * www.realtek.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
50  * probably the worst PCI ethernet controller ever made, with the possible
51  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
52  * DMA, but it has a terrible interface that nullifies any performance
53  * gains that bus-master DMA usually offers.
54  *
55  * For transmission, the chip offers a series of four TX descriptor
56  * registers. Each transmit frame must be in a contiguous buffer, aligned
57  * on a longword (32-bit) boundary. This means we almost always have to
58  * do mbuf copies in order to transmit a frame, except in the unlikely
59  * case where a) the packet fits into a single mbuf, and b) the packet
60  * is 32-bit aligned within the mbuf's data area. The presence of only
61  * four descriptor registers means that we can never have more than four
62  * packets queued for transmission at any one time.
63  *
64  * Reception is not much better. The driver has to allocate a single large
65  * buffer area (up to 64K in size) into which the chip will DMA received
66  * frames. Because we don't know where within this region received packets
67  * will begin or end, we have no choice but to copy data from the buffer
68  * area into mbufs in order to pass the packets up to the higher protocol
69  * levels.
70  *
71  * It's impossible given this rotten design to really achieve decent
72  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
73  * some equally overmuscled CPU to drive it.
74  *
75  * On the bright side, the 8139 does have a built-in PHY, although
76  * rather than using an MDIO serial interface like most other NICs, the
77  * PHY registers are directly accessible through the 8139's register
78  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
79  * filter.
80  *
81  * The 8129 chip is an older version of the 8139 that uses an external PHY
82  * chip. The 8129 has a serial MDIO interface for accessing the MII where
83  * the 8139 lets you directly access the on-board PHY registers. We need
84  * to select which interface to use depending on the chip type.
85  */
86 
87 #include "opt_polling.h"
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/module.h>
97 #include <sys/socket.h>
98 #include <sys/serialize.h>
99 #include <sys/bus.h>
100 #include <sys/rman.h>
101 #include <sys/thread2.h>
102 
103 #include <net/if.h>
104 #include <net/ifq_var.h>
105 #include <net/if_arp.h>
106 #include <net/ethernet.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 
110 #include <net/bpf.h>
111 
112 #include <dev/netif/mii_layer/mii.h>
113 #include <dev/netif/mii_layer/miivar.h>
114 
115 #include <bus/pci/pcidevs.h>
116 #include <bus/pci/pcireg.h>
117 #include <bus/pci/pcivar.h>
118 
119 /* "controller miibus0" required.  See GENERIC if you get errors here. */
120 #include "miibus_if.h"
121 
122 /*
123  * Default to using PIO access for this driver. On SMP systems,
124  * there appear to be problems with memory mapped mode: it looks like
125  * doing too many memory mapped access back to back in rapid succession
126  * can hang the bus. I'm inclined to blame this on crummy design/construction
127  * on the part of RealTek. Memory mapped mode does appear to work on
128  * uniprocessor systems though.
129  */
130 #define RL_USEIOSPACE
131 
132 #include <dev/netif/rl/if_rlreg.h>
133 
134 /*
135  * Various supported device vendors/types and their names.
136  */
137 static struct rl_type {
138 	uint16_t	 rl_vid;
139 	uint16_t	 rl_did;
140 	const char	*rl_name;
141 } rl_devs[] = {
142 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8129,
143 		"RealTek 8129 10/100BaseTX" },
144 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
145 		"RealTek 8139 10/100BaseTX" },
146 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139B,
147 		"RealTek 8139 10/100BaseTX CardBus" },
148 	{ PCI_VENDOR_ACCTON, PCI_PRODUCT_ACCTON_MPX5030,
149 		"Accton MPX 5030/5038 10/100BaseTX" },
150 	{ PCI_VENDOR_DELTA, PCI_PRODUCT_DELTA_8139,
151 		"Delta Electronics 8139 10/100BaseTX" },
152 	{ PCI_VENDOR_ADDTRON, PCI_PRODUCT_ADDTRON_8139,
153 		"Addtron Technology 8139 10/100BaseTX" },
154 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DFE530TXPLUS,
155 		"D-Link DFE-530TX+ 10/100BaseTX" },
156 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DFE690TXD,
157 		"D-Link DFE-690TX 10/100BaseTX" },
158 	{ PCI_VENDOR_NORTEL, PCI_PRODUCT_NORTEL_BAYSTACK_21,
159 		"Nortel Networks 10/100BaseTX" },
160 	{ PCI_VENDOR_PEPPERCON, PCI_PRODUCT_PEPPERCON_ROLF,
161 		"Peppercon AG ROL/F" },
162 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CB_TXD,
163 		"Corega FEther CB-TXD" },
164 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_2CB_TXD,
165 		"Corega FEtherII CB-TXD" },
166 	{ PCI_VENDOR_PLANEX, PCI_PRODUCT_PLANEX_FNW_3800_TX,
167 		"Planex FNW-3800-TX" },
168 	{ 0, 0, NULL }
169 };
170 
171 static int	rl_probe(device_t);
172 static int	rl_attach(device_t);
173 static int	rl_detach(device_t);
174 
175 static int	rl_encap(struct rl_softc *, struct mbuf * );
176 
177 static void	rl_rxeof(struct rl_softc *);
178 static void	rl_txeof(struct rl_softc *);
179 static void	rl_intr(void *);
180 static void	rl_tick(void *);
181 static void	rl_start(struct ifnet *);
182 static int	rl_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
183 static void	rl_init(void *);
184 static void	rl_stop	(struct rl_softc *);
185 static void	rl_watchdog(struct ifnet *);
186 static int	rl_suspend(device_t);
187 static int	rl_resume(device_t);
188 static void	rl_shutdown(device_t);
189 static int	rl_ifmedia_upd(struct ifnet *);
190 static void	rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
191 
192 static void	rl_eeprom_putbyte(struct rl_softc *, int);
193 static void	rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
194 static void	rl_read_eeprom(struct rl_softc *, caddr_t, int, int, int);
195 static void	rl_mii_sync(struct rl_softc *);
196 static void	rl_mii_send(struct rl_softc *, uint32_t, int);
197 static int	rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
198 static int	rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
199 
200 static int	rl_miibus_readreg(device_t, int, int);
201 static int	rl_miibus_writereg(device_t, int, int, int);
202 static void	rl_miibus_statchg(device_t);
203 
204 static void	rl_setmulti(struct rl_softc *);
205 static void	rl_reset(struct rl_softc *);
206 static void	rl_list_tx_init(struct rl_softc *);
207 
208 static void	rl_dma_map_rxbuf(void *, bus_dma_segment_t *, int, int);
209 static void	rl_dma_map_txbuf(void *, bus_dma_segment_t *, int, int);
210 #ifdef DEVICE_POLLING
211 static poll_handler_t rl_poll;
212 #endif
213 
214 #ifdef RL_USEIOSPACE
215 #define	RL_RES			SYS_RES_IOPORT
216 #define	RL_RID			RL_PCI_LOIO
217 #else
218 #define	RL_RES			SYS_RES_MEMORY
219 #define	RL_RID			RL_PCI_LOMEM
220 #endif
221 
222 static device_method_t rl_methods[] = {
223 	/* Device interface */
224 	DEVMETHOD(device_probe,		rl_probe),
225 	DEVMETHOD(device_attach,	rl_attach),
226 	DEVMETHOD(device_detach,	rl_detach),
227 	DEVMETHOD(device_suspend,	rl_suspend),
228 	DEVMETHOD(device_resume,	rl_resume),
229 	DEVMETHOD(device_shutdown,	rl_shutdown),
230 
231 	/* bus interface */
232 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
233 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
234 
235 	/* MII interface */
236 	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
237 	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
238 	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
239 
240 	{ 0, 0 }
241 };
242 
243 static DEFINE_CLASS_0(rl, rl_driver, rl_methods, sizeof(struct rl_softc));
244 static devclass_t rl_devclass;
245 
246 DECLARE_DUMMY_MODULE(if_rl);
247 DRIVER_MODULE(if_rl, pci, rl_driver, rl_devclass, 0, 0);
248 DRIVER_MODULE(if_rl, cardbus, rl_driver, rl_devclass, 0, 0);
249 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
250 MODULE_DEPEND(if_rl, miibus, 1, 1, 1);
251 
252 #define EE_SET(x)					\
253 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) | (x))
254 
255 #define EE_CLR(x)					\
256 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) & ~(x))
257 
258 static void
259 rl_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
260 {
261 	struct rl_softc *sc = arg;
262 
263 	CSR_WRITE_4(sc, RL_RXADDR, segs->ds_addr & 0xFFFFFFFF);
264 }
265 
266 static void
267 rl_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
268 {
269 	struct rl_softc *sc = arg;
270 
271 	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), segs->ds_addr & 0xFFFFFFFF);
272 }
273 
274 /*
275  * Send a read command and address to the EEPROM, check for ACK.
276  */
277 static void
278 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
279 {
280 	int d, i;
281 
282 	d = addr | sc->rl_eecmd_read;
283 
284 	/*
285 	 * Feed in each bit and strobe the clock.
286 	 */
287 	for (i = 0x400; i; i >>= 1) {
288 		if (d & i)
289 			EE_SET(RL_EE_DATAIN);
290 		else
291 			EE_CLR(RL_EE_DATAIN);
292 		DELAY(100);
293 		EE_SET(RL_EE_CLK);
294 		DELAY(150);
295 		EE_CLR(RL_EE_CLK);
296 		DELAY(100);
297 	}
298 }
299 
300 /*
301  * Read a word of data stored in the EEPROM at address 'addr.'
302  */
303 static void
304 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
305 {
306 	int i;
307 	uint16_t word = 0;
308 
309 	/* Enter EEPROM access mode. */
310 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
311 
312 	/*
313 	 * Send address of word we want to read.
314 	 */
315 	rl_eeprom_putbyte(sc, addr);
316 
317 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
318 
319 	/*
320 	 * Start reading bits from EEPROM.
321 	 */
322 	for (i = 0x8000; i; i >>= 1) {
323 		EE_SET(RL_EE_CLK);
324 		DELAY(100);
325 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
326 			word |= i;
327 		EE_CLR(RL_EE_CLK);
328 		DELAY(100);
329 	}
330 
331 	/* Turn off EEPROM access mode. */
332 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
333 
334 	*dest = word;
335 }
336 
337 /*
338  * Read a sequence of words from the EEPROM.
339  */
340 static void
341 rl_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt, int swap)
342 {
343 	int i;
344 	u_int16_t word = 0, *ptr;
345 
346 	for (i = 0; i < cnt; i++) {
347 		rl_eeprom_getword(sc, off + i, &word);
348 		ptr = (u_int16_t *)(dest + (i * 2));
349 		if (swap)
350 			*ptr = ntohs(word);
351 		else
352 			*ptr = word;
353 	}
354 }
355 
356 
357 /*
358  * MII access routines are provided for the 8129, which
359  * doesn't have a built-in PHY. For the 8139, we fake things
360  * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
361  * direct access PHY registers.
362  */
363 #define MII_SET(x)							\
364 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) | x)
365 
366 #define MII_CLR(x)							\
367 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) & ~x)
368 
369 /*
370  * Sync the PHYs by setting data bit and strobing the clock 32 times.
371  */
372 static void
373 rl_mii_sync(struct rl_softc *sc)
374 {
375 	int i;
376 
377 	MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
378 
379 	for (i = 0; i < 32; i++) {
380 		MII_SET(RL_MII_CLK);
381 		DELAY(1);
382 		MII_CLR(RL_MII_CLK);
383 		DELAY(1);
384 	}
385 }
386 
387 /*
388  * Clock a series of bits through the MII.
389  */
390 static void
391 rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
392 {
393 	int i;
394 
395 	MII_CLR(RL_MII_CLK);
396 
397 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
398 		if (bits & i)
399 			MII_SET(RL_MII_DATAOUT);
400 		else
401 			MII_CLR(RL_MII_DATAOUT);
402 		DELAY(1);
403 		MII_CLR(RL_MII_CLK);
404 		DELAY(1);
405 		MII_SET(RL_MII_CLK);
406 	}
407 }
408 
409 /*
410  * Read an PHY register through the MII.
411  */
412 static int
413 rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
414 {
415 	int ack, i;
416 
417 	/*
418 	 * Set up frame for RX.
419 	 */
420 	frame->mii_stdelim = RL_MII_STARTDELIM;
421 	frame->mii_opcode = RL_MII_READOP;
422 	frame->mii_turnaround = 0;
423 	frame->mii_data = 0;
424 
425 	CSR_WRITE_2(sc, RL_MII, 0);
426 
427 	/*
428  	 * Turn on data xmit.
429 	 */
430 	MII_SET(RL_MII_DIR);
431 
432 	rl_mii_sync(sc);
433 
434 	/*
435 	 * Send command/address info.
436 	 */
437 	rl_mii_send(sc, frame->mii_stdelim, 2);
438 	rl_mii_send(sc, frame->mii_opcode, 2);
439 	rl_mii_send(sc, frame->mii_phyaddr, 5);
440 	rl_mii_send(sc, frame->mii_regaddr, 5);
441 
442 	/* Idle bit */
443 	MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
444 	DELAY(1);
445 	MII_SET(RL_MII_CLK);
446 	DELAY(1);
447 
448 	/* Turn off xmit. */
449 	MII_CLR(RL_MII_DIR);
450 
451 	/* Check for ack */
452 	MII_CLR(RL_MII_CLK);
453 	DELAY(1);
454 	ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
455 	MII_SET(RL_MII_CLK);
456 	DELAY(1);
457 
458 	/*
459 	 * Now try reading data bits. If the ack failed, we still
460 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
461 	 */
462 	if (ack) {
463 		for(i = 0; i < 16; i++) {
464 			MII_CLR(RL_MII_CLK);
465 			DELAY(1);
466 			MII_SET(RL_MII_CLK);
467 			DELAY(1);
468 		}
469 	} else {
470 		for (i = 0x8000; i; i >>= 1) {
471 			MII_CLR(RL_MII_CLK);
472 			DELAY(1);
473 			if (!ack) {
474 				if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
475 					frame->mii_data |= i;
476 				DELAY(1);
477 			}
478 			MII_SET(RL_MII_CLK);
479 			DELAY(1);
480 		}
481 	}
482 
483 	MII_CLR(RL_MII_CLK);
484 	DELAY(1);
485 	MII_SET(RL_MII_CLK);
486 	DELAY(1);
487 
488 	return(ack ? 1 : 0);
489 }
490 
491 /*
492  * Write to a PHY register through the MII.
493  */
494 static int
495 rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
496 {
497 	/*
498 	 * Set up frame for TX.
499 	 */
500 	frame->mii_stdelim = RL_MII_STARTDELIM;
501 	frame->mii_opcode = RL_MII_WRITEOP;
502 	frame->mii_turnaround = RL_MII_TURNAROUND;
503 
504 	/*
505  	 * Turn on data output.
506 	 */
507 	MII_SET(RL_MII_DIR);
508 
509 	rl_mii_sync(sc);
510 
511 	rl_mii_send(sc, frame->mii_stdelim, 2);
512 	rl_mii_send(sc, frame->mii_opcode, 2);
513 	rl_mii_send(sc, frame->mii_phyaddr, 5);
514 	rl_mii_send(sc, frame->mii_regaddr, 5);
515 	rl_mii_send(sc, frame->mii_turnaround, 2);
516 	rl_mii_send(sc, frame->mii_data, 16);
517 
518 	/* Idle bit. */
519 	MII_SET(RL_MII_CLK);
520 	DELAY(1);
521 	MII_CLR(RL_MII_CLK);
522 	DELAY(1);
523 
524 	/*
525 	 * Turn off xmit.
526 	 */
527 	MII_CLR(RL_MII_DIR);
528 
529 	return(0);
530 }
531 
532 static int
533 rl_miibus_readreg(device_t dev, int phy, int reg)
534 {
535 	struct rl_softc *sc;
536 	struct rl_mii_frame frame;
537 	uint16_t rval = 0;
538 	uint16_t rl8139_reg = 0;
539 
540 	sc = device_get_softc(dev);
541 
542 	if (sc->rl_type == RL_8139) {
543 		/* Pretend the internal PHY is only at address 0 */
544 		if (phy)
545 			return(0);
546 		switch (reg) {
547 		case MII_BMCR:
548 			rl8139_reg = RL_BMCR;
549 			break;
550 		case MII_BMSR:
551 			rl8139_reg = RL_BMSR;
552 			break;
553 		case MII_ANAR:
554 			rl8139_reg = RL_ANAR;
555 			break;
556 		case MII_ANER:
557 			rl8139_reg = RL_ANER;
558 			break;
559 		case MII_ANLPAR:
560 			rl8139_reg = RL_LPAR;
561 			break;
562 		case MII_PHYIDR1:
563 		case MII_PHYIDR2:
564 			return(0);
565 			break;
566 		/*
567 		 * Allow the rlphy driver to read the media status
568 		 * register. If we have a link partner which does not
569 		 * support NWAY, this is the register which will tell
570 		 * us the results of parallel detection.
571 		 */
572 		case RL_MEDIASTAT:
573 			rval = CSR_READ_1(sc, RL_MEDIASTAT);
574 			return(rval);
575 		default:
576 			device_printf(dev, "bad phy register\n");
577 			return(0);
578 		}
579 		rval = CSR_READ_2(sc, rl8139_reg);
580 		return(rval);
581 	}
582 
583 	bzero(&frame, sizeof(frame));
584 
585 	frame.mii_phyaddr = phy;
586 	frame.mii_regaddr = reg;
587 	rl_mii_readreg(sc, &frame);
588 
589 	return(frame.mii_data);
590 }
591 
592 static int
593 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
594 {
595 	struct rl_softc *sc;
596 	struct rl_mii_frame frame;
597 	u_int16_t rl8139_reg = 0;
598 
599 	sc = device_get_softc(dev);
600 
601 	if (sc->rl_type == RL_8139) {
602 		/* Pretend the internal PHY is only at address 0 */
603 		if (phy)
604 			return(0);
605 		switch (reg) {
606 		case MII_BMCR:
607 			rl8139_reg = RL_BMCR;
608 			break;
609 		case MII_BMSR:
610 			rl8139_reg = RL_BMSR;
611 			break;
612 		case MII_ANAR:
613 			rl8139_reg = RL_ANAR;
614 			break;
615 		case MII_ANER:
616 			rl8139_reg = RL_ANER;
617 			break;
618 		case MII_ANLPAR:
619 			rl8139_reg = RL_LPAR;
620 			break;
621 		case MII_PHYIDR1:
622 		case MII_PHYIDR2:
623 			return(0);
624 		default:
625 			device_printf(dev, "bad phy register\n");
626 			return(0);
627 		}
628 		CSR_WRITE_2(sc, rl8139_reg, data);
629 		return(0);
630 	}
631 
632 	bzero(&frame, sizeof(frame));
633 
634 	frame.mii_phyaddr = phy;
635 	frame.mii_regaddr = reg;
636 	frame.mii_data = data;
637 
638 	rl_mii_writereg(sc, &frame);
639 
640 	return(0);
641 }
642 
643 static void
644 rl_miibus_statchg(device_t dev)
645 {
646 }
647 
648 /*
649  * Program the 64-bit multicast hash filter.
650  */
651 static void
652 rl_setmulti(struct rl_softc *sc)
653 {
654 	struct ifnet *ifp;
655 	int h = 0;
656 	uint32_t hashes[2] = { 0, 0 };
657 	struct ifmultiaddr *ifma;
658 	uint32_t rxfilt;
659 	int mcnt = 0;
660 
661 	ifp = &sc->arpcom.ac_if;
662 
663 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
664 
665 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
666 		rxfilt |= RL_RXCFG_RX_MULTI;
667 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
668 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
669 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
670 		return;
671 	}
672 
673 	/* first, zot all the existing hash bits */
674 	CSR_WRITE_4(sc, RL_MAR0, 0);
675 	CSR_WRITE_4(sc, RL_MAR4, 0);
676 
677 	/* now program new ones */
678 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
679 		if (ifma->ifma_addr->sa_family != AF_LINK)
680 			continue;
681 		h = ether_crc32_be(
682 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
683 		    ETHER_ADDR_LEN) >> 26;
684 		if (h < 32)
685 			hashes[0] |= (1 << h);
686 		else
687 			hashes[1] |= (1 << (h - 32));
688 		mcnt++;
689 	}
690 
691 	if (mcnt)
692 		rxfilt |= RL_RXCFG_RX_MULTI;
693 	else
694 		rxfilt &= ~RL_RXCFG_RX_MULTI;
695 
696 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
697 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
698 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
699 }
700 
701 static void
702 rl_reset(struct rl_softc *sc)
703 {
704 	int i;
705 
706 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
707 
708 	for (i = 0; i < RL_TIMEOUT; i++) {
709 		DELAY(10);
710 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
711 			break;
712 	}
713 	if (i == RL_TIMEOUT)
714 		device_printf(sc->rl_dev, "reset never completed!\n");
715 }
716 
717 /*
718  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
719  * IDs against our list and return a device name if we find a match.
720  *
721  * Return with a value < 0 to give re(4) a change to attach.
722  */
723 static int
724 rl_probe(device_t dev)
725 {
726 	struct rl_type *t;
727 	uint16_t product = pci_get_device(dev);
728 	uint16_t vendor = pci_get_vendor(dev);
729 
730 	for (t = rl_devs; t->rl_name != NULL; t++) {
731 		if (vendor == t->rl_vid && product == t->rl_did) {
732 			device_set_desc(dev, t->rl_name);
733 			return(-100);
734 		}
735 	}
736 
737 	return(ENXIO);
738 }
739 
740 /*
741  * Attach the interface. Allocate softc structures, do ifmedia
742  * setup and ethernet/BPF attach.
743  */
744 static int
745 rl_attach(device_t dev)
746 {
747 	uint8_t eaddr[ETHER_ADDR_LEN];
748 	uint16_t as[3];
749 	struct rl_softc *sc;
750 	struct ifnet *ifp;
751 	uint16_t rl_did = 0;
752 	int error = 0, rid, i;
753 
754 	sc = device_get_softc(dev);
755 	sc->rl_dev = dev;
756 
757 	/*
758 	 * Handle power management nonsense.
759 	 */
760 
761 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
762 		uint32_t iobase, membase, irq;
763 
764 		/* Save important PCI config data. */
765 		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
766 		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
767 		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
768 
769 		/* Reset the power state. */
770 		device_printf(dev, "chip is is in D%d power mode "
771 			      "-- setting to D0\n", pci_get_powerstate(dev));
772 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
773 
774 		/* Restore PCI config data. */
775 		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
776 		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
777 		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
778 	}
779 
780 	pci_enable_busmaster(dev);
781 
782 	rid = RL_RID;
783 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, RF_ACTIVE);
784 
785 	if (sc->rl_res == NULL) {
786 		device_printf(dev, "couldn't map ports/memory\n");
787 		error = ENXIO;
788 		goto fail;
789 	}
790 
791 	sc->rl_btag = rman_get_bustag(sc->rl_res);
792 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
793 
794 	rid = 0;
795 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
796 					    RF_SHAREABLE | RF_ACTIVE);
797 
798 	if (sc->rl_irq == NULL) {
799 		device_printf(dev, "couldn't map interrupt\n");
800 		error = ENXIO;
801 		goto fail;
802 	}
803 
804 	callout_init(&sc->rl_stat_timer);
805 
806 	/* Reset the adapter. */
807 	rl_reset(sc);
808 
809 	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
810 	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
811 	if (rl_did != 0x8129)
812 		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
813 
814 	/*
815 	 * Get station address from the EEPROM.
816 	 */
817 	rl_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
818 	for (i = 0; i < 3; i++) {
819 		eaddr[(i * 2) + 0] = as[i] & 0xff;
820 		eaddr[(i * 2) + 1] = as[i] >> 8;
821 	}
822 
823 	/*
824 	 * Now read the exact device type from the EEPROM to find
825 	 * out if it's an 8129 or 8139.
826 	 */
827 	rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, 1, 0);
828 
829 	if (rl_did == PCI_PRODUCT_REALTEK_RT8139 ||
830 	    rl_did == PCI_PRODUCT_ACCTON_MPX5030 ||
831 	    rl_did == PCI_PRODUCT_DELTA_8139 ||
832 	    rl_did == PCI_PRODUCT_ADDTRON_8139 ||
833 	    rl_did == PCI_PRODUCT_DLINK_DFE530TXPLUS ||
834 	    rl_did == PCI_PRODUCT_REALTEK_RT8139B ||
835 	    rl_did == PCI_PRODUCT_DLINK_DFE690TXD ||
836 	    rl_did == PCI_PRODUCT_COREGA_CB_TXD ||
837 	    rl_did == PCI_PRODUCT_COREGA_2CB_TXD ||
838 	    rl_did == PCI_PRODUCT_PLANEX_FNW_3800_TX)
839 		sc->rl_type = RL_8139;
840 	else if (rl_did == PCI_PRODUCT_REALTEK_RT8129)
841 		sc->rl_type = RL_8129;
842 	else {
843 		device_printf(dev, "unknown device ID: %x\n", rl_did);
844 		error = ENXIO;
845 		goto fail;
846 	}
847 
848 #define	RL_NSEG_NEW 32
849 	error = bus_dma_tag_create(NULL,			/* parent */
850 				   1, 0,			/* alignment, boundary */
851 				   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
852 				   BUS_SPACE_MAXADDR,		/* highaddr */
853 				   NULL, NULL,			/* filter, filterarg */
854 				   MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
855 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
856 				   BUS_DMA_ALLOCNOW,		/* flags */
857 				   &sc->rl_parent_tag);
858 
859 	if (error) {
860 		device_printf(dev, "can't create parent tag\n");
861 		goto fail;
862 	}
863 
864 	/*
865 	 * Now allocate a tag for the DMA descriptor lists.
866 	 * All of our lists are allocated as a contiguous block
867 	 * of memory.
868 	 */
869 	error = bus_dma_tag_create(sc->rl_parent_tag,		/* parent */
870 				   1, 0,			/* alignment, boundary */
871 				   BUS_SPACE_MAXADDR,		/* lowaddr */
872 				   BUS_SPACE_MAXADDR,		/* highaddr */
873 				   NULL, NULL,			/* filter, filterarg */
874 				   RL_RXBUFLEN + 1518, 1,	/* maxsize, nsegments */
875 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
876 				   0,				/* flags */
877 				   &sc->rl_tag);
878 
879 	if (error) {
880 		device_printf(dev, "can't create RX tag\n");
881 		goto fail;
882 	}
883 
884 	/*
885 	 * Now allocate a chunk of DMA-able memory based on the tag
886 	 * we just created.
887 	 */
888 	error = bus_dmamem_alloc(sc->rl_tag, (void **)&sc->rl_cdata.rl_rx_buf,
889 				 BUS_DMA_WAITOK, &sc->rl_cdata.rl_rx_dmamap);
890 
891 	if (error) {
892 		device_printf(dev, "can't allocate RX memory!\n");
893 		error = ENXIO;
894 		goto fail;
895 	}
896 
897 	/* Leave a few bytes before the start of the RX ring buffer. */
898 	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
899 	sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t);
900 
901 	/* Do MII setup */
902 	if (mii_phy_probe(dev, &sc->rl_miibus, rl_ifmedia_upd,
903 			  rl_ifmedia_sts)) {
904 		device_printf(dev, "MII without any phy!\n");
905 		error = ENXIO;
906 		goto fail;
907 	}
908 
909 	ifp = &sc->arpcom.ac_if;
910 	ifp->if_softc = sc;
911 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
912 	ifp->if_mtu = ETHERMTU;
913 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
914 	ifp->if_ioctl = rl_ioctl;
915 	ifp->if_start = rl_start;
916 	ifp->if_watchdog = rl_watchdog;
917 	ifp->if_init = rl_init;
918 	ifp->if_baudrate = 10000000;
919 	ifp->if_capabilities = IFCAP_VLAN_MTU;
920 #ifdef DEVICE_POLLING
921 	ifp->if_poll = rl_poll;
922 #endif
923 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
924 	ifq_set_ready(&ifp->if_snd);
925 
926 	/*
927 	 * Call MI attach routine.
928 	 */
929 	ether_ifattach(ifp, eaddr, NULL);
930 
931 	error = bus_setup_intr(dev, sc->rl_irq, INTR_NETSAFE, rl_intr,
932 			       sc, &sc->rl_intrhand, ifp->if_serializer);
933 
934 	if (error) {
935 		device_printf(dev, "couldn't set up irq\n");
936 		ether_ifdetach(ifp);
937 		goto fail;
938 	}
939 
940 	return(0);
941 
942 fail:
943 	rl_detach(dev);
944 	return(error);
945 }
946 
947 static int
948 rl_detach(device_t dev)
949 {
950 	struct rl_softc *sc;
951 	struct ifnet *ifp;
952 
953 	sc = device_get_softc(dev);
954 	ifp = &sc->arpcom.ac_if;
955 
956 	if (device_is_attached(dev)) {
957 		lwkt_serialize_enter(ifp->if_serializer);
958 		rl_stop(sc);
959 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
960 		lwkt_serialize_exit(ifp->if_serializer);
961 
962 		ether_ifdetach(ifp);
963 	}
964 
965 	if (sc->rl_miibus)
966 		device_delete_child(dev, sc->rl_miibus);
967 	bus_generic_detach(dev);
968 
969 	if (sc->rl_irq)
970 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
971 	if (sc->rl_res)
972 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
973 
974 	if (sc->rl_cdata.rl_rx_buf) {
975 		bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
976 		bus_dmamem_free(sc->rl_tag, sc->rl_cdata.rl_rx_buf,
977 				sc->rl_cdata.rl_rx_dmamap);
978 	}
979 	if (sc->rl_tag)
980 		bus_dma_tag_destroy(sc->rl_tag);
981 	if (sc->rl_parent_tag)
982 		bus_dma_tag_destroy(sc->rl_parent_tag);
983 
984 	return(0);
985 }
986 
987 /*
988  * Initialize the transmit descriptors.
989  */
990 static void
991 rl_list_tx_init(struct rl_softc *sc)
992 {
993 	struct rl_chain_data *cd;
994 	int i;
995 
996 	cd = &sc->rl_cdata;
997 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
998 		cd->rl_tx_chain[i] = NULL;
999 		CSR_WRITE_4(sc,
1000 		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1001 	}
1002 
1003 	sc->rl_cdata.cur_tx = 0;
1004 	sc->rl_cdata.last_tx = 0;
1005 }
1006 
1007 /*
1008  * A frame has been uploaded: pass the resulting mbuf chain up to
1009  * the higher level protocols.
1010  *
1011  * You know there's something wrong with a PCI bus-master chip design
1012  * when you have to use m_devget().
1013  *
1014  * The receive operation is badly documented in the datasheet, so I'll
1015  * attempt to document it here. The driver provides a buffer area and
1016  * places its base address in the RX buffer start address register.
1017  * The chip then begins copying frames into the RX buffer. Each frame
1018  * is preceded by a 32-bit RX status word which specifies the length
1019  * of the frame and certain other status bits. Each frame (starting with
1020  * the status word) is also 32-bit aligned. The frame length is in the
1021  * first 16 bits of the status word; the lower 15 bits correspond with
1022  * the 'rx status register' mentioned in the datasheet.
1023  *
1024  * Note: to make the Alpha happy, the frame payload needs to be aligned
1025  * on a 32-bit boundary. To achieve this, we cheat a bit by copying from
1026  * the ring buffer starting at an address two bytes before the actual
1027  * data location. We can then shave off the first two bytes using m_adj().
1028  * The reason we do this is because m_devget() doesn't let us specify an
1029  * offset into the mbuf storage space, so we have to artificially create
1030  * one. The ring is allocated in such a way that there are a few unused
1031  * bytes of space preceecing it so that it will be safe for us to do the
1032  * 2-byte backstep even if reading from the ring at offset 0.
1033  */
1034 static void
1035 rl_rxeof(struct rl_softc *sc)
1036 {
1037         struct mbuf *m;
1038         struct ifnet *ifp;
1039 	int total_len = 0;
1040 	uint32_t rxstat;
1041 	caddr_t rxbufpos;
1042 	int wrap = 0;
1043 	uint16_t cur_rx, limit, max_bytes, rx_bytes = 0;
1044 
1045 	ifp = &sc->arpcom.ac_if;
1046 
1047 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1048 			BUS_DMASYNC_POSTREAD);
1049 
1050 	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1051 
1052 	/* Do not try to read past this point. */
1053 	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1054 
1055 	if (limit < cur_rx)
1056 		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1057 	else
1058 		max_bytes = limit - cur_rx;
1059 
1060 	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1061 #ifdef DEVICE_POLLING
1062 		if (ifp->if_flags & IFF_POLLING) {
1063 			if (sc->rxcycles <= 0)
1064 				break;
1065 			sc->rxcycles--;
1066 		}
1067 #endif /* DEVICE_POLLING */
1068 		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1069 		rxstat = le32toh(*(uint32_t *)rxbufpos);
1070 
1071 		/*
1072 		 * Here's a totally undocumented fact for you. When the
1073 		 * RealTek chip is in the process of copying a packet into
1074 		 * RAM for you, the length will be 0xfff0. If you spot a
1075 		 * packet header with this value, you need to stop. The
1076 		 * datasheet makes absolutely no mention of this and
1077 		 * RealTek should be shot for this.
1078 		 */
1079 		if ((uint16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
1080 			break;
1081 
1082 		if ((rxstat & RL_RXSTAT_RXOK) == 0) {
1083 			ifp->if_ierrors++;
1084 			rl_init(sc);
1085 			return;
1086 		}
1087 
1088 		/* No errors; receive the packet. */
1089 		total_len = rxstat >> 16;
1090 		rx_bytes += total_len + 4;
1091 
1092 		/*
1093 		 * XXX The RealTek chip includes the CRC with every
1094 		 * received frame, and there's no way to turn this
1095 		 * behavior off (at least, I can't find anything in
1096 	 	 * the manual that explains how to do it) so we have
1097 		 * to trim off the CRC manually.
1098 		 */
1099 		total_len -= ETHER_CRC_LEN;
1100 
1101 		/*
1102 		 * Avoid trying to read more bytes than we know
1103 		 * the chip has prepared for us.
1104 		 */
1105 		if (rx_bytes > max_bytes)
1106 			break;
1107 
1108 		rxbufpos = sc->rl_cdata.rl_rx_buf +
1109 			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1110 
1111 		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1112 			rxbufpos = sc->rl_cdata.rl_rx_buf;
1113 
1114 		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1115 
1116 		if (total_len > wrap) {
1117 			/*
1118 			 * Fool m_devget() into thinking we want to copy
1119 			 * the whole buffer so we don't end up fragmenting
1120 			 * the data.
1121 			 */
1122 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1123 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1124 			if (m == NULL) {
1125 				ifp->if_ierrors++;
1126 			} else {
1127 				m_adj(m, RL_ETHER_ALIGN);
1128 				m_copyback(m, wrap, total_len - wrap,
1129 					sc->rl_cdata.rl_rx_buf);
1130 			}
1131 			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1132 		} else {
1133 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1134 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1135 			if (m == NULL) {
1136 				ifp->if_ierrors++;
1137 			} else
1138 				m_adj(m, RL_ETHER_ALIGN);
1139 			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1140 		}
1141 
1142 		/*
1143 		 * Round up to 32-bit boundary.
1144 		 */
1145 		cur_rx = (cur_rx + 3) & ~3;
1146 		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1147 
1148 		if (m == NULL)
1149 			continue;
1150 
1151 		ifp->if_ipackets++;
1152 
1153 		ifp->if_input(ifp, m);
1154 	}
1155 }
1156 
1157 /*
1158  * A frame was downloaded to the chip. It's safe for us to clean up
1159  * the list buffers.
1160  */
1161 static void
1162 rl_txeof(struct rl_softc *sc)
1163 {
1164 	struct ifnet *ifp;
1165 	uint32_t txstat;
1166 
1167 	ifp = &sc->arpcom.ac_if;
1168 
1169 	/*
1170 	 * Go through our tx list and free mbufs for those
1171 	 * frames that have been uploaded.
1172 	 */
1173 	do {
1174 		if (RL_LAST_TXMBUF(sc) == NULL)
1175 			break;
1176 		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1177 		if ((txstat & (RL_TXSTAT_TX_OK | RL_TXSTAT_TX_UNDERRUN |
1178 			       RL_TXSTAT_TXABRT)) == 0)
1179 			break;
1180 
1181 		ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1182 
1183 		bus_dmamap_unload(sc->rl_tag, RL_LAST_DMAMAP(sc));
1184 		bus_dmamap_destroy(sc->rl_tag, RL_LAST_DMAMAP(sc));
1185 		m_freem(RL_LAST_TXMBUF(sc));
1186 		RL_LAST_TXMBUF(sc) = NULL;
1187 		RL_INC(sc->rl_cdata.last_tx);
1188 
1189 		if (txstat & RL_TXSTAT_TX_UNDERRUN) {
1190 			sc->rl_txthresh += 32;
1191 			if (sc->rl_txthresh > RL_TX_THRESH_MAX)
1192 				sc->rl_txthresh = RL_TX_THRESH_MAX;
1193 		}
1194 
1195 		if (txstat & RL_TXSTAT_TX_OK) {
1196 			ifp->if_opackets++;
1197 		} else {
1198 			ifp->if_oerrors++;
1199 			if (txstat & (RL_TXSTAT_TXABRT | RL_TXSTAT_OUTOFWIN))
1200 				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1201 		}
1202 		ifp->if_flags &= ~IFF_OACTIVE;
1203 	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1204 
1205 	if (RL_LAST_TXMBUF(sc) == NULL)
1206 		ifp->if_timer = 0;
1207 	else if (ifp->if_timer == 0)
1208 		ifp->if_timer = 5;
1209 }
1210 
1211 static void
1212 rl_tick(void *xsc)
1213 {
1214 	struct rl_softc *sc = xsc;
1215 	struct mii_data *mii;
1216 
1217 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1218 
1219 	mii = device_get_softc(sc->rl_miibus);
1220 	mii_tick(mii);
1221 
1222 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1223 
1224 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1225 }
1226 
1227 #ifdef DEVICE_POLLING
1228 
1229 static void
1230 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1231 {
1232 	struct rl_softc *sc = ifp->if_softc;
1233 
1234 	switch(cmd) {
1235 	case POLL_REGISTER:
1236 		/* disable interrupts */
1237                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
1238 		break;
1239 	case POLL_DEREGISTER:
1240 		/* enable interrupts */
1241 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1242 		break;
1243 	default:
1244 		sc->rxcycles = count;
1245 		rl_rxeof(sc);
1246 		rl_txeof(sc);
1247 		if (!ifq_is_empty(&ifp->if_snd))
1248 			rl_start(ifp);
1249 
1250 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1251 			uint16_t status;
1252 
1253 			status = CSR_READ_2(sc, RL_ISR);
1254 			if (status == 0xffff)
1255 				return;
1256 			if (status)
1257 				CSR_WRITE_2(sc, RL_ISR, status);
1258 
1259 			/*
1260 			 * XXX check behaviour on receiver stalls.
1261 			 */
1262 
1263 			if (status & RL_ISR_SYSTEM_ERR) {
1264 				rl_reset(sc);
1265 				rl_init(sc);
1266 			}
1267 		}
1268 		break;
1269 	}
1270 }
1271 #endif /* DEVICE_POLLING */
1272 
1273 static void
1274 rl_intr(void *arg)
1275 {
1276 	struct rl_softc *sc;
1277 	struct ifnet *ifp;
1278 	uint16_t status;
1279 
1280 	sc = arg;
1281 
1282 	if (sc->suspended)
1283 		return;
1284 
1285 	ifp = &sc->arpcom.ac_if;
1286 
1287 	for (;;) {
1288 		status = CSR_READ_2(sc, RL_ISR);
1289 		/* If the card has gone away, the read returns 0xffff. */
1290 		if (status == 0xffff)
1291 			break;
1292 
1293 		if (status != 0)
1294 			CSR_WRITE_2(sc, RL_ISR, status);
1295 
1296 		if ((status & RL_INTRS) == 0)
1297 			break;
1298 
1299 		if (status & RL_ISR_RX_OK)
1300 			rl_rxeof(sc);
1301 
1302 		if (status & RL_ISR_RX_ERR)
1303 			rl_rxeof(sc);
1304 
1305 		if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
1306 			rl_txeof(sc);
1307 
1308 		if (status & RL_ISR_SYSTEM_ERR) {
1309 			rl_reset(sc);
1310 			rl_init(sc);
1311 		}
1312 
1313 	}
1314 
1315 	if (!ifq_is_empty(&ifp->if_snd))
1316 		rl_start(ifp);
1317 }
1318 
1319 /*
1320  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1321  * pointers to the fragment pointers.
1322  */
1323 static int
1324 rl_encap(struct rl_softc *sc, struct mbuf *m_head)
1325 {
1326 	struct mbuf *m_new = NULL;
1327 
1328 	/*
1329 	 * The RealTek is brain damaged and wants longword-aligned
1330 	 * TX buffers, plus we can only have one fragment buffer
1331 	 * per packet. We have to copy pretty much all the time.
1332 	 */
1333 	m_new = m_defrag(m_head, MB_DONTWAIT);
1334 
1335 	if (m_new == NULL) {
1336 		m_freem(m_head);
1337 		return(1);
1338 	}
1339 	m_head = m_new;
1340 
1341 	/* Pad frames to at least 60 bytes. */
1342 	if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) {
1343 		/*
1344 		 * Make security concious people happy: zero out the
1345 		 * bytes in the pad area, since we don't know what
1346 		 * this mbuf cluster buffer's previous user might
1347 		 * have left in it.
1348 	 	 */
1349 		bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
1350 		     RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1351 		m_head->m_pkthdr.len +=
1352 		    (RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1353 		m_head->m_len = m_head->m_pkthdr.len;
1354 	}
1355 
1356 	RL_CUR_TXMBUF(sc) = m_head;
1357 
1358 	return(0);
1359 }
1360 
1361 /*
1362  * Main transmit routine.
1363  */
1364 
1365 static void
1366 rl_start(struct ifnet *ifp)
1367 {
1368 	struct rl_softc *sc;
1369 	struct mbuf *m_head = NULL;
1370 
1371 	sc = ifp->if_softc;
1372 
1373 	while(RL_CUR_TXMBUF(sc) == NULL) {
1374 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1375 		if (m_head == NULL)
1376 			break;
1377 
1378 		if (rl_encap(sc, m_head))
1379 			break;
1380 
1381 		/*
1382 		 * If there's a BPF listener, bounce a copy of this frame
1383 		 * to him.
1384 		 */
1385 		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1386 
1387 		/*
1388 		 * Transmit the frame.
1389 	 	 */
1390 		bus_dmamap_create(sc->rl_tag, 0, &RL_CUR_DMAMAP(sc));
1391 		bus_dmamap_load(sc->rl_tag, RL_CUR_DMAMAP(sc),
1392 				mtod(RL_CUR_TXMBUF(sc), void *),
1393 				RL_CUR_TXMBUF(sc)->m_pkthdr.len,
1394 				rl_dma_map_txbuf, sc, 0);
1395 		bus_dmamap_sync(sc->rl_tag, RL_CUR_DMAMAP(sc),
1396 				BUS_DMASYNC_PREREAD);
1397 		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1398 		    RL_TXTHRESH(sc->rl_txthresh) |
1399 		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1400 
1401 		RL_INC(sc->rl_cdata.cur_tx);
1402 
1403 		/*
1404 		 * Set a timeout in case the chip goes out to lunch.
1405 		 */
1406 		ifp->if_timer = 5;
1407 	}
1408 
1409 	/*
1410 	 * We broke out of the loop because all our TX slots are
1411 	 * full. Mark the NIC as busy until it drains some of the
1412 	 * packets from the queue.
1413 	 */
1414 	if (RL_CUR_TXMBUF(sc) != NULL)
1415 		ifp->if_flags |= IFF_OACTIVE;
1416 }
1417 
1418 static void
1419 rl_init(void *xsc)
1420 {
1421 	struct rl_softc *sc = xsc;
1422 	struct ifnet *ifp = &sc->arpcom.ac_if;
1423 	struct mii_data *mii;
1424 	uint32_t rxcfg = 0;
1425 
1426 	mii = device_get_softc(sc->rl_miibus);
1427 
1428 	/*
1429 	 * Cancel pending I/O and free all RX/TX buffers.
1430 	 */
1431 	rl_stop(sc);
1432 
1433 	/*
1434 	 * Init our MAC address.  Even though the chipset documentation
1435 	 * doesn't mention it, we need to enter "Config register write enable"
1436 	 * mode to modify the ID registers.
1437 	 */
1438 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1439 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
1440 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1441 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
1442 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1443 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1444 
1445 	/* Init the RX buffer pointer register. */
1446 	bus_dmamap_load(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1447 			sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN, rl_dma_map_rxbuf,
1448 			sc, 0);
1449 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1450 			BUS_DMASYNC_PREWRITE);
1451 
1452 	/* Init TX descriptors. */
1453 	rl_list_tx_init(sc);
1454 
1455 	/*
1456 	 * Enable transmit and receive.
1457 	 */
1458 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1459 
1460 	/*
1461 	 * Set the initial TX and RX configuration.
1462 	 */
1463 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1464 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1465 
1466 	/* Set the individual bit to receive frames for this host only. */
1467 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
1468 	rxcfg |= RL_RXCFG_RX_INDIV;
1469 
1470 	/* If we want promiscuous mode, set the allframes bit. */
1471 	if (ifp->if_flags & IFF_PROMISC) {
1472 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
1473 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1474 	} else {
1475 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1476 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1477 	}
1478 
1479 	/*
1480 	 * Set capture broadcast bit to capture broadcast frames.
1481 	 */
1482 	if (ifp->if_flags & IFF_BROADCAST) {
1483 		rxcfg |= RL_RXCFG_RX_BROAD;
1484 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1485 	} else {
1486 		rxcfg &= ~RL_RXCFG_RX_BROAD;
1487 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1488 	}
1489 
1490 	/*
1491 	 * Program the multicast filter, if necessary.
1492 	 */
1493 	rl_setmulti(sc);
1494 
1495 #ifdef DEVICE_POLLING
1496 	/*
1497 	 * Only enable interrupts if we are polling, keep them off otherwise.
1498 	 */
1499 	if (ifp->if_flags & IFF_POLLING)
1500 		CSR_WRITE_2(sc, RL_IMR, 0);
1501 	else
1502 #endif /* DEVICE_POLLING */
1503 	/*
1504 	 * Enable interrupts.
1505 	 */
1506 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1507 
1508 	/* Set initial TX threshold */
1509 	sc->rl_txthresh = RL_TX_THRESH_INIT;
1510 
1511 	/* Start RX/TX process. */
1512 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1513 
1514 	/* Enable receiver and transmitter. */
1515 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1516 
1517 	mii_mediachg(mii);
1518 
1519 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1520 
1521 	ifp->if_flags |= IFF_RUNNING;
1522 	ifp->if_flags &= ~IFF_OACTIVE;
1523 
1524 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1525 }
1526 
1527 /*
1528  * Set media options.
1529  */
1530 static int
1531 rl_ifmedia_upd(struct ifnet *ifp)
1532 {
1533 	struct rl_softc *sc;
1534 	struct mii_data *mii;
1535 
1536 	sc = ifp->if_softc;
1537 	mii = device_get_softc(sc->rl_miibus);
1538 	mii_mediachg(mii);
1539 
1540 	return(0);
1541 }
1542 
1543 /*
1544  * Report current media status.
1545  */
1546 static void
1547 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1548 {
1549 	struct rl_softc *sc = ifp->if_softc;
1550 	struct mii_data *mii = device_get_softc(sc->rl_miibus);
1551 
1552 	mii_pollstat(mii);
1553 	ifmr->ifm_active = mii->mii_media_active;
1554 	ifmr->ifm_status = mii->mii_media_status;
1555 }
1556 
1557 static int
1558 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1559 {
1560 	struct rl_softc *sc = ifp->if_softc;
1561 	struct ifreq *ifr = (struct ifreq *) data;
1562 	struct mii_data	*mii;
1563 	int error = 0;
1564 
1565 	switch (command) {
1566 	case SIOCSIFFLAGS:
1567 		if (ifp->if_flags & IFF_UP) {
1568 			rl_init(sc);
1569 		} else {
1570 			if (ifp->if_flags & IFF_RUNNING)
1571 				rl_stop(sc);
1572 		}
1573 		error = 0;
1574 		break;
1575 	case SIOCADDMULTI:
1576 	case SIOCDELMULTI:
1577 		rl_setmulti(sc);
1578 		error = 0;
1579 		break;
1580 	case SIOCGIFMEDIA:
1581 	case SIOCSIFMEDIA:
1582 		mii = device_get_softc(sc->rl_miibus);
1583 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1584 		break;
1585 	case SIOCSIFCAP:
1586 		break;
1587 	default:
1588 		error = ether_ioctl(ifp, command, data);
1589 		break;
1590 	}
1591 
1592 	return(error);
1593 }
1594 
1595 static void
1596 rl_watchdog(struct ifnet *ifp)
1597 {
1598 	struct rl_softc *sc = ifp->if_softc;
1599 
1600 	device_printf(sc->rl_dev, "watchdog timeout\n");
1601 
1602 	ifp->if_oerrors++;
1603 
1604 	rl_txeof(sc);
1605 	rl_rxeof(sc);
1606 	rl_init(sc);
1607 }
1608 
1609 /*
1610  * Stop the adapter and free any mbufs allocated to the
1611  * RX and TX lists.
1612  */
1613 static void
1614 rl_stop(struct rl_softc *sc)
1615 {
1616 	struct ifnet *ifp = &sc->arpcom.ac_if;
1617 	int i;
1618 
1619 	ifp->if_timer = 0;
1620 
1621 	callout_stop(&sc->rl_stat_timer);
1622 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1623 
1624 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1625 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1626 	bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
1627 
1628 	/*
1629 	 * Free the TX list buffers.
1630 	 */
1631 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1632 		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1633 			bus_dmamap_unload(sc->rl_tag,
1634 					  sc->rl_cdata.rl_tx_dmamap[i]);
1635 			bus_dmamap_destroy(sc->rl_tag,
1636 					   sc->rl_cdata.rl_tx_dmamap[i]);
1637 			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1638 			sc->rl_cdata.rl_tx_chain[i] = NULL;
1639 			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1640 				    0x0000000);
1641 		}
1642 	}
1643 }
1644 
1645 /*
1646  * Stop all chip I/O so that the kernel's probe routines don't
1647  * get confused by errant DMAs when rebooting.
1648  */
1649 static void
1650 rl_shutdown(device_t dev)
1651 {
1652 	struct rl_softc *sc;
1653 
1654 	sc = device_get_softc(dev);
1655 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1656 	rl_stop(sc);
1657 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1658 }
1659 
1660 /*
1661  * Device suspend routine.  Stop the interface and save some PCI
1662  * settings in case the BIOS doesn't restore them properly on
1663  * resume.
1664  */
1665 static int
1666 rl_suspend(device_t dev)
1667 {
1668 	struct rl_softc	*sc = device_get_softc(dev);
1669 	int i;
1670 
1671 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1672 	rl_stop(sc);
1673 
1674 	for (i = 0; i < 5; i++)
1675 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
1676 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
1677 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
1678 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1679 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1680 
1681 	sc->suspended = 1;
1682 
1683 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1684 	return (0);
1685 }
1686 
1687 /*
1688  * Device resume routine.  Restore some PCI settings in case the BIOS
1689  * doesn't, re-enable busmastering, and restart the interface if
1690  * appropriate.
1691  */
1692 static int
1693 rl_resume(device_t dev)
1694 {
1695 	struct rl_softc *sc = device_get_softc(dev);
1696 	struct ifnet *ifp = &sc->arpcom.ac_if;
1697 	int		i;
1698 
1699 	lwkt_serialize_enter(ifp->if_serializer);
1700 
1701 	/* better way to do this? */
1702 	for (i = 0; i < 5; i++)
1703 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1704 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1705 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1706 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1707 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1708 
1709 	/* reenable busmastering */
1710 	pci_enable_busmaster(dev);
1711 	pci_enable_io(dev, RL_RES);
1712 
1713         /* reinitialize interface if necessary */
1714         if (ifp->if_flags & IFF_UP)
1715                 rl_init(sc);
1716 
1717 	sc->suspended = 0;
1718 	lwkt_serialize_exit(ifp->if_serializer);
1719 	return (0);
1720 }
1721