xref: /dragonfly/sys/dev/netif/rl/if_rl.c (revision 611395e5)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_rl.c,v 1.38.2.16 2003/03/05 18:42:33 njl Exp $
33  * $DragonFly: src/sys/dev/netif/rl/if_rl.c,v 1.16 2004/11/10 18:30:13 joerg Exp $
34  *
35  * $FreeBSD: src/sys/pci/if_rl.c,v 1.38.2.16 2003/03/05 18:42:33 njl Exp $
36  */
37 
38 /*
39  * RealTek 8129/8139 PCI NIC driver
40  *
41  * Supports several extremely cheap PCI 10/100 adapters based on
42  * the RealTek chipset. Datasheets can be obtained from
43  * www.realtek.com.tw.
44  *
45  * Written by Bill Paul <wpaul@ctr.columbia.edu>
46  * Electrical Engineering Department
47  * Columbia University, New York City
48  */
49 
50 /*
51  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
52  * probably the worst PCI ethernet controller ever made, with the possible
53  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
54  * DMA, but it has a terrible interface that nullifies any performance
55  * gains that bus-master DMA usually offers.
56  *
57  * For transmission, the chip offers a series of four TX descriptor
58  * registers. Each transmit frame must be in a contiguous buffer, aligned
59  * on a longword (32-bit) boundary. This means we almost always have to
60  * do mbuf copies in order to transmit a frame, except in the unlikely
61  * case where a) the packet fits into a single mbuf, and b) the packet
62  * is 32-bit aligned within the mbuf's data area. The presence of only
63  * four descriptor registers means that we can never have more than four
64  * packets queued for transmission at any one time.
65  *
66  * Reception is not much better. The driver has to allocate a single large
67  * buffer area (up to 64K in size) into which the chip will DMA received
68  * frames. Because we don't know where within this region received packets
69  * will begin or end, we have no choice but to copy data from the buffer
70  * area into mbufs in order to pass the packets up to the higher protocol
71  * levels.
72  *
73  * It's impossible given this rotten design to really achieve decent
74  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
75  * some equally overmuscled CPU to drive it.
76  *
77  * On the bright side, the 8139 does have a built-in PHY, although
78  * rather than using an MDIO serial interface like most other NICs, the
79  * PHY registers are directly accessible through the 8139's register
80  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
81  * filter.
82  *
83  * The 8129 chip is an older version of the 8139 that uses an external PHY
84  * chip. The 8129 has a serial MDIO interface for accessing the MII where
85  * the 8139 lets you directly access the on-board PHY registers. We need
86  * to select which interface to use depending on the chip type.
87  */
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/module.h>
97 #include <sys/socket.h>
98 
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/ethernet.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 
105 #include <net/bpf.h>
106 
107 #include <machine/bus_pio.h>
108 #include <machine/bus_memio.h>
109 #include <machine/bus.h>
110 #include <machine/resource.h>
111 #include <sys/bus.h>
112 #include <sys/rman.h>
113 
114 #include <dev/netif/mii_layer/mii.h>
115 #include <dev/netif/mii_layer/miivar.h>
116 
117 #include <bus/pci/pcireg.h>
118 #include <bus/pci/pcivar.h>
119 
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122 
123 /*
124  * Default to using PIO access for this driver. On SMP systems,
125  * there appear to be problems with memory mapped mode: it looks like
126  * doing too many memory mapped access back to back in rapid succession
127  * can hang the bus. I'm inclined to blame this on crummy design/construction
128  * on the part of RealTek. Memory mapped mode does appear to work on
129  * uniprocessor systems though.
130  */
131 #define RL_USEIOSPACE
132 
133 #include <dev/netif/rl/if_rlreg.h>
134 
135 /*
136  * Various supported device vendors/types and their names.
137  */
138 static struct rl_type {
139 	uint16_t	 rl_vid;
140 	uint16_t	 rl_did;
141 	const char	*rl_name;
142 } rl_devs[] = {
143 	{ RT_VENDORID, RT_DEVICEID_8129,
144 		"RealTek 8129 10/100BaseTX" },
145 	{ RT_VENDORID, RT_DEVICEID_8139,
146 		"RealTek 8139 10/100BaseTX" },
147 	{ RT_VENDORID, RT_DEVICEID_8138,
148 		"RealTek 8139 10/100BaseTX CardBus" },
149 	{ ACCTON_VENDORID, ACCTON_DEVICEID_5030,
150 		"Accton MPX 5030/5038 10/100BaseTX" },
151 	{ DELTA_VENDORID, DELTA_DEVICEID_8139,
152 		"Delta Electronics 8139 10/100BaseTX" },
153 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139,
154 		"Addtron Technolgy 8139 10/100BaseTX" },
155 	{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS,
156 		"D-Link DFE-530TX+ 10/100BaseTX" },
157 	{ DLINK_VENDORID, DLINK_DEVICEID_690TXD,
158 		"D-Link DFE-690TX 10/100BaseTX" },
159 	{ NORTEL_VENDORID, ACCTON_DEVICEID_5030,
160 		"Nortel Networks 10/100BaseTX" },
161 	{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF,
162 		"Peppercon AG ROL/F" },
163 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD,
164 		"Corega FEther CB-TXD" },
165 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD,
166 		"Corega FEtherII CB-TXD" },
167 	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX,
168 		"Planex FNW-3800-TX" },
169 	{ 0, 0, NULL }
170 };
171 
172 static int	rl_probe(device_t);
173 static int	rl_attach(device_t);
174 static int	rl_detach(device_t);
175 
176 static int	rl_encap(struct rl_softc *, struct mbuf * );
177 
178 static void	rl_rxeof(struct rl_softc *);
179 static void	rl_txeof(struct rl_softc *);
180 static void	rl_intr(void *);
181 static void	rl_tick(void *);
182 static void	rl_start(struct ifnet *);
183 static int	rl_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
184 static void	rl_init(void *);
185 static void	rl_stop	(struct rl_softc *);
186 static void	rl_watchdog(struct ifnet *);
187 static int	rl_suspend(device_t);
188 static int	rl_resume(device_t);
189 static void	rl_shutdown(device_t);
190 static int	rl_ifmedia_upd(struct ifnet *);
191 static void	rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
192 
193 static void	rl_eeprom_putbyte(struct rl_softc *, int);
194 static void	rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
195 static void	rl_read_eeprom(struct rl_softc *, caddr_t, int, int, int);
196 static void	rl_mii_sync(struct rl_softc *);
197 static void	rl_mii_send(struct rl_softc *, uint32_t, int);
198 static int	rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
199 static int	rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
200 
201 static int	rl_miibus_readreg(device_t, int, int);
202 static int	rl_miibus_writereg(device_t, int, int, int);
203 static void	rl_miibus_statchg(device_t);
204 
205 static void	rl_setmulti(struct rl_softc *);
206 static void	rl_reset(struct rl_softc *);
207 static void	rl_list_tx_init(struct rl_softc *);
208 
209 static void	rl_dma_map_rxbuf(void *, bus_dma_segment_t *, int, int);
210 static void	rl_dma_map_txbuf(void *, bus_dma_segment_t *, int, int);
211 
212 #ifdef RL_USEIOSPACE
213 #define	RL_RES			SYS_RES_IOPORT
214 #define	RL_RID			RL_PCI_LOIO
215 #else
216 #define	RL_RES			SYS_RES_MEMORY
217 #define	RL_RID			RL_PCI_LOMEM
218 #endif
219 
220 static device_method_t rl_methods[] = {
221 	/* Device interface */
222 	DEVMETHOD(device_probe,		rl_probe),
223 	DEVMETHOD(device_attach,	rl_attach),
224 	DEVMETHOD(device_detach,	rl_detach),
225 	DEVMETHOD(device_suspend,	rl_suspend),
226 	DEVMETHOD(device_resume,	rl_resume),
227 	DEVMETHOD(device_shutdown,	rl_shutdown),
228 
229 	/* bus interface */
230 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
231 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
232 
233 	/* MII interface */
234 	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
235 	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
236 	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
237 
238 	{ 0, 0 }
239 };
240 
241 static DEFINE_CLASS_0(rl, rl_driver, rl_methods, sizeof(struct rl_softc));
242 static devclass_t rl_devclass;
243 
244 DECLARE_DUMMY_MODULE(if_rl);
245 DRIVER_MODULE(if_rl, pci, rl_driver, rl_devclass, 0, 0);
246 DRIVER_MODULE(if_rl, cardbus, rl_driver, rl_devclass, 0, 0);
247 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
248 MODULE_DEPEND(if_rl, miibus, 1, 1, 1);
249 
250 #define EE_SET(x)					\
251 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) | (x))
252 
253 #define EE_CLR(x)					\
254 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) & ~(x))
255 
256 static void
257 rl_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
258 {
259 	struct rl_softc *sc = arg;
260 
261 	CSR_WRITE_4(sc, RL_RXADDR, segs->ds_addr & 0xFFFFFFFF);
262 }
263 
264 static void
265 rl_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
266 {
267 	struct rl_softc *sc = arg;
268 
269 	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), segs->ds_addr & 0xFFFFFFFF);
270 }
271 
272 /*
273  * Send a read command and address to the EEPROM, check for ACK.
274  */
275 static void
276 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
277 {
278 	int d, i;
279 
280 	d = addr | sc->rl_eecmd_read;
281 
282 	/*
283 	 * Feed in each bit and strobe the clock.
284 	 */
285 	for (i = 0x400; i; i >>= 1) {
286 		if (d & i)
287 			EE_SET(RL_EE_DATAIN);
288 		else
289 			EE_CLR(RL_EE_DATAIN);
290 		DELAY(100);
291 		EE_SET(RL_EE_CLK);
292 		DELAY(150);
293 		EE_CLR(RL_EE_CLK);
294 		DELAY(100);
295 	}
296 }
297 
298 /*
299  * Read a word of data stored in the EEPROM at address 'addr.'
300  */
301 static void
302 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
303 {
304 	int i;
305 	uint16_t word = 0;
306 
307 	/* Enter EEPROM access mode. */
308 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
309 
310 	/*
311 	 * Send address of word we want to read.
312 	 */
313 	rl_eeprom_putbyte(sc, addr);
314 
315 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
316 
317 	/*
318 	 * Start reading bits from EEPROM.
319 	 */
320 	for (i = 0x8000; i; i >>= 1) {
321 		EE_SET(RL_EE_CLK);
322 		DELAY(100);
323 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
324 			word |= i;
325 		EE_CLR(RL_EE_CLK);
326 		DELAY(100);
327 	}
328 
329 	/* Turn off EEPROM access mode. */
330 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
331 
332 	*dest = word;
333 }
334 
335 /*
336  * Read a sequence of words from the EEPROM.
337  */
338 static void
339 rl_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt, int swap)
340 {
341 	int i;
342 	u_int16_t word = 0, *ptr;
343 
344 	for (i = 0; i < cnt; i++) {
345 		rl_eeprom_getword(sc, off + i, &word);
346 		ptr = (u_int16_t *)(dest + (i * 2));
347 		if (swap)
348 			*ptr = ntohs(word);
349 		else
350 			*ptr = word;
351 	}
352 }
353 
354 
355 /*
356  * MII access routines are provided for the 8129, which
357  * doesn't have a built-in PHY. For the 8139, we fake things
358  * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
359  * direct access PHY registers.
360  */
361 #define MII_SET(x)							\
362 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) | x)
363 
364 #define MII_CLR(x)							\
365 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) & ~x)
366 
367 /*
368  * Sync the PHYs by setting data bit and strobing the clock 32 times.
369  */
370 static void
371 rl_mii_sync(struct rl_softc *sc)
372 {
373 	int i;
374 
375 	MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
376 
377 	for (i = 0; i < 32; i++) {
378 		MII_SET(RL_MII_CLK);
379 		DELAY(1);
380 		MII_CLR(RL_MII_CLK);
381 		DELAY(1);
382 	}
383 }
384 
385 /*
386  * Clock a series of bits through the MII.
387  */
388 static void
389 rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
390 {
391 	int i;
392 
393 	MII_CLR(RL_MII_CLK);
394 
395 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
396 		if (bits & i)
397 			MII_SET(RL_MII_DATAOUT);
398 		else
399 			MII_CLR(RL_MII_DATAOUT);
400 		DELAY(1);
401 		MII_CLR(RL_MII_CLK);
402 		DELAY(1);
403 		MII_SET(RL_MII_CLK);
404 	}
405 }
406 
407 /*
408  * Read an PHY register through the MII.
409  */
410 static int
411 rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
412 {
413 	int i, ack, s;
414 
415 	s = splimp();
416 
417 	/*
418 	 * Set up frame for RX.
419 	 */
420 	frame->mii_stdelim = RL_MII_STARTDELIM;
421 	frame->mii_opcode = RL_MII_READOP;
422 	frame->mii_turnaround = 0;
423 	frame->mii_data = 0;
424 
425 	CSR_WRITE_2(sc, RL_MII, 0);
426 
427 	/*
428  	 * Turn on data xmit.
429 	 */
430 	MII_SET(RL_MII_DIR);
431 
432 	rl_mii_sync(sc);
433 
434 	/*
435 	 * Send command/address info.
436 	 */
437 	rl_mii_send(sc, frame->mii_stdelim, 2);
438 	rl_mii_send(sc, frame->mii_opcode, 2);
439 	rl_mii_send(sc, frame->mii_phyaddr, 5);
440 	rl_mii_send(sc, frame->mii_regaddr, 5);
441 
442 	/* Idle bit */
443 	MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
444 	DELAY(1);
445 	MII_SET(RL_MII_CLK);
446 	DELAY(1);
447 
448 	/* Turn off xmit. */
449 	MII_CLR(RL_MII_DIR);
450 
451 	/* Check for ack */
452 	MII_CLR(RL_MII_CLK);
453 	DELAY(1);
454 	ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
455 	MII_SET(RL_MII_CLK);
456 	DELAY(1);
457 
458 	/*
459 	 * Now try reading data bits. If the ack failed, we still
460 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
461 	 */
462 	if (ack) {
463 		for(i = 0; i < 16; i++) {
464 			MII_CLR(RL_MII_CLK);
465 			DELAY(1);
466 			MII_SET(RL_MII_CLK);
467 			DELAY(1);
468 		}
469 	} else {
470 		for (i = 0x8000; i; i >>= 1) {
471 			MII_CLR(RL_MII_CLK);
472 			DELAY(1);
473 			if (!ack) {
474 				if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
475 					frame->mii_data |= i;
476 				DELAY(1);
477 			}
478 			MII_SET(RL_MII_CLK);
479 			DELAY(1);
480 		}
481 	}
482 
483 	MII_CLR(RL_MII_CLK);
484 	DELAY(1);
485 	MII_SET(RL_MII_CLK);
486 	DELAY(1);
487 
488 	splx(s);
489 
490 	return(ack ? 1 : 0);
491 }
492 
493 /*
494  * Write to a PHY register through the MII.
495  */
496 static int
497 rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
498 {
499 	int s;
500 
501 	s = splimp();
502 	/*
503 	 * Set up frame for TX.
504 	 */
505 
506 	frame->mii_stdelim = RL_MII_STARTDELIM;
507 	frame->mii_opcode = RL_MII_WRITEOP;
508 	frame->mii_turnaround = RL_MII_TURNAROUND;
509 
510 	/*
511  	 * Turn on data output.
512 	 */
513 	MII_SET(RL_MII_DIR);
514 
515 	rl_mii_sync(sc);
516 
517 	rl_mii_send(sc, frame->mii_stdelim, 2);
518 	rl_mii_send(sc, frame->mii_opcode, 2);
519 	rl_mii_send(sc, frame->mii_phyaddr, 5);
520 	rl_mii_send(sc, frame->mii_regaddr, 5);
521 	rl_mii_send(sc, frame->mii_turnaround, 2);
522 	rl_mii_send(sc, frame->mii_data, 16);
523 
524 	/* Idle bit. */
525 	MII_SET(RL_MII_CLK);
526 	DELAY(1);
527 	MII_CLR(RL_MII_CLK);
528 	DELAY(1);
529 
530 	/*
531 	 * Turn off xmit.
532 	 */
533 	MII_CLR(RL_MII_DIR);
534 
535 	splx(s);
536 
537 	return(0);
538 }
539 
540 static int
541 rl_miibus_readreg(device_t dev, int phy, int reg)
542 {
543 	struct rl_softc *sc;
544 	struct rl_mii_frame frame;
545 	uint16_t rval = 0;
546 	uint16_t rl8139_reg = 0;
547 
548 	sc = device_get_softc(dev);
549 
550 	if (sc->rl_type == RL_8139) {
551 		/* Pretend the internal PHY is only at address 0 */
552 		if (phy)
553 			return(0);
554 		switch (reg) {
555 		case MII_BMCR:
556 			rl8139_reg = RL_BMCR;
557 			break;
558 		case MII_BMSR:
559 			rl8139_reg = RL_BMSR;
560 			break;
561 		case MII_ANAR:
562 			rl8139_reg = RL_ANAR;
563 			break;
564 		case MII_ANER:
565 			rl8139_reg = RL_ANER;
566 			break;
567 		case MII_ANLPAR:
568 			rl8139_reg = RL_LPAR;
569 			break;
570 		case MII_PHYIDR1:
571 		case MII_PHYIDR2:
572 			return(0);
573 			break;
574 		/*
575 		 * Allow the rlphy driver to read the media status
576 		 * register. If we have a link partner which does not
577 		 * support NWAY, this is the register which will tell
578 		 * us the results of parallel detection.
579 		 */
580 		case RL_MEDIASTAT:
581 			rval = CSR_READ_1(sc, RL_MEDIASTAT);
582 			return(rval);
583 		default:
584 			device_printf(dev, "bad phy register\n");
585 			return(0);
586 		}
587 		rval = CSR_READ_2(sc, rl8139_reg);
588 		return(rval);
589 	}
590 
591 	bzero(&frame, sizeof(frame));
592 
593 	frame.mii_phyaddr = phy;
594 	frame.mii_regaddr = reg;
595 	rl_mii_readreg(sc, &frame);
596 
597 	return(frame.mii_data);
598 }
599 
600 static int
601 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
602 {
603 	struct rl_softc *sc;
604 	struct rl_mii_frame frame;
605 	u_int16_t rl8139_reg = 0;
606 
607 	sc = device_get_softc(dev);
608 
609 	if (sc->rl_type == RL_8139) {
610 		/* Pretend the internal PHY is only at address 0 */
611 		if (phy)
612 			return(0);
613 		switch (reg) {
614 		case MII_BMCR:
615 			rl8139_reg = RL_BMCR;
616 			break;
617 		case MII_BMSR:
618 			rl8139_reg = RL_BMSR;
619 			break;
620 		case MII_ANAR:
621 			rl8139_reg = RL_ANAR;
622 			break;
623 		case MII_ANER:
624 			rl8139_reg = RL_ANER;
625 			break;
626 		case MII_ANLPAR:
627 			rl8139_reg = RL_LPAR;
628 			break;
629 		case MII_PHYIDR1:
630 		case MII_PHYIDR2:
631 			return(0);
632 		default:
633 			device_printf(dev, "bad phy register\n");
634 			return(0);
635 		}
636 		CSR_WRITE_2(sc, rl8139_reg, data);
637 		return(0);
638 	}
639 
640 	bzero(&frame, sizeof(frame));
641 
642 	frame.mii_phyaddr = phy;
643 	frame.mii_regaddr = reg;
644 	frame.mii_data = data;
645 
646 	rl_mii_writereg(sc, &frame);
647 
648 	return(0);
649 }
650 
651 static void
652 rl_miibus_statchg(device_t dev)
653 {
654 }
655 
656 /*
657  * Program the 64-bit multicast hash filter.
658  */
659 static void
660 rl_setmulti(struct rl_softc *sc)
661 {
662 	struct ifnet *ifp;
663 	int h = 0;
664 	uint32_t hashes[2] = { 0, 0 };
665 	struct ifmultiaddr *ifma;
666 	uint32_t rxfilt;
667 	int mcnt = 0;
668 
669 	ifp = &sc->arpcom.ac_if;
670 
671 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
672 
673 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
674 		rxfilt |= RL_RXCFG_RX_MULTI;
675 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
676 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
677 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
678 		return;
679 	}
680 
681 	/* first, zot all the existing hash bits */
682 	CSR_WRITE_4(sc, RL_MAR0, 0);
683 	CSR_WRITE_4(sc, RL_MAR4, 0);
684 
685 	/* now program new ones */
686 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
687 		if (ifma->ifma_addr->sa_family != AF_LINK)
688 			continue;
689 		h = ether_crc32_be(
690 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
691 		    ETHER_ADDR_LEN >> 26);
692 		if (h < 32)
693 			hashes[0] |= (1 << h);
694 		else
695 			hashes[1] |= (1 << (h - 32));
696 		mcnt++;
697 	}
698 
699 	if (mcnt)
700 		rxfilt |= RL_RXCFG_RX_MULTI;
701 	else
702 		rxfilt &= ~RL_RXCFG_RX_MULTI;
703 
704 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
705 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
706 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
707 }
708 
709 static void
710 rl_reset(struct rl_softc *sc)
711 {
712 	int i;
713 
714 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
715 
716 	for (i = 0; i < RL_TIMEOUT; i++) {
717 		DELAY(10);
718 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
719 			break;
720 	}
721 	if (i == RL_TIMEOUT)
722 		device_printf(sc->rl_dev, "reset never completed!\n");
723 }
724 
725 /*
726  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
727  * IDs against our list and return a device name if we find a match.
728  *
729  * Return with a value < 0 to give re(4) a change to attach.
730  */
731 static int
732 rl_probe(device_t dev)
733 {
734 	struct rl_type *t;
735 	uint16_t product = pci_get_device(dev);
736 	uint16_t vendor = pci_get_vendor(dev);
737 
738 	for (t = rl_devs; t->rl_name != NULL; t++) {
739 		if (vendor == t->rl_vid && product == t->rl_did) {
740 			device_set_desc(dev, t->rl_name);
741 			return(-100);
742 		}
743 	}
744 
745 	return(ENXIO);
746 }
747 
748 /*
749  * Attach the interface. Allocate softc structures, do ifmedia
750  * setup and ethernet/BPF attach.
751  */
752 static int
753 rl_attach(device_t dev)
754 {
755 	uint8_t eaddr[ETHER_ADDR_LEN];
756 	uint16_t as[3];
757 	struct rl_softc *sc;
758 	struct ifnet *ifp;
759 	uint16_t rl_did = 0;
760 	int error = 0, rid, i;
761 
762 	sc = device_get_softc(dev);
763 	sc->rl_dev = dev;
764 
765 	/*
766 	 * Handle power management nonsense.
767 	 */
768 
769 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
770 		uint32_t iobase, membase, irq;
771 
772 		/* Save important PCI config data. */
773 		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
774 		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
775 		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
776 
777 		/* Reset the power state. */
778 		device_printf(dev, "chip is is in D%d power mode "
779 			      "-- setting to D0\n", pci_get_powerstate(dev));
780 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
781 
782 		/* Restore PCI config data. */
783 		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
784 		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
785 		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
786 	}
787 
788 	/*
789 	 * Map control/status registers.
790 	 */
791 	pci_enable_busmaster(dev);
792 	pci_enable_io(dev, RL_RES);
793 
794 	rid = RL_RID;
795 	sc->rl_res = bus_alloc_resource(dev, RL_RES, &rid,
796 	    0, ~0, 1, RF_ACTIVE);
797 
798 	if (sc->rl_res == NULL) {
799 		device_printf(dev, "couldn't map ports/memory\n");
800 		error = ENXIO;
801 		goto fail;
802 	}
803 
804 	sc->rl_btag = rman_get_bustag(sc->rl_res);
805 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
806 
807 	rid = 0;
808 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
809 					    RF_SHAREABLE | RF_ACTIVE);
810 
811 	if (sc->rl_irq == NULL) {
812 		device_printf(dev, "couldn't map interrupt\n");
813 		error = ENXIO;
814 		goto fail;
815 	}
816 
817 	callout_init(&sc->rl_stat_timer);
818 
819 	/* Reset the adapter. */
820 	rl_reset(sc);
821 
822 	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
823 	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
824 	if (rl_did != 0x8129)
825 		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
826 
827 	/*
828 	 * Get station address from the EEPROM.
829 	 */
830 	rl_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
831 	for (i = 0; i < 3; i++) {
832 		eaddr[(i * 2) + 0] = as[i] & 0xff;
833 		eaddr[(i * 2) + 1] = as[i] >> 8;
834 	}
835 
836 	/*
837 	 * Now read the exact device type from the EEPROM to find
838 	 * out if it's an 8129 or 8139.
839 	 */
840 	rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, 1, 0);
841 
842 	if (rl_did == RT_DEVICEID_8139 || rl_did == ACCTON_DEVICEID_5030 ||
843 	    rl_did == DELTA_DEVICEID_8139 || rl_did == ADDTRON_DEVICEID_8139 ||
844 	    rl_did == DLINK_DEVICEID_530TXPLUS || rl_did == RT_DEVICEID_8138 ||
845 	    rl_did == DLINK_DEVICEID_690TXD ||
846 	    rl_did == COREGA_DEVICEID_FETHERCBTXD ||
847 	    rl_did == COREGA_DEVICEID_FETHERIICBTXD ||
848 	    rl_did == PLANEX_DEVICEID_FNW3800TX)
849 		sc->rl_type = RL_8139;
850 	else if (rl_did == RT_DEVICEID_8129)
851 		sc->rl_type = RL_8129;
852 	else {
853 		device_printf(dev, "unknown device ID: %x\n", rl_did);
854 		error = ENXIO;
855 		goto fail;
856 	}
857 
858 #define	RL_NSEG_NEW 32
859 	error = bus_dma_tag_create(NULL,			/* parent */
860 				   1, 0,			/* alignment, boundary */
861 				   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
862 				   BUS_SPACE_MAXADDR,		/* highaddr */
863 				   NULL, NULL,			/* filter, filterarg */
864 				   MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
865 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
866 				   BUS_DMA_ALLOCNOW,		/* flags */
867 				   &sc->rl_parent_tag);
868 
869 	if (error) {
870 		device_printf(dev, "can't create parent tag\n");
871 		goto fail;
872 	}
873 
874 	/*
875 	 * Now allocate a tag for the DMA descriptor lists.
876 	 * All of our lists are allocated as a contiguous block
877 	 * of memory.
878 	 */
879 	error = bus_dma_tag_create(sc->rl_parent_tag,		/* parent */
880 				   1, 0,			/* alignment, boundary */
881 				   BUS_SPACE_MAXADDR,		/* lowaddr */
882 				   BUS_SPACE_MAXADDR,		/* highaddr */
883 				   NULL, NULL,			/* filter, filterarg */
884 				   RL_RXBUFLEN + 1518, 1,	/* maxsize, nsegments */
885 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
886 				   0,				/* flags */
887 				   &sc->rl_tag);
888 
889 	if (error) {
890 		device_printf(dev, "can't create RX tag\n");
891 		goto fail;
892 	}
893 
894 	/*
895 	 * Now allocate a chunk of DMA-able memory based on the tag
896 	 * we just created.
897 	 */
898 	error = bus_dmamem_alloc(sc->rl_tag, (void **)&sc->rl_cdata.rl_rx_buf,
899 				 BUS_DMA_WAITOK, &sc->rl_cdata.rl_rx_dmamap);
900 
901 	if (error) {
902 		device_printf(dev, "can't allocate RX memory!\n");
903 		error = ENXIO;
904 		goto fail;
905 	}
906 
907 	/* Leave a few bytes before the start of the RX ring buffer. */
908 	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
909 	sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t);
910 
911 	/* Do MII setup */
912 	if (mii_phy_probe(dev, &sc->rl_miibus, rl_ifmedia_upd,
913 			  rl_ifmedia_sts)) {
914 		device_printf(dev, "MII without any phy!\n");
915 		error = ENXIO;
916 		goto fail;
917 	}
918 
919 	ifp = &sc->arpcom.ac_if;
920 	ifp->if_softc = sc;
921 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
922 	ifp->if_mtu = ETHERMTU;
923 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
924 	ifp->if_ioctl = rl_ioctl;
925 	ifp->if_start = rl_start;
926 	ifp->if_watchdog = rl_watchdog;
927 	ifp->if_init = rl_init;
928 	ifp->if_baudrate = 10000000;
929 	ifp->if_capabilities = IFCAP_VLAN_MTU;
930 #ifdef DEVICE_POLLING
931 	ifp->if_capabilities |= IFCAP_POLLING;
932 #endif
933 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
934 
935 	/*
936 	 * Call MI attach routine.
937 	 */
938 	ether_ifattach(ifp, eaddr);
939 
940 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET, rl_intr,
941 			       sc, &sc->rl_intrhand);
942 
943 	if (error) {
944 		device_printf(dev, "couldn't set up irq\n");
945 		ether_ifdetach(ifp);
946 		goto fail;
947 	}
948 
949 	return(0);
950 
951 fail:
952 	rl_detach(dev);
953 	return(error);
954 }
955 
956 static int
957 rl_detach(device_t dev)
958 {
959 	struct rl_softc *sc;
960 	struct ifnet *ifp;
961 	int s;
962 
963 	sc = device_get_softc(dev);
964 	ifp = &sc->arpcom.ac_if;
965 
966 	s = splimp();
967 
968 	if (device_is_attached(dev)) {
969 		rl_stop(sc);
970 		ether_ifdetach(ifp);
971 	}
972 
973 	if (sc->rl_miibus)
974 		device_delete_child(dev, sc->rl_miibus);
975 	bus_generic_detach(dev);
976 
977 	if (sc->rl_intrhand)
978 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
979 	splx(s);
980 
981 	if (sc->rl_irq)
982 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
983 	if (sc->rl_res)
984 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
985 
986 	if (sc->rl_cdata.rl_rx_buf) {
987 		bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
988 		bus_dmamem_free(sc->rl_tag, sc->rl_cdata.rl_rx_buf,
989 				sc->rl_cdata.rl_rx_dmamap);
990 	}
991 	if (sc->rl_tag)
992 		bus_dma_tag_destroy(sc->rl_tag);
993 	if (sc->rl_parent_tag)
994 		bus_dma_tag_destroy(sc->rl_parent_tag);
995 
996 	return(0);
997 }
998 
999 /*
1000  * Initialize the transmit descriptors.
1001  */
1002 static void
1003 rl_list_tx_init(struct rl_softc *sc)
1004 {
1005 	struct rl_chain_data *cd;
1006 	int i;
1007 
1008 	cd = &sc->rl_cdata;
1009 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1010 		cd->rl_tx_chain[i] = NULL;
1011 		CSR_WRITE_4(sc,
1012 		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1013 	}
1014 
1015 	sc->rl_cdata.cur_tx = 0;
1016 	sc->rl_cdata.last_tx = 0;
1017 }
1018 
1019 /*
1020  * A frame has been uploaded: pass the resulting mbuf chain up to
1021  * the higher level protocols.
1022  *
1023  * You know there's something wrong with a PCI bus-master chip design
1024  * when you have to use m_devget().
1025  *
1026  * The receive operation is badly documented in the datasheet, so I'll
1027  * attempt to document it here. The driver provides a buffer area and
1028  * places its base address in the RX buffer start address register.
1029  * The chip then begins copying frames into the RX buffer. Each frame
1030  * is preceded by a 32-bit RX status word which specifies the length
1031  * of the frame and certain other status bits. Each frame (starting with
1032  * the status word) is also 32-bit aligned. The frame length is in the
1033  * first 16 bits of the status word; the lower 15 bits correspond with
1034  * the 'rx status register' mentioned in the datasheet.
1035  *
1036  * Note: to make the Alpha happy, the frame payload needs to be aligned
1037  * on a 32-bit boundary. To achieve this, we cheat a bit by copying from
1038  * the ring buffer starting at an address two bytes before the actual
1039  * data location. We can then shave off the first two bytes using m_adj().
1040  * The reason we do this is because m_devget() doesn't let us specify an
1041  * offset into the mbuf storage space, so we have to artificially create
1042  * one. The ring is allocated in such a way that there are a few unused
1043  * bytes of space preceecing it so that it will be safe for us to do the
1044  * 2-byte backstep even if reading from the ring at offset 0.
1045  */
1046 static void
1047 rl_rxeof(struct rl_softc *sc)
1048 {
1049         struct mbuf *m;
1050         struct ifnet *ifp;
1051 	int total_len = 0;
1052 	uint32_t rxstat;
1053 	caddr_t rxbufpos;
1054 	int wrap = 0;
1055 	uint16_t cur_rx, limit, max_bytes, rx_bytes = 0;
1056 
1057 	ifp = &sc->arpcom.ac_if;
1058 
1059 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1060 			BUS_DMASYNC_POSTREAD);
1061 
1062 	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1063 
1064 	/* Do not try to read past this point. */
1065 	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1066 
1067 	if (limit < cur_rx)
1068 		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1069 	else
1070 		max_bytes = limit - cur_rx;
1071 
1072 	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1073 #ifdef DEVICE_POLLING
1074 		if (ifp->if_flags & IFF_POLLING) {
1075 			if (sc->rxcycles <= 0)
1076 				break;
1077 			sc->rxcycles--;
1078 		}
1079 #endif /* DEVICE_POLLING */
1080 		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1081 		rxstat = le32toh(*(uint32_t *)rxbufpos);
1082 
1083 		/*
1084 		 * Here's a totally undocumented fact for you. When the
1085 		 * RealTek chip is in the process of copying a packet into
1086 		 * RAM for you, the length will be 0xfff0. If you spot a
1087 		 * packet header with this value, you need to stop. The
1088 		 * datasheet makes absolutely no mention of this and
1089 		 * RealTek should be shot for this.
1090 		 */
1091 		if ((uint16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
1092 			break;
1093 
1094 		if ((rxstat & RL_RXSTAT_RXOK) == 0) {
1095 			ifp->if_ierrors++;
1096 			rl_init(sc);
1097 			return;
1098 		}
1099 
1100 		/* No errors; receive the packet. */
1101 		total_len = rxstat >> 16;
1102 		rx_bytes += total_len + 4;
1103 
1104 		/*
1105 		 * XXX The RealTek chip includes the CRC with every
1106 		 * received frame, and there's no way to turn this
1107 		 * behavior off (at least, I can't find anything in
1108 	 	 * the manual that explains how to do it) so we have
1109 		 * to trim off the CRC manually.
1110 		 */
1111 		total_len -= ETHER_CRC_LEN;
1112 
1113 		/*
1114 		 * Avoid trying to read more bytes than we know
1115 		 * the chip has prepared for us.
1116 		 */
1117 		if (rx_bytes > max_bytes)
1118 			break;
1119 
1120 		rxbufpos = sc->rl_cdata.rl_rx_buf +
1121 			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1122 
1123 		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1124 			rxbufpos = sc->rl_cdata.rl_rx_buf;
1125 
1126 		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1127 
1128 		if (total_len > wrap) {
1129 			/*
1130 			 * Fool m_devget() into thinking we want to copy
1131 			 * the whole buffer so we don't end up fragmenting
1132 			 * the data.
1133 			 */
1134 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1135 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1136 			if (m == NULL) {
1137 				ifp->if_ierrors++;
1138 			} else {
1139 				m_adj(m, RL_ETHER_ALIGN);
1140 				m_copyback(m, wrap, total_len - wrap,
1141 					sc->rl_cdata.rl_rx_buf);
1142 			}
1143 			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1144 		} else {
1145 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1146 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1147 			if (m == NULL) {
1148 				ifp->if_ierrors++;
1149 			} else
1150 				m_adj(m, RL_ETHER_ALIGN);
1151 			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1152 		}
1153 
1154 		/*
1155 		 * Round up to 32-bit boundary.
1156 		 */
1157 		cur_rx = (cur_rx + 3) & ~3;
1158 		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1159 
1160 		if (m == NULL)
1161 			continue;
1162 
1163 		ifp->if_ipackets++;
1164 
1165 		(*ifp->if_input)(ifp, m);
1166 	}
1167 }
1168 
1169 /*
1170  * A frame was downloaded to the chip. It's safe for us to clean up
1171  * the list buffers.
1172  */
1173 static void
1174 rl_txeof(struct rl_softc *sc)
1175 {
1176 	struct ifnet *ifp;
1177 	uint32_t txstat;
1178 
1179 	ifp = &sc->arpcom.ac_if;
1180 
1181 	/*
1182 	 * Go through our tx list and free mbufs for those
1183 	 * frames that have been uploaded.
1184 	 */
1185 	do {
1186 		if (RL_LAST_TXMBUF(sc) == NULL)
1187 			break;
1188 		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1189 		if ((txstat & (RL_TXSTAT_TX_OK | RL_TXSTAT_TX_UNDERRUN |
1190 			       RL_TXSTAT_TXABRT)) == 0)
1191 			break;
1192 
1193 		ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1194 
1195 		bus_dmamap_unload(sc->rl_tag, RL_LAST_DMAMAP(sc));
1196 		bus_dmamap_destroy(sc->rl_tag, RL_LAST_DMAMAP(sc));
1197 		m_freem(RL_LAST_TXMBUF(sc));
1198 		RL_LAST_TXMBUF(sc) = NULL;
1199 
1200 		if ((txstat & RL_TXSTAT_TX_OK) == 0) {
1201 			int oldthresh;
1202 
1203 			ifp->if_oerrors++;
1204 			if ((txstat & RL_TXSTAT_TXABRT) ||
1205 			    (txstat & RL_TXSTAT_OUTOFWIN))
1206 				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1207 			oldthresh = sc->rl_txthresh;
1208 			/* error recovery */
1209 			rl_reset(sc);
1210 			rl_init(sc);
1211 			/*
1212 			 * If there was a transmit underrun,
1213 			 * bump the TX threshold.
1214 			 */
1215 			if (txstat & RL_TXSTAT_TX_UNDERRUN)
1216 				sc->rl_txthresh = oldthresh + 32;
1217 			return;
1218 		}
1219 		ifp->if_opackets++;
1220 		RL_INC(sc->rl_cdata.last_tx);
1221 		ifp->if_flags &= ~IFF_OACTIVE;
1222 	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1223 
1224 	if (RL_LAST_TXMBUF(sc) == NULL)
1225 		ifp->if_timer = 0;
1226 	else if (ifp->if_timer == 0)
1227 		ifp->if_timer = 5;
1228 }
1229 
1230 static void
1231 rl_tick(void *xsc)
1232 {
1233 	struct rl_softc *sc = xsc;
1234 	struct mii_data *mii;
1235 	int s;
1236 
1237 	s = splimp();
1238 
1239 	mii = device_get_softc(sc->rl_miibus);
1240 	mii_tick(mii);
1241 
1242 	splx(s);
1243 
1244 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1245 }
1246 
1247 #ifdef DEVICE_POLLING
1248 static poll_handler_t rl_poll;
1249 
1250 static void
1251 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1252 {
1253 	struct rl_softc *sc = ifp->if_softc;
1254 
1255 	if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1256 		ether_poll_deregister(ifp);
1257 		cmd = POLL_DEREGISTER;
1258 	}
1259 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1260 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1261 		return;
1262 	}
1263 
1264 	sc->rxcycles = count;
1265 	rl_rxeof(sc);
1266 	rl_txeof(sc);
1267 	if (ifp->if_snd.ifq_head != NULL)
1268 		rl_start(ifp);
1269 
1270 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1271 		uint16_t status;
1272 
1273 		status = CSR_READ_2(sc, RL_ISR);
1274 		if (status == 0xffff)
1275 			return;
1276 		if (status)
1277 			CSR_WRITE_2(sc, RL_ISR, status);
1278 
1279 		/*
1280 		 * XXX check behaviour on receiver stalls.
1281 		 */
1282 
1283 		if (status & RL_ISR_SYSTEM_ERR) {
1284 			rl_reset(sc);
1285 			rl_init(sc);
1286 		}
1287 	}
1288 }
1289 #endif /* DEVICE_POLLING */
1290 
1291 static void
1292 rl_intr(void *arg)
1293 {
1294 	struct rl_softc *sc;
1295 	struct ifnet *ifp;
1296 	uint16_t status;
1297 
1298 	sc = arg;
1299 
1300 	if (sc->suspended)
1301 		return;
1302 
1303 	ifp = &sc->arpcom.ac_if;
1304 #ifdef DEVICE_POLLING
1305         if  (ifp->if_flags & IFF_POLLING)
1306                 return;
1307         if ((ifp->if_capenable & IFCAP_POLLING) &&
1308 	    ether_poll_register(rl_poll, ifp)) { /* ok, disable interrupts */
1309                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
1310                 rl_poll(ifp, 0, 1);
1311                 return;
1312         }
1313 #endif /* DEVICE_POLLING */
1314 
1315 	for (;;) {
1316 		status = CSR_READ_2(sc, RL_ISR);
1317 		/* If the card has gone away, the read returns 0xffff. */
1318 		if (status == 0xffff)
1319 			break;
1320 
1321 		if (status != 0)
1322 			CSR_WRITE_2(sc, RL_ISR, status);
1323 
1324 		if ((status & RL_INTRS) == 0)
1325 			break;
1326 
1327 		if (status & RL_ISR_RX_OK)
1328 			rl_rxeof(sc);
1329 
1330 		if (status & RL_ISR_RX_ERR)
1331 			rl_rxeof(sc);
1332 
1333 		if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
1334 			rl_txeof(sc);
1335 
1336 		if (status & RL_ISR_SYSTEM_ERR) {
1337 			rl_reset(sc);
1338 			rl_init(sc);
1339 		}
1340 
1341 	}
1342 
1343 	if (ifp->if_snd.ifq_head != NULL)
1344 		rl_start(ifp);
1345 }
1346 
1347 /*
1348  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1349  * pointers to the fragment pointers.
1350  */
1351 static int
1352 rl_encap(struct rl_softc *sc, struct mbuf *m_head)
1353 {
1354 	struct mbuf *m_new = NULL;
1355 
1356 	/*
1357 	 * The RealTek is brain damaged and wants longword-aligned
1358 	 * TX buffers, plus we can only have one fragment buffer
1359 	 * per packet. We have to copy pretty much all the time.
1360 	 */
1361 	m_new = m_defrag(m_head, MB_DONTWAIT);
1362 
1363 	if (m_new == NULL) {
1364 		m_freem(m_head);
1365 		return(1);
1366 	}
1367 	m_head = m_new;
1368 
1369 	/* Pad frames to at least 60 bytes. */
1370 	if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) {
1371 		/*
1372 		 * Make security concious people happy: zero out the
1373 		 * bytes in the pad area, since we don't know what
1374 		 * this mbuf cluster buffer's previous user might
1375 		 * have left in it.
1376 	 	 */
1377 		bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
1378 		     RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1379 		m_head->m_pkthdr.len +=
1380 		    (RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1381 		m_head->m_len = m_head->m_pkthdr.len;
1382 	}
1383 
1384 	RL_CUR_TXMBUF(sc) = m_head;
1385 
1386 	return(0);
1387 }
1388 
1389 /*
1390  * Main transmit routine.
1391  */
1392 
1393 static void
1394 rl_start(struct ifnet *ifp)
1395 {
1396 	struct rl_softc *sc;
1397 	struct mbuf *m_head = NULL;
1398 
1399 	sc = ifp->if_softc;
1400 
1401 	while(RL_CUR_TXMBUF(sc) == NULL) {
1402 		IF_DEQUEUE(&ifp->if_snd, m_head);
1403 		if (m_head == NULL)
1404 			break;
1405 
1406 		if (rl_encap(sc, m_head))
1407 			break;
1408 
1409 		/*
1410 		 * If there's a BPF listener, bounce a copy of this frame
1411 		 * to him.
1412 		 */
1413 		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1414 
1415 		/*
1416 		 * Transmit the frame.
1417 	 	 */
1418 		bus_dmamap_create(sc->rl_tag, 0, &RL_CUR_DMAMAP(sc));
1419 		bus_dmamap_load(sc->rl_tag, RL_CUR_DMAMAP(sc),
1420 				mtod(RL_CUR_TXMBUF(sc), void *),
1421 				RL_CUR_TXMBUF(sc)->m_pkthdr.len,
1422 				rl_dma_map_txbuf, sc, 0);
1423 		bus_dmamap_sync(sc->rl_tag, RL_CUR_DMAMAP(sc),
1424 				BUS_DMASYNC_PREREAD);
1425 		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1426 		    RL_TXTHRESH(sc->rl_txthresh) |
1427 		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1428 
1429 		RL_INC(sc->rl_cdata.cur_tx);
1430 
1431 		/*
1432 		 * Set a timeout in case the chip goes out to lunch.
1433 		 */
1434 		ifp->if_timer = 5;
1435 	}
1436 
1437 	/*
1438 	 * We broke out of the loop because all our TX slots are
1439 	 * full. Mark the NIC as busy until it drains some of the
1440 	 * packets from the queue.
1441 	 */
1442 	if (RL_CUR_TXMBUF(sc) != NULL)
1443 		ifp->if_flags |= IFF_OACTIVE;
1444 }
1445 
1446 static void
1447 rl_init(void *xsc)
1448 {
1449 	struct rl_softc *sc = xsc;
1450 	struct ifnet *ifp = &sc->arpcom.ac_if;
1451 	struct mii_data *mii;
1452 	int s;
1453 	uint32_t rxcfg = 0;
1454 
1455 	s = splimp();
1456 
1457 	mii = device_get_softc(sc->rl_miibus);
1458 
1459 	/*
1460 	 * Cancel pending I/O and free all RX/TX buffers.
1461 	 */
1462 	rl_stop(sc);
1463 
1464 	/*
1465 	 * Init our MAC address.  Even though the chipset documentation
1466 	 * doesn't mention it, we need to enter "Config register write enable"
1467 	 * mode to modify the ID registers.
1468 	 */
1469 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1470 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
1471 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1472 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
1473 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1474 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1475 
1476 	/* Init the RX buffer pointer register. */
1477 	bus_dmamap_load(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1478 			sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN, rl_dma_map_rxbuf,
1479 			sc, 0);
1480 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1481 			BUS_DMASYNC_PREWRITE);
1482 
1483 	/* Init TX descriptors. */
1484 	rl_list_tx_init(sc);
1485 
1486 	/*
1487 	 * Enable transmit and receive.
1488 	 */
1489 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1490 
1491 	/*
1492 	 * Set the initial TX and RX configuration.
1493 	 */
1494 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1495 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1496 
1497 	/* Set the individual bit to receive frames for this host only. */
1498 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
1499 	rxcfg |= RL_RXCFG_RX_INDIV;
1500 
1501 	/* If we want promiscuous mode, set the allframes bit. */
1502 	if (ifp->if_flags & IFF_PROMISC) {
1503 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
1504 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1505 	} else {
1506 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1507 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1508 	}
1509 
1510 	/*
1511 	 * Set capture broadcast bit to capture broadcast frames.
1512 	 */
1513 	if (ifp->if_flags & IFF_BROADCAST) {
1514 		rxcfg |= RL_RXCFG_RX_BROAD;
1515 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1516 	} else {
1517 		rxcfg &= ~RL_RXCFG_RX_BROAD;
1518 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1519 	}
1520 
1521 	/*
1522 	 * Program the multicast filter, if necessary.
1523 	 */
1524 	rl_setmulti(sc);
1525 
1526 #ifdef DEVICE_POLLING
1527 	/*
1528 	 * Only enable interrupts if we are polling, keep them off otherwise.
1529 	 */
1530 	if (ifp->if_flags & IFF_POLLING)
1531 		CSR_WRITE_2(sc, RL_IMR, 0);
1532 	else
1533 #endif /* DEVICE_POLLING */
1534 	/*
1535 	 * Enable interrupts.
1536 	 */
1537 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1538 
1539 	/* Set initial TX threshold */
1540 	sc->rl_txthresh = RL_TX_THRESH_INIT;
1541 
1542 	/* Start RX/TX process. */
1543 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1544 
1545 	/* Enable receiver and transmitter. */
1546 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1547 
1548 	mii_mediachg(mii);
1549 
1550 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1551 
1552 	ifp->if_flags |= IFF_RUNNING;
1553 	ifp->if_flags &= ~IFF_OACTIVE;
1554 
1555 	splx(s);
1556 
1557 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1558 }
1559 
1560 /*
1561  * Set media options.
1562  */
1563 static int
1564 rl_ifmedia_upd(struct ifnet *ifp)
1565 {
1566 	struct rl_softc *sc;
1567 	struct mii_data *mii;
1568 
1569 	sc = ifp->if_softc;
1570 	mii = device_get_softc(sc->rl_miibus);
1571 	mii_mediachg(mii);
1572 
1573 	return(0);
1574 }
1575 
1576 /*
1577  * Report current media status.
1578  */
1579 static void
1580 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1581 {
1582 	struct rl_softc *sc = ifp->if_softc;
1583 	struct mii_data *mii = device_get_softc(sc->rl_miibus);
1584 
1585 	mii_pollstat(mii);
1586 	ifmr->ifm_active = mii->mii_media_active;
1587 	ifmr->ifm_status = mii->mii_media_status;
1588 }
1589 
1590 static int
1591 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1592 {
1593 	struct rl_softc *sc = ifp->if_softc;
1594 	struct ifreq *ifr = (struct ifreq *) data;
1595 	struct mii_data	*mii;
1596 	int s, error = 0;
1597 
1598 	s = splimp();
1599 
1600 	switch (command) {
1601 	case SIOCSIFFLAGS:
1602 		if (ifp->if_flags & IFF_UP) {
1603 			rl_init(sc);
1604 		} else {
1605 			if (ifp->if_flags & IFF_RUNNING)
1606 				rl_stop(sc);
1607 		}
1608 		error = 0;
1609 		break;
1610 	case SIOCADDMULTI:
1611 	case SIOCDELMULTI:
1612 		rl_setmulti(sc);
1613 		error = 0;
1614 		break;
1615 	case SIOCGIFMEDIA:
1616 	case SIOCSIFMEDIA:
1617 		mii = device_get_softc(sc->rl_miibus);
1618 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1619 		break;
1620 	case SIOCSIFCAP:
1621 		ifp->if_capenable &= ~IFCAP_POLLING;
1622 		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
1623 		break;
1624 	default:
1625 		error = ether_ioctl(ifp, command, data);
1626 		break;
1627 	}
1628 
1629 	splx(s);
1630 
1631 	return(error);
1632 }
1633 
1634 static void
1635 rl_watchdog(struct ifnet *ifp)
1636 {
1637 	struct rl_softc *sc = ifp->if_softc;
1638 	int s;
1639 
1640 	s = splimp();
1641 
1642 	device_printf(sc->rl_dev, "watchdog timeout\n");
1643 	ifp->if_oerrors++;
1644 
1645 	rl_txeof(sc);
1646 	rl_rxeof(sc);
1647 	rl_init(sc);
1648 
1649 	splx(s);
1650 }
1651 
1652 /*
1653  * Stop the adapter and free any mbufs allocated to the
1654  * RX and TX lists.
1655  */
1656 static void
1657 rl_stop(struct rl_softc *sc)
1658 {
1659 	struct ifnet *ifp = &sc->arpcom.ac_if;
1660 	int i;
1661 
1662 	ifp->if_timer = 0;
1663 
1664 	callout_stop(&sc->rl_stat_timer);
1665 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1666 #ifdef DEVICE_POLLING
1667 	ether_poll_deregister(ifp);
1668 #endif /* DEVICE_POLLING */
1669 
1670 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1671 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1672 	bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
1673 
1674 	/*
1675 	 * Free the TX list buffers.
1676 	 */
1677 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1678 		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1679 			bus_dmamap_unload(sc->rl_tag,
1680 					  sc->rl_cdata.rl_tx_dmamap[i]);
1681 			bus_dmamap_destroy(sc->rl_tag,
1682 					   sc->rl_cdata.rl_tx_dmamap[i]);
1683 			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1684 			sc->rl_cdata.rl_tx_chain[i] = NULL;
1685 			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1686 				    0x0000000);
1687 		}
1688 	}
1689 }
1690 
1691 /*
1692  * Stop all chip I/O so that the kernel's probe routines don't
1693  * get confused by errant DMAs when rebooting.
1694  */
1695 static void
1696 rl_shutdown(device_t dev)
1697 {
1698 	struct rl_softc *sc;
1699 
1700 	sc = device_get_softc(dev);
1701 
1702 	rl_stop(sc);
1703 }
1704 
1705 /*
1706  * Device suspend routine.  Stop the interface and save some PCI
1707  * settings in case the BIOS doesn't restore them properly on
1708  * resume.
1709  */
1710 static int
1711 rl_suspend(device_t dev)
1712 {
1713 	struct rl_softc	*sc = device_get_softc(dev);
1714 	int i;
1715 
1716 	rl_stop(sc);
1717 
1718 	for (i = 0; i < 5; i++)
1719 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
1720 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
1721 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
1722 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1723 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1724 
1725 	sc->suspended = 1;
1726 
1727 	return (0);
1728 }
1729 
1730 /*
1731  * Device resume routine.  Restore some PCI settings in case the BIOS
1732  * doesn't, re-enable busmastering, and restart the interface if
1733  * appropriate.
1734  */
1735 static int rl_resume(device_t dev)
1736 {
1737 	struct rl_softc *sc = device_get_softc(dev);
1738 	struct ifnet *ifp = &sc->arpcom.ac_if;
1739 	int		i;
1740 
1741 	/* better way to do this? */
1742 	for (i = 0; i < 5; i++)
1743 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1744 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1745 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1746 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1747 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1748 
1749 	/* reenable busmastering */
1750 	pci_enable_busmaster(dev);
1751 	pci_enable_io(dev, RL_RES);
1752 
1753         /* reinitialize interface if necessary */
1754         if (ifp->if_flags & IFF_UP)
1755                 rl_init(sc);
1756 
1757 	sc->suspended = 0;
1758 
1759 	return (0);
1760 }
1761