xref: /dragonfly/sys/dev/netif/rl/if_rl.c (revision d600454b)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_rl.c,v 1.38.2.16 2003/03/05 18:42:33 njl Exp $
33  * $DragonFly: src/sys/dev/netif/rl/if_rl.c,v 1.30 2005/12/31 14:08:00 sephe Exp $
34  */
35 
36 /*
37  * RealTek 8129/8139 PCI NIC driver
38  *
39  * Supports several extremely cheap PCI 10/100 adapters based on
40  * the RealTek chipset. Datasheets can be obtained from
41  * www.realtek.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
50  * probably the worst PCI ethernet controller ever made, with the possible
51  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
52  * DMA, but it has a terrible interface that nullifies any performance
53  * gains that bus-master DMA usually offers.
54  *
55  * For transmission, the chip offers a series of four TX descriptor
56  * registers. Each transmit frame must be in a contiguous buffer, aligned
57  * on a longword (32-bit) boundary. This means we almost always have to
58  * do mbuf copies in order to transmit a frame, except in the unlikely
59  * case where a) the packet fits into a single mbuf, and b) the packet
60  * is 32-bit aligned within the mbuf's data area. The presence of only
61  * four descriptor registers means that we can never have more than four
62  * packets queued for transmission at any one time.
63  *
64  * Reception is not much better. The driver has to allocate a single large
65  * buffer area (up to 64K in size) into which the chip will DMA received
66  * frames. Because we don't know where within this region received packets
67  * will begin or end, we have no choice but to copy data from the buffer
68  * area into mbufs in order to pass the packets up to the higher protocol
69  * levels.
70  *
71  * It's impossible given this rotten design to really achieve decent
72  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
73  * some equally overmuscled CPU to drive it.
74  *
75  * On the bright side, the 8139 does have a built-in PHY, although
76  * rather than using an MDIO serial interface like most other NICs, the
77  * PHY registers are directly accessible through the 8139's register
78  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
79  * filter.
80  *
81  * The 8129 chip is an older version of the 8139 that uses an external PHY
82  * chip. The 8129 has a serial MDIO interface for accessing the MII where
83  * the 8139 lets you directly access the on-board PHY registers. We need
84  * to select which interface to use depending on the chip type.
85  */
86 
87 #include "opt_polling.h"
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/module.h>
97 #include <sys/socket.h>
98 #include <sys/serialize.h>
99 #include <sys/thread2.h>
100 
101 #include <net/if.h>
102 #include <net/ifq_var.h>
103 #include <net/if_arp.h>
104 #include <net/ethernet.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 
108 #include <net/bpf.h>
109 
110 #include <machine/bus_pio.h>
111 #include <machine/bus_memio.h>
112 #include <machine/bus.h>
113 #include <machine/resource.h>
114 #include <sys/bus.h>
115 #include <sys/rman.h>
116 
117 #include <dev/netif/mii_layer/mii.h>
118 #include <dev/netif/mii_layer/miivar.h>
119 
120 #include <bus/pci/pcireg.h>
121 #include <bus/pci/pcivar.h>
122 
123 /* "controller miibus0" required.  See GENERIC if you get errors here. */
124 #include "miibus_if.h"
125 
126 /*
127  * Default to using PIO access for this driver. On SMP systems,
128  * there appear to be problems with memory mapped mode: it looks like
129  * doing too many memory mapped access back to back in rapid succession
130  * can hang the bus. I'm inclined to blame this on crummy design/construction
131  * on the part of RealTek. Memory mapped mode does appear to work on
132  * uniprocessor systems though.
133  */
134 #define RL_USEIOSPACE
135 
136 #include <dev/netif/rl/if_rlreg.h>
137 
138 /*
139  * Various supported device vendors/types and their names.
140  */
141 static struct rl_type {
142 	uint16_t	 rl_vid;
143 	uint16_t	 rl_did;
144 	const char	*rl_name;
145 } rl_devs[] = {
146 	{ RT_VENDORID, RT_DEVICEID_8129,
147 		"RealTek 8129 10/100BaseTX" },
148 	{ RT_VENDORID, RT_DEVICEID_8139,
149 		"RealTek 8139 10/100BaseTX" },
150 	{ RT_VENDORID, RT_DEVICEID_8138,
151 		"RealTek 8139 10/100BaseTX CardBus" },
152 	{ ACCTON_VENDORID, ACCTON_DEVICEID_5030,
153 		"Accton MPX 5030/5038 10/100BaseTX" },
154 	{ DELTA_VENDORID, DELTA_DEVICEID_8139,
155 		"Delta Electronics 8139 10/100BaseTX" },
156 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139,
157 		"Addtron Technolgy 8139 10/100BaseTX" },
158 	{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS,
159 		"D-Link DFE-530TX+ 10/100BaseTX" },
160 	{ DLINK_VENDORID, DLINK_DEVICEID_690TXD,
161 		"D-Link DFE-690TX 10/100BaseTX" },
162 	{ NORTEL_VENDORID, ACCTON_DEVICEID_5030,
163 		"Nortel Networks 10/100BaseTX" },
164 	{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF,
165 		"Peppercon AG ROL/F" },
166 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD,
167 		"Corega FEther CB-TXD" },
168 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD,
169 		"Corega FEtherII CB-TXD" },
170 	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX,
171 		"Planex FNW-3800-TX" },
172 	{ 0, 0, NULL }
173 };
174 
175 static int	rl_probe(device_t);
176 static int	rl_attach(device_t);
177 static int	rl_detach(device_t);
178 
179 static int	rl_encap(struct rl_softc *, struct mbuf * );
180 
181 static void	rl_rxeof(struct rl_softc *);
182 static void	rl_txeof(struct rl_softc *);
183 static void	rl_intr(void *);
184 static void	rl_tick(void *);
185 static void	rl_start(struct ifnet *);
186 static int	rl_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
187 static void	rl_init(void *);
188 static void	rl_stop	(struct rl_softc *);
189 static void	rl_watchdog(struct ifnet *);
190 static int	rl_suspend(device_t);
191 static int	rl_resume(device_t);
192 static void	rl_shutdown(device_t);
193 static int	rl_ifmedia_upd(struct ifnet *);
194 static void	rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
195 
196 static void	rl_eeprom_putbyte(struct rl_softc *, int);
197 static void	rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
198 static void	rl_read_eeprom(struct rl_softc *, caddr_t, int, int, int);
199 static void	rl_mii_sync(struct rl_softc *);
200 static void	rl_mii_send(struct rl_softc *, uint32_t, int);
201 static int	rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
202 static int	rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
203 
204 static int	rl_miibus_readreg(device_t, int, int);
205 static int	rl_miibus_writereg(device_t, int, int, int);
206 static void	rl_miibus_statchg(device_t);
207 
208 static void	rl_setmulti(struct rl_softc *);
209 static void	rl_reset(struct rl_softc *);
210 static void	rl_list_tx_init(struct rl_softc *);
211 
212 static void	rl_dma_map_rxbuf(void *, bus_dma_segment_t *, int, int);
213 static void	rl_dma_map_txbuf(void *, bus_dma_segment_t *, int, int);
214 #ifdef DEVICE_POLLING
215 static poll_handler_t rl_poll;
216 #endif
217 
218 #ifdef RL_USEIOSPACE
219 #define	RL_RES			SYS_RES_IOPORT
220 #define	RL_RID			RL_PCI_LOIO
221 #else
222 #define	RL_RES			SYS_RES_MEMORY
223 #define	RL_RID			RL_PCI_LOMEM
224 #endif
225 
226 static device_method_t rl_methods[] = {
227 	/* Device interface */
228 	DEVMETHOD(device_probe,		rl_probe),
229 	DEVMETHOD(device_attach,	rl_attach),
230 	DEVMETHOD(device_detach,	rl_detach),
231 	DEVMETHOD(device_suspend,	rl_suspend),
232 	DEVMETHOD(device_resume,	rl_resume),
233 	DEVMETHOD(device_shutdown,	rl_shutdown),
234 
235 	/* bus interface */
236 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
237 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
238 
239 	/* MII interface */
240 	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
241 	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
242 	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
243 
244 	{ 0, 0 }
245 };
246 
247 static DEFINE_CLASS_0(rl, rl_driver, rl_methods, sizeof(struct rl_softc));
248 static devclass_t rl_devclass;
249 
250 DECLARE_DUMMY_MODULE(if_rl);
251 DRIVER_MODULE(if_rl, pci, rl_driver, rl_devclass, 0, 0);
252 DRIVER_MODULE(if_rl, cardbus, rl_driver, rl_devclass, 0, 0);
253 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
254 MODULE_DEPEND(if_rl, miibus, 1, 1, 1);
255 
256 #define EE_SET(x)					\
257 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) | (x))
258 
259 #define EE_CLR(x)					\
260 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) & ~(x))
261 
262 static void
263 rl_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
264 {
265 	struct rl_softc *sc = arg;
266 
267 	CSR_WRITE_4(sc, RL_RXADDR, segs->ds_addr & 0xFFFFFFFF);
268 }
269 
270 static void
271 rl_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
272 {
273 	struct rl_softc *sc = arg;
274 
275 	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), segs->ds_addr & 0xFFFFFFFF);
276 }
277 
278 /*
279  * Send a read command and address to the EEPROM, check for ACK.
280  */
281 static void
282 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
283 {
284 	int d, i;
285 
286 	d = addr | sc->rl_eecmd_read;
287 
288 	/*
289 	 * Feed in each bit and strobe the clock.
290 	 */
291 	for (i = 0x400; i; i >>= 1) {
292 		if (d & i)
293 			EE_SET(RL_EE_DATAIN);
294 		else
295 			EE_CLR(RL_EE_DATAIN);
296 		DELAY(100);
297 		EE_SET(RL_EE_CLK);
298 		DELAY(150);
299 		EE_CLR(RL_EE_CLK);
300 		DELAY(100);
301 	}
302 }
303 
304 /*
305  * Read a word of data stored in the EEPROM at address 'addr.'
306  */
307 static void
308 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
309 {
310 	int i;
311 	uint16_t word = 0;
312 
313 	/* Enter EEPROM access mode. */
314 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
315 
316 	/*
317 	 * Send address of word we want to read.
318 	 */
319 	rl_eeprom_putbyte(sc, addr);
320 
321 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
322 
323 	/*
324 	 * Start reading bits from EEPROM.
325 	 */
326 	for (i = 0x8000; i; i >>= 1) {
327 		EE_SET(RL_EE_CLK);
328 		DELAY(100);
329 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
330 			word |= i;
331 		EE_CLR(RL_EE_CLK);
332 		DELAY(100);
333 	}
334 
335 	/* Turn off EEPROM access mode. */
336 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
337 
338 	*dest = word;
339 }
340 
341 /*
342  * Read a sequence of words from the EEPROM.
343  */
344 static void
345 rl_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt, int swap)
346 {
347 	int i;
348 	u_int16_t word = 0, *ptr;
349 
350 	for (i = 0; i < cnt; i++) {
351 		rl_eeprom_getword(sc, off + i, &word);
352 		ptr = (u_int16_t *)(dest + (i * 2));
353 		if (swap)
354 			*ptr = ntohs(word);
355 		else
356 			*ptr = word;
357 	}
358 }
359 
360 
361 /*
362  * MII access routines are provided for the 8129, which
363  * doesn't have a built-in PHY. For the 8139, we fake things
364  * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
365  * direct access PHY registers.
366  */
367 #define MII_SET(x)							\
368 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) | x)
369 
370 #define MII_CLR(x)							\
371 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) & ~x)
372 
373 /*
374  * Sync the PHYs by setting data bit and strobing the clock 32 times.
375  */
376 static void
377 rl_mii_sync(struct rl_softc *sc)
378 {
379 	int i;
380 
381 	MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
382 
383 	for (i = 0; i < 32; i++) {
384 		MII_SET(RL_MII_CLK);
385 		DELAY(1);
386 		MII_CLR(RL_MII_CLK);
387 		DELAY(1);
388 	}
389 }
390 
391 /*
392  * Clock a series of bits through the MII.
393  */
394 static void
395 rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
396 {
397 	int i;
398 
399 	MII_CLR(RL_MII_CLK);
400 
401 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
402 		if (bits & i)
403 			MII_SET(RL_MII_DATAOUT);
404 		else
405 			MII_CLR(RL_MII_DATAOUT);
406 		DELAY(1);
407 		MII_CLR(RL_MII_CLK);
408 		DELAY(1);
409 		MII_SET(RL_MII_CLK);
410 	}
411 }
412 
413 /*
414  * Read an PHY register through the MII.
415  */
416 static int
417 rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
418 {
419 	int ack, i;
420 
421 	/*
422 	 * Set up frame for RX.
423 	 */
424 	frame->mii_stdelim = RL_MII_STARTDELIM;
425 	frame->mii_opcode = RL_MII_READOP;
426 	frame->mii_turnaround = 0;
427 	frame->mii_data = 0;
428 
429 	CSR_WRITE_2(sc, RL_MII, 0);
430 
431 	/*
432  	 * Turn on data xmit.
433 	 */
434 	MII_SET(RL_MII_DIR);
435 
436 	rl_mii_sync(sc);
437 
438 	/*
439 	 * Send command/address info.
440 	 */
441 	rl_mii_send(sc, frame->mii_stdelim, 2);
442 	rl_mii_send(sc, frame->mii_opcode, 2);
443 	rl_mii_send(sc, frame->mii_phyaddr, 5);
444 	rl_mii_send(sc, frame->mii_regaddr, 5);
445 
446 	/* Idle bit */
447 	MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
448 	DELAY(1);
449 	MII_SET(RL_MII_CLK);
450 	DELAY(1);
451 
452 	/* Turn off xmit. */
453 	MII_CLR(RL_MII_DIR);
454 
455 	/* Check for ack */
456 	MII_CLR(RL_MII_CLK);
457 	DELAY(1);
458 	ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
459 	MII_SET(RL_MII_CLK);
460 	DELAY(1);
461 
462 	/*
463 	 * Now try reading data bits. If the ack failed, we still
464 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
465 	 */
466 	if (ack) {
467 		for(i = 0; i < 16; i++) {
468 			MII_CLR(RL_MII_CLK);
469 			DELAY(1);
470 			MII_SET(RL_MII_CLK);
471 			DELAY(1);
472 		}
473 	} else {
474 		for (i = 0x8000; i; i >>= 1) {
475 			MII_CLR(RL_MII_CLK);
476 			DELAY(1);
477 			if (!ack) {
478 				if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
479 					frame->mii_data |= i;
480 				DELAY(1);
481 			}
482 			MII_SET(RL_MII_CLK);
483 			DELAY(1);
484 		}
485 	}
486 
487 	MII_CLR(RL_MII_CLK);
488 	DELAY(1);
489 	MII_SET(RL_MII_CLK);
490 	DELAY(1);
491 
492 	return(ack ? 1 : 0);
493 }
494 
495 /*
496  * Write to a PHY register through the MII.
497  */
498 static int
499 rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
500 {
501 	/*
502 	 * Set up frame for TX.
503 	 */
504 	frame->mii_stdelim = RL_MII_STARTDELIM;
505 	frame->mii_opcode = RL_MII_WRITEOP;
506 	frame->mii_turnaround = RL_MII_TURNAROUND;
507 
508 	/*
509  	 * Turn on data output.
510 	 */
511 	MII_SET(RL_MII_DIR);
512 
513 	rl_mii_sync(sc);
514 
515 	rl_mii_send(sc, frame->mii_stdelim, 2);
516 	rl_mii_send(sc, frame->mii_opcode, 2);
517 	rl_mii_send(sc, frame->mii_phyaddr, 5);
518 	rl_mii_send(sc, frame->mii_regaddr, 5);
519 	rl_mii_send(sc, frame->mii_turnaround, 2);
520 	rl_mii_send(sc, frame->mii_data, 16);
521 
522 	/* Idle bit. */
523 	MII_SET(RL_MII_CLK);
524 	DELAY(1);
525 	MII_CLR(RL_MII_CLK);
526 	DELAY(1);
527 
528 	/*
529 	 * Turn off xmit.
530 	 */
531 	MII_CLR(RL_MII_DIR);
532 
533 	return(0);
534 }
535 
536 static int
537 rl_miibus_readreg(device_t dev, int phy, int reg)
538 {
539 	struct rl_softc *sc;
540 	struct rl_mii_frame frame;
541 	uint16_t rval = 0;
542 	uint16_t rl8139_reg = 0;
543 
544 	sc = device_get_softc(dev);
545 
546 	if (sc->rl_type == RL_8139) {
547 		/* Pretend the internal PHY is only at address 0 */
548 		if (phy)
549 			return(0);
550 		switch (reg) {
551 		case MII_BMCR:
552 			rl8139_reg = RL_BMCR;
553 			break;
554 		case MII_BMSR:
555 			rl8139_reg = RL_BMSR;
556 			break;
557 		case MII_ANAR:
558 			rl8139_reg = RL_ANAR;
559 			break;
560 		case MII_ANER:
561 			rl8139_reg = RL_ANER;
562 			break;
563 		case MII_ANLPAR:
564 			rl8139_reg = RL_LPAR;
565 			break;
566 		case MII_PHYIDR1:
567 		case MII_PHYIDR2:
568 			return(0);
569 			break;
570 		/*
571 		 * Allow the rlphy driver to read the media status
572 		 * register. If we have a link partner which does not
573 		 * support NWAY, this is the register which will tell
574 		 * us the results of parallel detection.
575 		 */
576 		case RL_MEDIASTAT:
577 			rval = CSR_READ_1(sc, RL_MEDIASTAT);
578 			return(rval);
579 		default:
580 			device_printf(dev, "bad phy register\n");
581 			return(0);
582 		}
583 		rval = CSR_READ_2(sc, rl8139_reg);
584 		return(rval);
585 	}
586 
587 	bzero(&frame, sizeof(frame));
588 
589 	frame.mii_phyaddr = phy;
590 	frame.mii_regaddr = reg;
591 	rl_mii_readreg(sc, &frame);
592 
593 	return(frame.mii_data);
594 }
595 
596 static int
597 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
598 {
599 	struct rl_softc *sc;
600 	struct rl_mii_frame frame;
601 	u_int16_t rl8139_reg = 0;
602 
603 	sc = device_get_softc(dev);
604 
605 	if (sc->rl_type == RL_8139) {
606 		/* Pretend the internal PHY is only at address 0 */
607 		if (phy)
608 			return(0);
609 		switch (reg) {
610 		case MII_BMCR:
611 			rl8139_reg = RL_BMCR;
612 			break;
613 		case MII_BMSR:
614 			rl8139_reg = RL_BMSR;
615 			break;
616 		case MII_ANAR:
617 			rl8139_reg = RL_ANAR;
618 			break;
619 		case MII_ANER:
620 			rl8139_reg = RL_ANER;
621 			break;
622 		case MII_ANLPAR:
623 			rl8139_reg = RL_LPAR;
624 			break;
625 		case MII_PHYIDR1:
626 		case MII_PHYIDR2:
627 			return(0);
628 		default:
629 			device_printf(dev, "bad phy register\n");
630 			return(0);
631 		}
632 		CSR_WRITE_2(sc, rl8139_reg, data);
633 		return(0);
634 	}
635 
636 	bzero(&frame, sizeof(frame));
637 
638 	frame.mii_phyaddr = phy;
639 	frame.mii_regaddr = reg;
640 	frame.mii_data = data;
641 
642 	rl_mii_writereg(sc, &frame);
643 
644 	return(0);
645 }
646 
647 static void
648 rl_miibus_statchg(device_t dev)
649 {
650 }
651 
652 /*
653  * Program the 64-bit multicast hash filter.
654  */
655 static void
656 rl_setmulti(struct rl_softc *sc)
657 {
658 	struct ifnet *ifp;
659 	int h = 0;
660 	uint32_t hashes[2] = { 0, 0 };
661 	struct ifmultiaddr *ifma;
662 	uint32_t rxfilt;
663 	int mcnt = 0;
664 
665 	ifp = &sc->arpcom.ac_if;
666 
667 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
668 
669 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
670 		rxfilt |= RL_RXCFG_RX_MULTI;
671 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
672 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
673 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
674 		return;
675 	}
676 
677 	/* first, zot all the existing hash bits */
678 	CSR_WRITE_4(sc, RL_MAR0, 0);
679 	CSR_WRITE_4(sc, RL_MAR4, 0);
680 
681 	/* now program new ones */
682 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
683 		if (ifma->ifma_addr->sa_family != AF_LINK)
684 			continue;
685 		h = ether_crc32_be(
686 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
687 		    ETHER_ADDR_LEN) >> 26;
688 		if (h < 32)
689 			hashes[0] |= (1 << h);
690 		else
691 			hashes[1] |= (1 << (h - 32));
692 		mcnt++;
693 	}
694 
695 	if (mcnt)
696 		rxfilt |= RL_RXCFG_RX_MULTI;
697 	else
698 		rxfilt &= ~RL_RXCFG_RX_MULTI;
699 
700 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
701 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
702 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
703 }
704 
705 static void
706 rl_reset(struct rl_softc *sc)
707 {
708 	int i;
709 
710 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
711 
712 	for (i = 0; i < RL_TIMEOUT; i++) {
713 		DELAY(10);
714 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
715 			break;
716 	}
717 	if (i == RL_TIMEOUT)
718 		device_printf(sc->rl_dev, "reset never completed!\n");
719 }
720 
721 /*
722  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
723  * IDs against our list and return a device name if we find a match.
724  *
725  * Return with a value < 0 to give re(4) a change to attach.
726  */
727 static int
728 rl_probe(device_t dev)
729 {
730 	struct rl_type *t;
731 	uint16_t product = pci_get_device(dev);
732 	uint16_t vendor = pci_get_vendor(dev);
733 
734 	for (t = rl_devs; t->rl_name != NULL; t++) {
735 		if (vendor == t->rl_vid && product == t->rl_did) {
736 			device_set_desc(dev, t->rl_name);
737 			return(-100);
738 		}
739 	}
740 
741 	return(ENXIO);
742 }
743 
744 /*
745  * Attach the interface. Allocate softc structures, do ifmedia
746  * setup and ethernet/BPF attach.
747  */
748 static int
749 rl_attach(device_t dev)
750 {
751 	uint8_t eaddr[ETHER_ADDR_LEN];
752 	uint16_t as[3];
753 	struct rl_softc *sc;
754 	struct ifnet *ifp;
755 	uint16_t rl_did = 0;
756 	int error = 0, rid, i;
757 
758 	sc = device_get_softc(dev);
759 	sc->rl_dev = dev;
760 
761 	/*
762 	 * Handle power management nonsense.
763 	 */
764 
765 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
766 		uint32_t iobase, membase, irq;
767 
768 		/* Save important PCI config data. */
769 		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
770 		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
771 		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
772 
773 		/* Reset the power state. */
774 		device_printf(dev, "chip is is in D%d power mode "
775 			      "-- setting to D0\n", pci_get_powerstate(dev));
776 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
777 
778 		/* Restore PCI config data. */
779 		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
780 		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
781 		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
782 	}
783 
784 	pci_enable_busmaster(dev);
785 
786 	rid = RL_RID;
787 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, RF_ACTIVE);
788 
789 	if (sc->rl_res == NULL) {
790 		device_printf(dev, "couldn't map ports/memory\n");
791 		error = ENXIO;
792 		goto fail;
793 	}
794 
795 	sc->rl_btag = rman_get_bustag(sc->rl_res);
796 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
797 
798 	rid = 0;
799 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
800 					    RF_SHAREABLE | RF_ACTIVE);
801 
802 	if (sc->rl_irq == NULL) {
803 		device_printf(dev, "couldn't map interrupt\n");
804 		error = ENXIO;
805 		goto fail;
806 	}
807 
808 	callout_init(&sc->rl_stat_timer);
809 
810 	/* Reset the adapter. */
811 	rl_reset(sc);
812 
813 	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
814 	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
815 	if (rl_did != 0x8129)
816 		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
817 
818 	/*
819 	 * Get station address from the EEPROM.
820 	 */
821 	rl_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
822 	for (i = 0; i < 3; i++) {
823 		eaddr[(i * 2) + 0] = as[i] & 0xff;
824 		eaddr[(i * 2) + 1] = as[i] >> 8;
825 	}
826 
827 	/*
828 	 * Now read the exact device type from the EEPROM to find
829 	 * out if it's an 8129 or 8139.
830 	 */
831 	rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, 1, 0);
832 
833 	if (rl_did == RT_DEVICEID_8139 || rl_did == ACCTON_DEVICEID_5030 ||
834 	    rl_did == DELTA_DEVICEID_8139 || rl_did == ADDTRON_DEVICEID_8139 ||
835 	    rl_did == DLINK_DEVICEID_530TXPLUS || rl_did == RT_DEVICEID_8138 ||
836 	    rl_did == DLINK_DEVICEID_690TXD ||
837 	    rl_did == COREGA_DEVICEID_FETHERCBTXD ||
838 	    rl_did == COREGA_DEVICEID_FETHERIICBTXD ||
839 	    rl_did == PLANEX_DEVICEID_FNW3800TX)
840 		sc->rl_type = RL_8139;
841 	else if (rl_did == RT_DEVICEID_8129)
842 		sc->rl_type = RL_8129;
843 	else {
844 		device_printf(dev, "unknown device ID: %x\n", rl_did);
845 		error = ENXIO;
846 		goto fail;
847 	}
848 
849 #define	RL_NSEG_NEW 32
850 	error = bus_dma_tag_create(NULL,			/* parent */
851 				   1, 0,			/* alignment, boundary */
852 				   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
853 				   BUS_SPACE_MAXADDR,		/* highaddr */
854 				   NULL, NULL,			/* filter, filterarg */
855 				   MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
856 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
857 				   BUS_DMA_ALLOCNOW,		/* flags */
858 				   &sc->rl_parent_tag);
859 
860 	if (error) {
861 		device_printf(dev, "can't create parent tag\n");
862 		goto fail;
863 	}
864 
865 	/*
866 	 * Now allocate a tag for the DMA descriptor lists.
867 	 * All of our lists are allocated as a contiguous block
868 	 * of memory.
869 	 */
870 	error = bus_dma_tag_create(sc->rl_parent_tag,		/* parent */
871 				   1, 0,			/* alignment, boundary */
872 				   BUS_SPACE_MAXADDR,		/* lowaddr */
873 				   BUS_SPACE_MAXADDR,		/* highaddr */
874 				   NULL, NULL,			/* filter, filterarg */
875 				   RL_RXBUFLEN + 1518, 1,	/* maxsize, nsegments */
876 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
877 				   0,				/* flags */
878 				   &sc->rl_tag);
879 
880 	if (error) {
881 		device_printf(dev, "can't create RX tag\n");
882 		goto fail;
883 	}
884 
885 	/*
886 	 * Now allocate a chunk of DMA-able memory based on the tag
887 	 * we just created.
888 	 */
889 	error = bus_dmamem_alloc(sc->rl_tag, (void **)&sc->rl_cdata.rl_rx_buf,
890 				 BUS_DMA_WAITOK, &sc->rl_cdata.rl_rx_dmamap);
891 
892 	if (error) {
893 		device_printf(dev, "can't allocate RX memory!\n");
894 		error = ENXIO;
895 		goto fail;
896 	}
897 
898 	/* Leave a few bytes before the start of the RX ring buffer. */
899 	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
900 	sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t);
901 
902 	/* Do MII setup */
903 	if (mii_phy_probe(dev, &sc->rl_miibus, rl_ifmedia_upd,
904 			  rl_ifmedia_sts)) {
905 		device_printf(dev, "MII without any phy!\n");
906 		error = ENXIO;
907 		goto fail;
908 	}
909 
910 	ifp = &sc->arpcom.ac_if;
911 	ifp->if_softc = sc;
912 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
913 	ifp->if_mtu = ETHERMTU;
914 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
915 	ifp->if_ioctl = rl_ioctl;
916 	ifp->if_start = rl_start;
917 	ifp->if_watchdog = rl_watchdog;
918 	ifp->if_init = rl_init;
919 	ifp->if_baudrate = 10000000;
920 	ifp->if_capabilities = IFCAP_VLAN_MTU;
921 #ifdef DEVICE_POLLING
922 	ifp->if_poll = rl_poll;
923 #endif
924 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
925 	ifq_set_ready(&ifp->if_snd);
926 
927 	/*
928 	 * Call MI attach routine.
929 	 */
930 	ether_ifattach(ifp, eaddr, NULL);
931 
932 	error = bus_setup_intr(dev, sc->rl_irq, INTR_NETSAFE, rl_intr,
933 			       sc, &sc->rl_intrhand, ifp->if_serializer);
934 
935 	if (error) {
936 		device_printf(dev, "couldn't set up irq\n");
937 		ether_ifdetach(ifp);
938 		goto fail;
939 	}
940 
941 	return(0);
942 
943 fail:
944 	rl_detach(dev);
945 	return(error);
946 }
947 
948 static int
949 rl_detach(device_t dev)
950 {
951 	struct rl_softc *sc;
952 	struct ifnet *ifp;
953 
954 	sc = device_get_softc(dev);
955 	ifp = &sc->arpcom.ac_if;
956 
957 	if (device_is_attached(dev)) {
958 		lwkt_serialize_enter(ifp->if_serializer);
959 		rl_stop(sc);
960 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
961 		lwkt_serialize_exit(ifp->if_serializer);
962 
963 		ether_ifdetach(ifp);
964 	}
965 
966 	if (sc->rl_miibus)
967 		device_delete_child(dev, sc->rl_miibus);
968 	bus_generic_detach(dev);
969 
970 	if (sc->rl_irq)
971 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
972 	if (sc->rl_res)
973 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
974 
975 	if (sc->rl_cdata.rl_rx_buf) {
976 		bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
977 		bus_dmamem_free(sc->rl_tag, sc->rl_cdata.rl_rx_buf,
978 				sc->rl_cdata.rl_rx_dmamap);
979 	}
980 	if (sc->rl_tag)
981 		bus_dma_tag_destroy(sc->rl_tag);
982 	if (sc->rl_parent_tag)
983 		bus_dma_tag_destroy(sc->rl_parent_tag);
984 
985 	return(0);
986 }
987 
988 /*
989  * Initialize the transmit descriptors.
990  */
991 static void
992 rl_list_tx_init(struct rl_softc *sc)
993 {
994 	struct rl_chain_data *cd;
995 	int i;
996 
997 	cd = &sc->rl_cdata;
998 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
999 		cd->rl_tx_chain[i] = NULL;
1000 		CSR_WRITE_4(sc,
1001 		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1002 	}
1003 
1004 	sc->rl_cdata.cur_tx = 0;
1005 	sc->rl_cdata.last_tx = 0;
1006 }
1007 
1008 /*
1009  * A frame has been uploaded: pass the resulting mbuf chain up to
1010  * the higher level protocols.
1011  *
1012  * You know there's something wrong with a PCI bus-master chip design
1013  * when you have to use m_devget().
1014  *
1015  * The receive operation is badly documented in the datasheet, so I'll
1016  * attempt to document it here. The driver provides a buffer area and
1017  * places its base address in the RX buffer start address register.
1018  * The chip then begins copying frames into the RX buffer. Each frame
1019  * is preceded by a 32-bit RX status word which specifies the length
1020  * of the frame and certain other status bits. Each frame (starting with
1021  * the status word) is also 32-bit aligned. The frame length is in the
1022  * first 16 bits of the status word; the lower 15 bits correspond with
1023  * the 'rx status register' mentioned in the datasheet.
1024  *
1025  * Note: to make the Alpha happy, the frame payload needs to be aligned
1026  * on a 32-bit boundary. To achieve this, we cheat a bit by copying from
1027  * the ring buffer starting at an address two bytes before the actual
1028  * data location. We can then shave off the first two bytes using m_adj().
1029  * The reason we do this is because m_devget() doesn't let us specify an
1030  * offset into the mbuf storage space, so we have to artificially create
1031  * one. The ring is allocated in such a way that there are a few unused
1032  * bytes of space preceecing it so that it will be safe for us to do the
1033  * 2-byte backstep even if reading from the ring at offset 0.
1034  */
1035 static void
1036 rl_rxeof(struct rl_softc *sc)
1037 {
1038         struct mbuf *m;
1039         struct ifnet *ifp;
1040 	int total_len = 0;
1041 	uint32_t rxstat;
1042 	caddr_t rxbufpos;
1043 	int wrap = 0;
1044 	uint16_t cur_rx, limit, max_bytes, rx_bytes = 0;
1045 
1046 	ifp = &sc->arpcom.ac_if;
1047 
1048 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1049 			BUS_DMASYNC_POSTREAD);
1050 
1051 	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1052 
1053 	/* Do not try to read past this point. */
1054 	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1055 
1056 	if (limit < cur_rx)
1057 		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1058 	else
1059 		max_bytes = limit - cur_rx;
1060 
1061 	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1062 #ifdef DEVICE_POLLING
1063 		if (ifp->if_flags & IFF_POLLING) {
1064 			if (sc->rxcycles <= 0)
1065 				break;
1066 			sc->rxcycles--;
1067 		}
1068 #endif /* DEVICE_POLLING */
1069 		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1070 		rxstat = le32toh(*(uint32_t *)rxbufpos);
1071 
1072 		/*
1073 		 * Here's a totally undocumented fact for you. When the
1074 		 * RealTek chip is in the process of copying a packet into
1075 		 * RAM for you, the length will be 0xfff0. If you spot a
1076 		 * packet header with this value, you need to stop. The
1077 		 * datasheet makes absolutely no mention of this and
1078 		 * RealTek should be shot for this.
1079 		 */
1080 		if ((uint16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
1081 			break;
1082 
1083 		if ((rxstat & RL_RXSTAT_RXOK) == 0) {
1084 			ifp->if_ierrors++;
1085 			rl_init(sc);
1086 			return;
1087 		}
1088 
1089 		/* No errors; receive the packet. */
1090 		total_len = rxstat >> 16;
1091 		rx_bytes += total_len + 4;
1092 
1093 		/*
1094 		 * XXX The RealTek chip includes the CRC with every
1095 		 * received frame, and there's no way to turn this
1096 		 * behavior off (at least, I can't find anything in
1097 	 	 * the manual that explains how to do it) so we have
1098 		 * to trim off the CRC manually.
1099 		 */
1100 		total_len -= ETHER_CRC_LEN;
1101 
1102 		/*
1103 		 * Avoid trying to read more bytes than we know
1104 		 * the chip has prepared for us.
1105 		 */
1106 		if (rx_bytes > max_bytes)
1107 			break;
1108 
1109 		rxbufpos = sc->rl_cdata.rl_rx_buf +
1110 			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1111 
1112 		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1113 			rxbufpos = sc->rl_cdata.rl_rx_buf;
1114 
1115 		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1116 
1117 		if (total_len > wrap) {
1118 			/*
1119 			 * Fool m_devget() into thinking we want to copy
1120 			 * the whole buffer so we don't end up fragmenting
1121 			 * the data.
1122 			 */
1123 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1124 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1125 			if (m == NULL) {
1126 				ifp->if_ierrors++;
1127 			} else {
1128 				m_adj(m, RL_ETHER_ALIGN);
1129 				m_copyback(m, wrap, total_len - wrap,
1130 					sc->rl_cdata.rl_rx_buf);
1131 			}
1132 			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1133 		} else {
1134 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1135 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1136 			if (m == NULL) {
1137 				ifp->if_ierrors++;
1138 			} else
1139 				m_adj(m, RL_ETHER_ALIGN);
1140 			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1141 		}
1142 
1143 		/*
1144 		 * Round up to 32-bit boundary.
1145 		 */
1146 		cur_rx = (cur_rx + 3) & ~3;
1147 		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1148 
1149 		if (m == NULL)
1150 			continue;
1151 
1152 		ifp->if_ipackets++;
1153 
1154 		ifp->if_input(ifp, m);
1155 	}
1156 }
1157 
1158 /*
1159  * A frame was downloaded to the chip. It's safe for us to clean up
1160  * the list buffers.
1161  */
1162 static void
1163 rl_txeof(struct rl_softc *sc)
1164 {
1165 	struct ifnet *ifp;
1166 	uint32_t txstat;
1167 
1168 	ifp = &sc->arpcom.ac_if;
1169 
1170 	/*
1171 	 * Go through our tx list and free mbufs for those
1172 	 * frames that have been uploaded.
1173 	 */
1174 	do {
1175 		if (RL_LAST_TXMBUF(sc) == NULL)
1176 			break;
1177 		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1178 		if ((txstat & (RL_TXSTAT_TX_OK | RL_TXSTAT_TX_UNDERRUN |
1179 			       RL_TXSTAT_TXABRT)) == 0)
1180 			break;
1181 
1182 		ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1183 
1184 		bus_dmamap_unload(sc->rl_tag, RL_LAST_DMAMAP(sc));
1185 		bus_dmamap_destroy(sc->rl_tag, RL_LAST_DMAMAP(sc));
1186 		m_freem(RL_LAST_TXMBUF(sc));
1187 		RL_LAST_TXMBUF(sc) = NULL;
1188 		RL_INC(sc->rl_cdata.last_tx);
1189 
1190 		if (txstat & RL_TXSTAT_TX_UNDERRUN) {
1191 			sc->rl_txthresh += 32;
1192 			if (sc->rl_txthresh > RL_TX_THRESH_MAX)
1193 				sc->rl_txthresh = RL_TX_THRESH_MAX;
1194 		}
1195 
1196 		if (txstat & RL_TXSTAT_TX_OK) {
1197 			ifp->if_opackets++;
1198 		} else {
1199 			ifp->if_oerrors++;
1200 			if (txstat & (RL_TXSTAT_TXABRT | RL_TXSTAT_OUTOFWIN))
1201 				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1202 		}
1203 		ifp->if_flags &= ~IFF_OACTIVE;
1204 	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1205 
1206 	if (RL_LAST_TXMBUF(sc) == NULL)
1207 		ifp->if_timer = 0;
1208 	else if (ifp->if_timer == 0)
1209 		ifp->if_timer = 5;
1210 }
1211 
1212 static void
1213 rl_tick(void *xsc)
1214 {
1215 	struct rl_softc *sc = xsc;
1216 	struct mii_data *mii;
1217 
1218 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1219 
1220 	mii = device_get_softc(sc->rl_miibus);
1221 	mii_tick(mii);
1222 
1223 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1224 
1225 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1226 }
1227 
1228 #ifdef DEVICE_POLLING
1229 
1230 static void
1231 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1232 {
1233 	struct rl_softc *sc = ifp->if_softc;
1234 
1235 	switch(cmd) {
1236 	case POLL_REGISTER:
1237 		/* disable interrupts */
1238                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
1239 		break;
1240 	case POLL_DEREGISTER:
1241 		/* enable interrupts */
1242 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1243 		break;
1244 	default:
1245 		sc->rxcycles = count;
1246 		rl_rxeof(sc);
1247 		rl_txeof(sc);
1248 		if (!ifq_is_empty(&ifp->if_snd))
1249 			rl_start(ifp);
1250 
1251 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1252 			uint16_t status;
1253 
1254 			status = CSR_READ_2(sc, RL_ISR);
1255 			if (status == 0xffff)
1256 				return;
1257 			if (status)
1258 				CSR_WRITE_2(sc, RL_ISR, status);
1259 
1260 			/*
1261 			 * XXX check behaviour on receiver stalls.
1262 			 */
1263 
1264 			if (status & RL_ISR_SYSTEM_ERR) {
1265 				rl_reset(sc);
1266 				rl_init(sc);
1267 			}
1268 		}
1269 		break;
1270 	}
1271 }
1272 #endif /* DEVICE_POLLING */
1273 
1274 static void
1275 rl_intr(void *arg)
1276 {
1277 	struct rl_softc *sc;
1278 	struct ifnet *ifp;
1279 	uint16_t status;
1280 
1281 	sc = arg;
1282 
1283 	if (sc->suspended)
1284 		return;
1285 
1286 	ifp = &sc->arpcom.ac_if;
1287 
1288 	for (;;) {
1289 		status = CSR_READ_2(sc, RL_ISR);
1290 		/* If the card has gone away, the read returns 0xffff. */
1291 		if (status == 0xffff)
1292 			break;
1293 
1294 		if (status != 0)
1295 			CSR_WRITE_2(sc, RL_ISR, status);
1296 
1297 		if ((status & RL_INTRS) == 0)
1298 			break;
1299 
1300 		if (status & RL_ISR_RX_OK)
1301 			rl_rxeof(sc);
1302 
1303 		if (status & RL_ISR_RX_ERR)
1304 			rl_rxeof(sc);
1305 
1306 		if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
1307 			rl_txeof(sc);
1308 
1309 		if (status & RL_ISR_SYSTEM_ERR) {
1310 			rl_reset(sc);
1311 			rl_init(sc);
1312 		}
1313 
1314 	}
1315 
1316 	if (!ifq_is_empty(&ifp->if_snd))
1317 		rl_start(ifp);
1318 }
1319 
1320 /*
1321  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1322  * pointers to the fragment pointers.
1323  */
1324 static int
1325 rl_encap(struct rl_softc *sc, struct mbuf *m_head)
1326 {
1327 	struct mbuf *m_new = NULL;
1328 
1329 	/*
1330 	 * The RealTek is brain damaged and wants longword-aligned
1331 	 * TX buffers, plus we can only have one fragment buffer
1332 	 * per packet. We have to copy pretty much all the time.
1333 	 */
1334 	m_new = m_defrag(m_head, MB_DONTWAIT);
1335 
1336 	if (m_new == NULL) {
1337 		m_freem(m_head);
1338 		return(1);
1339 	}
1340 	m_head = m_new;
1341 
1342 	/* Pad frames to at least 60 bytes. */
1343 	if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) {
1344 		/*
1345 		 * Make security concious people happy: zero out the
1346 		 * bytes in the pad area, since we don't know what
1347 		 * this mbuf cluster buffer's previous user might
1348 		 * have left in it.
1349 	 	 */
1350 		bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
1351 		     RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1352 		m_head->m_pkthdr.len +=
1353 		    (RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1354 		m_head->m_len = m_head->m_pkthdr.len;
1355 	}
1356 
1357 	RL_CUR_TXMBUF(sc) = m_head;
1358 
1359 	return(0);
1360 }
1361 
1362 /*
1363  * Main transmit routine.
1364  */
1365 
1366 static void
1367 rl_start(struct ifnet *ifp)
1368 {
1369 	struct rl_softc *sc;
1370 	struct mbuf *m_head = NULL;
1371 
1372 	sc = ifp->if_softc;
1373 
1374 	while(RL_CUR_TXMBUF(sc) == NULL) {
1375 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1376 		if (m_head == NULL)
1377 			break;
1378 
1379 		if (rl_encap(sc, m_head))
1380 			break;
1381 
1382 		/*
1383 		 * If there's a BPF listener, bounce a copy of this frame
1384 		 * to him.
1385 		 */
1386 		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1387 
1388 		/*
1389 		 * Transmit the frame.
1390 	 	 */
1391 		bus_dmamap_create(sc->rl_tag, 0, &RL_CUR_DMAMAP(sc));
1392 		bus_dmamap_load(sc->rl_tag, RL_CUR_DMAMAP(sc),
1393 				mtod(RL_CUR_TXMBUF(sc), void *),
1394 				RL_CUR_TXMBUF(sc)->m_pkthdr.len,
1395 				rl_dma_map_txbuf, sc, 0);
1396 		bus_dmamap_sync(sc->rl_tag, RL_CUR_DMAMAP(sc),
1397 				BUS_DMASYNC_PREREAD);
1398 		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1399 		    RL_TXTHRESH(sc->rl_txthresh) |
1400 		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1401 
1402 		RL_INC(sc->rl_cdata.cur_tx);
1403 
1404 		/*
1405 		 * Set a timeout in case the chip goes out to lunch.
1406 		 */
1407 		ifp->if_timer = 5;
1408 	}
1409 
1410 	/*
1411 	 * We broke out of the loop because all our TX slots are
1412 	 * full. Mark the NIC as busy until it drains some of the
1413 	 * packets from the queue.
1414 	 */
1415 	if (RL_CUR_TXMBUF(sc) != NULL)
1416 		ifp->if_flags |= IFF_OACTIVE;
1417 }
1418 
1419 static void
1420 rl_init(void *xsc)
1421 {
1422 	struct rl_softc *sc = xsc;
1423 	struct ifnet *ifp = &sc->arpcom.ac_if;
1424 	struct mii_data *mii;
1425 	uint32_t rxcfg = 0;
1426 
1427 	mii = device_get_softc(sc->rl_miibus);
1428 
1429 	/*
1430 	 * Cancel pending I/O and free all RX/TX buffers.
1431 	 */
1432 	rl_stop(sc);
1433 
1434 	/*
1435 	 * Init our MAC address.  Even though the chipset documentation
1436 	 * doesn't mention it, we need to enter "Config register write enable"
1437 	 * mode to modify the ID registers.
1438 	 */
1439 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1440 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
1441 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1442 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
1443 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1444 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1445 
1446 	/* Init the RX buffer pointer register. */
1447 	bus_dmamap_load(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1448 			sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN, rl_dma_map_rxbuf,
1449 			sc, 0);
1450 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1451 			BUS_DMASYNC_PREWRITE);
1452 
1453 	/* Init TX descriptors. */
1454 	rl_list_tx_init(sc);
1455 
1456 	/*
1457 	 * Enable transmit and receive.
1458 	 */
1459 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1460 
1461 	/*
1462 	 * Set the initial TX and RX configuration.
1463 	 */
1464 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1465 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1466 
1467 	/* Set the individual bit to receive frames for this host only. */
1468 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
1469 	rxcfg |= RL_RXCFG_RX_INDIV;
1470 
1471 	/* If we want promiscuous mode, set the allframes bit. */
1472 	if (ifp->if_flags & IFF_PROMISC) {
1473 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
1474 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1475 	} else {
1476 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1477 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1478 	}
1479 
1480 	/*
1481 	 * Set capture broadcast bit to capture broadcast frames.
1482 	 */
1483 	if (ifp->if_flags & IFF_BROADCAST) {
1484 		rxcfg |= RL_RXCFG_RX_BROAD;
1485 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1486 	} else {
1487 		rxcfg &= ~RL_RXCFG_RX_BROAD;
1488 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1489 	}
1490 
1491 	/*
1492 	 * Program the multicast filter, if necessary.
1493 	 */
1494 	rl_setmulti(sc);
1495 
1496 #ifdef DEVICE_POLLING
1497 	/*
1498 	 * Only enable interrupts if we are polling, keep them off otherwise.
1499 	 */
1500 	if (ifp->if_flags & IFF_POLLING)
1501 		CSR_WRITE_2(sc, RL_IMR, 0);
1502 	else
1503 #endif /* DEVICE_POLLING */
1504 	/*
1505 	 * Enable interrupts.
1506 	 */
1507 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1508 
1509 	/* Set initial TX threshold */
1510 	sc->rl_txthresh = RL_TX_THRESH_INIT;
1511 
1512 	/* Start RX/TX process. */
1513 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1514 
1515 	/* Enable receiver and transmitter. */
1516 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1517 
1518 	mii_mediachg(mii);
1519 
1520 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1521 
1522 	ifp->if_flags |= IFF_RUNNING;
1523 	ifp->if_flags &= ~IFF_OACTIVE;
1524 
1525 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1526 }
1527 
1528 /*
1529  * Set media options.
1530  */
1531 static int
1532 rl_ifmedia_upd(struct ifnet *ifp)
1533 {
1534 	struct rl_softc *sc;
1535 	struct mii_data *mii;
1536 
1537 	sc = ifp->if_softc;
1538 	mii = device_get_softc(sc->rl_miibus);
1539 	mii_mediachg(mii);
1540 
1541 	return(0);
1542 }
1543 
1544 /*
1545  * Report current media status.
1546  */
1547 static void
1548 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1549 {
1550 	struct rl_softc *sc = ifp->if_softc;
1551 	struct mii_data *mii = device_get_softc(sc->rl_miibus);
1552 
1553 	mii_pollstat(mii);
1554 	ifmr->ifm_active = mii->mii_media_active;
1555 	ifmr->ifm_status = mii->mii_media_status;
1556 }
1557 
1558 static int
1559 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1560 {
1561 	struct rl_softc *sc = ifp->if_softc;
1562 	struct ifreq *ifr = (struct ifreq *) data;
1563 	struct mii_data	*mii;
1564 	int error = 0;
1565 
1566 	switch (command) {
1567 	case SIOCSIFFLAGS:
1568 		if (ifp->if_flags & IFF_UP) {
1569 			rl_init(sc);
1570 		} else {
1571 			if (ifp->if_flags & IFF_RUNNING)
1572 				rl_stop(sc);
1573 		}
1574 		error = 0;
1575 		break;
1576 	case SIOCADDMULTI:
1577 	case SIOCDELMULTI:
1578 		rl_setmulti(sc);
1579 		error = 0;
1580 		break;
1581 	case SIOCGIFMEDIA:
1582 	case SIOCSIFMEDIA:
1583 		mii = device_get_softc(sc->rl_miibus);
1584 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1585 		break;
1586 	case SIOCSIFCAP:
1587 		break;
1588 	default:
1589 		error = ether_ioctl(ifp, command, data);
1590 		break;
1591 	}
1592 
1593 	return(error);
1594 }
1595 
1596 static void
1597 rl_watchdog(struct ifnet *ifp)
1598 {
1599 	struct rl_softc *sc = ifp->if_softc;
1600 
1601 	device_printf(sc->rl_dev, "watchdog timeout\n");
1602 
1603 	lwkt_serialize_enter(ifp->if_serializer);
1604 
1605 	ifp->if_oerrors++;
1606 
1607 	rl_txeof(sc);
1608 	rl_rxeof(sc);
1609 	rl_init(sc);
1610 
1611 	lwkt_serialize_exit(ifp->if_serializer);
1612 }
1613 
1614 /*
1615  * Stop the adapter and free any mbufs allocated to the
1616  * RX and TX lists.
1617  */
1618 static void
1619 rl_stop(struct rl_softc *sc)
1620 {
1621 	struct ifnet *ifp = &sc->arpcom.ac_if;
1622 	int i;
1623 
1624 	ifp->if_timer = 0;
1625 
1626 	callout_stop(&sc->rl_stat_timer);
1627 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1628 
1629 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1630 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1631 	bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
1632 
1633 	/*
1634 	 * Free the TX list buffers.
1635 	 */
1636 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1637 		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1638 			bus_dmamap_unload(sc->rl_tag,
1639 					  sc->rl_cdata.rl_tx_dmamap[i]);
1640 			bus_dmamap_destroy(sc->rl_tag,
1641 					   sc->rl_cdata.rl_tx_dmamap[i]);
1642 			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1643 			sc->rl_cdata.rl_tx_chain[i] = NULL;
1644 			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1645 				    0x0000000);
1646 		}
1647 	}
1648 }
1649 
1650 /*
1651  * Stop all chip I/O so that the kernel's probe routines don't
1652  * get confused by errant DMAs when rebooting.
1653  */
1654 static void
1655 rl_shutdown(device_t dev)
1656 {
1657 	struct rl_softc *sc;
1658 
1659 	sc = device_get_softc(dev);
1660 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1661 	rl_stop(sc);
1662 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1663 }
1664 
1665 /*
1666  * Device suspend routine.  Stop the interface and save some PCI
1667  * settings in case the BIOS doesn't restore them properly on
1668  * resume.
1669  */
1670 static int
1671 rl_suspend(device_t dev)
1672 {
1673 	struct rl_softc	*sc = device_get_softc(dev);
1674 	int i;
1675 
1676 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1677 	rl_stop(sc);
1678 
1679 	for (i = 0; i < 5; i++)
1680 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
1681 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
1682 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
1683 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1684 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1685 
1686 	sc->suspended = 1;
1687 
1688 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1689 	return (0);
1690 }
1691 
1692 /*
1693  * Device resume routine.  Restore some PCI settings in case the BIOS
1694  * doesn't, re-enable busmastering, and restart the interface if
1695  * appropriate.
1696  */
1697 static int rl_resume(device_t dev)
1698 {
1699 	struct rl_softc *sc = device_get_softc(dev);
1700 	struct ifnet *ifp = &sc->arpcom.ac_if;
1701 	int		i;
1702 
1703 	lwkt_serialize_enter(ifp->if_serializer);
1704 
1705 	/* better way to do this? */
1706 	for (i = 0; i < 5; i++)
1707 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1708 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1709 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1710 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1711 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1712 
1713 	/* reenable busmastering */
1714 	pci_enable_busmaster(dev);
1715 	pci_enable_io(dev, RL_RES);
1716 
1717         /* reinitialize interface if necessary */
1718         if (ifp->if_flags & IFF_UP)
1719                 rl_init(sc);
1720 
1721 	sc->suspended = 0;
1722 	lwkt_serialize_exit(ifp->if_serializer);
1723 	return (0);
1724 }
1725