xref: /dragonfly/sys/dev/netif/sf/if_sf.c (revision 27f48495)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sf.c,v 1.18.2.8 2001/12/16 15:46:07 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/sf/if_sf.c,v 1.16 2005/02/21 18:40:37 joerg Exp $
34  */
35 
36 /*
37  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38  * Programming manual is available from:
39  * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
40  *
41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
42  * Department of Electical Engineering
43  * Columbia University, New York City
44  */
45 
46 /*
47  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
48  * controller designed with flexibility and reducing CPU load in mind.
49  * The Starfire offers high and low priority buffer queues, a
50  * producer/consumer index mechanism and several different buffer
51  * queue and completion queue descriptor types. Any one of a number
52  * of different driver designs can be used, depending on system and
53  * OS requirements. This driver makes use of type0 transmit frame
54  * descriptors (since BSD fragments packets across an mbuf chain)
55  * and two RX buffer queues prioritized on size (one queue for small
56  * frames that will fit into a single mbuf, another with full size
57  * mbuf clusters for everything else). The producer/consumer indexes
58  * and completion queues are also used.
59  *
60  * One downside to the Starfire has to do with alignment: buffer
61  * queues must be aligned on 256-byte boundaries, and receive buffers
62  * must be aligned on longword boundaries. The receive buffer alignment
63  * causes problems on the Alpha platform, where the packet payload
64  * should be longword aligned. There is no simple way around this.
65  *
66  * For receive filtering, the Starfire offers 16 perfect filter slots
67  * and a 512-bit hash table.
68  *
69  * The Starfire has no internal transceiver, relying instead on an
70  * external MII-based transceiver. Accessing registers on external
71  * PHYs is done through a special register map rather than with the
72  * usual bitbang MDIO method.
73  *
74  * Acesssing the registers on the Starfire is a little tricky. The
75  * Starfire has a 512K internal register space. When programmed for
76  * PCI memory mapped mode, the entire register space can be accessed
77  * directly. However in I/O space mode, only 256 bytes are directly
78  * mapped into PCI I/O space. The other registers can be accessed
79  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
80  * registers inside the 256-byte I/O window.
81  */
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/sockio.h>
86 #include <sys/mbuf.h>
87 #include <sys/malloc.h>
88 #include <sys/kernel.h>
89 #include <sys/socket.h>
90 
91 #include <net/if.h>
92 #include <net/ifq_var.h>
93 #include <net/if_arp.h>
94 #include <net/ethernet.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 
98 #include <net/bpf.h>
99 
100 #include <vm/vm.h>              /* for vtophys */
101 #include <vm/pmap.h>            /* for vtophys */
102 #include <machine/clock.h>      /* for DELAY */
103 #include <machine/bus_pio.h>
104 #include <machine/bus_memio.h>
105 #include <machine/bus.h>
106 #include <machine/resource.h>
107 #include <sys/bus.h>
108 #include <sys/rman.h>
109 
110 #include "../mii_layer/mii.h"
111 #include "../mii_layer/miivar.h"
112 
113 /* "controller miibus0" required.  See GENERIC if you get errors here. */
114 #include "miibus_if.h"
115 
116 #include <bus/pci/pcireg.h>
117 #include <bus/pci/pcivar.h>
118 
119 #define SF_USEIOSPACE
120 
121 #include "if_sfreg.h"
122 
123 static struct sf_type sf_devs[] = {
124 	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
125 		"Adaptec AIC-6915 10/100BaseTX" },
126 	{ 0, 0, NULL }
127 };
128 
129 static int sf_probe		(device_t);
130 static int sf_attach		(device_t);
131 static int sf_detach		(device_t);
132 static void sf_intr		(void *);
133 static void sf_stats_update	(void *);
134 static void sf_rxeof		(struct sf_softc *);
135 static void sf_txeof		(struct sf_softc *);
136 static int sf_encap		(struct sf_softc *,
137 					struct sf_tx_bufdesc_type0 *,
138 					struct mbuf *);
139 static void sf_start		(struct ifnet *);
140 static int sf_ioctl		(struct ifnet *, u_long, caddr_t,
141 					struct ucred *);
142 static void sf_init		(void *);
143 static void sf_stop		(struct sf_softc *);
144 static void sf_watchdog		(struct ifnet *);
145 static void sf_shutdown		(device_t);
146 static int sf_ifmedia_upd	(struct ifnet *);
147 static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
148 static void sf_reset		(struct sf_softc *);
149 static int sf_init_rx_ring	(struct sf_softc *);
150 static void sf_init_tx_ring	(struct sf_softc *);
151 static int sf_newbuf		(struct sf_softc *,
152 					struct sf_rx_bufdesc_type0 *,
153 					struct mbuf *);
154 static void sf_setmulti		(struct sf_softc *);
155 static int sf_setperf		(struct sf_softc *, int, caddr_t);
156 static int sf_sethash		(struct sf_softc *, caddr_t, int);
157 #ifdef notdef
158 static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
159 #endif
160 
161 static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
162 static u_int32_t sf_calchash	(caddr_t);
163 
164 static int sf_miibus_readreg	(device_t, int, int);
165 static int sf_miibus_writereg	(device_t, int, int, int);
166 static void sf_miibus_statchg	(device_t);
167 
168 static u_int32_t csr_read_4	(struct sf_softc *, int);
169 static void csr_write_4		(struct sf_softc *, int, u_int32_t);
170 static void sf_txthresh_adjust	(struct sf_softc *);
171 
172 #ifdef SF_USEIOSPACE
173 #define SF_RES			SYS_RES_IOPORT
174 #define SF_RID			SF_PCI_LOIO
175 #else
176 #define SF_RES			SYS_RES_MEMORY
177 #define SF_RID			SF_PCI_LOMEM
178 #endif
179 
180 static device_method_t sf_methods[] = {
181 	/* Device interface */
182 	DEVMETHOD(device_probe,		sf_probe),
183 	DEVMETHOD(device_attach,	sf_attach),
184 	DEVMETHOD(device_detach,	sf_detach),
185 	DEVMETHOD(device_shutdown,	sf_shutdown),
186 
187 	/* bus interface */
188 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
189 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
190 
191 	/* MII interface */
192 	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
193 	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
194 	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
195 
196 	{ 0, 0 }
197 };
198 
199 static driver_t sf_driver = {
200 	"sf",
201 	sf_methods,
202 	sizeof(struct sf_softc),
203 };
204 
205 static devclass_t sf_devclass;
206 
207 DECLARE_DUMMY_MODULE(if_sf);
208 DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
209 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
210 
211 #define SF_SETBIT(sc, reg, x)	\
212 	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
213 
214 #define SF_CLRBIT(sc, reg, x)				\
215 	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
216 
217 static u_int32_t csr_read_4(sc, reg)
218 	struct sf_softc		*sc;
219 	int			reg;
220 {
221 	u_int32_t		val;
222 
223 #ifdef SF_USEIOSPACE
224 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
225 	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
226 #else
227 	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
228 #endif
229 
230 	return(val);
231 }
232 
233 static u_int8_t sf_read_eeprom(sc, reg)
234 	struct sf_softc		*sc;
235 	int			reg;
236 {
237 	u_int8_t		val;
238 
239 	val = (csr_read_4(sc, SF_EEADDR_BASE +
240 	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
241 
242 	return(val);
243 }
244 
245 static void csr_write_4(sc, reg, val)
246 	struct sf_softc		*sc;
247 	int			reg;
248 	u_int32_t		val;
249 {
250 #ifdef SF_USEIOSPACE
251 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
252 	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
253 #else
254 	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
255 #endif
256 	return;
257 }
258 
259 static u_int32_t sf_calchash(addr)
260 	caddr_t			addr;
261 {
262 	u_int32_t		crc, carry;
263 	int			i, j;
264 	u_int8_t		c;
265 
266 	/* Compute CRC for the address value. */
267 	crc = 0xFFFFFFFF; /* initial value */
268 
269 	for (i = 0; i < 6; i++) {
270 		c = *(addr + i);
271 		for (j = 0; j < 8; j++) {
272 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
273 			crc <<= 1;
274 			c >>= 1;
275 			if (carry)
276 				crc = (crc ^ 0x04c11db6) | carry;
277 		}
278 	}
279 
280 	/* return the filter bit position */
281 	return(crc >> 23 & 0x1FF);
282 }
283 
284 /*
285  * Copy the address 'mac' into the perfect RX filter entry at
286  * offset 'idx.' The perfect filter only has 16 entries so do
287  * some sanity tests.
288  */
289 static int sf_setperf(sc, idx, mac)
290 	struct sf_softc		*sc;
291 	int			idx;
292 	caddr_t			mac;
293 {
294 	u_int16_t		*p;
295 
296 	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
297 		return(EINVAL);
298 
299 	if (mac == NULL)
300 		return(EINVAL);
301 
302 	p = (u_int16_t *)mac;
303 
304 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
305 	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
306 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
307 	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
308 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
309 	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
310 
311 	return(0);
312 }
313 
314 /*
315  * Set the bit in the 512-bit hash table that corresponds to the
316  * specified mac address 'mac.' If 'prio' is nonzero, update the
317  * priority hash table instead of the filter hash table.
318  */
319 static int sf_sethash(sc, mac, prio)
320 	struct sf_softc		*sc;
321 	caddr_t			mac;
322 	int			prio;
323 {
324 	u_int32_t		h = 0;
325 
326 	if (mac == NULL)
327 		return(EINVAL);
328 
329 	h = sf_calchash(mac);
330 
331 	if (prio) {
332 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
333 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
334 	} else {
335 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
336 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
337 	}
338 
339 	return(0);
340 }
341 
342 #ifdef notdef
343 /*
344  * Set a VLAN tag in the receive filter.
345  */
346 static int sf_setvlan(sc, idx, vlan)
347 	struct sf_softc		*sc;
348 	int			idx;
349 	u_int32_t		vlan;
350 {
351 	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
352 		return(EINVAL);
353 
354 	csr_write_4(sc, SF_RXFILT_HASH_BASE +
355 	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
356 
357 	return(0);
358 }
359 #endif
360 
361 static int sf_miibus_readreg(dev, phy, reg)
362 	device_t		dev;
363 	int			phy, reg;
364 {
365 	struct sf_softc		*sc;
366 	int			i;
367 	u_int32_t		val = 0;
368 
369 	sc = device_get_softc(dev);
370 
371 	for (i = 0; i < SF_TIMEOUT; i++) {
372 		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
373 		if (val & SF_MII_DATAVALID)
374 			break;
375 	}
376 
377 	if (i == SF_TIMEOUT)
378 		return(0);
379 
380 	if ((val & 0x0000FFFF) == 0xFFFF)
381 		return(0);
382 
383 	return(val & 0x0000FFFF);
384 }
385 
386 static int sf_miibus_writereg(dev, phy, reg, val)
387 	device_t		dev;
388 	int			phy, reg, val;
389 {
390 	struct sf_softc		*sc;
391 	int			i;
392 	int			busy;
393 
394 	sc = device_get_softc(dev);
395 
396 	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
397 
398 	for (i = 0; i < SF_TIMEOUT; i++) {
399 		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
400 		if (!(busy & SF_MII_BUSY))
401 			break;
402 	}
403 
404 	return(0);
405 }
406 
407 static void sf_miibus_statchg(dev)
408 	device_t		dev;
409 {
410 	struct sf_softc		*sc;
411 	struct mii_data		*mii;
412 
413 	sc = device_get_softc(dev);
414 	mii = device_get_softc(sc->sf_miibus);
415 
416 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
417 		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
418 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
419 	} else {
420 		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
421 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
422 	}
423 
424 	return;
425 }
426 
427 static void sf_setmulti(sc)
428 	struct sf_softc		*sc;
429 {
430 	struct ifnet		*ifp;
431 	int			i;
432 	struct ifmultiaddr	*ifma;
433 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
434 
435 	ifp = &sc->arpcom.ac_if;
436 
437 	/* First zot all the existing filters. */
438 	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
439 		sf_setperf(sc, i, (char *)&dummy);
440 	for (i = SF_RXFILT_HASH_BASE;
441 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
442 		csr_write_4(sc, i, 0);
443 	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
444 
445 	/* Now program new ones. */
446 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
447 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
448 	} else {
449 		i = 1;
450 		/* First find the tail of the list. */
451 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
452 					ifma = ifma->ifma_link.le_next) {
453 			if (ifma->ifma_link.le_next == NULL)
454 				break;
455 		}
456 		/* Now traverse the list backwards. */
457 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
458 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
459 			if (ifma->ifma_addr->sa_family != AF_LINK)
460 				continue;
461 			/*
462 			 * Program the first 15 multicast groups
463 			 * into the perfect filter. For all others,
464 			 * use the hash table.
465 			 */
466 			if (i < SF_RXFILT_PERFECT_CNT) {
467 				sf_setperf(sc, i,
468 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
469 				i++;
470 				continue;
471 			}
472 
473 			sf_sethash(sc,
474 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
475 		}
476 	}
477 
478 	return;
479 }
480 
481 /*
482  * Set media options.
483  */
484 static int sf_ifmedia_upd(ifp)
485 	struct ifnet		*ifp;
486 {
487 	struct sf_softc		*sc;
488 	struct mii_data		*mii;
489 
490 	sc = ifp->if_softc;
491 	mii = device_get_softc(sc->sf_miibus);
492 	sc->sf_link = 0;
493 	if (mii->mii_instance) {
494 		struct mii_softc        *miisc;
495 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
496 		    miisc = LIST_NEXT(miisc, mii_list))
497 			mii_phy_reset(miisc);
498 	}
499 	mii_mediachg(mii);
500 
501 	return(0);
502 }
503 
504 /*
505  * Report current media status.
506  */
507 static void sf_ifmedia_sts(ifp, ifmr)
508 	struct ifnet		*ifp;
509 	struct ifmediareq	*ifmr;
510 {
511 	struct sf_softc		*sc;
512 	struct mii_data		*mii;
513 
514 	sc = ifp->if_softc;
515 	mii = device_get_softc(sc->sf_miibus);
516 
517 	mii_pollstat(mii);
518 	ifmr->ifm_active = mii->mii_media_active;
519 	ifmr->ifm_status = mii->mii_media_status;
520 
521 	return;
522 }
523 
524 static int sf_ioctl(ifp, command, data, cr)
525 	struct ifnet		*ifp;
526 	u_long			command;
527 	caddr_t			data;
528 	struct ucred		*cr;
529 {
530 	struct sf_softc		*sc = ifp->if_softc;
531 	struct ifreq		*ifr = (struct ifreq *) data;
532 	struct mii_data		*mii;
533 	int			s, error = 0;
534 
535 	s = splimp();
536 
537 	switch(command) {
538 	case SIOCSIFADDR:
539 	case SIOCGIFADDR:
540 	case SIOCSIFMTU:
541 		error = ether_ioctl(ifp, command, data);
542 		break;
543 	case SIOCSIFFLAGS:
544 		if (ifp->if_flags & IFF_UP) {
545 			if (ifp->if_flags & IFF_RUNNING &&
546 			    ifp->if_flags & IFF_PROMISC &&
547 			    !(sc->sf_if_flags & IFF_PROMISC)) {
548 				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
549 			} else if (ifp->if_flags & IFF_RUNNING &&
550 			    !(ifp->if_flags & IFF_PROMISC) &&
551 			    sc->sf_if_flags & IFF_PROMISC) {
552 				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
553 			} else if (!(ifp->if_flags & IFF_RUNNING))
554 				sf_init(sc);
555 		} else {
556 			if (ifp->if_flags & IFF_RUNNING)
557 				sf_stop(sc);
558 		}
559 		sc->sf_if_flags = ifp->if_flags;
560 		error = 0;
561 		break;
562 	case SIOCADDMULTI:
563 	case SIOCDELMULTI:
564 		sf_setmulti(sc);
565 		error = 0;
566 		break;
567 	case SIOCGIFMEDIA:
568 	case SIOCSIFMEDIA:
569 		mii = device_get_softc(sc->sf_miibus);
570 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
571 		break;
572 	default:
573 		error = EINVAL;
574 		break;
575 	}
576 
577 	(void)splx(s);
578 
579 	return(error);
580 }
581 
582 static void sf_reset(sc)
583 	struct sf_softc		*sc;
584 {
585 	int		i;
586 
587 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
588 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
589 	DELAY(1000);
590 	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
591 
592 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
593 
594 	for (i = 0; i < SF_TIMEOUT; i++) {
595 		DELAY(10);
596 		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
597 			break;
598 	}
599 
600 	if (i == SF_TIMEOUT)
601 		printf("sf%d: reset never completed!\n", sc->sf_unit);
602 
603 	/* Wait a little while for the chip to get its brains in order. */
604 	DELAY(1000);
605 	return;
606 }
607 
608 /*
609  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
610  * IDs against our list and return a device name if we find a match.
611  * We also check the subsystem ID so that we can identify exactly which
612  * NIC has been found, if possible.
613  */
614 static int sf_probe(dev)
615 	device_t		dev;
616 {
617 	struct sf_type		*t;
618 
619 	t = sf_devs;
620 
621 	while(t->sf_name != NULL) {
622 		if ((pci_get_vendor(dev) == t->sf_vid) &&
623 		    (pci_get_device(dev) == t->sf_did)) {
624 			switch((pci_read_config(dev,
625 			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
626 			case AD_SUBSYSID_62011_REV0:
627 			case AD_SUBSYSID_62011_REV1:
628 				device_set_desc(dev,
629 				    "Adaptec ANA-62011 10/100BaseTX");
630 				return(0);
631 				break;
632 			case AD_SUBSYSID_62022:
633 				device_set_desc(dev,
634 				    "Adaptec ANA-62022 10/100BaseTX");
635 				return(0);
636 				break;
637 			case AD_SUBSYSID_62044_REV0:
638 			case AD_SUBSYSID_62044_REV1:
639 				device_set_desc(dev,
640 				    "Adaptec ANA-62044 10/100BaseTX");
641 				return(0);
642 				break;
643 			case AD_SUBSYSID_62020:
644 				device_set_desc(dev,
645 				    "Adaptec ANA-62020 10/100BaseFX");
646 				return(0);
647 				break;
648 			case AD_SUBSYSID_69011:
649 				device_set_desc(dev,
650 				    "Adaptec ANA-69011 10/100BaseTX");
651 				return(0);
652 				break;
653 			default:
654 				device_set_desc(dev, t->sf_name);
655 				return(0);
656 				break;
657 			}
658 		}
659 		t++;
660 	}
661 
662 	return(ENXIO);
663 }
664 
665 /*
666  * Attach the interface. Allocate softc structures, do ifmedia
667  * setup and ethernet/BPF attach.
668  */
669 static int sf_attach(dev)
670 	device_t		dev;
671 {
672 	int			s, i;
673 	u_int32_t		command;
674 	struct sf_softc		*sc;
675 	struct ifnet		*ifp;
676 	int			unit, rid, error = 0;
677 
678 	s = splimp();
679 
680 	sc = device_get_softc(dev);
681 	unit = device_get_unit(dev);
682 	bzero(sc, sizeof(struct sf_softc));
683 
684 	/*
685 	 * Handle power management nonsense.
686 	 */
687 	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
688 	if (command == 0x01) {
689 
690 		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
691 		if (command & SF_PSTATE_MASK) {
692 			u_int32_t		iobase, membase, irq;
693 
694 			/* Save important PCI config data. */
695 			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
696 			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
697 			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
698 
699 			/* Reset the power state. */
700 			printf("sf%d: chip is in D%d power mode "
701 			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
702 			command &= 0xFFFFFFFC;
703 			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
704 
705 			/* Restore PCI config data. */
706 			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
707 			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
708 			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
709 		}
710 	}
711 
712 	/*
713 	 * Map control/status registers.
714 	 */
715 	command = pci_read_config(dev, PCIR_COMMAND, 4);
716 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
717 	pci_write_config(dev, PCIR_COMMAND, command, 4);
718 	command = pci_read_config(dev, PCIR_COMMAND, 4);
719 
720 #ifdef SF_USEIOSPACE
721 	if (!(command & PCIM_CMD_PORTEN)) {
722 		printf("sf%d: failed to enable I/O ports!\n", unit);
723 		error = ENXIO;
724 		goto fail;
725 	}
726 #else
727 	if (!(command & PCIM_CMD_MEMEN)) {
728 		printf("sf%d: failed to enable memory mapping!\n", unit);
729 		error = ENXIO;
730 		goto fail;
731 	}
732 #endif
733 
734 	rid = SF_RID;
735 	sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
736 	    0, ~0, 1, RF_ACTIVE);
737 
738 	if (sc->sf_res == NULL) {
739 		printf ("sf%d: couldn't map ports\n", unit);
740 		error = ENXIO;
741 		goto fail;
742 	}
743 
744 	sc->sf_btag = rman_get_bustag(sc->sf_res);
745 	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
746 
747 	/* Allocate interrupt */
748 	rid = 0;
749 	sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
750 	    RF_SHAREABLE | RF_ACTIVE);
751 
752 	if (sc->sf_irq == NULL) {
753 		printf("sf%d: couldn't map interrupt\n", unit);
754 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
755 		error = ENXIO;
756 		goto fail;
757 	}
758 
759 	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
760 	    sf_intr, sc, &sc->sf_intrhand);
761 
762 	if (error) {
763 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
764 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
765 		printf("sf%d: couldn't set up irq\n", unit);
766 		goto fail;
767 	}
768 
769 	callout_init(&sc->sf_stat_timer);
770 
771 	/* Reset the adapter. */
772 	sf_reset(sc);
773 
774 	/*
775 	 * Get station address from the EEPROM.
776 	 */
777 	for (i = 0; i < ETHER_ADDR_LEN; i++)
778 		sc->arpcom.ac_enaddr[i] =
779 		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
780 
781 	sc->sf_unit = unit;
782 
783 	/* Allocate the descriptor queues. */
784 	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
785 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
786 
787 	if (sc->sf_ldata == NULL) {
788 		printf("sf%d: no memory for list buffers!\n", unit);
789 		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
790 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
791 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
792 		error = ENXIO;
793 		goto fail;
794 	}
795 
796 	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
797 
798 	/* Do MII setup. */
799 	if (mii_phy_probe(dev, &sc->sf_miibus,
800 	    sf_ifmedia_upd, sf_ifmedia_sts)) {
801 		printf("sf%d: MII without any phy!\n", sc->sf_unit);
802 		contigfree(sc->sf_ldata,sizeof(struct sf_list_data),M_DEVBUF);
803 		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
804 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
805 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
806 		error = ENXIO;
807 		goto fail;
808 	}
809 
810 	ifp = &sc->arpcom.ac_if;
811 	ifp->if_softc = sc;
812 	if_initname(ifp, "sf", unit);
813 	ifp->if_mtu = ETHERMTU;
814 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
815 	ifp->if_ioctl = sf_ioctl;
816 	ifp->if_start = sf_start;
817 	ifp->if_watchdog = sf_watchdog;
818 	ifp->if_init = sf_init;
819 	ifp->if_baudrate = 10000000;
820 	ifq_set_maxlen(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
821 	ifq_set_ready(&ifp->if_snd);
822 
823 	/*
824 	 * Call MI attach routine.
825 	 */
826 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
827 
828 fail:
829 	splx(s);
830 	return(error);
831 }
832 
833 static int sf_detach(dev)
834 	device_t		dev;
835 {
836 	struct sf_softc		*sc;
837 	struct ifnet		*ifp;
838 	int			s;
839 
840 	s = splimp();
841 
842 	sc = device_get_softc(dev);
843 	ifp = &sc->arpcom.ac_if;
844 
845 	ether_ifdetach(ifp);
846 	sf_stop(sc);
847 
848 	bus_generic_detach(dev);
849 	device_delete_child(dev, sc->sf_miibus);
850 
851 	bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
852 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
853 	bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
854 
855 	contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
856 
857 	splx(s);
858 
859 	return(0);
860 }
861 
862 static int sf_init_rx_ring(sc)
863 	struct sf_softc		*sc;
864 {
865 	struct sf_list_data	*ld;
866 	int			i;
867 
868 	ld = sc->sf_ldata;
869 
870 	bzero((char *)ld->sf_rx_dlist_big,
871 	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
872 	bzero((char *)ld->sf_rx_clist,
873 	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
874 
875 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
876 		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
877 			return(ENOBUFS);
878 	}
879 
880 	return(0);
881 }
882 
883 static void sf_init_tx_ring(sc)
884 	struct sf_softc		*sc;
885 {
886 	struct sf_list_data	*ld;
887 	int			i;
888 
889 	ld = sc->sf_ldata;
890 
891 	bzero((char *)ld->sf_tx_dlist,
892 	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
893 	bzero((char *)ld->sf_tx_clist,
894 	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
895 
896 	for (i = 0; i < SF_TX_DLIST_CNT; i++)
897 		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
898 	for (i = 0; i < SF_TX_CLIST_CNT; i++)
899 		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
900 
901 	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
902 	sc->sf_tx_cnt = 0;
903 
904 	return;
905 }
906 
907 static int sf_newbuf(sc, c, m)
908 	struct sf_softc		*sc;
909 	struct sf_rx_bufdesc_type0	*c;
910 	struct mbuf		*m;
911 {
912 	struct mbuf		*m_new = NULL;
913 
914 	if (m == NULL) {
915 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
916 		if (m_new == NULL)
917 			return(ENOBUFS);
918 
919 		MCLGET(m_new, MB_DONTWAIT);
920 		if (!(m_new->m_flags & M_EXT)) {
921 			m_freem(m_new);
922 			return(ENOBUFS);
923 		}
924 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
925 	} else {
926 		m_new = m;
927 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
928 		m_new->m_data = m_new->m_ext.ext_buf;
929 	}
930 
931 	m_adj(m_new, sizeof(u_int64_t));
932 
933 	c->sf_mbuf = m_new;
934 	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
935 	c->sf_valid = 1;
936 
937 	return(0);
938 }
939 
940 /*
941  * The starfire is programmed to use 'normal' mode for packet reception,
942  * which means we use the consumer/producer model for both the buffer
943  * descriptor queue and the completion descriptor queue. The only problem
944  * with this is that it involves a lot of register accesses: we have to
945  * read the RX completion consumer and producer indexes and the RX buffer
946  * producer index, plus the RX completion consumer and RX buffer producer
947  * indexes have to be updated. It would have been easier if Adaptec had
948  * put each index in a separate register, especially given that the damn
949  * NIC has a 512K register space.
950  *
951  * In spite of all the lovely features that Adaptec crammed into the 6915,
952  * it is marred by one truly stupid design flaw, which is that receive
953  * buffer addresses must be aligned on a longword boundary. This forces
954  * the packet payload to be unaligned, which is suboptimal on the x86 and
955  * completely unuseable on the Alpha. Our only recourse is to copy received
956  * packets into properly aligned buffers before handing them off.
957  */
958 
959 static void sf_rxeof(sc)
960 	struct sf_softc		*sc;
961 {
962 	struct mbuf		*m;
963 	struct ifnet		*ifp;
964 	struct sf_rx_bufdesc_type0	*desc;
965 	struct sf_rx_cmpdesc_type3	*cur_rx;
966 	u_int32_t		rxcons, rxprod;
967 	int			cmpprodidx, cmpconsidx, bufprodidx;
968 
969 	ifp = &sc->arpcom.ac_if;
970 
971 	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
972 	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
973 	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
974 	cmpconsidx = SF_IDX_LO(rxcons);
975 	bufprodidx = SF_IDX_LO(rxprod);
976 
977 	while (cmpconsidx != cmpprodidx) {
978 		struct mbuf		*m0;
979 
980 		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
981 		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
982 		m = desc->sf_mbuf;
983 		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
984 		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
985 
986 		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
987 			ifp->if_ierrors++;
988 			sf_newbuf(sc, desc, m);
989 			continue;
990 		}
991 
992 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
993 		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
994 		sf_newbuf(sc, desc, m);
995 		if (m0 == NULL) {
996 			ifp->if_ierrors++;
997 			continue;
998 		}
999 		m_adj(m0, ETHER_ALIGN);
1000 		m = m0;
1001 
1002 		ifp->if_ipackets++;
1003 
1004 		(*ifp->if_input)(ifp, m);
1005 	}
1006 
1007 	csr_write_4(sc, SF_CQ_CONSIDX,
1008 	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1009 	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1010 	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1011 
1012 	return;
1013 }
1014 
1015 /*
1016  * Read the transmit status from the completion queue and release
1017  * mbufs. Note that the buffer descriptor index in the completion
1018  * descriptor is an offset from the start of the transmit buffer
1019  * descriptor list in bytes. This is important because the manual
1020  * gives the impression that it should match the producer/consumer
1021  * index, which is the offset in 8 byte blocks.
1022  */
1023 static void sf_txeof(sc)
1024 	struct sf_softc		*sc;
1025 {
1026 	int			txcons, cmpprodidx, cmpconsidx;
1027 	struct sf_tx_cmpdesc_type1 *cur_cmp;
1028 	struct sf_tx_bufdesc_type0 *cur_tx;
1029 	struct ifnet		*ifp;
1030 
1031 	ifp = &sc->arpcom.ac_if;
1032 
1033 	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1034 	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1035 	cmpconsidx = SF_IDX_HI(txcons);
1036 
1037 	while (cmpconsidx != cmpprodidx) {
1038 		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1039 		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1040 
1041 		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1042 			ifp->if_opackets++;
1043 		else {
1044 			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1045 				sf_txthresh_adjust(sc);
1046 			ifp->if_oerrors++;
1047 		}
1048 
1049 		sc->sf_tx_cnt--;
1050 		if (cur_tx->sf_mbuf != NULL) {
1051 			m_freem(cur_tx->sf_mbuf);
1052 			cur_tx->sf_mbuf = NULL;
1053 		} else
1054 			break;
1055 		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1056 	}
1057 
1058 	ifp->if_timer = 0;
1059 	ifp->if_flags &= ~IFF_OACTIVE;
1060 
1061 	csr_write_4(sc, SF_CQ_CONSIDX,
1062 	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1063 	    ((cmpconsidx << 16) & 0xFFFF0000));
1064 
1065 	return;
1066 }
1067 
1068 static void sf_txthresh_adjust(sc)
1069 	struct sf_softc		*sc;
1070 {
1071 	u_int32_t		txfctl;
1072 	u_int8_t		txthresh;
1073 
1074 	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1075 	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1076 	if (txthresh < 0xFF) {
1077 		txthresh++;
1078 		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1079 		txfctl |= txthresh;
1080 #ifdef DIAGNOSTIC
1081 		printf("sf%d: tx underrun, increasing "
1082 		    "tx threshold to %d bytes\n",
1083 		    sc->sf_unit, txthresh * 4);
1084 #endif
1085 		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1086 	}
1087 
1088 	return;
1089 }
1090 
1091 static void sf_intr(arg)
1092 	void			*arg;
1093 {
1094 	struct sf_softc		*sc;
1095 	struct ifnet		*ifp;
1096 	u_int32_t		status;
1097 
1098 	sc = arg;
1099 	ifp = &sc->arpcom.ac_if;
1100 
1101 	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1102 		return;
1103 
1104 	/* Disable interrupts. */
1105 	csr_write_4(sc, SF_IMR, 0x00000000);
1106 
1107 	for (;;) {
1108 		status = csr_read_4(sc, SF_ISR);
1109 		if (status)
1110 			csr_write_4(sc, SF_ISR, status);
1111 
1112 		if (!(status & SF_INTRS))
1113 			break;
1114 
1115 		if (status & SF_ISR_RXDQ1_DMADONE)
1116 			sf_rxeof(sc);
1117 
1118 		if (status & SF_ISR_TX_TXDONE ||
1119 		    status & SF_ISR_TX_DMADONE ||
1120 		    status & SF_ISR_TX_QUEUEDONE)
1121 			sf_txeof(sc);
1122 
1123 		if (status & SF_ISR_TX_LOFIFO)
1124 			sf_txthresh_adjust(sc);
1125 
1126 		if (status & SF_ISR_ABNORMALINTR) {
1127 			if (status & SF_ISR_STATSOFLOW) {
1128 				callout_stop(&sc->sf_stat_timer);
1129 				sf_stats_update(sc);
1130 			} else
1131 				sf_init(sc);
1132 		}
1133 	}
1134 
1135 	/* Re-enable interrupts. */
1136 	csr_write_4(sc, SF_IMR, SF_INTRS);
1137 
1138 	if (!ifq_is_empty(&ifp->if_snd))
1139 		sf_start(ifp);
1140 
1141 	return;
1142 }
1143 
1144 static void sf_init(xsc)
1145 	void			*xsc;
1146 {
1147 	struct sf_softc		*sc;
1148 	struct ifnet		*ifp;
1149 	struct mii_data		*mii;
1150 	int			i, s;
1151 
1152 	s = splimp();
1153 
1154 	sc = xsc;
1155 	ifp = &sc->arpcom.ac_if;
1156 	mii = device_get_softc(sc->sf_miibus);
1157 
1158 	sf_stop(sc);
1159 	sf_reset(sc);
1160 
1161 	/* Init all the receive filter registers */
1162 	for (i = SF_RXFILT_PERFECT_BASE;
1163 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1164 		csr_write_4(sc, i, 0);
1165 
1166 	/* Empty stats counter registers. */
1167 	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1168 		csr_write_4(sc, SF_STATS_BASE +
1169 		    (i + sizeof(u_int32_t)), 0);
1170 
1171 	/* Init our MAC address */
1172 	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1173 	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1174 	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1175 
1176 	if (sf_init_rx_ring(sc) == ENOBUFS) {
1177 		printf("sf%d: initialization failed: no "
1178 		    "memory for rx buffers\n", sc->sf_unit);
1179 		(void)splx(s);
1180 		return;
1181 	}
1182 
1183 	sf_init_tx_ring(sc);
1184 
1185 	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1186 
1187 	/* If we want promiscuous mode, set the allframes bit. */
1188 	if (ifp->if_flags & IFF_PROMISC) {
1189 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1190 	} else {
1191 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1192 	}
1193 
1194 	if (ifp->if_flags & IFF_BROADCAST) {
1195 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1196 	} else {
1197 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1198 	}
1199 
1200 	/*
1201 	 * Load the multicast filter.
1202 	 */
1203 	sf_setmulti(sc);
1204 
1205 	/* Init the completion queue indexes */
1206 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1207 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1208 
1209 	/* Init the RX completion queue */
1210 	csr_write_4(sc, SF_RXCQ_CTL_1,
1211 	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1212 	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1213 
1214 	/* Init RX DMA control. */
1215 	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1216 
1217 	/* Init the RX buffer descriptor queue. */
1218 	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1219 	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1220 	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1221 	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1222 
1223 	/* Init the TX completion queue */
1224 	csr_write_4(sc, SF_TXCQ_CTL,
1225 	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1226 
1227 	/* Init the TX buffer descriptor queue. */
1228 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1229 		vtophys(sc->sf_ldata->sf_tx_dlist));
1230 	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1231 	csr_write_4(sc, SF_TXDQ_CTL,
1232 	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1233 	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1234 
1235 	/* Enable autopadding of short TX frames. */
1236 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1237 
1238 	/* Enable interrupts. */
1239 	csr_write_4(sc, SF_IMR, SF_INTRS);
1240 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1241 
1242 	/* Enable the RX and TX engines. */
1243 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1244 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1245 
1246 	/*mii_mediachg(mii);*/
1247 	sf_ifmedia_upd(ifp);
1248 
1249 	ifp->if_flags |= IFF_RUNNING;
1250 	ifp->if_flags &= ~IFF_OACTIVE;
1251 
1252 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1253 
1254 	splx(s);
1255 
1256 	return;
1257 }
1258 
1259 static int sf_encap(sc, c, m_head)
1260 	struct sf_softc		*sc;
1261 	struct sf_tx_bufdesc_type0 *c;
1262 	struct mbuf		*m_head;
1263 {
1264 	int			frag = 0;
1265 	struct sf_frag		*f = NULL;
1266 	struct mbuf		*m;
1267 
1268 	m = m_head;
1269 
1270 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1271 		if (m->m_len != 0) {
1272 			if (frag == SF_MAXFRAGS)
1273 				break;
1274 			f = &c->sf_frags[frag];
1275 			if (frag == 0)
1276 				f->sf_pktlen = m_head->m_pkthdr.len;
1277 			f->sf_fraglen = m->m_len;
1278 			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1279 			frag++;
1280 		}
1281 	}
1282 
1283 	if (m != NULL) {
1284 		struct mbuf		*m_new = NULL;
1285 
1286 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1287 		if (m_new == NULL) {
1288 			printf("sf%d: no memory for tx list", sc->sf_unit);
1289 			return(1);
1290 		}
1291 
1292 		if (m_head->m_pkthdr.len > MHLEN) {
1293 			MCLGET(m_new, MB_DONTWAIT);
1294 			if (!(m_new->m_flags & M_EXT)) {
1295 				m_freem(m_new);
1296 				printf("sf%d: no memory for tx list",
1297 				    sc->sf_unit);
1298 				return(1);
1299 			}
1300 		}
1301 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1302 		    mtod(m_new, caddr_t));
1303 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1304 		m_freem(m_head);
1305 		m_head = m_new;
1306 		f = &c->sf_frags[0];
1307 		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1308 		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1309 		frag = 1;
1310 	}
1311 
1312 	c->sf_mbuf = m_head;
1313 	c->sf_id = SF_TX_BUFDESC_ID;
1314 	c->sf_fragcnt = frag;
1315 	c->sf_intr = 1;
1316 	c->sf_caltcp = 0;
1317 	c->sf_crcen = 1;
1318 
1319 	return(0);
1320 }
1321 
1322 static void sf_start(ifp)
1323 	struct ifnet		*ifp;
1324 {
1325 	struct sf_softc		*sc;
1326 	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1327 	struct mbuf		*m_head = NULL;
1328 	int			i, txprod;
1329 
1330 	sc = ifp->if_softc;
1331 
1332 	if (!sc->sf_link)
1333 		return;
1334 
1335 	if (ifp->if_flags & IFF_OACTIVE)
1336 		return;
1337 
1338 	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1339 	i = SF_IDX_HI(txprod) >> 4;
1340 
1341 	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1342 		printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1343 		sf_init(sc);
1344 		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1345 		i = SF_IDX_HI(txprod) >> 4;
1346 	}
1347 
1348 	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1349 		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1350 			ifp->if_flags |= IFF_OACTIVE;
1351 			cur_tx = NULL;
1352 			break;
1353 		}
1354 		m_head = ifq_poll(&ifp->if_snd);
1355 		if (m_head == NULL)
1356 			break;
1357 
1358 		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1359 		if (sf_encap(sc, cur_tx, m_head)) {
1360 			ifp->if_flags |= IFF_OACTIVE;
1361 			cur_tx = NULL;
1362 			break;
1363 		}
1364 		ifq_dequeue(&ifp->if_snd);
1365 		BPF_MTAP(ifp, cur_tx->sf_mbuf);
1366 
1367 		SF_INC(i, SF_TX_DLIST_CNT);
1368 		sc->sf_tx_cnt++;
1369 		/*
1370 		 * Don't get the TX DMA queue get too full.
1371 		 */
1372 		if (sc->sf_tx_cnt > 64)
1373 			break;
1374 	}
1375 
1376 	if (cur_tx == NULL)
1377 		return;
1378 
1379 	/* Transmit */
1380 	csr_write_4(sc, SF_TXDQ_PRODIDX,
1381 	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1382 	    ((i << 20) & 0xFFFF0000));
1383 
1384 	ifp->if_timer = 5;
1385 
1386 	return;
1387 }
1388 
1389 static void sf_stop(sc)
1390 	struct sf_softc		*sc;
1391 {
1392 	int			i;
1393 	struct ifnet		*ifp;
1394 
1395 	ifp = &sc->arpcom.ac_if;
1396 
1397 	callout_stop(&sc->sf_stat_timer);
1398 
1399 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1400 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1401 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1402 	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1403 	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1404 	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1405 	csr_write_4(sc, SF_TXCQ_CTL, 0);
1406 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1407 	csr_write_4(sc, SF_TXDQ_CTL, 0);
1408 	sf_reset(sc);
1409 
1410 	sc->sf_link = 0;
1411 
1412 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1413 		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1414 			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1415 			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1416 		}
1417 	}
1418 
1419 	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1420 		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1421 			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1422 			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1423 		}
1424 	}
1425 
1426 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1427 
1428 	return;
1429 }
1430 
1431 /*
1432  * Note: it is important that this function not be interrupted. We
1433  * use a two-stage register access scheme: if we are interrupted in
1434  * between setting the indirect address register and reading from the
1435  * indirect data register, the contents of the address register could
1436  * be changed out from under us.
1437  */
1438 static void sf_stats_update(xsc)
1439 	void			*xsc;
1440 {
1441 	struct sf_softc		*sc;
1442 	struct ifnet		*ifp;
1443 	struct mii_data		*mii;
1444 	struct sf_stats		stats;
1445 	u_int32_t		*ptr;
1446 	int			i, s;
1447 
1448 	s = splimp();
1449 
1450 	sc = xsc;
1451 	ifp = &sc->arpcom.ac_if;
1452 	mii = device_get_softc(sc->sf_miibus);
1453 
1454 	ptr = (u_int32_t *)&stats;
1455 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1456 		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1457 		    (i + sizeof(u_int32_t)));
1458 
1459 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1460 		csr_write_4(sc, SF_STATS_BASE +
1461 		    (i + sizeof(u_int32_t)), 0);
1462 
1463 	ifp->if_collisions += stats.sf_tx_single_colls +
1464 	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1465 
1466 	mii_tick(mii);
1467 	if (!sc->sf_link) {
1468 		mii_pollstat(mii);
1469 		if (mii->mii_media_status & IFM_ACTIVE &&
1470 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1471 			sc->sf_link++;
1472 			if (!ifq_is_empty(&ifp->if_snd))
1473 				sf_start(ifp);
1474 	}
1475 
1476 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1477 
1478 	splx(s);
1479 
1480 	return;
1481 }
1482 
1483 static void sf_watchdog(ifp)
1484 	struct ifnet		*ifp;
1485 {
1486 	struct sf_softc		*sc;
1487 
1488 	sc = ifp->if_softc;
1489 
1490 	ifp->if_oerrors++;
1491 	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1492 
1493 	sf_stop(sc);
1494 	sf_reset(sc);
1495 	sf_init(sc);
1496 
1497 	if (!ifq_is_empty(&ifp->if_snd))
1498 		sf_start(ifp);
1499 
1500 	return;
1501 }
1502 
1503 static void sf_shutdown(dev)
1504 	device_t		dev;
1505 {
1506 	struct sf_softc		*sc;
1507 
1508 	sc = device_get_softc(dev);
1509 
1510 	sf_stop(sc);
1511 
1512 	return;
1513 }
1514