xref: /dragonfly/sys/dev/netif/sf/if_sf.c (revision 2e3ed54d)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sf.c,v 1.18.2.8 2001/12/16 15:46:07 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/sf/if_sf.c,v 1.24 2005/11/22 00:24:34 dillon Exp $
34  */
35 
36 /*
37  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38  * Programming manual is available from:
39  * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
40  *
41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
42  * Department of Electical Engineering
43  * Columbia University, New York City
44  */
45 
46 /*
47  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
48  * controller designed with flexibility and reducing CPU load in mind.
49  * The Starfire offers high and low priority buffer queues, a
50  * producer/consumer index mechanism and several different buffer
51  * queue and completion queue descriptor types. Any one of a number
52  * of different driver designs can be used, depending on system and
53  * OS requirements. This driver makes use of type0 transmit frame
54  * descriptors (since BSD fragments packets across an mbuf chain)
55  * and two RX buffer queues prioritized on size (one queue for small
56  * frames that will fit into a single mbuf, another with full size
57  * mbuf clusters for everything else). The producer/consumer indexes
58  * and completion queues are also used.
59  *
60  * One downside to the Starfire has to do with alignment: buffer
61  * queues must be aligned on 256-byte boundaries, and receive buffers
62  * must be aligned on longword boundaries. The receive buffer alignment
63  * causes problems on the Alpha platform, where the packet payload
64  * should be longword aligned. There is no simple way around this.
65  *
66  * For receive filtering, the Starfire offers 16 perfect filter slots
67  * and a 512-bit hash table.
68  *
69  * The Starfire has no internal transceiver, relying instead on an
70  * external MII-based transceiver. Accessing registers on external
71  * PHYs is done through a special register map rather than with the
72  * usual bitbang MDIO method.
73  *
74  * Acesssing the registers on the Starfire is a little tricky. The
75  * Starfire has a 512K internal register space. When programmed for
76  * PCI memory mapped mode, the entire register space can be accessed
77  * directly. However in I/O space mode, only 256 bytes are directly
78  * mapped into PCI I/O space. The other registers can be accessed
79  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
80  * registers inside the 256-byte I/O window.
81  */
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/sockio.h>
86 #include <sys/mbuf.h>
87 #include <sys/malloc.h>
88 #include <sys/kernel.h>
89 #include <sys/socket.h>
90 #include <sys/thread2.h>
91 
92 #include <net/if.h>
93 #include <net/ifq_var.h>
94 #include <net/if_arp.h>
95 #include <net/ethernet.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 
99 #include <net/bpf.h>
100 
101 #include <vm/vm.h>              /* for vtophys */
102 #include <vm/pmap.h>            /* for vtophys */
103 #include <machine/clock.h>      /* for DELAY */
104 #include <machine/bus_pio.h>
105 #include <machine/bus_memio.h>
106 #include <machine/bus.h>
107 #include <machine/resource.h>
108 #include <sys/bus.h>
109 #include <sys/rman.h>
110 
111 #include "../mii_layer/mii.h"
112 #include "../mii_layer/miivar.h"
113 
114 /* "controller miibus0" required.  See GENERIC if you get errors here. */
115 #include "miibus_if.h"
116 
117 #include <bus/pci/pcireg.h>
118 #include <bus/pci/pcivar.h>
119 
120 #define SF_USEIOSPACE
121 
122 #include "if_sfreg.h"
123 
124 static struct sf_type sf_devs[] = {
125 	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
126 		"Adaptec AIC-6915 10/100BaseTX" },
127 	{ 0, 0, NULL }
128 };
129 
130 static int sf_probe		(device_t);
131 static int sf_attach		(device_t);
132 static int sf_detach		(device_t);
133 static void sf_intr		(void *);
134 static void sf_stats_update	(void *);
135 static void sf_rxeof		(struct sf_softc *);
136 static void sf_txeof		(struct sf_softc *);
137 static int sf_encap		(struct sf_softc *,
138 					struct sf_tx_bufdesc_type0 *,
139 					struct mbuf *);
140 static void sf_start		(struct ifnet *);
141 static int sf_ioctl		(struct ifnet *, u_long, caddr_t,
142 					struct ucred *);
143 static void sf_init		(void *);
144 static void sf_stop		(struct sf_softc *);
145 static void sf_watchdog		(struct ifnet *);
146 static void sf_shutdown		(device_t);
147 static int sf_ifmedia_upd	(struct ifnet *);
148 static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
149 static void sf_reset		(struct sf_softc *);
150 static int sf_init_rx_ring	(struct sf_softc *);
151 static void sf_init_tx_ring	(struct sf_softc *);
152 static int sf_newbuf		(struct sf_softc *,
153 					struct sf_rx_bufdesc_type0 *,
154 					struct mbuf *);
155 static void sf_setmulti		(struct sf_softc *);
156 static int sf_setperf		(struct sf_softc *, int, caddr_t);
157 static int sf_sethash		(struct sf_softc *, caddr_t, int);
158 #ifdef notdef
159 static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
160 #endif
161 
162 static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
163 static u_int32_t sf_calchash	(caddr_t);
164 
165 static int sf_miibus_readreg	(device_t, int, int);
166 static int sf_miibus_writereg	(device_t, int, int, int);
167 static void sf_miibus_statchg	(device_t);
168 
169 static u_int32_t csr_read_4	(struct sf_softc *, int);
170 static void csr_write_4		(struct sf_softc *, int, u_int32_t);
171 static void sf_txthresh_adjust	(struct sf_softc *);
172 
173 #ifdef SF_USEIOSPACE
174 #define SF_RES			SYS_RES_IOPORT
175 #define SF_RID			SF_PCI_LOIO
176 #else
177 #define SF_RES			SYS_RES_MEMORY
178 #define SF_RID			SF_PCI_LOMEM
179 #endif
180 
181 static device_method_t sf_methods[] = {
182 	/* Device interface */
183 	DEVMETHOD(device_probe,		sf_probe),
184 	DEVMETHOD(device_attach,	sf_attach),
185 	DEVMETHOD(device_detach,	sf_detach),
186 	DEVMETHOD(device_shutdown,	sf_shutdown),
187 
188 	/* bus interface */
189 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
190 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
191 
192 	/* MII interface */
193 	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
194 	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
195 	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
196 
197 	{ 0, 0 }
198 };
199 
200 static driver_t sf_driver = {
201 	"sf",
202 	sf_methods,
203 	sizeof(struct sf_softc),
204 };
205 
206 static devclass_t sf_devclass;
207 
208 DECLARE_DUMMY_MODULE(if_sf);
209 DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
210 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
211 
212 #define SF_SETBIT(sc, reg, x)	\
213 	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
214 
215 #define SF_CLRBIT(sc, reg, x)				\
216 	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
217 
218 static u_int32_t csr_read_4(sc, reg)
219 	struct sf_softc		*sc;
220 	int			reg;
221 {
222 	u_int32_t		val;
223 
224 #ifdef SF_USEIOSPACE
225 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
226 	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
227 #else
228 	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
229 #endif
230 
231 	return(val);
232 }
233 
234 static u_int8_t sf_read_eeprom(sc, reg)
235 	struct sf_softc		*sc;
236 	int			reg;
237 {
238 	u_int8_t		val;
239 
240 	val = (csr_read_4(sc, SF_EEADDR_BASE +
241 	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
242 
243 	return(val);
244 }
245 
246 static void csr_write_4(sc, reg, val)
247 	struct sf_softc		*sc;
248 	int			reg;
249 	u_int32_t		val;
250 {
251 #ifdef SF_USEIOSPACE
252 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
253 	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
254 #else
255 	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
256 #endif
257 	return;
258 }
259 
260 static u_int32_t sf_calchash(addr)
261 	caddr_t			addr;
262 {
263 	u_int32_t		crc, carry;
264 	int			i, j;
265 	u_int8_t		c;
266 
267 	/* Compute CRC for the address value. */
268 	crc = 0xFFFFFFFF; /* initial value */
269 
270 	for (i = 0; i < 6; i++) {
271 		c = *(addr + i);
272 		for (j = 0; j < 8; j++) {
273 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
274 			crc <<= 1;
275 			c >>= 1;
276 			if (carry)
277 				crc = (crc ^ 0x04c11db6) | carry;
278 		}
279 	}
280 
281 	/* return the filter bit position */
282 	return(crc >> 23 & 0x1FF);
283 }
284 
285 /*
286  * Copy the address 'mac' into the perfect RX filter entry at
287  * offset 'idx.' The perfect filter only has 16 entries so do
288  * some sanity tests.
289  */
290 static int sf_setperf(sc, idx, mac)
291 	struct sf_softc		*sc;
292 	int			idx;
293 	caddr_t			mac;
294 {
295 	u_int16_t		*p;
296 
297 	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
298 		return(EINVAL);
299 
300 	if (mac == NULL)
301 		return(EINVAL);
302 
303 	p = (u_int16_t *)mac;
304 
305 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
306 	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
307 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
308 	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
309 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
310 	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
311 
312 	return(0);
313 }
314 
315 /*
316  * Set the bit in the 512-bit hash table that corresponds to the
317  * specified mac address 'mac.' If 'prio' is nonzero, update the
318  * priority hash table instead of the filter hash table.
319  */
320 static int sf_sethash(sc, mac, prio)
321 	struct sf_softc		*sc;
322 	caddr_t			mac;
323 	int			prio;
324 {
325 	u_int32_t		h = 0;
326 
327 	if (mac == NULL)
328 		return(EINVAL);
329 
330 	h = sf_calchash(mac);
331 
332 	if (prio) {
333 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
334 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
335 	} else {
336 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
337 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
338 	}
339 
340 	return(0);
341 }
342 
343 #ifdef notdef
344 /*
345  * Set a VLAN tag in the receive filter.
346  */
347 static int sf_setvlan(sc, idx, vlan)
348 	struct sf_softc		*sc;
349 	int			idx;
350 	u_int32_t		vlan;
351 {
352 	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
353 		return(EINVAL);
354 
355 	csr_write_4(sc, SF_RXFILT_HASH_BASE +
356 	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
357 
358 	return(0);
359 }
360 #endif
361 
362 static int sf_miibus_readreg(dev, phy, reg)
363 	device_t		dev;
364 	int			phy, reg;
365 {
366 	struct sf_softc		*sc;
367 	int			i;
368 	u_int32_t		val = 0;
369 
370 	sc = device_get_softc(dev);
371 
372 	for (i = 0; i < SF_TIMEOUT; i++) {
373 		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
374 		if (val & SF_MII_DATAVALID)
375 			break;
376 	}
377 
378 	if (i == SF_TIMEOUT)
379 		return(0);
380 
381 	if ((val & 0x0000FFFF) == 0xFFFF)
382 		return(0);
383 
384 	return(val & 0x0000FFFF);
385 }
386 
387 static int sf_miibus_writereg(dev, phy, reg, val)
388 	device_t		dev;
389 	int			phy, reg, val;
390 {
391 	struct sf_softc		*sc;
392 	int			i;
393 	int			busy;
394 
395 	sc = device_get_softc(dev);
396 
397 	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
398 
399 	for (i = 0; i < SF_TIMEOUT; i++) {
400 		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
401 		if (!(busy & SF_MII_BUSY))
402 			break;
403 	}
404 
405 	return(0);
406 }
407 
408 static void sf_miibus_statchg(dev)
409 	device_t		dev;
410 {
411 	struct sf_softc		*sc;
412 	struct mii_data		*mii;
413 
414 	sc = device_get_softc(dev);
415 	mii = device_get_softc(sc->sf_miibus);
416 
417 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
418 		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
419 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
420 	} else {
421 		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
422 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
423 	}
424 
425 	return;
426 }
427 
428 static void sf_setmulti(sc)
429 	struct sf_softc		*sc;
430 {
431 	struct ifnet		*ifp;
432 	int			i;
433 	struct ifmultiaddr	*ifma;
434 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
435 
436 	ifp = &sc->arpcom.ac_if;
437 
438 	/* First zot all the existing filters. */
439 	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
440 		sf_setperf(sc, i, (char *)&dummy);
441 	for (i = SF_RXFILT_HASH_BASE;
442 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
443 		csr_write_4(sc, i, 0);
444 	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
445 
446 	/* Now program new ones. */
447 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
448 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
449 	} else {
450 		i = 1;
451 		/* First find the tail of the list. */
452 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
453 					ifma = ifma->ifma_link.le_next) {
454 			if (ifma->ifma_link.le_next == NULL)
455 				break;
456 		}
457 		/* Now traverse the list backwards. */
458 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
459 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
460 			if (ifma->ifma_addr->sa_family != AF_LINK)
461 				continue;
462 			/*
463 			 * Program the first 15 multicast groups
464 			 * into the perfect filter. For all others,
465 			 * use the hash table.
466 			 */
467 			if (i < SF_RXFILT_PERFECT_CNT) {
468 				sf_setperf(sc, i,
469 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
470 				i++;
471 				continue;
472 			}
473 
474 			sf_sethash(sc,
475 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
476 		}
477 	}
478 
479 	return;
480 }
481 
482 /*
483  * Set media options.
484  */
485 static int sf_ifmedia_upd(ifp)
486 	struct ifnet		*ifp;
487 {
488 	struct sf_softc		*sc;
489 	struct mii_data		*mii;
490 
491 	sc = ifp->if_softc;
492 	mii = device_get_softc(sc->sf_miibus);
493 	sc->sf_link = 0;
494 	if (mii->mii_instance) {
495 		struct mii_softc        *miisc;
496 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
497 		    miisc = LIST_NEXT(miisc, mii_list))
498 			mii_phy_reset(miisc);
499 	}
500 	mii_mediachg(mii);
501 
502 	return(0);
503 }
504 
505 /*
506  * Report current media status.
507  */
508 static void sf_ifmedia_sts(ifp, ifmr)
509 	struct ifnet		*ifp;
510 	struct ifmediareq	*ifmr;
511 {
512 	struct sf_softc		*sc;
513 	struct mii_data		*mii;
514 
515 	sc = ifp->if_softc;
516 	mii = device_get_softc(sc->sf_miibus);
517 
518 	mii_pollstat(mii);
519 	ifmr->ifm_active = mii->mii_media_active;
520 	ifmr->ifm_status = mii->mii_media_status;
521 
522 	return;
523 }
524 
525 static int sf_ioctl(ifp, command, data, cr)
526 	struct ifnet		*ifp;
527 	u_long			command;
528 	caddr_t			data;
529 	struct ucred		*cr;
530 {
531 	struct sf_softc		*sc = ifp->if_softc;
532 	struct ifreq		*ifr = (struct ifreq *) data;
533 	struct mii_data		*mii;
534 	int error = 0;
535 
536 	crit_enter();
537 
538 	switch(command) {
539 	case SIOCSIFFLAGS:
540 		if (ifp->if_flags & IFF_UP) {
541 			if (ifp->if_flags & IFF_RUNNING &&
542 			    ifp->if_flags & IFF_PROMISC &&
543 			    !(sc->sf_if_flags & IFF_PROMISC)) {
544 				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
545 			} else if (ifp->if_flags & IFF_RUNNING &&
546 			    !(ifp->if_flags & IFF_PROMISC) &&
547 			    sc->sf_if_flags & IFF_PROMISC) {
548 				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
549 			} else if (!(ifp->if_flags & IFF_RUNNING))
550 				sf_init(sc);
551 		} else {
552 			if (ifp->if_flags & IFF_RUNNING)
553 				sf_stop(sc);
554 		}
555 		sc->sf_if_flags = ifp->if_flags;
556 		error = 0;
557 		break;
558 	case SIOCADDMULTI:
559 	case SIOCDELMULTI:
560 		sf_setmulti(sc);
561 		error = 0;
562 		break;
563 	case SIOCGIFMEDIA:
564 	case SIOCSIFMEDIA:
565 		mii = device_get_softc(sc->sf_miibus);
566 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
567 		break;
568 	default:
569 		error = ether_ioctl(ifp, command, data);
570 		break;
571 	}
572 
573 	crit_exit();
574 
575 	return(error);
576 }
577 
578 static void sf_reset(sc)
579 	struct sf_softc		*sc;
580 {
581 	int		i;
582 
583 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
584 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
585 	DELAY(1000);
586 	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
587 
588 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
589 
590 	for (i = 0; i < SF_TIMEOUT; i++) {
591 		DELAY(10);
592 		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
593 			break;
594 	}
595 
596 	if (i == SF_TIMEOUT)
597 		printf("sf%d: reset never completed!\n", sc->sf_unit);
598 
599 	/* Wait a little while for the chip to get its brains in order. */
600 	DELAY(1000);
601 	return;
602 }
603 
604 /*
605  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
606  * IDs against our list and return a device name if we find a match.
607  * We also check the subsystem ID so that we can identify exactly which
608  * NIC has been found, if possible.
609  */
610 static int sf_probe(dev)
611 	device_t		dev;
612 {
613 	struct sf_type		*t;
614 
615 	t = sf_devs;
616 
617 	while(t->sf_name != NULL) {
618 		if ((pci_get_vendor(dev) == t->sf_vid) &&
619 		    (pci_get_device(dev) == t->sf_did)) {
620 			switch((pci_read_config(dev,
621 			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
622 			case AD_SUBSYSID_62011_REV0:
623 			case AD_SUBSYSID_62011_REV1:
624 				device_set_desc(dev,
625 				    "Adaptec ANA-62011 10/100BaseTX");
626 				return(0);
627 				break;
628 			case AD_SUBSYSID_62022:
629 				device_set_desc(dev,
630 				    "Adaptec ANA-62022 10/100BaseTX");
631 				return(0);
632 				break;
633 			case AD_SUBSYSID_62044_REV0:
634 			case AD_SUBSYSID_62044_REV1:
635 				device_set_desc(dev,
636 				    "Adaptec ANA-62044 10/100BaseTX");
637 				return(0);
638 				break;
639 			case AD_SUBSYSID_62020:
640 				device_set_desc(dev,
641 				    "Adaptec ANA-62020 10/100BaseFX");
642 				return(0);
643 				break;
644 			case AD_SUBSYSID_69011:
645 				device_set_desc(dev,
646 				    "Adaptec ANA-69011 10/100BaseTX");
647 				return(0);
648 				break;
649 			default:
650 				device_set_desc(dev, t->sf_name);
651 				return(0);
652 				break;
653 			}
654 		}
655 		t++;
656 	}
657 
658 	return(ENXIO);
659 }
660 
661 /*
662  * Attach the interface. Allocate softc structures, do ifmedia
663  * setup and ethernet/BPF attach.
664  */
665 static int sf_attach(dev)
666 	device_t		dev;
667 {
668 	int			i;
669 	u_int32_t		command;
670 	struct sf_softc		*sc;
671 	struct ifnet		*ifp;
672 	int			unit, rid, error = 0;
673 
674 	sc = device_get_softc(dev);
675 	unit = device_get_unit(dev);
676 
677 	/*
678 	 * Handle power management nonsense.
679 	 */
680 	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
681 	if (command == 0x01) {
682 
683 		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
684 		if (command & SF_PSTATE_MASK) {
685 			u_int32_t		iobase, membase, irq;
686 
687 			/* Save important PCI config data. */
688 			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
689 			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
690 			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
691 
692 			/* Reset the power state. */
693 			printf("sf%d: chip is in D%d power mode "
694 			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
695 			command &= 0xFFFFFFFC;
696 			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
697 
698 			/* Restore PCI config data. */
699 			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
700 			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
701 			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
702 		}
703 	}
704 
705 	/*
706 	 * Map control/status registers.
707 	 */
708 	command = pci_read_config(dev, PCIR_COMMAND, 4);
709 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
710 	pci_write_config(dev, PCIR_COMMAND, command, 4);
711 	command = pci_read_config(dev, PCIR_COMMAND, 4);
712 
713 #ifdef SF_USEIOSPACE
714 	if (!(command & PCIM_CMD_PORTEN)) {
715 		printf("sf%d: failed to enable I/O ports!\n", unit);
716 		error = ENXIO;
717 		return(error);
718 	}
719 #else
720 	if (!(command & PCIM_CMD_MEMEN)) {
721 		printf("sf%d: failed to enable memory mapping!\n", unit);
722 		error = ENXIO;
723 		return(error);
724 	}
725 #endif
726 
727 	rid = SF_RID;
728 	sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
729 
730 	if (sc->sf_res == NULL) {
731 		printf ("sf%d: couldn't map ports\n", unit);
732 		error = ENXIO;
733 		return(error);
734 	}
735 
736 	sc->sf_btag = rman_get_bustag(sc->sf_res);
737 	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
738 
739 	/* Allocate interrupt */
740 	rid = 0;
741 	sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
742 	    RF_SHAREABLE | RF_ACTIVE);
743 
744 	if (sc->sf_irq == NULL) {
745 		printf("sf%d: couldn't map interrupt\n", unit);
746 		error = ENXIO;
747 		goto fail;
748 	}
749 
750 	callout_init(&sc->sf_stat_timer);
751 
752 	/* Reset the adapter. */
753 	sf_reset(sc);
754 
755 	/*
756 	 * Get station address from the EEPROM.
757 	 */
758 	for (i = 0; i < ETHER_ADDR_LEN; i++)
759 		sc->arpcom.ac_enaddr[i] =
760 		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
761 
762 	sc->sf_unit = unit;
763 
764 	/* Allocate the descriptor queues. */
765 	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
766 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
767 
768 	if (sc->sf_ldata == NULL) {
769 		printf("sf%d: no memory for list buffers!\n", unit);
770 		error = ENXIO;
771 		goto fail;
772 	}
773 
774 	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
775 
776 	/* Do MII setup. */
777 	if (mii_phy_probe(dev, &sc->sf_miibus,
778 	    sf_ifmedia_upd, sf_ifmedia_sts)) {
779 		printf("sf%d: MII without any phy!\n", sc->sf_unit);
780 		error = ENXIO;
781 		goto fail;
782 	}
783 
784 	ifp = &sc->arpcom.ac_if;
785 	ifp->if_softc = sc;
786 	if_initname(ifp, "sf", unit);
787 	ifp->if_mtu = ETHERMTU;
788 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
789 	ifp->if_ioctl = sf_ioctl;
790 	ifp->if_start = sf_start;
791 	ifp->if_watchdog = sf_watchdog;
792 	ifp->if_init = sf_init;
793 	ifp->if_baudrate = 10000000;
794 	ifq_set_maxlen(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
795 	ifq_set_ready(&ifp->if_snd);
796 
797 	/*
798 	 * Call MI attach routine.
799 	 */
800 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
801 
802 	error = bus_setup_intr(dev, sc->sf_irq, 0,
803 			       sf_intr, sc, &sc->sf_intrhand, NULL);
804 
805 	if (error) {
806 		ether_ifdetach(ifp);
807 		device_printf(dev, "couldn't set up irq\n");
808 		goto fail;
809 	}
810 
811 	return(0);
812 
813 fail:
814 	sf_detach(dev);
815 	return(error);
816 }
817 
818 static int sf_detach(dev)
819 	device_t		dev;
820 {
821 	struct sf_softc *sc = device_get_softc(dev);
822 	struct ifnet *ifp = &sc->arpcom.ac_if;
823 
824 	crit_enter();
825 
826 	if (device_is_attached(dev)) {
827 		ether_ifdetach(ifp);
828 		sf_stop(sc);
829 	}
830 
831 	if (sc->sf_miibus)
832 		device_delete_child(dev, sc->sf_miibus);
833 	bus_generic_detach(dev);
834 
835 	if (sc->sf_intrhand)
836 		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
837 
838 	crit_exit();
839 
840 	if (sc->sf_irq)
841 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
842 	if(sc->sf_res)
843 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
844 
845 	if (sc->sf_ldata) {
846 		contigfree(sc->sf_ldata, sizeof(struct sf_list_data),
847 			   M_DEVBUF);
848 	}
849 
850 	return(0);
851 }
852 
853 static int sf_init_rx_ring(sc)
854 	struct sf_softc		*sc;
855 {
856 	struct sf_list_data	*ld;
857 	int			i;
858 
859 	ld = sc->sf_ldata;
860 
861 	bzero((char *)ld->sf_rx_dlist_big,
862 	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
863 	bzero((char *)ld->sf_rx_clist,
864 	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
865 
866 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
867 		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
868 			return(ENOBUFS);
869 	}
870 
871 	return(0);
872 }
873 
874 static void sf_init_tx_ring(sc)
875 	struct sf_softc		*sc;
876 {
877 	struct sf_list_data	*ld;
878 	int			i;
879 
880 	ld = sc->sf_ldata;
881 
882 	bzero((char *)ld->sf_tx_dlist,
883 	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
884 	bzero((char *)ld->sf_tx_clist,
885 	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
886 
887 	for (i = 0; i < SF_TX_DLIST_CNT; i++)
888 		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
889 	for (i = 0; i < SF_TX_CLIST_CNT; i++)
890 		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
891 
892 	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
893 	sc->sf_tx_cnt = 0;
894 
895 	return;
896 }
897 
898 static int sf_newbuf(sc, c, m)
899 	struct sf_softc		*sc;
900 	struct sf_rx_bufdesc_type0	*c;
901 	struct mbuf		*m;
902 {
903 	struct mbuf		*m_new = NULL;
904 
905 	if (m == NULL) {
906 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
907 		if (m_new == NULL)
908 			return(ENOBUFS);
909 
910 		MCLGET(m_new, MB_DONTWAIT);
911 		if (!(m_new->m_flags & M_EXT)) {
912 			m_freem(m_new);
913 			return(ENOBUFS);
914 		}
915 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
916 	} else {
917 		m_new = m;
918 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
919 		m_new->m_data = m_new->m_ext.ext_buf;
920 	}
921 
922 	m_adj(m_new, sizeof(u_int64_t));
923 
924 	c->sf_mbuf = m_new;
925 	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
926 	c->sf_valid = 1;
927 
928 	return(0);
929 }
930 
931 /*
932  * The starfire is programmed to use 'normal' mode for packet reception,
933  * which means we use the consumer/producer model for both the buffer
934  * descriptor queue and the completion descriptor queue. The only problem
935  * with this is that it involves a lot of register accesses: we have to
936  * read the RX completion consumer and producer indexes and the RX buffer
937  * producer index, plus the RX completion consumer and RX buffer producer
938  * indexes have to be updated. It would have been easier if Adaptec had
939  * put each index in a separate register, especially given that the damn
940  * NIC has a 512K register space.
941  *
942  * In spite of all the lovely features that Adaptec crammed into the 6915,
943  * it is marred by one truly stupid design flaw, which is that receive
944  * buffer addresses must be aligned on a longword boundary. This forces
945  * the packet payload to be unaligned, which is suboptimal on the x86 and
946  * completely unuseable on the Alpha. Our only recourse is to copy received
947  * packets into properly aligned buffers before handing them off.
948  */
949 
950 static void sf_rxeof(sc)
951 	struct sf_softc		*sc;
952 {
953 	struct mbuf		*m;
954 	struct ifnet		*ifp;
955 	struct sf_rx_bufdesc_type0	*desc;
956 	struct sf_rx_cmpdesc_type3	*cur_rx;
957 	u_int32_t		rxcons, rxprod;
958 	int			cmpprodidx, cmpconsidx, bufprodidx;
959 
960 	ifp = &sc->arpcom.ac_if;
961 
962 	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
963 	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
964 	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
965 	cmpconsidx = SF_IDX_LO(rxcons);
966 	bufprodidx = SF_IDX_LO(rxprod);
967 
968 	while (cmpconsidx != cmpprodidx) {
969 		struct mbuf		*m0;
970 
971 		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
972 		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
973 		m = desc->sf_mbuf;
974 		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
975 		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
976 
977 		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
978 			ifp->if_ierrors++;
979 			sf_newbuf(sc, desc, m);
980 			continue;
981 		}
982 
983 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
984 		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
985 		sf_newbuf(sc, desc, m);
986 		if (m0 == NULL) {
987 			ifp->if_ierrors++;
988 			continue;
989 		}
990 		m_adj(m0, ETHER_ALIGN);
991 		m = m0;
992 
993 		ifp->if_ipackets++;
994 
995 		(*ifp->if_input)(ifp, m);
996 	}
997 
998 	csr_write_4(sc, SF_CQ_CONSIDX,
999 	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1000 	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1001 	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1002 
1003 	return;
1004 }
1005 
1006 /*
1007  * Read the transmit status from the completion queue and release
1008  * mbufs. Note that the buffer descriptor index in the completion
1009  * descriptor is an offset from the start of the transmit buffer
1010  * descriptor list in bytes. This is important because the manual
1011  * gives the impression that it should match the producer/consumer
1012  * index, which is the offset in 8 byte blocks.
1013  */
1014 static void sf_txeof(sc)
1015 	struct sf_softc		*sc;
1016 {
1017 	int			txcons, cmpprodidx, cmpconsidx;
1018 	struct sf_tx_cmpdesc_type1 *cur_cmp;
1019 	struct sf_tx_bufdesc_type0 *cur_tx;
1020 	struct ifnet		*ifp;
1021 
1022 	ifp = &sc->arpcom.ac_if;
1023 
1024 	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1025 	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1026 	cmpconsidx = SF_IDX_HI(txcons);
1027 
1028 	while (cmpconsidx != cmpprodidx) {
1029 		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1030 		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1031 
1032 		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1033 			ifp->if_opackets++;
1034 		else {
1035 			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1036 				sf_txthresh_adjust(sc);
1037 			ifp->if_oerrors++;
1038 		}
1039 
1040 		sc->sf_tx_cnt--;
1041 		if (cur_tx->sf_mbuf != NULL) {
1042 			m_freem(cur_tx->sf_mbuf);
1043 			cur_tx->sf_mbuf = NULL;
1044 		} else
1045 			break;
1046 		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1047 	}
1048 
1049 	ifp->if_timer = 0;
1050 	ifp->if_flags &= ~IFF_OACTIVE;
1051 
1052 	csr_write_4(sc, SF_CQ_CONSIDX,
1053 	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1054 	    ((cmpconsidx << 16) & 0xFFFF0000));
1055 
1056 	return;
1057 }
1058 
1059 static void sf_txthresh_adjust(sc)
1060 	struct sf_softc		*sc;
1061 {
1062 	u_int32_t		txfctl;
1063 	u_int8_t		txthresh;
1064 
1065 	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1066 	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1067 	if (txthresh < 0xFF) {
1068 		txthresh++;
1069 		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1070 		txfctl |= txthresh;
1071 #ifdef DIAGNOSTIC
1072 		printf("sf%d: tx underrun, increasing "
1073 		    "tx threshold to %d bytes\n",
1074 		    sc->sf_unit, txthresh * 4);
1075 #endif
1076 		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1077 	}
1078 
1079 	return;
1080 }
1081 
1082 static void sf_intr(arg)
1083 	void			*arg;
1084 {
1085 	struct sf_softc		*sc;
1086 	struct ifnet		*ifp;
1087 	u_int32_t		status;
1088 
1089 	sc = arg;
1090 	ifp = &sc->arpcom.ac_if;
1091 
1092 	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1093 		return;
1094 
1095 	/* Disable interrupts. */
1096 	csr_write_4(sc, SF_IMR, 0x00000000);
1097 
1098 	for (;;) {
1099 		status = csr_read_4(sc, SF_ISR);
1100 		if (status)
1101 			csr_write_4(sc, SF_ISR, status);
1102 
1103 		if (!(status & SF_INTRS))
1104 			break;
1105 
1106 		if (status & SF_ISR_RXDQ1_DMADONE)
1107 			sf_rxeof(sc);
1108 
1109 		if (status & SF_ISR_TX_TXDONE ||
1110 		    status & SF_ISR_TX_DMADONE ||
1111 		    status & SF_ISR_TX_QUEUEDONE)
1112 			sf_txeof(sc);
1113 
1114 		if (status & SF_ISR_TX_LOFIFO)
1115 			sf_txthresh_adjust(sc);
1116 
1117 		if (status & SF_ISR_ABNORMALINTR) {
1118 			if (status & SF_ISR_STATSOFLOW) {
1119 				callout_stop(&sc->sf_stat_timer);
1120 				sf_stats_update(sc);
1121 			} else
1122 				sf_init(sc);
1123 		}
1124 	}
1125 
1126 	/* Re-enable interrupts. */
1127 	csr_write_4(sc, SF_IMR, SF_INTRS);
1128 
1129 	if (!ifq_is_empty(&ifp->if_snd))
1130 		sf_start(ifp);
1131 
1132 	return;
1133 }
1134 
1135 static void sf_init(xsc)
1136 	void			*xsc;
1137 {
1138 	struct sf_softc *sc = xsc;
1139 	struct ifnet *ifp = &sc->arpcom.ac_if;
1140 	int i;
1141 
1142 	crit_enter();
1143 
1144 	sf_stop(sc);
1145 	sf_reset(sc);
1146 
1147 	/* Init all the receive filter registers */
1148 	for (i = SF_RXFILT_PERFECT_BASE;
1149 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1150 		csr_write_4(sc, i, 0);
1151 
1152 	/* Empty stats counter registers. */
1153 	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1154 		csr_write_4(sc, SF_STATS_BASE +
1155 		    (i + sizeof(u_int32_t)), 0);
1156 
1157 	/* Init our MAC address */
1158 	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1159 	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1160 	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1161 
1162 	if (sf_init_rx_ring(sc) == ENOBUFS) {
1163 		printf("sf%d: initialization failed: no "
1164 		    "memory for rx buffers\n", sc->sf_unit);
1165 		crit_exit();
1166 		return;
1167 	}
1168 
1169 	sf_init_tx_ring(sc);
1170 
1171 	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1172 
1173 	/* If we want promiscuous mode, set the allframes bit. */
1174 	if (ifp->if_flags & IFF_PROMISC) {
1175 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1176 	} else {
1177 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1178 	}
1179 
1180 	if (ifp->if_flags & IFF_BROADCAST) {
1181 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1182 	} else {
1183 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1184 	}
1185 
1186 	/*
1187 	 * Load the multicast filter.
1188 	 */
1189 	sf_setmulti(sc);
1190 
1191 	/* Init the completion queue indexes */
1192 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1193 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1194 
1195 	/* Init the RX completion queue */
1196 	csr_write_4(sc, SF_RXCQ_CTL_1,
1197 	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1198 	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1199 
1200 	/* Init RX DMA control. */
1201 	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1202 
1203 	/* Init the RX buffer descriptor queue. */
1204 	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1205 	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1206 	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1207 	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1208 
1209 	/* Init the TX completion queue */
1210 	csr_write_4(sc, SF_TXCQ_CTL,
1211 	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1212 
1213 	/* Init the TX buffer descriptor queue. */
1214 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1215 		vtophys(sc->sf_ldata->sf_tx_dlist));
1216 	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1217 	csr_write_4(sc, SF_TXDQ_CTL,
1218 	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1219 	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1220 
1221 	/* Enable autopadding of short TX frames. */
1222 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1223 
1224 	/* Enable interrupts. */
1225 	csr_write_4(sc, SF_IMR, SF_INTRS);
1226 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1227 
1228 	/* Enable the RX and TX engines. */
1229 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1230 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1231 
1232 	/*mii_mediachg(mii);*/
1233 	sf_ifmedia_upd(ifp);
1234 
1235 	ifp->if_flags |= IFF_RUNNING;
1236 	ifp->if_flags &= ~IFF_OACTIVE;
1237 
1238 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1239 
1240 	crit_exit();
1241 }
1242 
1243 static int sf_encap(sc, c, m_head)
1244 	struct sf_softc		*sc;
1245 	struct sf_tx_bufdesc_type0 *c;
1246 	struct mbuf		*m_head;
1247 {
1248 	int			frag = 0;
1249 	struct sf_frag		*f = NULL;
1250 	struct mbuf		*m;
1251 
1252 	m = m_head;
1253 
1254 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1255 		if (m->m_len != 0) {
1256 			if (frag == SF_MAXFRAGS)
1257 				break;
1258 			f = &c->sf_frags[frag];
1259 			if (frag == 0)
1260 				f->sf_pktlen = m_head->m_pkthdr.len;
1261 			f->sf_fraglen = m->m_len;
1262 			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1263 			frag++;
1264 		}
1265 	}
1266 
1267 	if (m != NULL) {
1268 		struct mbuf		*m_new = NULL;
1269 
1270 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1271 		if (m_new == NULL) {
1272 			printf("sf%d: no memory for tx list", sc->sf_unit);
1273 			return(1);
1274 		}
1275 
1276 		if (m_head->m_pkthdr.len > MHLEN) {
1277 			MCLGET(m_new, MB_DONTWAIT);
1278 			if (!(m_new->m_flags & M_EXT)) {
1279 				m_freem(m_new);
1280 				printf("sf%d: no memory for tx list",
1281 				    sc->sf_unit);
1282 				return(1);
1283 			}
1284 		}
1285 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1286 		    mtod(m_new, caddr_t));
1287 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1288 		m_freem(m_head);
1289 		m_head = m_new;
1290 		f = &c->sf_frags[0];
1291 		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1292 		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1293 		frag = 1;
1294 	}
1295 
1296 	c->sf_mbuf = m_head;
1297 	c->sf_id = SF_TX_BUFDESC_ID;
1298 	c->sf_fragcnt = frag;
1299 	c->sf_intr = 1;
1300 	c->sf_caltcp = 0;
1301 	c->sf_crcen = 1;
1302 
1303 	return(0);
1304 }
1305 
1306 static void sf_start(ifp)
1307 	struct ifnet		*ifp;
1308 {
1309 	struct sf_softc		*sc;
1310 	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1311 	struct mbuf		*m_head = NULL;
1312 	int			i, txprod;
1313 
1314 	sc = ifp->if_softc;
1315 
1316 	if (!sc->sf_link)
1317 		return;
1318 
1319 	if (ifp->if_flags & IFF_OACTIVE)
1320 		return;
1321 
1322 	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1323 	i = SF_IDX_HI(txprod) >> 4;
1324 
1325 	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1326 		printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1327 		sf_init(sc);
1328 		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1329 		i = SF_IDX_HI(txprod) >> 4;
1330 	}
1331 
1332 	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1333 		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1334 			ifp->if_flags |= IFF_OACTIVE;
1335 			cur_tx = NULL;
1336 			break;
1337 		}
1338 		m_head = ifq_poll(&ifp->if_snd);
1339 		if (m_head == NULL)
1340 			break;
1341 
1342 		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1343 		if (sf_encap(sc, cur_tx, m_head)) {
1344 			ifp->if_flags |= IFF_OACTIVE;
1345 			cur_tx = NULL;
1346 			break;
1347 		}
1348 		ifq_dequeue(&ifp->if_snd, m_head);
1349 		BPF_MTAP(ifp, cur_tx->sf_mbuf);
1350 
1351 		SF_INC(i, SF_TX_DLIST_CNT);
1352 		sc->sf_tx_cnt++;
1353 		/*
1354 		 * Don't get the TX DMA queue get too full.
1355 		 */
1356 		if (sc->sf_tx_cnt > 64)
1357 			break;
1358 	}
1359 
1360 	if (cur_tx == NULL)
1361 		return;
1362 
1363 	/* Transmit */
1364 	csr_write_4(sc, SF_TXDQ_PRODIDX,
1365 	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1366 	    ((i << 20) & 0xFFFF0000));
1367 
1368 	ifp->if_timer = 5;
1369 
1370 	return;
1371 }
1372 
1373 static void sf_stop(sc)
1374 	struct sf_softc		*sc;
1375 {
1376 	int			i;
1377 	struct ifnet		*ifp;
1378 
1379 	ifp = &sc->arpcom.ac_if;
1380 
1381 	callout_stop(&sc->sf_stat_timer);
1382 
1383 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1384 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1385 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1386 	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1387 	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1388 	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1389 	csr_write_4(sc, SF_TXCQ_CTL, 0);
1390 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1391 	csr_write_4(sc, SF_TXDQ_CTL, 0);
1392 	sf_reset(sc);
1393 
1394 	sc->sf_link = 0;
1395 
1396 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1397 		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1398 			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1399 			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1400 		}
1401 	}
1402 
1403 	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1404 		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1405 			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1406 			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1407 		}
1408 	}
1409 
1410 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1411 
1412 	return;
1413 }
1414 
1415 /*
1416  * Note: it is important that this function not be interrupted. We
1417  * use a two-stage register access scheme: if we are interrupted in
1418  * between setting the indirect address register and reading from the
1419  * indirect data register, the contents of the address register could
1420  * be changed out from under us.
1421  */
1422 static void sf_stats_update(xsc)
1423 	void			*xsc;
1424 {
1425 	struct sf_softc *sc = xsc;
1426 	struct ifnet *ifp = &sc->arpcom.ac_if;
1427 	struct mii_data *mii = device_get_softc(sc->sf_miibus);
1428 	struct sf_stats		stats;
1429 	u_int32_t		*ptr;
1430 	int			i;
1431 
1432 	crit_enter();
1433 
1434 	ptr = (u_int32_t *)&stats;
1435 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1436 		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1437 		    (i + sizeof(u_int32_t)));
1438 
1439 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1440 		csr_write_4(sc, SF_STATS_BASE +
1441 		    (i + sizeof(u_int32_t)), 0);
1442 
1443 	ifp->if_collisions += stats.sf_tx_single_colls +
1444 	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1445 
1446 	mii_tick(mii);
1447 	if (!sc->sf_link) {
1448 		mii_pollstat(mii);
1449 		if (mii->mii_media_status & IFM_ACTIVE &&
1450 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1451 			sc->sf_link++;
1452 			if (!ifq_is_empty(&ifp->if_snd))
1453 				sf_start(ifp);
1454 	}
1455 
1456 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1457 
1458 	crit_exit();
1459 }
1460 
1461 static void sf_watchdog(ifp)
1462 	struct ifnet		*ifp;
1463 {
1464 	struct sf_softc		*sc;
1465 
1466 	sc = ifp->if_softc;
1467 
1468 	ifp->if_oerrors++;
1469 	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1470 
1471 	sf_stop(sc);
1472 	sf_reset(sc);
1473 	sf_init(sc);
1474 
1475 	if (!ifq_is_empty(&ifp->if_snd))
1476 		sf_start(ifp);
1477 
1478 	return;
1479 }
1480 
1481 static void sf_shutdown(dev)
1482 	device_t		dev;
1483 {
1484 	struct sf_softc		*sc;
1485 
1486 	sc = device_get_softc(dev);
1487 
1488 	sf_stop(sc);
1489 
1490 	return;
1491 }
1492