xref: /dragonfly/sys/dev/netif/sf/if_sf.c (revision 6a3cbbc2)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sf.c,v 1.18.2.8 2001/12/16 15:46:07 luigi Exp $
33  */
34 
35 /*
36  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
37  * Programming manual is available from:
38  * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
39  *
40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
41  * Department of Electical Engineering
42  * Columbia University, New York City
43  */
44 
45 /*
46  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47  * controller designed with flexibility and reducing CPU load in mind.
48  * The Starfire offers high and low priority buffer queues, a
49  * producer/consumer index mechanism and several different buffer
50  * queue and completion queue descriptor types. Any one of a number
51  * of different driver designs can be used, depending on system and
52  * OS requirements. This driver makes use of type0 transmit frame
53  * descriptors (since BSD fragments packets across an mbuf chain)
54  * and two RX buffer queues prioritized on size (one queue for small
55  * frames that will fit into a single mbuf, another with full size
56  * mbuf clusters for everything else). The producer/consumer indexes
57  * and completion queues are also used.
58  *
59  * One downside to the Starfire has to do with alignment: buffer
60  * queues must be aligned on 256-byte boundaries, and receive buffers
61  * must be aligned on longword boundaries. The receive buffer alignment
62  * causes problems on the Alpha platform, where the packet payload
63  * should be longword aligned. There is no simple way around this.
64  *
65  * For receive filtering, the Starfire offers 16 perfect filter slots
66  * and a 512-bit hash table.
67  *
68  * The Starfire has no internal transceiver, relying instead on an
69  * external MII-based transceiver. Accessing registers on external
70  * PHYs is done through a special register map rather than with the
71  * usual bitbang MDIO method.
72  *
73  * Acesssing the registers on the Starfire is a little tricky. The
74  * Starfire has a 512K internal register space. When programmed for
75  * PCI memory mapped mode, the entire register space can be accessed
76  * directly. However in I/O space mode, only 256 bytes are directly
77  * mapped into PCI I/O space. The other registers can be accessed
78  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79  * registers inside the 256-byte I/O window.
80  */
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/sockio.h>
85 #include <sys/mbuf.h>
86 #include <sys/malloc.h>
87 #include <sys/kernel.h>
88 #include <sys/interrupt.h>
89 #include <sys/socket.h>
90 #include <sys/serialize.h>
91 #include <sys/bus.h>
92 #include <sys/rman.h>
93 
94 #include <net/if.h>
95 #include <net/ifq_var.h>
96 #include <net/if_arp.h>
97 #include <net/ethernet.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 
101 #include <net/bpf.h>
102 
103 #include <vm/vm.h>              /* for vtophys */
104 #include <vm/pmap.h>            /* for vtophys */
105 
106 #include <machine/clock.h>      /* for DELAY */
107 
108 #include "../mii_layer/mii.h"
109 #include "../mii_layer/miivar.h"
110 
111 /* "controller miibus0" required.  See GENERIC if you get errors here. */
112 #include "miibus_if.h"
113 
114 #include "pcidevs.h"
115 #include <bus/pci/pcireg.h>
116 #include <bus/pci/pcivar.h>
117 
118 #define SF_USEIOSPACE
119 
120 #include "if_sfreg.h"
121 
122 static struct sf_type sf_devs[] = {
123 	{ PCI_VENDOR_ADP, PCI_PRODUCT_ADP_AIC6915,
124 		"Adaptec AIC-6915 10/100BaseTX" },
125 	{ 0, 0, NULL }
126 };
127 
128 static int sf_probe		(device_t);
129 static int sf_attach		(device_t);
130 static int sf_detach		(device_t);
131 static void sf_intr		(void *);
132 static void sf_stats_update	(void *);
133 static void sf_rxeof		(struct sf_softc *);
134 static void sf_txeof		(struct sf_softc *);
135 static int sf_encap		(struct sf_softc *,
136 					struct sf_tx_bufdesc_type0 *,
137 					struct mbuf *);
138 static void sf_start		(struct ifnet *, struct ifaltq_subque *);
139 static int sf_ioctl		(struct ifnet *, u_long, caddr_t,
140 					struct ucred *);
141 static void sf_init		(void *);
142 static void sf_stop		(struct sf_softc *);
143 static void sf_watchdog		(struct ifnet *);
144 static void sf_shutdown		(device_t);
145 static int sf_ifmedia_upd	(struct ifnet *);
146 static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
147 static void sf_reset		(struct sf_softc *);
148 static int sf_init_rx_ring	(struct sf_softc *);
149 static void sf_init_tx_ring	(struct sf_softc *);
150 static int sf_newbuf		(struct sf_softc *,
151 					struct sf_rx_bufdesc_type0 *,
152 					struct mbuf *);
153 static void sf_setmulti		(struct sf_softc *);
154 static int sf_setperf		(struct sf_softc *, int, caddr_t);
155 static int sf_sethash		(struct sf_softc *, caddr_t, int);
156 #ifdef notdef
157 static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
158 #endif
159 
160 static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
161 static u_int32_t sf_calchash	(caddr_t);
162 
163 static int sf_miibus_readreg	(device_t, int, int);
164 static int sf_miibus_writereg	(device_t, int, int, int);
165 static void sf_miibus_statchg	(device_t);
166 
167 static u_int32_t csr_read_4	(struct sf_softc *, int);
168 static void csr_write_4		(struct sf_softc *, int, u_int32_t);
169 static void sf_txthresh_adjust	(struct sf_softc *);
170 
171 #ifdef SF_USEIOSPACE
172 #define SF_RES			SYS_RES_IOPORT
173 #define SF_RID			SF_PCI_LOIO
174 #else
175 #define SF_RES			SYS_RES_MEMORY
176 #define SF_RID			SF_PCI_LOMEM
177 #endif
178 
179 static device_method_t sf_methods[] = {
180 	/* Device interface */
181 	DEVMETHOD(device_probe,		sf_probe),
182 	DEVMETHOD(device_attach,	sf_attach),
183 	DEVMETHOD(device_detach,	sf_detach),
184 	DEVMETHOD(device_shutdown,	sf_shutdown),
185 
186 	/* bus interface */
187 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
188 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
189 
190 	/* MII interface */
191 	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
192 	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
193 	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
194 
195 	DEVMETHOD_END
196 };
197 
198 static driver_t sf_driver = {
199 	"sf",
200 	sf_methods,
201 	sizeof(struct sf_softc),
202 };
203 
204 static devclass_t sf_devclass;
205 
206 DECLARE_DUMMY_MODULE(if_sf);
207 DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, NULL, NULL);
208 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, NULL, NULL);
209 
210 #define SF_SETBIT(sc, reg, x)	\
211 	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
212 
213 #define SF_CLRBIT(sc, reg, x)				\
214 	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
215 
216 static u_int32_t
217 csr_read_4(struct sf_softc *sc, int reg)
218 {
219 	u_int32_t		val;
220 
221 #ifdef SF_USEIOSPACE
222 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
223 	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
224 #else
225 	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
226 #endif
227 
228 	return(val);
229 }
230 
231 static u_int8_t
232 sf_read_eeprom(struct sf_softc *sc, int reg)
233 {
234 	u_int8_t		val;
235 
236 	val = (csr_read_4(sc, SF_EEADDR_BASE +
237 	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
238 
239 	return(val);
240 }
241 
242 static void
243 csr_write_4(struct sf_softc *sc, int reg, u_int32_t val)
244 {
245 #ifdef SF_USEIOSPACE
246 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
247 	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
248 #else
249 	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
250 #endif
251 	return;
252 }
253 
254 static u_int32_t
255 sf_calchash(caddr_t addr)
256 {
257 	u_int32_t		crc, carry;
258 	int			i, j;
259 	u_int8_t		c;
260 
261 	/* Compute CRC for the address value. */
262 	crc = 0xFFFFFFFF; /* initial value */
263 
264 	for (i = 0; i < 6; i++) {
265 		c = *(addr + i);
266 		for (j = 0; j < 8; j++) {
267 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
268 			crc <<= 1;
269 			c >>= 1;
270 			if (carry)
271 				crc = (crc ^ 0x04c11db6) | carry;
272 		}
273 	}
274 
275 	/* return the filter bit position */
276 	return(crc >> 23 & 0x1FF);
277 }
278 
279 /*
280  * Copy the address 'mac' into the perfect RX filter entry at
281  * offset 'idx.' The perfect filter only has 16 entries so do
282  * some sanity tests.
283  */
284 static int
285 sf_setperf(struct sf_softc *sc, int idx, caddr_t mac)
286 {
287 	u_int16_t		*p;
288 
289 	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
290 		return(EINVAL);
291 
292 	if (mac == NULL)
293 		return(EINVAL);
294 
295 	p = (u_int16_t *)mac;
296 
297 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
298 	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
299 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
300 	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
301 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
302 	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
303 
304 	return(0);
305 }
306 
307 /*
308  * Set the bit in the 512-bit hash table that corresponds to the
309  * specified mac address 'mac.' If 'prio' is nonzero, update the
310  * priority hash table instead of the filter hash table.
311  */
312 static int
313 sf_sethash(struct sf_softc *sc, caddr_t mac, int prio)
314 {
315 	u_int32_t		h = 0;
316 
317 	if (mac == NULL)
318 		return(EINVAL);
319 
320 	h = sf_calchash(mac);
321 
322 	if (prio) {
323 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
324 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
325 	} else {
326 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
327 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
328 	}
329 
330 	return(0);
331 }
332 
333 #ifdef notdef
334 /*
335  * Set a VLAN tag in the receive filter.
336  */
337 static int
338 sf_setvlan(struct sf_softc *sc, int idx, u_int32_t vlan)
339 {
340 	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
341 		return(EINVAL);
342 
343 	csr_write_4(sc, SF_RXFILT_HASH_BASE +
344 	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
345 
346 	return(0);
347 }
348 #endif
349 
350 static int
351 sf_miibus_readreg(device_t dev, int phy, int reg)
352 {
353 	struct sf_softc		*sc;
354 	int			i;
355 	u_int32_t		val = 0;
356 
357 	sc = device_get_softc(dev);
358 
359 	for (i = 0; i < SF_TIMEOUT; i++) {
360 		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
361 		if (val & SF_MII_DATAVALID)
362 			break;
363 	}
364 
365 	if (i == SF_TIMEOUT)
366 		return(0);
367 
368 	if ((val & 0x0000FFFF) == 0xFFFF)
369 		return(0);
370 
371 	return(val & 0x0000FFFF);
372 }
373 
374 static int
375 sf_miibus_writereg(device_t dev, int phy, int reg, int val)
376 {
377 	struct sf_softc		*sc;
378 	int			i;
379 	int			busy;
380 
381 	sc = device_get_softc(dev);
382 
383 	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
384 
385 	for (i = 0; i < SF_TIMEOUT; i++) {
386 		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
387 		if (!(busy & SF_MII_BUSY))
388 			break;
389 	}
390 
391 	return(0);
392 }
393 
394 static void
395 sf_miibus_statchg(device_t dev)
396 {
397 	struct sf_softc		*sc;
398 	struct mii_data		*mii;
399 
400 	sc = device_get_softc(dev);
401 	mii = device_get_softc(sc->sf_miibus);
402 
403 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
404 		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
405 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
406 	} else {
407 		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
408 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
409 	}
410 
411 	return;
412 }
413 
414 static void
415 sf_setmulti(struct sf_softc *sc)
416 {
417 	struct ifnet		*ifp;
418 	int			i;
419 	struct ifmultiaddr	*ifma;
420 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
421 
422 	ifp = &sc->arpcom.ac_if;
423 
424 	/* First zot all the existing filters. */
425 	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
426 		sf_setperf(sc, i, (char *)&dummy);
427 	for (i = SF_RXFILT_HASH_BASE;
428 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
429 		csr_write_4(sc, i, 0);
430 	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
431 
432 	/* Now program new ones. */
433 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
434 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
435 	} else {
436 		i = 1;
437 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
438 			if (ifma->ifma_addr->sa_family != AF_LINK)
439 				continue;
440 			/*
441 			 * Program the first 15 multicast groups
442 			 * into the perfect filter. For all others,
443 			 * use the hash table.
444 			 */
445 			if (i < SF_RXFILT_PERFECT_CNT) {
446 				sf_setperf(sc, i,
447 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
448 				i++;
449 				continue;
450 			}
451 
452 			sf_sethash(sc,
453 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
454 		}
455 	}
456 
457 	return;
458 }
459 
460 /*
461  * Set media options.
462  */
463 static int
464 sf_ifmedia_upd(struct ifnet *ifp)
465 {
466 	struct sf_softc		*sc;
467 	struct mii_data		*mii;
468 
469 	sc = ifp->if_softc;
470 	mii = device_get_softc(sc->sf_miibus);
471 	sc->sf_link = 0;
472 	if (mii->mii_instance) {
473 		struct mii_softc        *miisc;
474 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
475 		    miisc = LIST_NEXT(miisc, mii_list))
476 			mii_phy_reset(miisc);
477 	}
478 	mii_mediachg(mii);
479 
480 	return(0);
481 }
482 
483 /*
484  * Report current media status.
485  */
486 static void
487 sf_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
488 {
489 	struct sf_softc		*sc;
490 	struct mii_data		*mii;
491 
492 	sc = ifp->if_softc;
493 	mii = device_get_softc(sc->sf_miibus);
494 
495 	mii_pollstat(mii);
496 	ifmr->ifm_active = mii->mii_media_active;
497 	ifmr->ifm_status = mii->mii_media_status;
498 
499 	return;
500 }
501 
502 static int
503 sf_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
504 {
505 	struct sf_softc		*sc = ifp->if_softc;
506 	struct ifreq		*ifr = (struct ifreq *) data;
507 	struct mii_data		*mii;
508 	int error = 0;
509 
510 	switch(command) {
511 	case SIOCSIFFLAGS:
512 		if (ifp->if_flags & IFF_UP) {
513 			if (ifp->if_flags & IFF_RUNNING &&
514 			    ifp->if_flags & IFF_PROMISC &&
515 			    !(sc->sf_if_flags & IFF_PROMISC)) {
516 				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
517 			} else if (ifp->if_flags & IFF_RUNNING &&
518 			    !(ifp->if_flags & IFF_PROMISC) &&
519 			    sc->sf_if_flags & IFF_PROMISC) {
520 				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
521 			} else if (!(ifp->if_flags & IFF_RUNNING))
522 				sf_init(sc);
523 		} else {
524 			if (ifp->if_flags & IFF_RUNNING)
525 				sf_stop(sc);
526 		}
527 		sc->sf_if_flags = ifp->if_flags;
528 		error = 0;
529 		break;
530 	case SIOCADDMULTI:
531 	case SIOCDELMULTI:
532 		sf_setmulti(sc);
533 		error = 0;
534 		break;
535 	case SIOCGIFMEDIA:
536 	case SIOCSIFMEDIA:
537 		mii = device_get_softc(sc->sf_miibus);
538 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
539 		break;
540 	default:
541 		error = ether_ioctl(ifp, command, data);
542 		break;
543 	}
544 
545 	return(error);
546 }
547 
548 static void
549 sf_reset(struct sf_softc *sc)
550 {
551 	int		i;
552 
553 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
554 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
555 	DELAY(1000);
556 	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
557 
558 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
559 
560 	for (i = 0; i < SF_TIMEOUT; i++) {
561 		DELAY(10);
562 		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
563 			break;
564 	}
565 
566 	if (i == SF_TIMEOUT)
567 		kprintf("sf%d: reset never completed!\n", sc->sf_unit);
568 
569 	/* Wait a little while for the chip to get its brains in order. */
570 	DELAY(1000);
571 	return;
572 }
573 
574 /*
575  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
576  * IDs against our list and return a device name if we find a match.
577  * We also check the subsystem ID so that we can identify exactly which
578  * NIC has been found, if possible.
579  */
580 static int
581 sf_probe(device_t dev)
582 {
583 	struct sf_type		*t;
584 
585 	t = sf_devs;
586 
587 	while(t->sf_name != NULL) {
588 		if ((pci_get_vendor(dev) == t->sf_vid) &&
589 		    (pci_get_device(dev) == t->sf_did)) {
590 			switch((pci_read_config(dev,
591 			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
592 			case AD_SUBSYSID_62011_REV0:
593 			case AD_SUBSYSID_62011_REV1:
594 				device_set_desc(dev,
595 				    "Adaptec ANA-62011 10/100BaseTX");
596 				return(0);
597 				break;
598 			case AD_SUBSYSID_62022:
599 				device_set_desc(dev,
600 				    "Adaptec ANA-62022 10/100BaseTX");
601 				return(0);
602 				break;
603 			case AD_SUBSYSID_62044_REV0:
604 			case AD_SUBSYSID_62044_REV1:
605 				device_set_desc(dev,
606 				    "Adaptec ANA-62044 10/100BaseTX");
607 				return(0);
608 				break;
609 			case AD_SUBSYSID_62020:
610 				device_set_desc(dev,
611 				    "Adaptec ANA-62020 10/100BaseFX");
612 				return(0);
613 				break;
614 			case AD_SUBSYSID_69011:
615 				device_set_desc(dev,
616 				    "Adaptec ANA-69011 10/100BaseTX");
617 				return(0);
618 				break;
619 			default:
620 				device_set_desc(dev, t->sf_name);
621 				return(0);
622 				break;
623 			}
624 		}
625 		t++;
626 	}
627 
628 	return(ENXIO);
629 }
630 
631 /*
632  * Attach the interface. Allocate softc structures, do ifmedia
633  * setup and ethernet/BPF attach.
634  */
635 static int
636 sf_attach(device_t dev)
637 {
638 	int			i;
639 	u_int32_t		command;
640 	struct sf_softc		*sc;
641 	struct ifnet		*ifp;
642 	int			unit, rid, error = 0;
643 
644 	sc = device_get_softc(dev);
645 	unit = device_get_unit(dev);
646 
647 	/*
648 	 * Handle power management nonsense.
649 	 */
650 	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
651 	if (command == 0x01) {
652 
653 		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
654 		if (command & SF_PSTATE_MASK) {
655 			u_int32_t		iobase, membase, irq;
656 
657 			/* Save important PCI config data. */
658 			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
659 			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
660 			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
661 
662 			/* Reset the power state. */
663 			kprintf("sf%d: chip is in D%d power mode "
664 			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
665 			command &= 0xFFFFFFFC;
666 			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
667 
668 			/* Restore PCI config data. */
669 			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
670 			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
671 			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
672 		}
673 	}
674 
675 	/*
676 	 * Map control/status registers.
677 	 */
678 	command = pci_read_config(dev, PCIR_COMMAND, 4);
679 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
680 	pci_write_config(dev, PCIR_COMMAND, command, 4);
681 	command = pci_read_config(dev, PCIR_COMMAND, 4);
682 
683 #ifdef SF_USEIOSPACE
684 	if (!(command & PCIM_CMD_PORTEN)) {
685 		kprintf("sf%d: failed to enable I/O ports!\n", unit);
686 		error = ENXIO;
687 		return(error);
688 	}
689 #else
690 	if (!(command & PCIM_CMD_MEMEN)) {
691 		kprintf("sf%d: failed to enable memory mapping!\n", unit);
692 		error = ENXIO;
693 		return(error);
694 	}
695 #endif
696 
697 	rid = SF_RID;
698 	sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
699 
700 	if (sc->sf_res == NULL) {
701 		kprintf ("sf%d: couldn't map ports\n", unit);
702 		error = ENXIO;
703 		return(error);
704 	}
705 
706 	sc->sf_btag = rman_get_bustag(sc->sf_res);
707 	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
708 
709 	/* Allocate interrupt */
710 	rid = 0;
711 	sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
712 	    RF_SHAREABLE | RF_ACTIVE);
713 
714 	if (sc->sf_irq == NULL) {
715 		kprintf("sf%d: couldn't map interrupt\n", unit);
716 		error = ENXIO;
717 		goto fail;
718 	}
719 
720 	callout_init(&sc->sf_stat_timer);
721 
722 	/* Reset the adapter. */
723 	sf_reset(sc);
724 
725 	/*
726 	 * Get station address from the EEPROM.
727 	 */
728 	for (i = 0; i < ETHER_ADDR_LEN; i++)
729 		sc->arpcom.ac_enaddr[i] =
730 		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
731 
732 	sc->sf_unit = unit;
733 
734 	/* Allocate the descriptor queues. */
735 	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
736 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
737 
738 	if (sc->sf_ldata == NULL) {
739 		kprintf("sf%d: no memory for list buffers!\n", unit);
740 		error = ENXIO;
741 		goto fail;
742 	}
743 
744 	/* Do MII setup. */
745 	if (mii_phy_probe(dev, &sc->sf_miibus,
746 	    sf_ifmedia_upd, sf_ifmedia_sts)) {
747 		kprintf("sf%d: MII without any phy!\n", sc->sf_unit);
748 		error = ENXIO;
749 		goto fail;
750 	}
751 
752 	ifp = &sc->arpcom.ac_if;
753 	ifp->if_softc = sc;
754 	if_initname(ifp, "sf", unit);
755 	ifp->if_mtu = ETHERMTU;
756 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
757 	ifp->if_ioctl = sf_ioctl;
758 	ifp->if_start = sf_start;
759 	ifp->if_watchdog = sf_watchdog;
760 	ifp->if_init = sf_init;
761 	ifp->if_baudrate = 10000000;
762 	ifq_set_maxlen(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
763 	ifq_set_ready(&ifp->if_snd);
764 
765 	/*
766 	 * Call MI attach routine.
767 	 */
768 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
769 
770 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->sf_irq));
771 
772 	error = bus_setup_intr(dev, sc->sf_irq, INTR_MPSAFE,
773 			       sf_intr, sc, &sc->sf_intrhand,
774 			       ifp->if_serializer);
775 
776 	if (error) {
777 		ether_ifdetach(ifp);
778 		device_printf(dev, "couldn't set up irq\n");
779 		goto fail;
780 	}
781 
782 	return(0);
783 
784 fail:
785 	sf_detach(dev);
786 	return(error);
787 }
788 
789 static int
790 sf_detach(device_t dev)
791 {
792 	struct sf_softc *sc = device_get_softc(dev);
793 	struct ifnet *ifp = &sc->arpcom.ac_if;
794 
795 	if (device_is_attached(dev)) {
796 		lwkt_serialize_enter(ifp->if_serializer);
797 		sf_stop(sc);
798 		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
799 		lwkt_serialize_exit(ifp->if_serializer);
800 
801 		ether_ifdetach(ifp);
802 	}
803 
804 	if (sc->sf_miibus)
805 		device_delete_child(dev, sc->sf_miibus);
806 	bus_generic_detach(dev);
807 
808 	if (sc->sf_irq)
809 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
810 	if(sc->sf_res)
811 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
812 
813 	if (sc->sf_ldata) {
814 		contigfree(sc->sf_ldata, sizeof(struct sf_list_data),
815 			   M_DEVBUF);
816 	}
817 
818 	return(0);
819 }
820 
821 static int
822 sf_init_rx_ring(struct sf_softc *sc)
823 {
824 	struct sf_list_data	*ld;
825 	int			i;
826 
827 	ld = sc->sf_ldata;
828 
829 	bzero((char *)ld->sf_rx_dlist_big,
830 	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
831 	bzero((char *)ld->sf_rx_clist,
832 	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
833 
834 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
835 		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
836 			return(ENOBUFS);
837 	}
838 
839 	return(0);
840 }
841 
842 static void
843 sf_init_tx_ring(struct sf_softc *sc)
844 {
845 	struct sf_list_data	*ld;
846 	int			i;
847 
848 	ld = sc->sf_ldata;
849 
850 	bzero((char *)ld->sf_tx_dlist,
851 	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
852 	bzero((char *)ld->sf_tx_clist,
853 	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
854 
855 	for (i = 0; i < SF_TX_DLIST_CNT; i++)
856 		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
857 	for (i = 0; i < SF_TX_CLIST_CNT; i++)
858 		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
859 
860 	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
861 	sc->sf_tx_cnt = 0;
862 
863 	return;
864 }
865 
866 static int
867 sf_newbuf(struct sf_softc *sc, struct sf_rx_bufdesc_type0 *c,
868 	  struct mbuf *m)
869 {
870 	struct mbuf		*m_new = NULL;
871 
872 	if (m == NULL) {
873 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
874 		if (m_new == NULL)
875 			return(ENOBUFS);
876 
877 		MCLGET(m_new, M_NOWAIT);
878 		if (!(m_new->m_flags & M_EXT)) {
879 			m_freem(m_new);
880 			return(ENOBUFS);
881 		}
882 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
883 	} else {
884 		m_new = m;
885 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
886 		m_new->m_data = m_new->m_ext.ext_buf;
887 	}
888 
889 	m_adj(m_new, sizeof(u_int64_t));
890 
891 	c->sf_mbuf = m_new;
892 	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
893 	c->sf_valid = 1;
894 
895 	return(0);
896 }
897 
898 /*
899  * The starfire is programmed to use 'normal' mode for packet reception,
900  * which means we use the consumer/producer model for both the buffer
901  * descriptor queue and the completion descriptor queue. The only problem
902  * with this is that it involves a lot of register accesses: we have to
903  * read the RX completion consumer and producer indexes and the RX buffer
904  * producer index, plus the RX completion consumer and RX buffer producer
905  * indexes have to be updated. It would have been easier if Adaptec had
906  * put each index in a separate register, especially given that the damn
907  * NIC has a 512K register space.
908  *
909  * In spite of all the lovely features that Adaptec crammed into the 6915,
910  * it is marred by one truly stupid design flaw, which is that receive
911  * buffer addresses must be aligned on a longword boundary. This forces
912  * the packet payload to be unaligned, which is suboptimal on the x86 and
913  * completely unuseable on the Alpha. Our only recourse is to copy received
914  * packets into properly aligned buffers before handing them off.
915  */
916 
917 static void
918 sf_rxeof(struct sf_softc *sc)
919 {
920 	struct mbuf		*m;
921 	struct ifnet		*ifp;
922 	struct sf_rx_bufdesc_type0	*desc;
923 	struct sf_rx_cmpdesc_type3	*cur_rx;
924 	u_int32_t		rxcons, rxprod;
925 	int			cmpprodidx, cmpconsidx, bufprodidx;
926 
927 	ifp = &sc->arpcom.ac_if;
928 
929 	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
930 	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
931 	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
932 	cmpconsidx = SF_IDX_LO(rxcons);
933 	bufprodidx = SF_IDX_LO(rxprod);
934 
935 	while (cmpconsidx != cmpprodidx) {
936 		struct mbuf		*m0;
937 
938 		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
939 		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
940 		m = desc->sf_mbuf;
941 		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
942 		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
943 
944 		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
945 			IFNET_STAT_INC(ifp, ierrors, 1);
946 			sf_newbuf(sc, desc, m);
947 			continue;
948 		}
949 
950 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
951 			      cur_rx->sf_len + ETHER_ALIGN, 0, ifp);
952 		sf_newbuf(sc, desc, m);
953 		if (m0 == NULL) {
954 			IFNET_STAT_INC(ifp, ierrors, 1);
955 			continue;
956 		}
957 		m_adj(m0, ETHER_ALIGN);
958 		m = m0;
959 
960 		IFNET_STAT_INC(ifp, ipackets, 1);
961 
962 		ifp->if_input(ifp, m, NULL, -1);
963 	}
964 
965 	csr_write_4(sc, SF_CQ_CONSIDX,
966 	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
967 	csr_write_4(sc, SF_RXDQ_PTR_Q1,
968 	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
969 
970 	return;
971 }
972 
973 /*
974  * Read the transmit status from the completion queue and release
975  * mbufs. Note that the buffer descriptor index in the completion
976  * descriptor is an offset from the start of the transmit buffer
977  * descriptor list in bytes. This is important because the manual
978  * gives the impression that it should match the producer/consumer
979  * index, which is the offset in 8 byte blocks.
980  */
981 static void
982 sf_txeof(struct sf_softc *sc)
983 {
984 	int			txcons, cmpprodidx, cmpconsidx;
985 	struct sf_tx_cmpdesc_type1 *cur_cmp;
986 	struct sf_tx_bufdesc_type0 *cur_tx;
987 	struct ifnet		*ifp;
988 
989 	ifp = &sc->arpcom.ac_if;
990 
991 	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
992 	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
993 	cmpconsidx = SF_IDX_HI(txcons);
994 
995 	while (cmpconsidx != cmpprodidx) {
996 		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
997 		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
998 
999 		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1000 			IFNET_STAT_INC(ifp, opackets, 1);
1001 		else {
1002 			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1003 				sf_txthresh_adjust(sc);
1004 			IFNET_STAT_INC(ifp, oerrors, 1);
1005 		}
1006 
1007 		sc->sf_tx_cnt--;
1008 		if (cur_tx->sf_mbuf != NULL) {
1009 			m_freem(cur_tx->sf_mbuf);
1010 			cur_tx->sf_mbuf = NULL;
1011 		} else
1012 			break;
1013 		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1014 	}
1015 
1016 	ifp->if_timer = 0;
1017 	ifq_clr_oactive(&ifp->if_snd);
1018 
1019 	csr_write_4(sc, SF_CQ_CONSIDX,
1020 	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1021 	    ((cmpconsidx << 16) & 0xFFFF0000));
1022 
1023 	return;
1024 }
1025 
1026 static void
1027 sf_txthresh_adjust(struct sf_softc *sc)
1028 {
1029 	u_int32_t		txfctl;
1030 	u_int8_t		txthresh;
1031 
1032 	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1033 	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1034 	if (txthresh < 0xFF) {
1035 		txthresh++;
1036 		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1037 		txfctl |= txthresh;
1038 #ifdef DIAGNOSTIC
1039 		kprintf("sf%d: tx underrun, increasing "
1040 		    "tx threshold to %d bytes\n",
1041 		    sc->sf_unit, txthresh * 4);
1042 #endif
1043 		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1044 	}
1045 
1046 	return;
1047 }
1048 
1049 static void
1050 sf_intr(void *arg)
1051 {
1052 	struct sf_softc		*sc;
1053 	struct ifnet		*ifp;
1054 	u_int32_t		status;
1055 
1056 	sc = arg;
1057 	ifp = &sc->arpcom.ac_if;
1058 
1059 	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1060 		return;
1061 
1062 	/* Disable interrupts. */
1063 	csr_write_4(sc, SF_IMR, 0x00000000);
1064 
1065 	for (;;) {
1066 		status = csr_read_4(sc, SF_ISR);
1067 		if (status)
1068 			csr_write_4(sc, SF_ISR, status);
1069 
1070 		if (!(status & SF_INTRS))
1071 			break;
1072 
1073 		if (status & SF_ISR_RXDQ1_DMADONE)
1074 			sf_rxeof(sc);
1075 
1076 		if (status & SF_ISR_TX_TXDONE ||
1077 		    status & SF_ISR_TX_DMADONE ||
1078 		    status & SF_ISR_TX_QUEUEDONE)
1079 			sf_txeof(sc);
1080 
1081 		if (status & SF_ISR_TX_LOFIFO)
1082 			sf_txthresh_adjust(sc);
1083 
1084 		if (status & SF_ISR_ABNORMALINTR) {
1085 			if (status & SF_ISR_STATSOFLOW) {
1086 				callout_stop(&sc->sf_stat_timer);
1087 				sf_stats_update(sc);
1088 			} else
1089 				sf_init(sc);
1090 		}
1091 	}
1092 
1093 	/* Re-enable interrupts. */
1094 	csr_write_4(sc, SF_IMR, SF_INTRS);
1095 
1096 	if (!ifq_is_empty(&ifp->if_snd))
1097 		if_devstart(ifp);
1098 }
1099 
1100 static void
1101 sf_init(void *xsc)
1102 {
1103 	struct sf_softc *sc = xsc;
1104 	struct ifnet *ifp = &sc->arpcom.ac_if;
1105 	int i;
1106 
1107 	sf_stop(sc);
1108 	sf_reset(sc);
1109 
1110 	/* Init all the receive filter registers */
1111 	for (i = SF_RXFILT_PERFECT_BASE;
1112 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1113 		csr_write_4(sc, i, 0);
1114 
1115 	/* Empty stats counter registers. */
1116 	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1117 		csr_write_4(sc, SF_STATS_BASE +
1118 		    (i + sizeof(u_int32_t)), 0);
1119 
1120 	/* Init our MAC address */
1121 	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1122 	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1123 	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1124 
1125 	if (sf_init_rx_ring(sc) == ENOBUFS) {
1126 		kprintf("sf%d: initialization failed: no "
1127 		    "memory for rx buffers\n", sc->sf_unit);
1128 		return;
1129 	}
1130 
1131 	sf_init_tx_ring(sc);
1132 
1133 	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1134 
1135 	/* If we want promiscuous mode, set the allframes bit. */
1136 	if (ifp->if_flags & IFF_PROMISC) {
1137 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1138 	} else {
1139 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1140 	}
1141 
1142 	if (ifp->if_flags & IFF_BROADCAST) {
1143 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1144 	} else {
1145 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1146 	}
1147 
1148 	/*
1149 	 * Load the multicast filter.
1150 	 */
1151 	sf_setmulti(sc);
1152 
1153 	/* Init the completion queue indexes */
1154 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1155 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1156 
1157 	/* Init the RX completion queue */
1158 	csr_write_4(sc, SF_RXCQ_CTL_1,
1159 	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1160 	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1161 
1162 	/* Init RX DMA control. */
1163 	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1164 
1165 	/* Init the RX buffer descriptor queue. */
1166 	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1167 	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1168 	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1169 	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1170 
1171 	/* Init the TX completion queue */
1172 	csr_write_4(sc, SF_TXCQ_CTL,
1173 	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1174 
1175 	/* Init the TX buffer descriptor queue. */
1176 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1177 		vtophys(sc->sf_ldata->sf_tx_dlist));
1178 	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1179 	csr_write_4(sc, SF_TXDQ_CTL,
1180 	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1181 	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1182 
1183 	/* Enable autopadding of short TX frames. */
1184 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1185 
1186 	/* Enable interrupts. */
1187 	csr_write_4(sc, SF_IMR, SF_INTRS);
1188 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1189 
1190 	/* Enable the RX and TX engines. */
1191 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1192 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1193 
1194 	/*mii_mediachg(mii);*/
1195 	sf_ifmedia_upd(ifp);
1196 
1197 	ifp->if_flags |= IFF_RUNNING;
1198 	ifq_clr_oactive(&ifp->if_snd);
1199 
1200 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1201 }
1202 
1203 static int
1204 sf_encap(struct sf_softc *sc, struct sf_tx_bufdesc_type0 *c,
1205 	 struct mbuf *m_head)
1206 {
1207 	int			frag = 0;
1208 	struct sf_frag		*f = NULL;
1209 	struct mbuf		*m;
1210 
1211 	for (m = m_head; m != NULL; m = m->m_next) {
1212 		if (m->m_len != 0) {
1213 			if (frag == SF_MAXFRAGS)
1214 				break;
1215 			f = &c->sf_frags[frag];
1216 			if (frag == 0)
1217 				f->sf_pktlen = m_head->m_pkthdr.len;
1218 			f->sf_fraglen = m->m_len;
1219 			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1220 			frag++;
1221 		}
1222 	}
1223 	/* Caller should make sure that 'm_head' is not excessive fragmented */
1224 	KASSERT(m == NULL, ("too many fragments"));
1225 
1226 	c->sf_mbuf = m_head;
1227 	c->sf_id = SF_TX_BUFDESC_ID;
1228 	c->sf_fragcnt = frag;
1229 	c->sf_intr = 1;
1230 	c->sf_caltcp = 0;
1231 	c->sf_crcen = 1;
1232 
1233 	return(0);
1234 }
1235 
1236 static void
1237 sf_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1238 {
1239 	struct sf_softc		*sc;
1240 	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1241 	struct mbuf		*m_head = NULL, *m_defragged;
1242 	int			i, txprod, need_trans = 0;
1243 
1244 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1245 
1246 	sc = ifp->if_softc;
1247 
1248 	if (!sc->sf_link) {
1249 		ifq_purge(&ifp->if_snd);
1250 		return;
1251 	}
1252 
1253 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1254 		return;
1255 
1256 	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1257 	i = SF_IDX_HI(txprod) >> 4;
1258 
1259 	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1260 		kprintf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1261 		sf_init(sc);
1262 		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1263 		i = SF_IDX_HI(txprod) >> 4;
1264 	}
1265 
1266 	while (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1267 		struct mbuf *m;
1268 		int frag;
1269 
1270 		/*
1271 		 * Don't get the TX DMA queue get too full.
1272 		 */
1273 		if (sc->sf_tx_cnt > 64) {
1274 			ifq_set_oactive(&ifp->if_snd);
1275 			break;
1276 		}
1277 #ifdef foo
1278 		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1279 			ifq_set_oactive(&ifp->if_snd);
1280 			break;
1281 		}
1282 #endif
1283 
1284 		m_defragged = NULL;
1285 		m_head = ifq_dequeue(&ifp->if_snd);
1286 		if (m_head == NULL)
1287 			break;
1288 
1289 again:
1290 		frag = 0;
1291 		for (m = m_head; m != NULL; m = m->m_next)
1292 			++frag;
1293 		if (frag > SF_MAXFRAGS) {
1294 			if (m_defragged != NULL) {
1295 				/*
1296 				 * Even after defragmentation, there
1297 				 * are still too many fragments, so
1298 				 * drop this packet.
1299 				 */
1300 				m_freem(m_head);
1301 				continue;
1302 			}
1303 
1304 			m_defragged = m_defrag(m_head, M_NOWAIT);
1305 			if (m_defragged == NULL) {
1306 				m_freem(m_head);
1307 				continue;
1308 			}
1309 			m_head = m_defragged;
1310 
1311 			/* Recount # of fragments */
1312 			goto again;
1313 		}
1314 
1315 		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1316 		sf_encap(sc, cur_tx, m_head);
1317 		BPF_MTAP(ifp, cur_tx->sf_mbuf);
1318 
1319 		SF_INC(i, SF_TX_DLIST_CNT);
1320 		sc->sf_tx_cnt++;
1321 		need_trans = 1;
1322 	}
1323 
1324 	if (!need_trans)
1325 		return;
1326 
1327 	/* Transmit */
1328 	csr_write_4(sc, SF_TXDQ_PRODIDX,
1329 	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1330 	    ((i << 20) & 0xFFFF0000));
1331 
1332 	ifp->if_timer = 5;
1333 }
1334 
1335 static void
1336 sf_stop(struct sf_softc *sc)
1337 {
1338 	int			i;
1339 	struct ifnet		*ifp;
1340 
1341 	ifp = &sc->arpcom.ac_if;
1342 
1343 	callout_stop(&sc->sf_stat_timer);
1344 
1345 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1346 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1347 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1348 	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1349 	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1350 	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1351 	csr_write_4(sc, SF_TXCQ_CTL, 0);
1352 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1353 	csr_write_4(sc, SF_TXDQ_CTL, 0);
1354 	sf_reset(sc);
1355 
1356 	sc->sf_link = 0;
1357 
1358 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1359 		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1360 			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1361 			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1362 		}
1363 	}
1364 
1365 	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1366 		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1367 			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1368 			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1369 		}
1370 	}
1371 
1372 	ifp->if_flags &= ~IFF_RUNNING;
1373 	ifq_clr_oactive(&ifp->if_snd);
1374 
1375 	return;
1376 }
1377 
1378 /*
1379  * Note: it is important that this function not be interrupted. We
1380  * use a two-stage register access scheme: if we are interrupted in
1381  * between setting the indirect address register and reading from the
1382  * indirect data register, the contents of the address register could
1383  * be changed out from under us.
1384  */
1385 static void
1386 sf_stats_update(void *xsc)
1387 {
1388 	struct sf_softc *sc = xsc;
1389 	struct ifnet *ifp = &sc->arpcom.ac_if;
1390 	struct mii_data *mii = device_get_softc(sc->sf_miibus);
1391 	struct sf_stats		stats;
1392 	u_int32_t		*ptr;
1393 	int			i;
1394 
1395 	lwkt_serialize_enter(ifp->if_serializer);
1396 
1397 	ptr = (u_int32_t *)&stats;
1398 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1399 		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1400 		    (i + sizeof(u_int32_t)));
1401 
1402 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1403 		csr_write_4(sc, SF_STATS_BASE +
1404 		    (i + sizeof(u_int32_t)), 0);
1405 
1406 	IFNET_STAT_INC(ifp, collisions, stats.sf_tx_single_colls +
1407 	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls);
1408 
1409 	mii_tick(mii);
1410 	if (!sc->sf_link) {
1411 		mii_pollstat(mii);
1412 		if (mii->mii_media_status & IFM_ACTIVE &&
1413 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1414 			sc->sf_link++;
1415 			if (!ifq_is_empty(&ifp->if_snd))
1416 				if_devstart(ifp);
1417 		}
1418 	}
1419 
1420 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1421 
1422 	lwkt_serialize_exit(ifp->if_serializer);
1423 }
1424 
1425 static void
1426 sf_watchdog(struct ifnet *ifp)
1427 {
1428 	struct sf_softc		*sc;
1429 
1430 	sc = ifp->if_softc;
1431 
1432 	IFNET_STAT_INC(ifp, oerrors, 1);
1433 	kprintf("sf%d: watchdog timeout\n", sc->sf_unit);
1434 
1435 	sf_stop(sc);
1436 	sf_reset(sc);
1437 	sf_init(sc);
1438 
1439 	if (!ifq_is_empty(&ifp->if_snd))
1440 		if_devstart(ifp);
1441 }
1442 
1443 static void
1444 sf_shutdown(device_t dev)
1445 {
1446 	struct sf_softc	*sc;
1447 	struct ifnet *ifp;
1448 
1449 	sc = device_get_softc(dev);
1450 	ifp = &sc->arpcom.ac_if;
1451 	lwkt_serialize_enter(ifp->if_serializer);
1452 	sf_stop(sc);
1453 	lwkt_serialize_exit(ifp->if_serializer);
1454 
1455 	return;
1456 }
1457