xref: /dragonfly/sys/dev/netif/sf/if_sf.c (revision 6bd457ed)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sf.c,v 1.18.2.8 2001/12/16 15:46:07 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/sf/if_sf.c,v 1.21 2005/06/13 10:20:49 joerg Exp $
34  */
35 
36 /*
37  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38  * Programming manual is available from:
39  * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
40  *
41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
42  * Department of Electical Engineering
43  * Columbia University, New York City
44  */
45 
46 /*
47  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
48  * controller designed with flexibility and reducing CPU load in mind.
49  * The Starfire offers high and low priority buffer queues, a
50  * producer/consumer index mechanism and several different buffer
51  * queue and completion queue descriptor types. Any one of a number
52  * of different driver designs can be used, depending on system and
53  * OS requirements. This driver makes use of type0 transmit frame
54  * descriptors (since BSD fragments packets across an mbuf chain)
55  * and two RX buffer queues prioritized on size (one queue for small
56  * frames that will fit into a single mbuf, another with full size
57  * mbuf clusters for everything else). The producer/consumer indexes
58  * and completion queues are also used.
59  *
60  * One downside to the Starfire has to do with alignment: buffer
61  * queues must be aligned on 256-byte boundaries, and receive buffers
62  * must be aligned on longword boundaries. The receive buffer alignment
63  * causes problems on the Alpha platform, where the packet payload
64  * should be longword aligned. There is no simple way around this.
65  *
66  * For receive filtering, the Starfire offers 16 perfect filter slots
67  * and a 512-bit hash table.
68  *
69  * The Starfire has no internal transceiver, relying instead on an
70  * external MII-based transceiver. Accessing registers on external
71  * PHYs is done through a special register map rather than with the
72  * usual bitbang MDIO method.
73  *
74  * Acesssing the registers on the Starfire is a little tricky. The
75  * Starfire has a 512K internal register space. When programmed for
76  * PCI memory mapped mode, the entire register space can be accessed
77  * directly. However in I/O space mode, only 256 bytes are directly
78  * mapped into PCI I/O space. The other registers can be accessed
79  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
80  * registers inside the 256-byte I/O window.
81  */
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/sockio.h>
86 #include <sys/mbuf.h>
87 #include <sys/malloc.h>
88 #include <sys/kernel.h>
89 #include <sys/socket.h>
90 #include <sys/thread2.h>
91 
92 #include <net/if.h>
93 #include <net/ifq_var.h>
94 #include <net/if_arp.h>
95 #include <net/ethernet.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 
99 #include <net/bpf.h>
100 
101 #include <vm/vm.h>              /* for vtophys */
102 #include <vm/pmap.h>            /* for vtophys */
103 #include <machine/clock.h>      /* for DELAY */
104 #include <machine/bus_pio.h>
105 #include <machine/bus_memio.h>
106 #include <machine/bus.h>
107 #include <machine/resource.h>
108 #include <sys/bus.h>
109 #include <sys/rman.h>
110 
111 #include "../mii_layer/mii.h"
112 #include "../mii_layer/miivar.h"
113 
114 /* "controller miibus0" required.  See GENERIC if you get errors here. */
115 #include "miibus_if.h"
116 
117 #include <bus/pci/pcireg.h>
118 #include <bus/pci/pcivar.h>
119 
120 #define SF_USEIOSPACE
121 
122 #include "if_sfreg.h"
123 
124 static struct sf_type sf_devs[] = {
125 	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
126 		"Adaptec AIC-6915 10/100BaseTX" },
127 	{ 0, 0, NULL }
128 };
129 
130 static int sf_probe		(device_t);
131 static int sf_attach		(device_t);
132 static int sf_detach		(device_t);
133 static void sf_intr		(void *);
134 static void sf_stats_update	(void *);
135 static void sf_rxeof		(struct sf_softc *);
136 static void sf_txeof		(struct sf_softc *);
137 static int sf_encap		(struct sf_softc *,
138 					struct sf_tx_bufdesc_type0 *,
139 					struct mbuf *);
140 static void sf_start		(struct ifnet *);
141 static int sf_ioctl		(struct ifnet *, u_long, caddr_t,
142 					struct ucred *);
143 static void sf_init		(void *);
144 static void sf_stop		(struct sf_softc *);
145 static void sf_watchdog		(struct ifnet *);
146 static void sf_shutdown		(device_t);
147 static int sf_ifmedia_upd	(struct ifnet *);
148 static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
149 static void sf_reset		(struct sf_softc *);
150 static int sf_init_rx_ring	(struct sf_softc *);
151 static void sf_init_tx_ring	(struct sf_softc *);
152 static int sf_newbuf		(struct sf_softc *,
153 					struct sf_rx_bufdesc_type0 *,
154 					struct mbuf *);
155 static void sf_setmulti		(struct sf_softc *);
156 static int sf_setperf		(struct sf_softc *, int, caddr_t);
157 static int sf_sethash		(struct sf_softc *, caddr_t, int);
158 #ifdef notdef
159 static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
160 #endif
161 
162 static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
163 static u_int32_t sf_calchash	(caddr_t);
164 
165 static int sf_miibus_readreg	(device_t, int, int);
166 static int sf_miibus_writereg	(device_t, int, int, int);
167 static void sf_miibus_statchg	(device_t);
168 
169 static u_int32_t csr_read_4	(struct sf_softc *, int);
170 static void csr_write_4		(struct sf_softc *, int, u_int32_t);
171 static void sf_txthresh_adjust	(struct sf_softc *);
172 
173 #ifdef SF_USEIOSPACE
174 #define SF_RES			SYS_RES_IOPORT
175 #define SF_RID			SF_PCI_LOIO
176 #else
177 #define SF_RES			SYS_RES_MEMORY
178 #define SF_RID			SF_PCI_LOMEM
179 #endif
180 
181 static device_method_t sf_methods[] = {
182 	/* Device interface */
183 	DEVMETHOD(device_probe,		sf_probe),
184 	DEVMETHOD(device_attach,	sf_attach),
185 	DEVMETHOD(device_detach,	sf_detach),
186 	DEVMETHOD(device_shutdown,	sf_shutdown),
187 
188 	/* bus interface */
189 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
190 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
191 
192 	/* MII interface */
193 	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
194 	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
195 	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
196 
197 	{ 0, 0 }
198 };
199 
200 static driver_t sf_driver = {
201 	"sf",
202 	sf_methods,
203 	sizeof(struct sf_softc),
204 };
205 
206 static devclass_t sf_devclass;
207 
208 DECLARE_DUMMY_MODULE(if_sf);
209 DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
210 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
211 
212 #define SF_SETBIT(sc, reg, x)	\
213 	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
214 
215 #define SF_CLRBIT(sc, reg, x)				\
216 	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
217 
218 static u_int32_t csr_read_4(sc, reg)
219 	struct sf_softc		*sc;
220 	int			reg;
221 {
222 	u_int32_t		val;
223 
224 #ifdef SF_USEIOSPACE
225 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
226 	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
227 #else
228 	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
229 #endif
230 
231 	return(val);
232 }
233 
234 static u_int8_t sf_read_eeprom(sc, reg)
235 	struct sf_softc		*sc;
236 	int			reg;
237 {
238 	u_int8_t		val;
239 
240 	val = (csr_read_4(sc, SF_EEADDR_BASE +
241 	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
242 
243 	return(val);
244 }
245 
246 static void csr_write_4(sc, reg, val)
247 	struct sf_softc		*sc;
248 	int			reg;
249 	u_int32_t		val;
250 {
251 #ifdef SF_USEIOSPACE
252 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
253 	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
254 #else
255 	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
256 #endif
257 	return;
258 }
259 
260 static u_int32_t sf_calchash(addr)
261 	caddr_t			addr;
262 {
263 	u_int32_t		crc, carry;
264 	int			i, j;
265 	u_int8_t		c;
266 
267 	/* Compute CRC for the address value. */
268 	crc = 0xFFFFFFFF; /* initial value */
269 
270 	for (i = 0; i < 6; i++) {
271 		c = *(addr + i);
272 		for (j = 0; j < 8; j++) {
273 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
274 			crc <<= 1;
275 			c >>= 1;
276 			if (carry)
277 				crc = (crc ^ 0x04c11db6) | carry;
278 		}
279 	}
280 
281 	/* return the filter bit position */
282 	return(crc >> 23 & 0x1FF);
283 }
284 
285 /*
286  * Copy the address 'mac' into the perfect RX filter entry at
287  * offset 'idx.' The perfect filter only has 16 entries so do
288  * some sanity tests.
289  */
290 static int sf_setperf(sc, idx, mac)
291 	struct sf_softc		*sc;
292 	int			idx;
293 	caddr_t			mac;
294 {
295 	u_int16_t		*p;
296 
297 	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
298 		return(EINVAL);
299 
300 	if (mac == NULL)
301 		return(EINVAL);
302 
303 	p = (u_int16_t *)mac;
304 
305 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
306 	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
307 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
308 	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
309 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
310 	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
311 
312 	return(0);
313 }
314 
315 /*
316  * Set the bit in the 512-bit hash table that corresponds to the
317  * specified mac address 'mac.' If 'prio' is nonzero, update the
318  * priority hash table instead of the filter hash table.
319  */
320 static int sf_sethash(sc, mac, prio)
321 	struct sf_softc		*sc;
322 	caddr_t			mac;
323 	int			prio;
324 {
325 	u_int32_t		h = 0;
326 
327 	if (mac == NULL)
328 		return(EINVAL);
329 
330 	h = sf_calchash(mac);
331 
332 	if (prio) {
333 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
334 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
335 	} else {
336 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
337 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
338 	}
339 
340 	return(0);
341 }
342 
343 #ifdef notdef
344 /*
345  * Set a VLAN tag in the receive filter.
346  */
347 static int sf_setvlan(sc, idx, vlan)
348 	struct sf_softc		*sc;
349 	int			idx;
350 	u_int32_t		vlan;
351 {
352 	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
353 		return(EINVAL);
354 
355 	csr_write_4(sc, SF_RXFILT_HASH_BASE +
356 	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
357 
358 	return(0);
359 }
360 #endif
361 
362 static int sf_miibus_readreg(dev, phy, reg)
363 	device_t		dev;
364 	int			phy, reg;
365 {
366 	struct sf_softc		*sc;
367 	int			i;
368 	u_int32_t		val = 0;
369 
370 	sc = device_get_softc(dev);
371 
372 	for (i = 0; i < SF_TIMEOUT; i++) {
373 		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
374 		if (val & SF_MII_DATAVALID)
375 			break;
376 	}
377 
378 	if (i == SF_TIMEOUT)
379 		return(0);
380 
381 	if ((val & 0x0000FFFF) == 0xFFFF)
382 		return(0);
383 
384 	return(val & 0x0000FFFF);
385 }
386 
387 static int sf_miibus_writereg(dev, phy, reg, val)
388 	device_t		dev;
389 	int			phy, reg, val;
390 {
391 	struct sf_softc		*sc;
392 	int			i;
393 	int			busy;
394 
395 	sc = device_get_softc(dev);
396 
397 	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
398 
399 	for (i = 0; i < SF_TIMEOUT; i++) {
400 		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
401 		if (!(busy & SF_MII_BUSY))
402 			break;
403 	}
404 
405 	return(0);
406 }
407 
408 static void sf_miibus_statchg(dev)
409 	device_t		dev;
410 {
411 	struct sf_softc		*sc;
412 	struct mii_data		*mii;
413 
414 	sc = device_get_softc(dev);
415 	mii = device_get_softc(sc->sf_miibus);
416 
417 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
418 		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
419 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
420 	} else {
421 		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
422 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
423 	}
424 
425 	return;
426 }
427 
428 static void sf_setmulti(sc)
429 	struct sf_softc		*sc;
430 {
431 	struct ifnet		*ifp;
432 	int			i;
433 	struct ifmultiaddr	*ifma;
434 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
435 
436 	ifp = &sc->arpcom.ac_if;
437 
438 	/* First zot all the existing filters. */
439 	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
440 		sf_setperf(sc, i, (char *)&dummy);
441 	for (i = SF_RXFILT_HASH_BASE;
442 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
443 		csr_write_4(sc, i, 0);
444 	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
445 
446 	/* Now program new ones. */
447 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
448 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
449 	} else {
450 		i = 1;
451 		/* First find the tail of the list. */
452 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
453 					ifma = ifma->ifma_link.le_next) {
454 			if (ifma->ifma_link.le_next == NULL)
455 				break;
456 		}
457 		/* Now traverse the list backwards. */
458 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
459 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
460 			if (ifma->ifma_addr->sa_family != AF_LINK)
461 				continue;
462 			/*
463 			 * Program the first 15 multicast groups
464 			 * into the perfect filter. For all others,
465 			 * use the hash table.
466 			 */
467 			if (i < SF_RXFILT_PERFECT_CNT) {
468 				sf_setperf(sc, i,
469 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
470 				i++;
471 				continue;
472 			}
473 
474 			sf_sethash(sc,
475 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
476 		}
477 	}
478 
479 	return;
480 }
481 
482 /*
483  * Set media options.
484  */
485 static int sf_ifmedia_upd(ifp)
486 	struct ifnet		*ifp;
487 {
488 	struct sf_softc		*sc;
489 	struct mii_data		*mii;
490 
491 	sc = ifp->if_softc;
492 	mii = device_get_softc(sc->sf_miibus);
493 	sc->sf_link = 0;
494 	if (mii->mii_instance) {
495 		struct mii_softc        *miisc;
496 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
497 		    miisc = LIST_NEXT(miisc, mii_list))
498 			mii_phy_reset(miisc);
499 	}
500 	mii_mediachg(mii);
501 
502 	return(0);
503 }
504 
505 /*
506  * Report current media status.
507  */
508 static void sf_ifmedia_sts(ifp, ifmr)
509 	struct ifnet		*ifp;
510 	struct ifmediareq	*ifmr;
511 {
512 	struct sf_softc		*sc;
513 	struct mii_data		*mii;
514 
515 	sc = ifp->if_softc;
516 	mii = device_get_softc(sc->sf_miibus);
517 
518 	mii_pollstat(mii);
519 	ifmr->ifm_active = mii->mii_media_active;
520 	ifmr->ifm_status = mii->mii_media_status;
521 
522 	return;
523 }
524 
525 static int sf_ioctl(ifp, command, data, cr)
526 	struct ifnet		*ifp;
527 	u_long			command;
528 	caddr_t			data;
529 	struct ucred		*cr;
530 {
531 	struct sf_softc		*sc = ifp->if_softc;
532 	struct ifreq		*ifr = (struct ifreq *) data;
533 	struct mii_data		*mii;
534 	int error = 0;
535 
536 	crit_enter();
537 
538 	switch(command) {
539 	case SIOCSIFFLAGS:
540 		if (ifp->if_flags & IFF_UP) {
541 			if (ifp->if_flags & IFF_RUNNING &&
542 			    ifp->if_flags & IFF_PROMISC &&
543 			    !(sc->sf_if_flags & IFF_PROMISC)) {
544 				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
545 			} else if (ifp->if_flags & IFF_RUNNING &&
546 			    !(ifp->if_flags & IFF_PROMISC) &&
547 			    sc->sf_if_flags & IFF_PROMISC) {
548 				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
549 			} else if (!(ifp->if_flags & IFF_RUNNING))
550 				sf_init(sc);
551 		} else {
552 			if (ifp->if_flags & IFF_RUNNING)
553 				sf_stop(sc);
554 		}
555 		sc->sf_if_flags = ifp->if_flags;
556 		error = 0;
557 		break;
558 	case SIOCADDMULTI:
559 	case SIOCDELMULTI:
560 		sf_setmulti(sc);
561 		error = 0;
562 		break;
563 	case SIOCGIFMEDIA:
564 	case SIOCSIFMEDIA:
565 		mii = device_get_softc(sc->sf_miibus);
566 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
567 		break;
568 	default:
569 		error = ether_ioctl(ifp, command, data);
570 		break;
571 	}
572 
573 	crit_exit();
574 
575 	return(error);
576 }
577 
578 static void sf_reset(sc)
579 	struct sf_softc		*sc;
580 {
581 	int		i;
582 
583 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
584 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
585 	DELAY(1000);
586 	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
587 
588 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
589 
590 	for (i = 0; i < SF_TIMEOUT; i++) {
591 		DELAY(10);
592 		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
593 			break;
594 	}
595 
596 	if (i == SF_TIMEOUT)
597 		printf("sf%d: reset never completed!\n", sc->sf_unit);
598 
599 	/* Wait a little while for the chip to get its brains in order. */
600 	DELAY(1000);
601 	return;
602 }
603 
604 /*
605  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
606  * IDs against our list and return a device name if we find a match.
607  * We also check the subsystem ID so that we can identify exactly which
608  * NIC has been found, if possible.
609  */
610 static int sf_probe(dev)
611 	device_t		dev;
612 {
613 	struct sf_type		*t;
614 
615 	t = sf_devs;
616 
617 	while(t->sf_name != NULL) {
618 		if ((pci_get_vendor(dev) == t->sf_vid) &&
619 		    (pci_get_device(dev) == t->sf_did)) {
620 			switch((pci_read_config(dev,
621 			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
622 			case AD_SUBSYSID_62011_REV0:
623 			case AD_SUBSYSID_62011_REV1:
624 				device_set_desc(dev,
625 				    "Adaptec ANA-62011 10/100BaseTX");
626 				return(0);
627 				break;
628 			case AD_SUBSYSID_62022:
629 				device_set_desc(dev,
630 				    "Adaptec ANA-62022 10/100BaseTX");
631 				return(0);
632 				break;
633 			case AD_SUBSYSID_62044_REV0:
634 			case AD_SUBSYSID_62044_REV1:
635 				device_set_desc(dev,
636 				    "Adaptec ANA-62044 10/100BaseTX");
637 				return(0);
638 				break;
639 			case AD_SUBSYSID_62020:
640 				device_set_desc(dev,
641 				    "Adaptec ANA-62020 10/100BaseFX");
642 				return(0);
643 				break;
644 			case AD_SUBSYSID_69011:
645 				device_set_desc(dev,
646 				    "Adaptec ANA-69011 10/100BaseTX");
647 				return(0);
648 				break;
649 			default:
650 				device_set_desc(dev, t->sf_name);
651 				return(0);
652 				break;
653 			}
654 		}
655 		t++;
656 	}
657 
658 	return(ENXIO);
659 }
660 
661 /*
662  * Attach the interface. Allocate softc structures, do ifmedia
663  * setup and ethernet/BPF attach.
664  */
665 static int sf_attach(dev)
666 	device_t		dev;
667 {
668 	int			i;
669 	u_int32_t		command;
670 	struct sf_softc		*sc;
671 	struct ifnet		*ifp;
672 	int			unit, rid, error = 0;
673 
674 	sc = device_get_softc(dev);
675 	unit = device_get_unit(dev);
676 	bzero(sc, sizeof(struct sf_softc));
677 
678 	/*
679 	 * Handle power management nonsense.
680 	 */
681 	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
682 	if (command == 0x01) {
683 
684 		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
685 		if (command & SF_PSTATE_MASK) {
686 			u_int32_t		iobase, membase, irq;
687 
688 			/* Save important PCI config data. */
689 			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
690 			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
691 			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
692 
693 			/* Reset the power state. */
694 			printf("sf%d: chip is in D%d power mode "
695 			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
696 			command &= 0xFFFFFFFC;
697 			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
698 
699 			/* Restore PCI config data. */
700 			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
701 			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
702 			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
703 		}
704 	}
705 
706 	/*
707 	 * Map control/status registers.
708 	 */
709 	command = pci_read_config(dev, PCIR_COMMAND, 4);
710 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
711 	pci_write_config(dev, PCIR_COMMAND, command, 4);
712 	command = pci_read_config(dev, PCIR_COMMAND, 4);
713 
714 #ifdef SF_USEIOSPACE
715 	if (!(command & PCIM_CMD_PORTEN)) {
716 		printf("sf%d: failed to enable I/O ports!\n", unit);
717 		error = ENXIO;
718 		return(error);
719 	}
720 #else
721 	if (!(command & PCIM_CMD_MEMEN)) {
722 		printf("sf%d: failed to enable memory mapping!\n", unit);
723 		error = ENXIO;
724 		return(error);
725 	}
726 #endif
727 
728 	rid = SF_RID;
729 	sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
730 
731 	if (sc->sf_res == NULL) {
732 		printf ("sf%d: couldn't map ports\n", unit);
733 		error = ENXIO;
734 		return(error);
735 	}
736 
737 	sc->sf_btag = rman_get_bustag(sc->sf_res);
738 	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
739 
740 	/* Allocate interrupt */
741 	rid = 0;
742 	sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
743 	    RF_SHAREABLE | RF_ACTIVE);
744 
745 	if (sc->sf_irq == NULL) {
746 		printf("sf%d: couldn't map interrupt\n", unit);
747 		error = ENXIO;
748 		goto fail;
749 	}
750 
751 	callout_init(&sc->sf_stat_timer);
752 
753 	/* Reset the adapter. */
754 	sf_reset(sc);
755 
756 	/*
757 	 * Get station address from the EEPROM.
758 	 */
759 	for (i = 0; i < ETHER_ADDR_LEN; i++)
760 		sc->arpcom.ac_enaddr[i] =
761 		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
762 
763 	sc->sf_unit = unit;
764 
765 	/* Allocate the descriptor queues. */
766 	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
767 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
768 
769 	if (sc->sf_ldata == NULL) {
770 		printf("sf%d: no memory for list buffers!\n", unit);
771 		error = ENXIO;
772 		goto fail;
773 	}
774 
775 	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
776 
777 	/* Do MII setup. */
778 	if (mii_phy_probe(dev, &sc->sf_miibus,
779 	    sf_ifmedia_upd, sf_ifmedia_sts)) {
780 		printf("sf%d: MII without any phy!\n", sc->sf_unit);
781 		error = ENXIO;
782 		goto fail;
783 	}
784 
785 	ifp = &sc->arpcom.ac_if;
786 	ifp->if_softc = sc;
787 	if_initname(ifp, "sf", unit);
788 	ifp->if_mtu = ETHERMTU;
789 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
790 	ifp->if_ioctl = sf_ioctl;
791 	ifp->if_start = sf_start;
792 	ifp->if_watchdog = sf_watchdog;
793 	ifp->if_init = sf_init;
794 	ifp->if_baudrate = 10000000;
795 	ifq_set_maxlen(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
796 	ifq_set_ready(&ifp->if_snd);
797 
798 	/*
799 	 * Call MI attach routine.
800 	 */
801 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
802 
803 	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
804 			       sf_intr, sc, &sc->sf_intrhand, NULL);
805 
806 	if (error) {
807 		ether_ifdetach(ifp);
808 		device_printf(dev, "couldn't set up irq\n");
809 		goto fail;
810 	}
811 
812 	return(0);
813 
814 fail:
815 	sf_detach(dev);
816 	return(error);
817 }
818 
819 static int sf_detach(dev)
820 	device_t		dev;
821 {
822 	struct sf_softc *sc = device_get_softc(dev);
823 	struct ifnet *ifp = &sc->arpcom.ac_if;
824 
825 	crit_enter();
826 
827 	if (device_is_attached(dev)) {
828 		ether_ifdetach(ifp);
829 		sf_stop(sc);
830 	}
831 
832 	if (sc->sf_miibus)
833 		device_delete_child(dev, sc->sf_miibus);
834 	bus_generic_detach(dev);
835 
836 	if (sc->sf_intrhand)
837 		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
838 
839 	crit_exit();
840 
841 	if (sc->sf_irq)
842 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
843 	if(sc->sf_res)
844 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
845 
846 	if (sc->sf_ldata) {
847 		contigfree(sc->sf_ldata, sizeof(struct sf_list_data),
848 			   M_DEVBUF);
849 	}
850 
851 	return(0);
852 }
853 
854 static int sf_init_rx_ring(sc)
855 	struct sf_softc		*sc;
856 {
857 	struct sf_list_data	*ld;
858 	int			i;
859 
860 	ld = sc->sf_ldata;
861 
862 	bzero((char *)ld->sf_rx_dlist_big,
863 	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
864 	bzero((char *)ld->sf_rx_clist,
865 	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
866 
867 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
868 		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
869 			return(ENOBUFS);
870 	}
871 
872 	return(0);
873 }
874 
875 static void sf_init_tx_ring(sc)
876 	struct sf_softc		*sc;
877 {
878 	struct sf_list_data	*ld;
879 	int			i;
880 
881 	ld = sc->sf_ldata;
882 
883 	bzero((char *)ld->sf_tx_dlist,
884 	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
885 	bzero((char *)ld->sf_tx_clist,
886 	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
887 
888 	for (i = 0; i < SF_TX_DLIST_CNT; i++)
889 		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
890 	for (i = 0; i < SF_TX_CLIST_CNT; i++)
891 		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
892 
893 	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
894 	sc->sf_tx_cnt = 0;
895 
896 	return;
897 }
898 
899 static int sf_newbuf(sc, c, m)
900 	struct sf_softc		*sc;
901 	struct sf_rx_bufdesc_type0	*c;
902 	struct mbuf		*m;
903 {
904 	struct mbuf		*m_new = NULL;
905 
906 	if (m == NULL) {
907 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
908 		if (m_new == NULL)
909 			return(ENOBUFS);
910 
911 		MCLGET(m_new, MB_DONTWAIT);
912 		if (!(m_new->m_flags & M_EXT)) {
913 			m_freem(m_new);
914 			return(ENOBUFS);
915 		}
916 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
917 	} else {
918 		m_new = m;
919 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
920 		m_new->m_data = m_new->m_ext.ext_buf;
921 	}
922 
923 	m_adj(m_new, sizeof(u_int64_t));
924 
925 	c->sf_mbuf = m_new;
926 	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
927 	c->sf_valid = 1;
928 
929 	return(0);
930 }
931 
932 /*
933  * The starfire is programmed to use 'normal' mode for packet reception,
934  * which means we use the consumer/producer model for both the buffer
935  * descriptor queue and the completion descriptor queue. The only problem
936  * with this is that it involves a lot of register accesses: we have to
937  * read the RX completion consumer and producer indexes and the RX buffer
938  * producer index, plus the RX completion consumer and RX buffer producer
939  * indexes have to be updated. It would have been easier if Adaptec had
940  * put each index in a separate register, especially given that the damn
941  * NIC has a 512K register space.
942  *
943  * In spite of all the lovely features that Adaptec crammed into the 6915,
944  * it is marred by one truly stupid design flaw, which is that receive
945  * buffer addresses must be aligned on a longword boundary. This forces
946  * the packet payload to be unaligned, which is suboptimal on the x86 and
947  * completely unuseable on the Alpha. Our only recourse is to copy received
948  * packets into properly aligned buffers before handing them off.
949  */
950 
951 static void sf_rxeof(sc)
952 	struct sf_softc		*sc;
953 {
954 	struct mbuf		*m;
955 	struct ifnet		*ifp;
956 	struct sf_rx_bufdesc_type0	*desc;
957 	struct sf_rx_cmpdesc_type3	*cur_rx;
958 	u_int32_t		rxcons, rxprod;
959 	int			cmpprodidx, cmpconsidx, bufprodidx;
960 
961 	ifp = &sc->arpcom.ac_if;
962 
963 	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
964 	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
965 	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
966 	cmpconsidx = SF_IDX_LO(rxcons);
967 	bufprodidx = SF_IDX_LO(rxprod);
968 
969 	while (cmpconsidx != cmpprodidx) {
970 		struct mbuf		*m0;
971 
972 		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
973 		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
974 		m = desc->sf_mbuf;
975 		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
976 		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
977 
978 		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
979 			ifp->if_ierrors++;
980 			sf_newbuf(sc, desc, m);
981 			continue;
982 		}
983 
984 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
985 		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
986 		sf_newbuf(sc, desc, m);
987 		if (m0 == NULL) {
988 			ifp->if_ierrors++;
989 			continue;
990 		}
991 		m_adj(m0, ETHER_ALIGN);
992 		m = m0;
993 
994 		ifp->if_ipackets++;
995 
996 		(*ifp->if_input)(ifp, m);
997 	}
998 
999 	csr_write_4(sc, SF_CQ_CONSIDX,
1000 	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1001 	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1002 	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1003 
1004 	return;
1005 }
1006 
1007 /*
1008  * Read the transmit status from the completion queue and release
1009  * mbufs. Note that the buffer descriptor index in the completion
1010  * descriptor is an offset from the start of the transmit buffer
1011  * descriptor list in bytes. This is important because the manual
1012  * gives the impression that it should match the producer/consumer
1013  * index, which is the offset in 8 byte blocks.
1014  */
1015 static void sf_txeof(sc)
1016 	struct sf_softc		*sc;
1017 {
1018 	int			txcons, cmpprodidx, cmpconsidx;
1019 	struct sf_tx_cmpdesc_type1 *cur_cmp;
1020 	struct sf_tx_bufdesc_type0 *cur_tx;
1021 	struct ifnet		*ifp;
1022 
1023 	ifp = &sc->arpcom.ac_if;
1024 
1025 	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1026 	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1027 	cmpconsidx = SF_IDX_HI(txcons);
1028 
1029 	while (cmpconsidx != cmpprodidx) {
1030 		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1031 		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1032 
1033 		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1034 			ifp->if_opackets++;
1035 		else {
1036 			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1037 				sf_txthresh_adjust(sc);
1038 			ifp->if_oerrors++;
1039 		}
1040 
1041 		sc->sf_tx_cnt--;
1042 		if (cur_tx->sf_mbuf != NULL) {
1043 			m_freem(cur_tx->sf_mbuf);
1044 			cur_tx->sf_mbuf = NULL;
1045 		} else
1046 			break;
1047 		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1048 	}
1049 
1050 	ifp->if_timer = 0;
1051 	ifp->if_flags &= ~IFF_OACTIVE;
1052 
1053 	csr_write_4(sc, SF_CQ_CONSIDX,
1054 	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1055 	    ((cmpconsidx << 16) & 0xFFFF0000));
1056 
1057 	return;
1058 }
1059 
1060 static void sf_txthresh_adjust(sc)
1061 	struct sf_softc		*sc;
1062 {
1063 	u_int32_t		txfctl;
1064 	u_int8_t		txthresh;
1065 
1066 	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1067 	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1068 	if (txthresh < 0xFF) {
1069 		txthresh++;
1070 		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1071 		txfctl |= txthresh;
1072 #ifdef DIAGNOSTIC
1073 		printf("sf%d: tx underrun, increasing "
1074 		    "tx threshold to %d bytes\n",
1075 		    sc->sf_unit, txthresh * 4);
1076 #endif
1077 		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1078 	}
1079 
1080 	return;
1081 }
1082 
1083 static void sf_intr(arg)
1084 	void			*arg;
1085 {
1086 	struct sf_softc		*sc;
1087 	struct ifnet		*ifp;
1088 	u_int32_t		status;
1089 
1090 	sc = arg;
1091 	ifp = &sc->arpcom.ac_if;
1092 
1093 	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1094 		return;
1095 
1096 	/* Disable interrupts. */
1097 	csr_write_4(sc, SF_IMR, 0x00000000);
1098 
1099 	for (;;) {
1100 		status = csr_read_4(sc, SF_ISR);
1101 		if (status)
1102 			csr_write_4(sc, SF_ISR, status);
1103 
1104 		if (!(status & SF_INTRS))
1105 			break;
1106 
1107 		if (status & SF_ISR_RXDQ1_DMADONE)
1108 			sf_rxeof(sc);
1109 
1110 		if (status & SF_ISR_TX_TXDONE ||
1111 		    status & SF_ISR_TX_DMADONE ||
1112 		    status & SF_ISR_TX_QUEUEDONE)
1113 			sf_txeof(sc);
1114 
1115 		if (status & SF_ISR_TX_LOFIFO)
1116 			sf_txthresh_adjust(sc);
1117 
1118 		if (status & SF_ISR_ABNORMALINTR) {
1119 			if (status & SF_ISR_STATSOFLOW) {
1120 				callout_stop(&sc->sf_stat_timer);
1121 				sf_stats_update(sc);
1122 			} else
1123 				sf_init(sc);
1124 		}
1125 	}
1126 
1127 	/* Re-enable interrupts. */
1128 	csr_write_4(sc, SF_IMR, SF_INTRS);
1129 
1130 	if (!ifq_is_empty(&ifp->if_snd))
1131 		sf_start(ifp);
1132 
1133 	return;
1134 }
1135 
1136 static void sf_init(xsc)
1137 	void			*xsc;
1138 {
1139 	struct sf_softc *sc = xsc;
1140 	struct ifnet *ifp = &sc->arpcom.ac_if;
1141 	int i;
1142 
1143 	crit_enter();
1144 
1145 	sf_stop(sc);
1146 	sf_reset(sc);
1147 
1148 	/* Init all the receive filter registers */
1149 	for (i = SF_RXFILT_PERFECT_BASE;
1150 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1151 		csr_write_4(sc, i, 0);
1152 
1153 	/* Empty stats counter registers. */
1154 	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1155 		csr_write_4(sc, SF_STATS_BASE +
1156 		    (i + sizeof(u_int32_t)), 0);
1157 
1158 	/* Init our MAC address */
1159 	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1160 	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1161 	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1162 
1163 	if (sf_init_rx_ring(sc) == ENOBUFS) {
1164 		printf("sf%d: initialization failed: no "
1165 		    "memory for rx buffers\n", sc->sf_unit);
1166 		crit_exit();
1167 		return;
1168 	}
1169 
1170 	sf_init_tx_ring(sc);
1171 
1172 	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1173 
1174 	/* If we want promiscuous mode, set the allframes bit. */
1175 	if (ifp->if_flags & IFF_PROMISC) {
1176 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1177 	} else {
1178 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1179 	}
1180 
1181 	if (ifp->if_flags & IFF_BROADCAST) {
1182 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1183 	} else {
1184 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1185 	}
1186 
1187 	/*
1188 	 * Load the multicast filter.
1189 	 */
1190 	sf_setmulti(sc);
1191 
1192 	/* Init the completion queue indexes */
1193 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1194 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1195 
1196 	/* Init the RX completion queue */
1197 	csr_write_4(sc, SF_RXCQ_CTL_1,
1198 	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1199 	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1200 
1201 	/* Init RX DMA control. */
1202 	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1203 
1204 	/* Init the RX buffer descriptor queue. */
1205 	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1206 	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1207 	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1208 	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1209 
1210 	/* Init the TX completion queue */
1211 	csr_write_4(sc, SF_TXCQ_CTL,
1212 	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1213 
1214 	/* Init the TX buffer descriptor queue. */
1215 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1216 		vtophys(sc->sf_ldata->sf_tx_dlist));
1217 	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1218 	csr_write_4(sc, SF_TXDQ_CTL,
1219 	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1220 	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1221 
1222 	/* Enable autopadding of short TX frames. */
1223 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1224 
1225 	/* Enable interrupts. */
1226 	csr_write_4(sc, SF_IMR, SF_INTRS);
1227 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1228 
1229 	/* Enable the RX and TX engines. */
1230 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1231 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1232 
1233 	/*mii_mediachg(mii);*/
1234 	sf_ifmedia_upd(ifp);
1235 
1236 	ifp->if_flags |= IFF_RUNNING;
1237 	ifp->if_flags &= ~IFF_OACTIVE;
1238 
1239 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1240 
1241 	crit_exit();
1242 }
1243 
1244 static int sf_encap(sc, c, m_head)
1245 	struct sf_softc		*sc;
1246 	struct sf_tx_bufdesc_type0 *c;
1247 	struct mbuf		*m_head;
1248 {
1249 	int			frag = 0;
1250 	struct sf_frag		*f = NULL;
1251 	struct mbuf		*m;
1252 
1253 	m = m_head;
1254 
1255 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1256 		if (m->m_len != 0) {
1257 			if (frag == SF_MAXFRAGS)
1258 				break;
1259 			f = &c->sf_frags[frag];
1260 			if (frag == 0)
1261 				f->sf_pktlen = m_head->m_pkthdr.len;
1262 			f->sf_fraglen = m->m_len;
1263 			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1264 			frag++;
1265 		}
1266 	}
1267 
1268 	if (m != NULL) {
1269 		struct mbuf		*m_new = NULL;
1270 
1271 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1272 		if (m_new == NULL) {
1273 			printf("sf%d: no memory for tx list", sc->sf_unit);
1274 			return(1);
1275 		}
1276 
1277 		if (m_head->m_pkthdr.len > MHLEN) {
1278 			MCLGET(m_new, MB_DONTWAIT);
1279 			if (!(m_new->m_flags & M_EXT)) {
1280 				m_freem(m_new);
1281 				printf("sf%d: no memory for tx list",
1282 				    sc->sf_unit);
1283 				return(1);
1284 			}
1285 		}
1286 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1287 		    mtod(m_new, caddr_t));
1288 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1289 		m_freem(m_head);
1290 		m_head = m_new;
1291 		f = &c->sf_frags[0];
1292 		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1293 		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1294 		frag = 1;
1295 	}
1296 
1297 	c->sf_mbuf = m_head;
1298 	c->sf_id = SF_TX_BUFDESC_ID;
1299 	c->sf_fragcnt = frag;
1300 	c->sf_intr = 1;
1301 	c->sf_caltcp = 0;
1302 	c->sf_crcen = 1;
1303 
1304 	return(0);
1305 }
1306 
1307 static void sf_start(ifp)
1308 	struct ifnet		*ifp;
1309 {
1310 	struct sf_softc		*sc;
1311 	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1312 	struct mbuf		*m_head = NULL;
1313 	int			i, txprod;
1314 
1315 	sc = ifp->if_softc;
1316 
1317 	if (!sc->sf_link)
1318 		return;
1319 
1320 	if (ifp->if_flags & IFF_OACTIVE)
1321 		return;
1322 
1323 	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1324 	i = SF_IDX_HI(txprod) >> 4;
1325 
1326 	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1327 		printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1328 		sf_init(sc);
1329 		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1330 		i = SF_IDX_HI(txprod) >> 4;
1331 	}
1332 
1333 	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1334 		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1335 			ifp->if_flags |= IFF_OACTIVE;
1336 			cur_tx = NULL;
1337 			break;
1338 		}
1339 		m_head = ifq_poll(&ifp->if_snd);
1340 		if (m_head == NULL)
1341 			break;
1342 
1343 		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1344 		if (sf_encap(sc, cur_tx, m_head)) {
1345 			ifp->if_flags |= IFF_OACTIVE;
1346 			cur_tx = NULL;
1347 			break;
1348 		}
1349 		ifq_dequeue(&ifp->if_snd);
1350 		BPF_MTAP(ifp, cur_tx->sf_mbuf);
1351 
1352 		SF_INC(i, SF_TX_DLIST_CNT);
1353 		sc->sf_tx_cnt++;
1354 		/*
1355 		 * Don't get the TX DMA queue get too full.
1356 		 */
1357 		if (sc->sf_tx_cnt > 64)
1358 			break;
1359 	}
1360 
1361 	if (cur_tx == NULL)
1362 		return;
1363 
1364 	/* Transmit */
1365 	csr_write_4(sc, SF_TXDQ_PRODIDX,
1366 	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1367 	    ((i << 20) & 0xFFFF0000));
1368 
1369 	ifp->if_timer = 5;
1370 
1371 	return;
1372 }
1373 
1374 static void sf_stop(sc)
1375 	struct sf_softc		*sc;
1376 {
1377 	int			i;
1378 	struct ifnet		*ifp;
1379 
1380 	ifp = &sc->arpcom.ac_if;
1381 
1382 	callout_stop(&sc->sf_stat_timer);
1383 
1384 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1385 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1386 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1387 	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1388 	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1389 	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1390 	csr_write_4(sc, SF_TXCQ_CTL, 0);
1391 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1392 	csr_write_4(sc, SF_TXDQ_CTL, 0);
1393 	sf_reset(sc);
1394 
1395 	sc->sf_link = 0;
1396 
1397 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1398 		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1399 			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1400 			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1401 		}
1402 	}
1403 
1404 	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1405 		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1406 			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1407 			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1408 		}
1409 	}
1410 
1411 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1412 
1413 	return;
1414 }
1415 
1416 /*
1417  * Note: it is important that this function not be interrupted. We
1418  * use a two-stage register access scheme: if we are interrupted in
1419  * between setting the indirect address register and reading from the
1420  * indirect data register, the contents of the address register could
1421  * be changed out from under us.
1422  */
1423 static void sf_stats_update(xsc)
1424 	void			*xsc;
1425 {
1426 	struct sf_softc *sc = xsc;
1427 	struct ifnet *ifp = &sc->arpcom.ac_if;
1428 	struct mii_data *mii = device_get_softc(sc->sf_miibus);
1429 	struct sf_stats		stats;
1430 	u_int32_t		*ptr;
1431 	int			i;
1432 
1433 	crit_enter();
1434 
1435 	ptr = (u_int32_t *)&stats;
1436 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1437 		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1438 		    (i + sizeof(u_int32_t)));
1439 
1440 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1441 		csr_write_4(sc, SF_STATS_BASE +
1442 		    (i + sizeof(u_int32_t)), 0);
1443 
1444 	ifp->if_collisions += stats.sf_tx_single_colls +
1445 	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1446 
1447 	mii_tick(mii);
1448 	if (!sc->sf_link) {
1449 		mii_pollstat(mii);
1450 		if (mii->mii_media_status & IFM_ACTIVE &&
1451 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1452 			sc->sf_link++;
1453 			if (!ifq_is_empty(&ifp->if_snd))
1454 				sf_start(ifp);
1455 	}
1456 
1457 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1458 
1459 	crit_exit();
1460 }
1461 
1462 static void sf_watchdog(ifp)
1463 	struct ifnet		*ifp;
1464 {
1465 	struct sf_softc		*sc;
1466 
1467 	sc = ifp->if_softc;
1468 
1469 	ifp->if_oerrors++;
1470 	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1471 
1472 	sf_stop(sc);
1473 	sf_reset(sc);
1474 	sf_init(sc);
1475 
1476 	if (!ifq_is_empty(&ifp->if_snd))
1477 		sf_start(ifp);
1478 
1479 	return;
1480 }
1481 
1482 static void sf_shutdown(dev)
1483 	device_t		dev;
1484 {
1485 	struct sf_softc		*sc;
1486 
1487 	sc = device_get_softc(dev);
1488 
1489 	sf_stop(sc);
1490 
1491 	return;
1492 }
1493