xref: /dragonfly/sys/dev/netif/sf/if_sf.c (revision f746689a)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sf.c,v 1.18.2.8 2001/12/16 15:46:07 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/sf/if_sf.c,v 1.33 2008/08/17 04:32:34 sephe Exp $
34  */
35 
36 /*
37  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38  * Programming manual is available from:
39  * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
40  *
41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
42  * Department of Electical Engineering
43  * Columbia University, New York City
44  */
45 
46 /*
47  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
48  * controller designed with flexibility and reducing CPU load in mind.
49  * The Starfire offers high and low priority buffer queues, a
50  * producer/consumer index mechanism and several different buffer
51  * queue and completion queue descriptor types. Any one of a number
52  * of different driver designs can be used, depending on system and
53  * OS requirements. This driver makes use of type0 transmit frame
54  * descriptors (since BSD fragments packets across an mbuf chain)
55  * and two RX buffer queues prioritized on size (one queue for small
56  * frames that will fit into a single mbuf, another with full size
57  * mbuf clusters for everything else). The producer/consumer indexes
58  * and completion queues are also used.
59  *
60  * One downside to the Starfire has to do with alignment: buffer
61  * queues must be aligned on 256-byte boundaries, and receive buffers
62  * must be aligned on longword boundaries. The receive buffer alignment
63  * causes problems on the Alpha platform, where the packet payload
64  * should be longword aligned. There is no simple way around this.
65  *
66  * For receive filtering, the Starfire offers 16 perfect filter slots
67  * and a 512-bit hash table.
68  *
69  * The Starfire has no internal transceiver, relying instead on an
70  * external MII-based transceiver. Accessing registers on external
71  * PHYs is done through a special register map rather than with the
72  * usual bitbang MDIO method.
73  *
74  * Acesssing the registers on the Starfire is a little tricky. The
75  * Starfire has a 512K internal register space. When programmed for
76  * PCI memory mapped mode, the entire register space can be accessed
77  * directly. However in I/O space mode, only 256 bytes are directly
78  * mapped into PCI I/O space. The other registers can be accessed
79  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
80  * registers inside the 256-byte I/O window.
81  */
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/sockio.h>
86 #include <sys/mbuf.h>
87 #include <sys/malloc.h>
88 #include <sys/kernel.h>
89 #include <sys/interrupt.h>
90 #include <sys/socket.h>
91 #include <sys/serialize.h>
92 #include <sys/bus.h>
93 #include <sys/rman.h>
94 #include <sys/thread2.h>
95 
96 #include <net/if.h>
97 #include <net/ifq_var.h>
98 #include <net/if_arp.h>
99 #include <net/ethernet.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 
103 #include <net/bpf.h>
104 
105 #include <vm/vm.h>              /* for vtophys */
106 #include <vm/pmap.h>            /* for vtophys */
107 
108 #include <machine/clock.h>      /* for DELAY */
109 
110 #include "../mii_layer/mii.h"
111 #include "../mii_layer/miivar.h"
112 
113 /* "controller miibus0" required.  See GENERIC if you get errors here. */
114 #include "miibus_if.h"
115 
116 #include <bus/pci/pcidevs.h>
117 #include <bus/pci/pcireg.h>
118 #include <bus/pci/pcivar.h>
119 
120 #define SF_USEIOSPACE
121 
122 #include "if_sfreg.h"
123 
124 static struct sf_type sf_devs[] = {
125 	{ PCI_VENDOR_ADP, PCI_PRODUCT_ADP_AIC6915,
126 		"Adaptec AIC-6915 10/100BaseTX" },
127 	{ 0, 0, NULL }
128 };
129 
130 static int sf_probe		(device_t);
131 static int sf_attach		(device_t);
132 static int sf_detach		(device_t);
133 static void sf_intr		(void *);
134 static void sf_stats_update	(void *);
135 static void sf_rxeof		(struct sf_softc *);
136 static void sf_txeof		(struct sf_softc *);
137 static int sf_encap		(struct sf_softc *,
138 					struct sf_tx_bufdesc_type0 *,
139 					struct mbuf *);
140 static void sf_start		(struct ifnet *);
141 static int sf_ioctl		(struct ifnet *, u_long, caddr_t,
142 					struct ucred *);
143 static void sf_init		(void *);
144 static void sf_stop		(struct sf_softc *);
145 static void sf_watchdog		(struct ifnet *);
146 static void sf_shutdown		(device_t);
147 static int sf_ifmedia_upd	(struct ifnet *);
148 static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
149 static void sf_reset		(struct sf_softc *);
150 static int sf_init_rx_ring	(struct sf_softc *);
151 static void sf_init_tx_ring	(struct sf_softc *);
152 static int sf_newbuf		(struct sf_softc *,
153 					struct sf_rx_bufdesc_type0 *,
154 					struct mbuf *);
155 static void sf_setmulti		(struct sf_softc *);
156 static int sf_setperf		(struct sf_softc *, int, caddr_t);
157 static int sf_sethash		(struct sf_softc *, caddr_t, int);
158 #ifdef notdef
159 static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
160 #endif
161 
162 static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
163 static u_int32_t sf_calchash	(caddr_t);
164 
165 static int sf_miibus_readreg	(device_t, int, int);
166 static int sf_miibus_writereg	(device_t, int, int, int);
167 static void sf_miibus_statchg	(device_t);
168 
169 static u_int32_t csr_read_4	(struct sf_softc *, int);
170 static void csr_write_4		(struct sf_softc *, int, u_int32_t);
171 static void sf_txthresh_adjust	(struct sf_softc *);
172 
173 #ifdef SF_USEIOSPACE
174 #define SF_RES			SYS_RES_IOPORT
175 #define SF_RID			SF_PCI_LOIO
176 #else
177 #define SF_RES			SYS_RES_MEMORY
178 #define SF_RID			SF_PCI_LOMEM
179 #endif
180 
181 static device_method_t sf_methods[] = {
182 	/* Device interface */
183 	DEVMETHOD(device_probe,		sf_probe),
184 	DEVMETHOD(device_attach,	sf_attach),
185 	DEVMETHOD(device_detach,	sf_detach),
186 	DEVMETHOD(device_shutdown,	sf_shutdown),
187 
188 	/* bus interface */
189 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
190 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
191 
192 	/* MII interface */
193 	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
194 	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
195 	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
196 
197 	{ 0, 0 }
198 };
199 
200 static driver_t sf_driver = {
201 	"sf",
202 	sf_methods,
203 	sizeof(struct sf_softc),
204 };
205 
206 static devclass_t sf_devclass;
207 
208 DECLARE_DUMMY_MODULE(if_sf);
209 DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
210 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
211 
212 #define SF_SETBIT(sc, reg, x)	\
213 	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
214 
215 #define SF_CLRBIT(sc, reg, x)				\
216 	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
217 
218 static u_int32_t
219 csr_read_4(struct sf_softc *sc, int reg)
220 {
221 	u_int32_t		val;
222 
223 #ifdef SF_USEIOSPACE
224 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
225 	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
226 #else
227 	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
228 #endif
229 
230 	return(val);
231 }
232 
233 static u_int8_t
234 sf_read_eeprom(struct sf_softc *sc, int reg)
235 {
236 	u_int8_t		val;
237 
238 	val = (csr_read_4(sc, SF_EEADDR_BASE +
239 	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
240 
241 	return(val);
242 }
243 
244 static void
245 csr_write_4(struct sf_softc *sc, int reg, u_int32_t val)
246 {
247 #ifdef SF_USEIOSPACE
248 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
249 	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
250 #else
251 	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
252 #endif
253 	return;
254 }
255 
256 static u_int32_t
257 sf_calchash(caddr_t addr)
258 {
259 	u_int32_t		crc, carry;
260 	int			i, j;
261 	u_int8_t		c;
262 
263 	/* Compute CRC for the address value. */
264 	crc = 0xFFFFFFFF; /* initial value */
265 
266 	for (i = 0; i < 6; i++) {
267 		c = *(addr + i);
268 		for (j = 0; j < 8; j++) {
269 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
270 			crc <<= 1;
271 			c >>= 1;
272 			if (carry)
273 				crc = (crc ^ 0x04c11db6) | carry;
274 		}
275 	}
276 
277 	/* return the filter bit position */
278 	return(crc >> 23 & 0x1FF);
279 }
280 
281 /*
282  * Copy the address 'mac' into the perfect RX filter entry at
283  * offset 'idx.' The perfect filter only has 16 entries so do
284  * some sanity tests.
285  */
286 static int
287 sf_setperf(struct sf_softc *sc, int idx, caddr_t mac)
288 {
289 	u_int16_t		*p;
290 
291 	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
292 		return(EINVAL);
293 
294 	if (mac == NULL)
295 		return(EINVAL);
296 
297 	p = (u_int16_t *)mac;
298 
299 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
300 	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
301 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
302 	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
303 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
304 	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
305 
306 	return(0);
307 }
308 
309 /*
310  * Set the bit in the 512-bit hash table that corresponds to the
311  * specified mac address 'mac.' If 'prio' is nonzero, update the
312  * priority hash table instead of the filter hash table.
313  */
314 static int
315 sf_sethash(struct sf_softc *sc, caddr_t mac, int prio)
316 {
317 	u_int32_t		h = 0;
318 
319 	if (mac == NULL)
320 		return(EINVAL);
321 
322 	h = sf_calchash(mac);
323 
324 	if (prio) {
325 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
326 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
327 	} else {
328 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
329 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
330 	}
331 
332 	return(0);
333 }
334 
335 #ifdef notdef
336 /*
337  * Set a VLAN tag in the receive filter.
338  */
339 static int
340 sf_setvlan(struct sf_softc *sc, int idx, u_int32_t vlan)
341 {
342 	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
343 		return(EINVAL);
344 
345 	csr_write_4(sc, SF_RXFILT_HASH_BASE +
346 	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
347 
348 	return(0);
349 }
350 #endif
351 
352 static int
353 sf_miibus_readreg(device_t dev, int phy, int reg)
354 {
355 	struct sf_softc		*sc;
356 	int			i;
357 	u_int32_t		val = 0;
358 
359 	sc = device_get_softc(dev);
360 
361 	for (i = 0; i < SF_TIMEOUT; i++) {
362 		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
363 		if (val & SF_MII_DATAVALID)
364 			break;
365 	}
366 
367 	if (i == SF_TIMEOUT)
368 		return(0);
369 
370 	if ((val & 0x0000FFFF) == 0xFFFF)
371 		return(0);
372 
373 	return(val & 0x0000FFFF);
374 }
375 
376 static int
377 sf_miibus_writereg(device_t dev, int phy, int reg, int val)
378 {
379 	struct sf_softc		*sc;
380 	int			i;
381 	int			busy;
382 
383 	sc = device_get_softc(dev);
384 
385 	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
386 
387 	for (i = 0; i < SF_TIMEOUT; i++) {
388 		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
389 		if (!(busy & SF_MII_BUSY))
390 			break;
391 	}
392 
393 	return(0);
394 }
395 
396 static void
397 sf_miibus_statchg(device_t dev)
398 {
399 	struct sf_softc		*sc;
400 	struct mii_data		*mii;
401 
402 	sc = device_get_softc(dev);
403 	mii = device_get_softc(sc->sf_miibus);
404 
405 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
406 		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
407 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
408 	} else {
409 		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
410 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
411 	}
412 
413 	return;
414 }
415 
416 static void
417 sf_setmulti(struct sf_softc *sc)
418 {
419 	struct ifnet		*ifp;
420 	int			i;
421 	struct ifmultiaddr	*ifma;
422 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
423 
424 	ifp = &sc->arpcom.ac_if;
425 
426 	/* First zot all the existing filters. */
427 	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
428 		sf_setperf(sc, i, (char *)&dummy);
429 	for (i = SF_RXFILT_HASH_BASE;
430 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
431 		csr_write_4(sc, i, 0);
432 	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
433 
434 	/* Now program new ones. */
435 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
436 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
437 	} else {
438 		i = 1;
439 		/* First find the tail of the list. */
440 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
441 					ifma = ifma->ifma_link.le_next) {
442 			if (ifma->ifma_link.le_next == NULL)
443 				break;
444 		}
445 		/* Now traverse the list backwards. */
446 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
447 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
448 			if (ifma->ifma_addr->sa_family != AF_LINK)
449 				continue;
450 			/*
451 			 * Program the first 15 multicast groups
452 			 * into the perfect filter. For all others,
453 			 * use the hash table.
454 			 */
455 			if (i < SF_RXFILT_PERFECT_CNT) {
456 				sf_setperf(sc, i,
457 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
458 				i++;
459 				continue;
460 			}
461 
462 			sf_sethash(sc,
463 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
464 		}
465 	}
466 
467 	return;
468 }
469 
470 /*
471  * Set media options.
472  */
473 static int
474 sf_ifmedia_upd(struct ifnet *ifp)
475 {
476 	struct sf_softc		*sc;
477 	struct mii_data		*mii;
478 
479 	sc = ifp->if_softc;
480 	mii = device_get_softc(sc->sf_miibus);
481 	sc->sf_link = 0;
482 	if (mii->mii_instance) {
483 		struct mii_softc        *miisc;
484 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
485 		    miisc = LIST_NEXT(miisc, mii_list))
486 			mii_phy_reset(miisc);
487 	}
488 	mii_mediachg(mii);
489 
490 	return(0);
491 }
492 
493 /*
494  * Report current media status.
495  */
496 static void
497 sf_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
498 {
499 	struct sf_softc		*sc;
500 	struct mii_data		*mii;
501 
502 	sc = ifp->if_softc;
503 	mii = device_get_softc(sc->sf_miibus);
504 
505 	mii_pollstat(mii);
506 	ifmr->ifm_active = mii->mii_media_active;
507 	ifmr->ifm_status = mii->mii_media_status;
508 
509 	return;
510 }
511 
512 static int
513 sf_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
514 {
515 	struct sf_softc		*sc = ifp->if_softc;
516 	struct ifreq		*ifr = (struct ifreq *) data;
517 	struct mii_data		*mii;
518 	int error = 0;
519 
520 	switch(command) {
521 	case SIOCSIFFLAGS:
522 		if (ifp->if_flags & IFF_UP) {
523 			if (ifp->if_flags & IFF_RUNNING &&
524 			    ifp->if_flags & IFF_PROMISC &&
525 			    !(sc->sf_if_flags & IFF_PROMISC)) {
526 				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
527 			} else if (ifp->if_flags & IFF_RUNNING &&
528 			    !(ifp->if_flags & IFF_PROMISC) &&
529 			    sc->sf_if_flags & IFF_PROMISC) {
530 				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
531 			} else if (!(ifp->if_flags & IFF_RUNNING))
532 				sf_init(sc);
533 		} else {
534 			if (ifp->if_flags & IFF_RUNNING)
535 				sf_stop(sc);
536 		}
537 		sc->sf_if_flags = ifp->if_flags;
538 		error = 0;
539 		break;
540 	case SIOCADDMULTI:
541 	case SIOCDELMULTI:
542 		sf_setmulti(sc);
543 		error = 0;
544 		break;
545 	case SIOCGIFMEDIA:
546 	case SIOCSIFMEDIA:
547 		mii = device_get_softc(sc->sf_miibus);
548 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
549 		break;
550 	default:
551 		error = ether_ioctl(ifp, command, data);
552 		break;
553 	}
554 
555 	return(error);
556 }
557 
558 static void
559 sf_reset(struct sf_softc *sc)
560 {
561 	int		i;
562 
563 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
564 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
565 	DELAY(1000);
566 	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
567 
568 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
569 
570 	for (i = 0; i < SF_TIMEOUT; i++) {
571 		DELAY(10);
572 		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
573 			break;
574 	}
575 
576 	if (i == SF_TIMEOUT)
577 		kprintf("sf%d: reset never completed!\n", sc->sf_unit);
578 
579 	/* Wait a little while for the chip to get its brains in order. */
580 	DELAY(1000);
581 	return;
582 }
583 
584 /*
585  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
586  * IDs against our list and return a device name if we find a match.
587  * We also check the subsystem ID so that we can identify exactly which
588  * NIC has been found, if possible.
589  */
590 static int
591 sf_probe(device_t dev)
592 {
593 	struct sf_type		*t;
594 
595 	t = sf_devs;
596 
597 	while(t->sf_name != NULL) {
598 		if ((pci_get_vendor(dev) == t->sf_vid) &&
599 		    (pci_get_device(dev) == t->sf_did)) {
600 			switch((pci_read_config(dev,
601 			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
602 			case AD_SUBSYSID_62011_REV0:
603 			case AD_SUBSYSID_62011_REV1:
604 				device_set_desc(dev,
605 				    "Adaptec ANA-62011 10/100BaseTX");
606 				return(0);
607 				break;
608 			case AD_SUBSYSID_62022:
609 				device_set_desc(dev,
610 				    "Adaptec ANA-62022 10/100BaseTX");
611 				return(0);
612 				break;
613 			case AD_SUBSYSID_62044_REV0:
614 			case AD_SUBSYSID_62044_REV1:
615 				device_set_desc(dev,
616 				    "Adaptec ANA-62044 10/100BaseTX");
617 				return(0);
618 				break;
619 			case AD_SUBSYSID_62020:
620 				device_set_desc(dev,
621 				    "Adaptec ANA-62020 10/100BaseFX");
622 				return(0);
623 				break;
624 			case AD_SUBSYSID_69011:
625 				device_set_desc(dev,
626 				    "Adaptec ANA-69011 10/100BaseTX");
627 				return(0);
628 				break;
629 			default:
630 				device_set_desc(dev, t->sf_name);
631 				return(0);
632 				break;
633 			}
634 		}
635 		t++;
636 	}
637 
638 	return(ENXIO);
639 }
640 
641 /*
642  * Attach the interface. Allocate softc structures, do ifmedia
643  * setup and ethernet/BPF attach.
644  */
645 static int
646 sf_attach(device_t dev)
647 {
648 	int			i;
649 	u_int32_t		command;
650 	struct sf_softc		*sc;
651 	struct ifnet		*ifp;
652 	int			unit, rid, error = 0;
653 
654 	sc = device_get_softc(dev);
655 	unit = device_get_unit(dev);
656 
657 	/*
658 	 * Handle power management nonsense.
659 	 */
660 	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
661 	if (command == 0x01) {
662 
663 		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
664 		if (command & SF_PSTATE_MASK) {
665 			u_int32_t		iobase, membase, irq;
666 
667 			/* Save important PCI config data. */
668 			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
669 			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
670 			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
671 
672 			/* Reset the power state. */
673 			kprintf("sf%d: chip is in D%d power mode "
674 			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
675 			command &= 0xFFFFFFFC;
676 			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
677 
678 			/* Restore PCI config data. */
679 			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
680 			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
681 			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
682 		}
683 	}
684 
685 	/*
686 	 * Map control/status registers.
687 	 */
688 	command = pci_read_config(dev, PCIR_COMMAND, 4);
689 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
690 	pci_write_config(dev, PCIR_COMMAND, command, 4);
691 	command = pci_read_config(dev, PCIR_COMMAND, 4);
692 
693 #ifdef SF_USEIOSPACE
694 	if (!(command & PCIM_CMD_PORTEN)) {
695 		kprintf("sf%d: failed to enable I/O ports!\n", unit);
696 		error = ENXIO;
697 		return(error);
698 	}
699 #else
700 	if (!(command & PCIM_CMD_MEMEN)) {
701 		kprintf("sf%d: failed to enable memory mapping!\n", unit);
702 		error = ENXIO;
703 		return(error);
704 	}
705 #endif
706 
707 	rid = SF_RID;
708 	sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
709 
710 	if (sc->sf_res == NULL) {
711 		kprintf ("sf%d: couldn't map ports\n", unit);
712 		error = ENXIO;
713 		return(error);
714 	}
715 
716 	sc->sf_btag = rman_get_bustag(sc->sf_res);
717 	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
718 
719 	/* Allocate interrupt */
720 	rid = 0;
721 	sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
722 	    RF_SHAREABLE | RF_ACTIVE);
723 
724 	if (sc->sf_irq == NULL) {
725 		kprintf("sf%d: couldn't map interrupt\n", unit);
726 		error = ENXIO;
727 		goto fail;
728 	}
729 
730 	callout_init(&sc->sf_stat_timer);
731 
732 	/* Reset the adapter. */
733 	sf_reset(sc);
734 
735 	/*
736 	 * Get station address from the EEPROM.
737 	 */
738 	for (i = 0; i < ETHER_ADDR_LEN; i++)
739 		sc->arpcom.ac_enaddr[i] =
740 		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
741 
742 	sc->sf_unit = unit;
743 
744 	/* Allocate the descriptor queues. */
745 	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
746 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
747 
748 	if (sc->sf_ldata == NULL) {
749 		kprintf("sf%d: no memory for list buffers!\n", unit);
750 		error = ENXIO;
751 		goto fail;
752 	}
753 
754 	/* Do MII setup. */
755 	if (mii_phy_probe(dev, &sc->sf_miibus,
756 	    sf_ifmedia_upd, sf_ifmedia_sts)) {
757 		kprintf("sf%d: MII without any phy!\n", sc->sf_unit);
758 		error = ENXIO;
759 		goto fail;
760 	}
761 
762 	ifp = &sc->arpcom.ac_if;
763 	ifp->if_softc = sc;
764 	if_initname(ifp, "sf", unit);
765 	ifp->if_mtu = ETHERMTU;
766 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
767 	ifp->if_ioctl = sf_ioctl;
768 	ifp->if_start = sf_start;
769 	ifp->if_watchdog = sf_watchdog;
770 	ifp->if_init = sf_init;
771 	ifp->if_baudrate = 10000000;
772 	ifq_set_maxlen(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
773 	ifq_set_ready(&ifp->if_snd);
774 
775 	/*
776 	 * Call MI attach routine.
777 	 */
778 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
779 
780 	error = bus_setup_intr(dev, sc->sf_irq, INTR_MPSAFE,
781 			       sf_intr, sc, &sc->sf_intrhand,
782 			       ifp->if_serializer);
783 
784 	if (error) {
785 		ether_ifdetach(ifp);
786 		device_printf(dev, "couldn't set up irq\n");
787 		goto fail;
788 	}
789 
790 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->sf_irq));
791 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
792 
793 	return(0);
794 
795 fail:
796 	sf_detach(dev);
797 	return(error);
798 }
799 
800 static int
801 sf_detach(device_t dev)
802 {
803 	struct sf_softc *sc = device_get_softc(dev);
804 	struct ifnet *ifp = &sc->arpcom.ac_if;
805 
806 	if (device_is_attached(dev)) {
807 		lwkt_serialize_enter(ifp->if_serializer);
808 		sf_stop(sc);
809 		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
810 		lwkt_serialize_exit(ifp->if_serializer);
811 
812 		ether_ifdetach(ifp);
813 	}
814 
815 	if (sc->sf_miibus)
816 		device_delete_child(dev, sc->sf_miibus);
817 	bus_generic_detach(dev);
818 
819 	if (sc->sf_irq)
820 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
821 	if(sc->sf_res)
822 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
823 
824 	if (sc->sf_ldata) {
825 		contigfree(sc->sf_ldata, sizeof(struct sf_list_data),
826 			   M_DEVBUF);
827 	}
828 
829 	return(0);
830 }
831 
832 static int
833 sf_init_rx_ring(struct sf_softc *sc)
834 {
835 	struct sf_list_data	*ld;
836 	int			i;
837 
838 	ld = sc->sf_ldata;
839 
840 	bzero((char *)ld->sf_rx_dlist_big,
841 	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
842 	bzero((char *)ld->sf_rx_clist,
843 	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
844 
845 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
846 		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
847 			return(ENOBUFS);
848 	}
849 
850 	return(0);
851 }
852 
853 static void
854 sf_init_tx_ring(struct sf_softc *sc)
855 {
856 	struct sf_list_data	*ld;
857 	int			i;
858 
859 	ld = sc->sf_ldata;
860 
861 	bzero((char *)ld->sf_tx_dlist,
862 	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
863 	bzero((char *)ld->sf_tx_clist,
864 	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
865 
866 	for (i = 0; i < SF_TX_DLIST_CNT; i++)
867 		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
868 	for (i = 0; i < SF_TX_CLIST_CNT; i++)
869 		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
870 
871 	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
872 	sc->sf_tx_cnt = 0;
873 
874 	return;
875 }
876 
877 static int
878 sf_newbuf(struct sf_softc *sc, struct sf_rx_bufdesc_type0 *c,
879 	  struct mbuf *m)
880 {
881 	struct mbuf		*m_new = NULL;
882 
883 	if (m == NULL) {
884 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
885 		if (m_new == NULL)
886 			return(ENOBUFS);
887 
888 		MCLGET(m_new, MB_DONTWAIT);
889 		if (!(m_new->m_flags & M_EXT)) {
890 			m_freem(m_new);
891 			return(ENOBUFS);
892 		}
893 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
894 	} else {
895 		m_new = m;
896 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
897 		m_new->m_data = m_new->m_ext.ext_buf;
898 	}
899 
900 	m_adj(m_new, sizeof(u_int64_t));
901 
902 	c->sf_mbuf = m_new;
903 	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
904 	c->sf_valid = 1;
905 
906 	return(0);
907 }
908 
909 /*
910  * The starfire is programmed to use 'normal' mode for packet reception,
911  * which means we use the consumer/producer model for both the buffer
912  * descriptor queue and the completion descriptor queue. The only problem
913  * with this is that it involves a lot of register accesses: we have to
914  * read the RX completion consumer and producer indexes and the RX buffer
915  * producer index, plus the RX completion consumer and RX buffer producer
916  * indexes have to be updated. It would have been easier if Adaptec had
917  * put each index in a separate register, especially given that the damn
918  * NIC has a 512K register space.
919  *
920  * In spite of all the lovely features that Adaptec crammed into the 6915,
921  * it is marred by one truly stupid design flaw, which is that receive
922  * buffer addresses must be aligned on a longword boundary. This forces
923  * the packet payload to be unaligned, which is suboptimal on the x86 and
924  * completely unuseable on the Alpha. Our only recourse is to copy received
925  * packets into properly aligned buffers before handing them off.
926  */
927 
928 static void
929 sf_rxeof(struct sf_softc *sc)
930 {
931 	struct mbuf		*m;
932 	struct ifnet		*ifp;
933 	struct sf_rx_bufdesc_type0	*desc;
934 	struct sf_rx_cmpdesc_type3	*cur_rx;
935 	u_int32_t		rxcons, rxprod;
936 	int			cmpprodidx, cmpconsidx, bufprodidx;
937 
938 	ifp = &sc->arpcom.ac_if;
939 
940 	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
941 	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
942 	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
943 	cmpconsidx = SF_IDX_LO(rxcons);
944 	bufprodidx = SF_IDX_LO(rxprod);
945 
946 	while (cmpconsidx != cmpprodidx) {
947 		struct mbuf		*m0;
948 
949 		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
950 		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
951 		m = desc->sf_mbuf;
952 		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
953 		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
954 
955 		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
956 			ifp->if_ierrors++;
957 			sf_newbuf(sc, desc, m);
958 			continue;
959 		}
960 
961 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
962 		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
963 		sf_newbuf(sc, desc, m);
964 		if (m0 == NULL) {
965 			ifp->if_ierrors++;
966 			continue;
967 		}
968 		m_adj(m0, ETHER_ALIGN);
969 		m = m0;
970 
971 		ifp->if_ipackets++;
972 
973 		ifp->if_input(ifp, m);
974 	}
975 
976 	csr_write_4(sc, SF_CQ_CONSIDX,
977 	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
978 	csr_write_4(sc, SF_RXDQ_PTR_Q1,
979 	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
980 
981 	return;
982 }
983 
984 /*
985  * Read the transmit status from the completion queue and release
986  * mbufs. Note that the buffer descriptor index in the completion
987  * descriptor is an offset from the start of the transmit buffer
988  * descriptor list in bytes. This is important because the manual
989  * gives the impression that it should match the producer/consumer
990  * index, which is the offset in 8 byte blocks.
991  */
992 static void
993 sf_txeof(struct sf_softc *sc)
994 {
995 	int			txcons, cmpprodidx, cmpconsidx;
996 	struct sf_tx_cmpdesc_type1 *cur_cmp;
997 	struct sf_tx_bufdesc_type0 *cur_tx;
998 	struct ifnet		*ifp;
999 
1000 	ifp = &sc->arpcom.ac_if;
1001 
1002 	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1003 	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1004 	cmpconsidx = SF_IDX_HI(txcons);
1005 
1006 	while (cmpconsidx != cmpprodidx) {
1007 		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1008 		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1009 
1010 		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1011 			ifp->if_opackets++;
1012 		else {
1013 			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1014 				sf_txthresh_adjust(sc);
1015 			ifp->if_oerrors++;
1016 		}
1017 
1018 		sc->sf_tx_cnt--;
1019 		if (cur_tx->sf_mbuf != NULL) {
1020 			m_freem(cur_tx->sf_mbuf);
1021 			cur_tx->sf_mbuf = NULL;
1022 		} else
1023 			break;
1024 		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1025 	}
1026 
1027 	ifp->if_timer = 0;
1028 	ifp->if_flags &= ~IFF_OACTIVE;
1029 
1030 	csr_write_4(sc, SF_CQ_CONSIDX,
1031 	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1032 	    ((cmpconsidx << 16) & 0xFFFF0000));
1033 
1034 	return;
1035 }
1036 
1037 static void
1038 sf_txthresh_adjust(struct sf_softc *sc)
1039 {
1040 	u_int32_t		txfctl;
1041 	u_int8_t		txthresh;
1042 
1043 	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1044 	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1045 	if (txthresh < 0xFF) {
1046 		txthresh++;
1047 		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1048 		txfctl |= txthresh;
1049 #ifdef DIAGNOSTIC
1050 		kprintf("sf%d: tx underrun, increasing "
1051 		    "tx threshold to %d bytes\n",
1052 		    sc->sf_unit, txthresh * 4);
1053 #endif
1054 		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1055 	}
1056 
1057 	return;
1058 }
1059 
1060 static void
1061 sf_intr(void *arg)
1062 {
1063 	struct sf_softc		*sc;
1064 	struct ifnet		*ifp;
1065 	u_int32_t		status;
1066 
1067 	sc = arg;
1068 	ifp = &sc->arpcom.ac_if;
1069 
1070 	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1071 		return;
1072 
1073 	/* Disable interrupts. */
1074 	csr_write_4(sc, SF_IMR, 0x00000000);
1075 
1076 	for (;;) {
1077 		status = csr_read_4(sc, SF_ISR);
1078 		if (status)
1079 			csr_write_4(sc, SF_ISR, status);
1080 
1081 		if (!(status & SF_INTRS))
1082 			break;
1083 
1084 		if (status & SF_ISR_RXDQ1_DMADONE)
1085 			sf_rxeof(sc);
1086 
1087 		if (status & SF_ISR_TX_TXDONE ||
1088 		    status & SF_ISR_TX_DMADONE ||
1089 		    status & SF_ISR_TX_QUEUEDONE)
1090 			sf_txeof(sc);
1091 
1092 		if (status & SF_ISR_TX_LOFIFO)
1093 			sf_txthresh_adjust(sc);
1094 
1095 		if (status & SF_ISR_ABNORMALINTR) {
1096 			if (status & SF_ISR_STATSOFLOW) {
1097 				callout_stop(&sc->sf_stat_timer);
1098 				sf_stats_update(sc);
1099 			} else
1100 				sf_init(sc);
1101 		}
1102 	}
1103 
1104 	/* Re-enable interrupts. */
1105 	csr_write_4(sc, SF_IMR, SF_INTRS);
1106 
1107 	if (!ifq_is_empty(&ifp->if_snd))
1108 		if_devstart(ifp);
1109 }
1110 
1111 static void
1112 sf_init(void *xsc)
1113 {
1114 	struct sf_softc *sc = xsc;
1115 	struct ifnet *ifp = &sc->arpcom.ac_if;
1116 	int i;
1117 
1118 	sf_stop(sc);
1119 	sf_reset(sc);
1120 
1121 	/* Init all the receive filter registers */
1122 	for (i = SF_RXFILT_PERFECT_BASE;
1123 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1124 		csr_write_4(sc, i, 0);
1125 
1126 	/* Empty stats counter registers. */
1127 	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1128 		csr_write_4(sc, SF_STATS_BASE +
1129 		    (i + sizeof(u_int32_t)), 0);
1130 
1131 	/* Init our MAC address */
1132 	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1133 	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1134 	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1135 
1136 	if (sf_init_rx_ring(sc) == ENOBUFS) {
1137 		kprintf("sf%d: initialization failed: no "
1138 		    "memory for rx buffers\n", sc->sf_unit);
1139 		return;
1140 	}
1141 
1142 	sf_init_tx_ring(sc);
1143 
1144 	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1145 
1146 	/* If we want promiscuous mode, set the allframes bit. */
1147 	if (ifp->if_flags & IFF_PROMISC) {
1148 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1149 	} else {
1150 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1151 	}
1152 
1153 	if (ifp->if_flags & IFF_BROADCAST) {
1154 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1155 	} else {
1156 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1157 	}
1158 
1159 	/*
1160 	 * Load the multicast filter.
1161 	 */
1162 	sf_setmulti(sc);
1163 
1164 	/* Init the completion queue indexes */
1165 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1166 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1167 
1168 	/* Init the RX completion queue */
1169 	csr_write_4(sc, SF_RXCQ_CTL_1,
1170 	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1171 	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1172 
1173 	/* Init RX DMA control. */
1174 	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1175 
1176 	/* Init the RX buffer descriptor queue. */
1177 	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1178 	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1179 	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1180 	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1181 
1182 	/* Init the TX completion queue */
1183 	csr_write_4(sc, SF_TXCQ_CTL,
1184 	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1185 
1186 	/* Init the TX buffer descriptor queue. */
1187 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1188 		vtophys(sc->sf_ldata->sf_tx_dlist));
1189 	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1190 	csr_write_4(sc, SF_TXDQ_CTL,
1191 	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1192 	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1193 
1194 	/* Enable autopadding of short TX frames. */
1195 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1196 
1197 	/* Enable interrupts. */
1198 	csr_write_4(sc, SF_IMR, SF_INTRS);
1199 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1200 
1201 	/* Enable the RX and TX engines. */
1202 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1203 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1204 
1205 	/*mii_mediachg(mii);*/
1206 	sf_ifmedia_upd(ifp);
1207 
1208 	ifp->if_flags |= IFF_RUNNING;
1209 	ifp->if_flags &= ~IFF_OACTIVE;
1210 
1211 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1212 }
1213 
1214 static int
1215 sf_encap(struct sf_softc *sc, struct sf_tx_bufdesc_type0 *c,
1216 	 struct mbuf *m_head)
1217 {
1218 	int			frag = 0;
1219 	struct sf_frag		*f = NULL;
1220 	struct mbuf		*m;
1221 
1222 	for (m = m_head; m != NULL; m = m->m_next) {
1223 		if (m->m_len != 0) {
1224 			if (frag == SF_MAXFRAGS)
1225 				break;
1226 			f = &c->sf_frags[frag];
1227 			if (frag == 0)
1228 				f->sf_pktlen = m_head->m_pkthdr.len;
1229 			f->sf_fraglen = m->m_len;
1230 			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1231 			frag++;
1232 		}
1233 	}
1234 	/* Caller should make sure that 'm_head' is not excessive fragmented */
1235 	KASSERT(m == NULL, ("too many fragments\n"));
1236 
1237 	c->sf_mbuf = m_head;
1238 	c->sf_id = SF_TX_BUFDESC_ID;
1239 	c->sf_fragcnt = frag;
1240 	c->sf_intr = 1;
1241 	c->sf_caltcp = 0;
1242 	c->sf_crcen = 1;
1243 
1244 	return(0);
1245 }
1246 
1247 static void
1248 sf_start(struct ifnet *ifp)
1249 {
1250 	struct sf_softc		*sc;
1251 	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1252 	struct mbuf		*m_head = NULL, *m_defragged;
1253 	int			i, txprod, need_trans = 0;
1254 
1255 	sc = ifp->if_softc;
1256 
1257 	if (!sc->sf_link) {
1258 		ifq_purge(&ifp->if_snd);
1259 		return;
1260 	}
1261 
1262 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1263 		return;
1264 
1265 	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1266 	i = SF_IDX_HI(txprod) >> 4;
1267 
1268 	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1269 		kprintf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1270 		sf_init(sc);
1271 		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1272 		i = SF_IDX_HI(txprod) >> 4;
1273 	}
1274 
1275 	while (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1276 		struct mbuf *m;
1277 		int frag;
1278 
1279 		/*
1280 		 * Don't get the TX DMA queue get too full.
1281 		 */
1282 		if (sc->sf_tx_cnt > 64) {
1283 			ifp->if_flags |= IFF_OACTIVE;
1284 			break;
1285 		}
1286 #ifdef foo
1287 		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1288 			ifp->if_flags |= IFF_OACTIVE;
1289 			break;
1290 		}
1291 #endif
1292 
1293 		m_defragged = NULL;
1294 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1295 		if (m_head == NULL)
1296 			break;
1297 
1298 again:
1299 		frag = 0;
1300 		for (m = m_head; m != NULL; m = m->m_next)
1301 			++frag;
1302 		if (frag > SF_MAXFRAGS) {
1303 			if (m_defragged != NULL) {
1304 				/*
1305 				 * Even after defragmentation, there
1306 				 * are still too many fragments, so
1307 				 * drop this packet.
1308 				 */
1309 				m_freem(m_head);
1310 				continue;
1311 			}
1312 
1313 			m_defragged = m_defrag(m_head, MB_DONTWAIT);
1314 			if (m_defragged == NULL) {
1315 				m_freem(m_head);
1316 				continue;
1317 			}
1318 			m_head = m_defragged;
1319 
1320 			/* Recount # of fragments */
1321 			goto again;
1322 		}
1323 
1324 		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1325 		sf_encap(sc, cur_tx, m_head);
1326 		BPF_MTAP(ifp, cur_tx->sf_mbuf);
1327 
1328 		SF_INC(i, SF_TX_DLIST_CNT);
1329 		sc->sf_tx_cnt++;
1330 		need_trans = 1;
1331 	}
1332 
1333 	if (!need_trans)
1334 		return;
1335 
1336 	/* Transmit */
1337 	csr_write_4(sc, SF_TXDQ_PRODIDX,
1338 	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1339 	    ((i << 20) & 0xFFFF0000));
1340 
1341 	ifp->if_timer = 5;
1342 }
1343 
1344 static void
1345 sf_stop(struct sf_softc *sc)
1346 {
1347 	int			i;
1348 	struct ifnet		*ifp;
1349 
1350 	ifp = &sc->arpcom.ac_if;
1351 
1352 	callout_stop(&sc->sf_stat_timer);
1353 
1354 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1355 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1356 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1357 	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1358 	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1359 	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1360 	csr_write_4(sc, SF_TXCQ_CTL, 0);
1361 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1362 	csr_write_4(sc, SF_TXDQ_CTL, 0);
1363 	sf_reset(sc);
1364 
1365 	sc->sf_link = 0;
1366 
1367 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1368 		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1369 			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1370 			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1371 		}
1372 	}
1373 
1374 	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1375 		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1376 			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1377 			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1378 		}
1379 	}
1380 
1381 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1382 
1383 	return;
1384 }
1385 
1386 /*
1387  * Note: it is important that this function not be interrupted. We
1388  * use a two-stage register access scheme: if we are interrupted in
1389  * between setting the indirect address register and reading from the
1390  * indirect data register, the contents of the address register could
1391  * be changed out from under us.
1392  */
1393 static void
1394 sf_stats_update(void *xsc)
1395 {
1396 	struct sf_softc *sc = xsc;
1397 	struct ifnet *ifp = &sc->arpcom.ac_if;
1398 	struct mii_data *mii = device_get_softc(sc->sf_miibus);
1399 	struct sf_stats		stats;
1400 	u_int32_t		*ptr;
1401 	int			i;
1402 
1403 	lwkt_serialize_enter(ifp->if_serializer);
1404 
1405 	ptr = (u_int32_t *)&stats;
1406 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1407 		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1408 		    (i + sizeof(u_int32_t)));
1409 
1410 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1411 		csr_write_4(sc, SF_STATS_BASE +
1412 		    (i + sizeof(u_int32_t)), 0);
1413 
1414 	ifp->if_collisions += stats.sf_tx_single_colls +
1415 	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1416 
1417 	mii_tick(mii);
1418 	if (!sc->sf_link) {
1419 		mii_pollstat(mii);
1420 		if (mii->mii_media_status & IFM_ACTIVE &&
1421 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1422 			sc->sf_link++;
1423 			if (!ifq_is_empty(&ifp->if_snd))
1424 				if_devstart(ifp);
1425 		}
1426 	}
1427 
1428 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1429 
1430 	lwkt_serialize_exit(ifp->if_serializer);
1431 }
1432 
1433 static void
1434 sf_watchdog(struct ifnet *ifp)
1435 {
1436 	struct sf_softc		*sc;
1437 
1438 	sc = ifp->if_softc;
1439 
1440 	ifp->if_oerrors++;
1441 	kprintf("sf%d: watchdog timeout\n", sc->sf_unit);
1442 
1443 	sf_stop(sc);
1444 	sf_reset(sc);
1445 	sf_init(sc);
1446 
1447 	if (!ifq_is_empty(&ifp->if_snd))
1448 		if_devstart(ifp);
1449 }
1450 
1451 static void
1452 sf_shutdown(device_t dev)
1453 {
1454 	struct sf_softc	*sc;
1455 	struct ifnet *ifp;
1456 
1457 	sc = device_get_softc(dev);
1458 	ifp = &sc->arpcom.ac_if;
1459 	lwkt_serialize_enter(ifp->if_serializer);
1460 	sf_stop(sc);
1461 	lwkt_serialize_exit(ifp->if_serializer);
1462 
1463 	return;
1464 }
1465