xref: /dragonfly/sys/dev/netif/sis/if_sis.c (revision 49781055)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sis.c,v 1.13.4.24 2003/03/05 18:42:33 njl Exp $
33  * $DragonFly: src/sys/dev/netif/sis/if_sis.c,v 1.31 2005/12/31 14:08:00 sephe Exp $
34  */
35 
36 /*
37  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
38  * available from http://www.sis.com.tw.
39  *
40  * This driver also supports the NatSemi DP83815. Datasheets are
41  * available from http://www.national.com.
42  *
43  * Written by Bill Paul <wpaul@ee.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50  * simple TX and RX descriptors of 3 longwords in size. The receiver
51  * has a single perfect filter entry for the station address and a
52  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53  * transceiver while the 7016 requires an external transceiver chip.
54  * Both chips offer the standard bit-bang MII interface as well as
55  * an enchanced PHY interface which simplifies accessing MII registers.
56  *
57  * The only downside to this chipset is that RX descriptors must be
58  * longword aligned.
59  */
60 
61 #include "opt_polling.h"
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/sockio.h>
66 #include <sys/mbuf.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sysctl.h>
71 #include <sys/serialize.h>
72 #include <sys/thread2.h>
73 
74 #include <net/if.h>
75 #include <net/ifq_var.h>
76 #include <net/if_arp.h>
77 #include <net/ethernet.h>
78 #include <net/if_dl.h>
79 #include <net/if_media.h>
80 #include <net/if_types.h>
81 #include <net/vlan/if_vlan_var.h>
82 
83 #include <net/bpf.h>
84 
85 #include <machine/bus_pio.h>
86 #include <machine/bus_memio.h>
87 #include <machine/bus.h>
88 #include <machine/resource.h>
89 #include <sys/bus.h>
90 #include <sys/rman.h>
91 
92 #include <dev/netif/mii_layer/mii.h>
93 #include <dev/netif/mii_layer/miivar.h>
94 
95 #include <bus/pci/pcireg.h>
96 #include <bus/pci/pcivar.h>
97 
98 #define SIS_USEIOSPACE
99 
100 #include "if_sisreg.h"
101 
102 /* "controller miibus0" required.  See GENERIC if you get errors here. */
103 #include "miibus_if.h"
104 
105 /*
106  * Various supported device vendors/types and their names.
107  */
108 static struct sis_type sis_devs[] = {
109 	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
110 	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
111 	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
112 	{ 0, 0, NULL }
113 };
114 
115 static int	sis_probe(device_t);
116 static int	sis_attach(device_t);
117 static int	sis_detach(device_t);
118 
119 static int	sis_newbuf(struct sis_softc *, struct sis_desc *,
120 			   struct mbuf *);
121 static int	sis_encap(struct sis_softc *, struct mbuf *, uint32_t *);
122 static void	sis_rxeof(struct sis_softc *);
123 static void	sis_rxeoc(struct sis_softc *);
124 static void	sis_txeof(struct sis_softc *);
125 static void	sis_intr(void *);
126 static void	sis_tick(void *);
127 static void	sis_start(struct ifnet *);
128 static int	sis_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
129 static void	sis_init(void *);
130 static void	sis_stop(struct sis_softc *);
131 static void	sis_watchdog(struct ifnet *);
132 static void	sis_shutdown(device_t);
133 static int	sis_ifmedia_upd(struct ifnet *);
134 static void	sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
135 
136 static uint16_t	sis_reverse(uint16_t);
137 static void	sis_delay(struct sis_softc *);
138 static void	sis_eeprom_idle(struct sis_softc *);
139 static void	sis_eeprom_putbyte(struct sis_softc *, int);
140 static void	sis_eeprom_getword(struct sis_softc *, int, uint16_t *);
141 static void	sis_read_eeprom(struct sis_softc *, caddr_t, int, int, int);
142 #ifdef __i386__
143 static void	sis_read_cmos(struct sis_softc *, device_t, caddr_t, int, int);
144 static void	sis_read_mac(struct sis_softc *, device_t, caddr_t);
145 static device_t	sis_find_bridge(device_t);
146 #endif
147 
148 static void	sis_mii_sync(struct sis_softc *);
149 static void	sis_mii_send(struct sis_softc *, uint32_t, int);
150 static int	sis_mii_readreg(struct sis_softc *, struct sis_mii_frame *);
151 static int	sis_mii_writereg(struct sis_softc *, struct sis_mii_frame *);
152 static int	sis_miibus_readreg(device_t, int, int);
153 static int	sis_miibus_writereg(device_t, int, int, int);
154 static void	sis_miibus_statchg(device_t);
155 
156 static void	sis_setmulti_sis(struct sis_softc *);
157 static void	sis_setmulti_ns(struct sis_softc *);
158 static uint32_t	sis_mchash(struct sis_softc *, const uint8_t *);
159 static void	sis_reset(struct sis_softc *);
160 static int	sis_list_rx_init(struct sis_softc *);
161 static int	sis_list_tx_init(struct sis_softc *);
162 
163 static void	sis_dma_map_desc_ptr(void *, bus_dma_segment_t *, int, int);
164 static void	sis_dma_map_desc_next(void *, bus_dma_segment_t *, int, int);
165 static void	sis_dma_map_ring(void *, bus_dma_segment_t *, int, int);
166 #ifdef DEVICE_POLLING
167 static poll_handler_t sis_poll;
168 #endif
169 #ifdef SIS_USEIOSPACE
170 #define SIS_RES			SYS_RES_IOPORT
171 #define SIS_RID			SIS_PCI_LOIO
172 #else
173 #define SIS_RES			SYS_RES_MEMORY
174 #define SIS_RID			SIS_PCI_LOMEM
175 #endif
176 
177 static device_method_t sis_methods[] = {
178 	/* Device interface */
179 	DEVMETHOD(device_probe,		sis_probe),
180 	DEVMETHOD(device_attach,	sis_attach),
181 	DEVMETHOD(device_detach,	sis_detach),
182 	DEVMETHOD(device_shutdown,	sis_shutdown),
183 
184 	/* bus interface */
185 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
186 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
187 
188 	/* MII interface */
189 	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
190 	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
191 	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
192 
193 	{ 0, 0 }
194 };
195 
196 static driver_t sis_driver = {
197 	"sis",
198 	sis_methods,
199 	sizeof(struct sis_softc)
200 };
201 
202 static devclass_t sis_devclass;
203 
204 DECLARE_DUMMY_MODULE(if_sis);
205 DRIVER_MODULE(if_sis, pci, sis_driver, sis_devclass, 0, 0);
206 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
207 
208 #define SIS_SETBIT(sc, reg, x)				\
209 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
210 
211 #define SIS_CLRBIT(sc, reg, x)				\
212 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
213 
214 #define SIO_SET(x)					\
215 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
216 
217 #define SIO_CLR(x)					\
218 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
219 
220 static void
221 sis_dma_map_desc_next(void *arg, bus_dma_segment_t *segs, int nseg, int error)
222 {
223 	struct sis_desc	*r;
224 
225 	r = arg;
226 	r->sis_next = segs->ds_addr;
227 }
228 
229 static void
230 sis_dma_map_desc_ptr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
231 {
232 	struct sis_desc	*r;
233 
234 	r = arg;
235 	r->sis_ptr = segs->ds_addr;
236 }
237 
238 static void
239 sis_dma_map_ring(void *arg, bus_dma_segment_t *segs, int nseg, int error)
240 {
241 	uint32_t *p;
242 
243 	p = arg;
244 	*p = segs->ds_addr;
245 }
246 
247 /*
248  * Routine to reverse the bits in a word. Stolen almost
249  * verbatim from /usr/games/fortune.
250  */
251 static uint16_t
252 sis_reverse(uint16_t n)
253 {
254 	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
255 	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
256 	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
257 	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
258 
259 	return(n);
260 }
261 
262 static void
263 sis_delay(struct sis_softc *sc)
264 {
265 	int idx;
266 
267 	for (idx = (300 / 33) + 1; idx > 0; idx--)
268 		CSR_READ_4(sc, SIS_CSR);
269 }
270 
271 static void
272 sis_eeprom_idle(struct sis_softc *sc)
273 {
274 	int i;
275 
276 	SIO_SET(SIS_EECTL_CSEL);
277 	sis_delay(sc);
278 	SIO_SET(SIS_EECTL_CLK);
279 	sis_delay(sc);
280 
281 	for (i = 0; i < 25; i++) {
282 		SIO_CLR(SIS_EECTL_CLK);
283 		sis_delay(sc);
284 		SIO_SET(SIS_EECTL_CLK);
285 		sis_delay(sc);
286 	}
287 
288 	SIO_CLR(SIS_EECTL_CLK);
289 	sis_delay(sc);
290 	SIO_CLR(SIS_EECTL_CSEL);
291 	sis_delay(sc);
292 	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
293 }
294 
295 /*
296  * Send a read command and address to the EEPROM, check for ACK.
297  */
298 static void
299 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
300 {
301 	int d, i;
302 
303 	d = addr | SIS_EECMD_READ;
304 
305 	/*
306 	 * Feed in each bit and stobe the clock.
307 	 */
308 	for (i = 0x400; i; i >>= 1) {
309 		if (d & i)
310 			SIO_SET(SIS_EECTL_DIN);
311 		else
312 			SIO_CLR(SIS_EECTL_DIN);
313 		sis_delay(sc);
314 		SIO_SET(SIS_EECTL_CLK);
315 		sis_delay(sc);
316 		SIO_CLR(SIS_EECTL_CLK);
317 		sis_delay(sc);
318 	}
319 }
320 
321 /*
322  * Read a word of data stored in the EEPROM at address 'addr.'
323  */
324 static void
325 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
326 {
327 	int i;
328 	uint16_t word = 0;
329 
330 	/* Force EEPROM to idle state. */
331 	sis_eeprom_idle(sc);
332 
333 	/* Enter EEPROM access mode. */
334 	sis_delay(sc);
335 	SIO_CLR(SIS_EECTL_CLK);
336 	sis_delay(sc);
337 	SIO_SET(SIS_EECTL_CSEL);
338 	sis_delay(sc);
339 
340 	/*
341 	 * Send address of word we want to read.
342 	 */
343 	sis_eeprom_putbyte(sc, addr);
344 
345 	/*
346 	 * Start reading bits from EEPROM.
347 	 */
348 	for (i = 0x8000; i; i >>= 1) {
349 		SIO_SET(SIS_EECTL_CLK);
350 		sis_delay(sc);
351 		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
352 			word |= i;
353 		sis_delay(sc);
354 		SIO_CLR(SIS_EECTL_CLK);
355 		sis_delay(sc);
356 	}
357 
358 	/* Turn off EEPROM access mode. */
359 	sis_eeprom_idle(sc);
360 
361 	*dest = word;
362 }
363 
364 /*
365  * Read a sequence of words from the EEPROM.
366  */
367 static void
368 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
369 {
370 	int i;
371 	uint16_t word = 0, *ptr;
372 
373 	for (i = 0; i < cnt; i++) {
374 		sis_eeprom_getword(sc, off + i, &word);
375 		ptr = (uint16_t *)(dest + (i * 2));
376 		if (swap)
377 			*ptr = ntohs(word);
378 		else
379 			*ptr = word;
380 	}
381 }
382 
383 #ifdef __i386__
384 static device_t
385 sis_find_bridge(device_t dev)
386 {
387 	devclass_t pci_devclass;
388 	device_t *pci_devices;
389 	int pci_count = 0;
390 	device_t *pci_children;
391 	int pci_childcount = 0;
392 	device_t *busp, *childp;
393 	device_t child = NULL;
394 	int i, j;
395 
396 	if ((pci_devclass = devclass_find("pci")) == NULL)
397 		return(NULL);
398 
399 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
400 
401 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
402 		pci_childcount = 0;
403 		device_get_children(*busp, &pci_children, &pci_childcount);
404 		for (j = 0, childp = pci_children; j < pci_childcount;
405 		     j++, childp++) {
406 			if (pci_get_vendor(*childp) == SIS_VENDORID &&
407 			    pci_get_device(*childp) == 0x0008) {
408 				child = *childp;
409 				goto done;
410 			}
411 		}
412 	}
413 
414 done:
415 	free(pci_devices, M_TEMP);
416 	free(pci_children, M_TEMP);
417 	return(child);
418 }
419 
420 static void
421 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off,
422 	      int cnt)
423 {
424 	device_t bridge;
425 	uint8_t reg;
426 	int i;
427 	bus_space_tag_t	btag;
428 
429 	bridge = sis_find_bridge(dev);
430 	if (bridge == NULL)
431 		return;
432 	reg = pci_read_config(bridge, 0x48, 1);
433 	pci_write_config(bridge, 0x48, reg|0x40, 1);
434 
435 	/* XXX */
436 	btag = I386_BUS_SPACE_IO;
437 
438 	for (i = 0; i < cnt; i++) {
439 		bus_space_write_1(btag, 0x0, 0x70, i + off);
440 		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
441 	}
442 
443 	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
444 }
445 
446 static void
447 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
448 {
449 	uint32_t filtsave, csrsave;
450 
451 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
452 	csrsave = CSR_READ_4(sc, SIS_CSR);
453 
454 	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
455 	CSR_WRITE_4(sc, SIS_CSR, 0);
456 
457 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
458 
459 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
460 	((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
461 	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
462 	((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
463 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
464 	((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
465 
466 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
467 	CSR_WRITE_4(sc, SIS_CSR, csrsave);
468 }
469 #endif
470 
471 /*
472  * Sync the PHYs by setting data bit and strobing the clock 32 times.
473  */
474 static void
475 sis_mii_sync(struct sis_softc *sc)
476 {
477 	int i;
478 
479 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
480 
481 	for (i = 0; i < 32; i++) {
482 		SIO_SET(SIS_MII_CLK);
483 		DELAY(1);
484 		SIO_CLR(SIS_MII_CLK);
485 		DELAY(1);
486 	}
487 }
488 
489 /*
490  * Clock a series of bits through the MII.
491  */
492 static void
493 sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt)
494 {
495 	int i;
496 
497 	SIO_CLR(SIS_MII_CLK);
498 
499 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
500 		if (bits & i)
501 			SIO_SET(SIS_MII_DATA);
502 		else
503 			SIO_CLR(SIS_MII_DATA);
504 		DELAY(1);
505 		SIO_CLR(SIS_MII_CLK);
506 		DELAY(1);
507 		SIO_SET(SIS_MII_CLK);
508 	}
509 }
510 
511 /*
512  * Read an PHY register through the MII.
513  */
514 static int
515 sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
516 {
517 	int i, ack;
518 
519 	/*
520 	 * Set up frame for RX.
521 	 */
522 	frame->mii_stdelim = SIS_MII_STARTDELIM;
523 	frame->mii_opcode = SIS_MII_READOP;
524 	frame->mii_turnaround = 0;
525 	frame->mii_data = 0;
526 
527 	/*
528  	 * Turn on data xmit.
529 	 */
530 	SIO_SET(SIS_MII_DIR);
531 
532 	sis_mii_sync(sc);
533 
534 	/*
535 	 * Send command/address info.
536 	 */
537 	sis_mii_send(sc, frame->mii_stdelim, 2);
538 	sis_mii_send(sc, frame->mii_opcode, 2);
539 	sis_mii_send(sc, frame->mii_phyaddr, 5);
540 	sis_mii_send(sc, frame->mii_regaddr, 5);
541 
542 	/* Idle bit */
543 	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
544 	DELAY(1);
545 	SIO_SET(SIS_MII_CLK);
546 	DELAY(1);
547 
548 	/* Turn off xmit. */
549 	SIO_CLR(SIS_MII_DIR);
550 
551 	/* Check for ack */
552 	SIO_CLR(SIS_MII_CLK);
553 	DELAY(1);
554 	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
555 	SIO_SET(SIS_MII_CLK);
556 	DELAY(1);
557 
558 	/*
559 	 * Now try reading data bits. If the ack failed, we still
560 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
561 	 */
562 	if (ack) {
563 		for(i = 0; i < 16; i++) {
564 			SIO_CLR(SIS_MII_CLK);
565 			DELAY(1);
566 			SIO_SET(SIS_MII_CLK);
567 			DELAY(1);
568 		}
569 		goto fail;
570 	}
571 
572 	for (i = 0x8000; i; i >>= 1) {
573 		SIO_CLR(SIS_MII_CLK);
574 		DELAY(1);
575 		if (!ack) {
576 			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
577 				frame->mii_data |= i;
578 			DELAY(1);
579 		}
580 		SIO_SET(SIS_MII_CLK);
581 		DELAY(1);
582 	}
583 
584 fail:
585 
586 	SIO_CLR(SIS_MII_CLK);
587 	DELAY(1);
588 	SIO_SET(SIS_MII_CLK);
589 	DELAY(1);
590 
591 	if (ack)
592 		return(1);
593 	return(0);
594 }
595 
596 /*
597  * Write to a PHY register through the MII.
598  */
599 static int
600 sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
601 {
602 	/*
603 	 * Set up frame for TX.
604 	 */
605 
606 	frame->mii_stdelim = SIS_MII_STARTDELIM;
607 	frame->mii_opcode = SIS_MII_WRITEOP;
608 	frame->mii_turnaround = SIS_MII_TURNAROUND;
609 
610 	/*
611 	 * Turn on data output.
612 	 */
613 	SIO_SET(SIS_MII_DIR);
614 
615 	sis_mii_sync(sc);
616 
617 	sis_mii_send(sc, frame->mii_stdelim, 2);
618 	sis_mii_send(sc, frame->mii_opcode, 2);
619 	sis_mii_send(sc, frame->mii_phyaddr, 5);
620 	sis_mii_send(sc, frame->mii_regaddr, 5);
621 	sis_mii_send(sc, frame->mii_turnaround, 2);
622 	sis_mii_send(sc, frame->mii_data, 16);
623 
624 	/* Idle bit. */
625 	SIO_SET(SIS_MII_CLK);
626 	DELAY(1);
627 	SIO_CLR(SIS_MII_CLK);
628 	DELAY(1);
629 
630 	/*
631 	 * Turn off xmit.
632 	 */
633 	SIO_CLR(SIS_MII_DIR);
634 
635 	return(0);
636 }
637 
638 static int
639 sis_miibus_readreg(device_t dev, int phy, int reg)
640 {
641 	struct sis_softc *sc;
642 	struct sis_mii_frame frame;
643 
644 	sc = device_get_softc(dev);
645 
646 	if (sc->sis_type == SIS_TYPE_83815) {
647 		if (phy != 0)
648 			return(0);
649 		/*
650 		 * The NatSemi chip can take a while after
651 		 * a reset to come ready, during which the BMSR
652 		 * returns a value of 0. This is *never* supposed
653 		 * to happen: some of the BMSR bits are meant to
654 		 * be hardwired in the on position, and this can
655 		 * confuse the miibus code a bit during the probe
656 		 * and attach phase. So we make an effort to check
657 		 * for this condition and wait for it to clear.
658 		 */
659 		if (!CSR_READ_4(sc, NS_BMSR))
660 			DELAY(1000);
661 		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
662 	}
663 	/*
664 	 * Chipsets < SIS_635 seem not to be able to read/write
665 	 * through mdio. Use the enhanced PHY access register
666 	 * again for them.
667 	 */
668 	if (sc->sis_type == SIS_TYPE_900 &&
669 	    sc->sis_rev < SIS_REV_635) {
670 		int i, val = 0;
671 
672 		if (phy != 0)
673 			return(0);
674 
675 		CSR_WRITE_4(sc, SIS_PHYCTL,
676 		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
677 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
678 
679 		for (i = 0; i < SIS_TIMEOUT; i++) {
680 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
681 				break;
682 		}
683 
684 		if (i == SIS_TIMEOUT) {
685 			device_printf(dev, "PHY failed to come ready\n");
686 			return(0);
687 		}
688 
689 		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
690 
691 		if (val == 0xFFFF)
692 			return(0);
693 
694 		return(val);
695 	} else {
696 		bzero((char *)&frame, sizeof(frame));
697 
698 		frame.mii_phyaddr = phy;
699 		frame.mii_regaddr = reg;
700 		sis_mii_readreg(sc, &frame);
701 
702 		return(frame.mii_data);
703 	}
704 }
705 
706 static int
707 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
708 {
709 	struct sis_softc *sc;
710 	struct sis_mii_frame frame;
711 
712 	sc = device_get_softc(dev);
713 
714 	if (sc->sis_type == SIS_TYPE_83815) {
715 		if (phy != 0)
716 			return(0);
717 		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
718 		return(0);
719 	}
720 
721 	if (sc->sis_type == SIS_TYPE_900 &&
722 	    sc->sis_rev < SIS_REV_635) {
723 		int i;
724 
725 		if (phy != 0)
726 			return(0);
727 
728 		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
729 		    (reg << 6) | SIS_PHYOP_WRITE);
730 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
731 
732 		for (i = 0; i < SIS_TIMEOUT; i++) {
733 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
734 				break;
735 		}
736 
737 		if (i == SIS_TIMEOUT)
738 			device_printf(dev, "PHY failed to come ready\n");
739 	} else {
740 		bzero((char *)&frame, sizeof(frame));
741 
742 		frame.mii_phyaddr = phy;
743 		frame.mii_regaddr = reg;
744 		frame.mii_data = data;
745 		sis_mii_writereg(sc, &frame);
746 	}
747 	return(0);
748 }
749 
750 static void sis_miibus_statchg(device_t dev)
751 {
752 	struct sis_softc *sc;
753 
754 	sc = device_get_softc(dev);
755 	sis_init(sc);
756 }
757 
758 static uint32_t
759 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
760 {
761 	uint32_t crc, carry;
762 	int i, j;
763 	uint8_t c;
764 
765 	/* Compute CRC for the address value. */
766 	crc = 0xFFFFFFFF; /* initial value */
767 
768 	for (i = 0; i < 6; i++) {
769 		c = *(addr + i);
770 		for (j = 0; j < 8; j++) {
771 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
772 			crc <<= 1;
773 			c >>= 1;
774 			if (carry)
775 				crc = (crc ^ 0x04c11db6) | carry;
776 		}
777 	}
778 
779 	/*
780 	 * return the filter bit position
781 	 *
782 	 * The NatSemi chip has a 512-bit filter, which is
783 	 * different than the SiS, so we special-case it.
784 	 */
785 	if (sc->sis_type == SIS_TYPE_83815)
786 		return (crc >> 23);
787 	else if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
788 		return (crc >> 24);
789 	else
790 		return (crc >> 25);
791 }
792 
793 static void
794 sis_setmulti_ns(struct sis_softc *sc)
795 {
796 	struct ifnet *ifp;
797 	struct ifmultiaddr *ifma;
798 	uint32_t h = 0, i, filtsave;
799 	int bit, index;
800 
801 	ifp = &sc->arpcom.ac_if;
802 
803 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
804 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
805 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
806 		return;
807 	}
808 
809 	/*
810 	 * We have to explicitly enable the multicast hash table
811 	 * on the NatSemi chip if we want to use it, which we do.
812 	 */
813 	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
814 	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
815 
816 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
817 
818 	/* first, zot all the existing hash bits */
819 	for (i = 0; i < 32; i++) {
820 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
821 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
822 	}
823 
824 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
825 		if (ifma->ifma_addr->sa_family != AF_LINK)
826 			continue;
827 		h = sis_mchash(sc,
828 			       LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
829 		index = h >> 3;
830 		bit = h & 0x1F;
831 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
832 		if (bit > 0xF)
833 			bit -= 0x10;
834 		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
835 	}
836 
837 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
838 }
839 
840 static void
841 sis_setmulti_sis(struct sis_softc *sc)
842 {
843 	struct ifnet *ifp;
844 	struct ifmultiaddr *ifma;
845 	uint32_t h, i, n, ctl;
846 	uint16_t hashes[16];
847 
848 	ifp = &sc->arpcom.ac_if;
849 
850 	/* hash table size */
851 	if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
852 		n = 16;
853 	else
854 		n = 8;
855 
856 	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
857 
858 	if (ifp->if_flags & IFF_BROADCAST)
859 		ctl |= SIS_RXFILTCTL_BROAD;
860 
861 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
862 		ctl |= SIS_RXFILTCTL_ALLMULTI;
863 		if (ifp->if_flags & IFF_PROMISC)
864 			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
865 		for (i = 0; i < n; i++)
866 			hashes[i] = ~0;
867 	} else {
868 		for (i = 0; i < n; i++)
869 			hashes[i] = 0;
870 		i = 0;
871 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
872 			if (ifma->ifma_addr->sa_family != AF_LINK)
873 				continue;
874 			h = sis_mchash(sc,
875 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
876 			hashes[h >> 4] |= 1 << (h & 0xf);
877 			i++;
878 		}
879 		if (i > n) {
880 			ctl |= SIS_RXFILTCTL_ALLMULTI;
881 			for (i = 0; i < n; i++)
882 				hashes[i] = ~0;
883 		}
884 	}
885 
886 	for (i = 0; i < n; i++) {
887 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
888 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
889 	}
890 
891 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
892 }
893 
894 static void
895 sis_reset(struct sis_softc *sc)
896 {
897 	struct ifnet *ifp = &sc->arpcom.ac_if;
898 	int i;
899 
900 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
901 
902 	for (i = 0; i < SIS_TIMEOUT; i++) {
903 		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
904 			break;
905 	}
906 
907 	if (i == SIS_TIMEOUT)
908 		if_printf(ifp, "reset never completed\n");
909 
910 	/* Wait a little while for the chip to get its brains in order. */
911 	DELAY(1000);
912 
913 	/*
914 	 * If this is a NetSemi chip, make sure to clear
915 	 * PME mode.
916 	 */
917 	if (sc->sis_type == SIS_TYPE_83815) {
918 		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
919 		CSR_WRITE_4(sc, NS_CLKRUN, 0);
920 	}
921 }
922 
923 /*
924  * Probe for an SiS chip. Check the PCI vendor and device
925  * IDs against our list and return a device name if we find a match.
926  */
927 static int
928 sis_probe(device_t dev)
929 {
930 	struct sis_type *t;
931 
932 	t = sis_devs;
933 
934 	while(t->sis_name != NULL) {
935 		if ((pci_get_vendor(dev) == t->sis_vid) &&
936 		    (pci_get_device(dev) == t->sis_did)) {
937 			device_set_desc(dev, t->sis_name);
938 			return(0);
939 		}
940 		t++;
941 	}
942 
943 	return(ENXIO);
944 }
945 
946 /*
947  * Attach the interface. Allocate softc structures, do ifmedia
948  * setup and ethernet/BPF attach.
949  */
950 static int
951 sis_attach(device_t dev)
952 {
953 	uint8_t eaddr[ETHER_ADDR_LEN];
954 	uint32_t command;
955 	struct sis_softc *sc;
956 	struct ifnet *ifp;
957 	int error, rid, waittime;
958 
959 	error = waittime = 0;
960 	sc = device_get_softc(dev);
961 
962 	if (pci_get_device(dev) == SIS_DEVICEID_900)
963 		sc->sis_type = SIS_TYPE_900;
964 	if (pci_get_device(dev) == SIS_DEVICEID_7016)
965 		sc->sis_type = SIS_TYPE_7016;
966 	if (pci_get_vendor(dev) == NS_VENDORID)
967 		sc->sis_type = SIS_TYPE_83815;
968 
969 	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
970 
971 	/*
972 	 * Handle power management nonsense.
973 	 */
974 
975 	command = pci_read_config(dev, SIS_PCI_CAPID, 4) & 0x000000FF;
976 	if (command == 0x01) {
977 
978 		command = pci_read_config(dev, SIS_PCI_PWRMGMTCTRL, 4);
979 		if (command & SIS_PSTATE_MASK) {
980 			uint32_t		iobase, membase, irq;
981 
982 			/* Save important PCI config data. */
983 			iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
984 			membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
985 			irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
986 
987 			/* Reset the power state. */
988 			device_printf(dev, "chip is in D%d power mode "
989 			    "-- setting to D0\n", command & SIS_PSTATE_MASK);
990 			command &= 0xFFFFFFFC;
991 			pci_write_config(dev, SIS_PCI_PWRMGMTCTRL, command, 4);
992 
993 			/* Restore PCI config data. */
994 			pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
995 			pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
996 			pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
997 		}
998 	}
999 
1000 	/*
1001 	 * Map control/status registers.
1002 	 */
1003 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1004 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1005 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1006 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1007 
1008 #ifdef SIS_USEIOSPACE
1009 	if (!(command & PCIM_CMD_PORTEN)) {
1010 		device_printf(dev, "failed to enable I/O ports!\n");
1011 		error = ENXIO;;
1012 		goto fail;
1013 	}
1014 #else
1015 	if (!(command & PCIM_CMD_MEMEN)) {
1016 		device_printf(dev, "failed to enable memory mapping!\n");
1017 		error = ENXIO;;
1018 		goto fail;
1019 	}
1020 #endif
1021 
1022 	rid = SIS_RID;
1023 	sc->sis_res = bus_alloc_resource_any(dev, SIS_RES, &rid, RF_ACTIVE);
1024 
1025 	if (sc->sis_res == NULL) {
1026 		device_printf(dev, "couldn't map ports/memory\n");
1027 		error = ENXIO;
1028 		goto fail;
1029 	}
1030 
1031 	sc->sis_btag = rman_get_bustag(sc->sis_res);
1032 	sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
1033 
1034 	/* Allocate interrupt */
1035 	rid = 0;
1036 	sc->sis_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1037 	    RF_SHAREABLE | RF_ACTIVE);
1038 
1039 	if (sc->sis_irq == NULL) {
1040 		device_printf(dev, "couldn't map interrupt\n");
1041 		error = ENXIO;
1042 		goto fail;
1043 	}
1044 
1045 	/* Reset the adapter. */
1046 	sis_reset(sc);
1047 
1048 	if (sc->sis_type == SIS_TYPE_900 &&
1049             (sc->sis_rev == SIS_REV_635 ||
1050              sc->sis_rev == SIS_REV_900B)) {
1051 		SIO_SET(SIS_CFG_RND_CNT);
1052 		SIO_SET(SIS_CFG_PERR_DETECT);
1053 	}
1054 
1055 	/*
1056 	 * Get station address from the EEPROM.
1057 	 */
1058 	switch (pci_get_vendor(dev)) {
1059 	case NS_VENDORID:
1060 		/*
1061 		 * Reading the MAC address out of the EEPROM on
1062 		 * the NatSemi chip takes a bit more work than
1063 		 * you'd expect. The address spans 4 16-bit words,
1064 		 * with the first word containing only a single bit.
1065 		 * You have to shift everything over one bit to
1066 		 * get it aligned properly. Also, the bits are
1067 		 * stored backwards (the LSB is really the MSB,
1068 		 * and so on) so you have to reverse them in order
1069 		 * to get the MAC address into the form we want.
1070 		 * Why? Who the hell knows.
1071 		 */
1072 		{
1073 			uint16_t		tmp[4];
1074 
1075 			sis_read_eeprom(sc, (caddr_t)&tmp,
1076 			    NS_EE_NODEADDR, 4, 0);
1077 
1078 			/* Shift everything over one bit. */
1079 			tmp[3] = tmp[3] >> 1;
1080 			tmp[3] |= tmp[2] << 15;
1081 			tmp[2] = tmp[2] >> 1;
1082 			tmp[2] |= tmp[1] << 15;
1083 			tmp[1] = tmp[1] >> 1;
1084 			tmp[1] |= tmp[0] << 15;
1085 
1086 			/* Now reverse all the bits. */
1087 			tmp[3] = sis_reverse(tmp[3]);
1088 			tmp[2] = sis_reverse(tmp[2]);
1089 			tmp[1] = sis_reverse(tmp[1]);
1090 
1091 			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1092 		}
1093 		break;
1094 	case SIS_VENDORID:
1095 	default:
1096 #ifdef __i386__
1097 		/*
1098 		 * If this is a SiS 630E chipset with an embedded
1099 		 * SiS 900 controller, we have to read the MAC address
1100 		 * from the APC CMOS RAM. Our method for doing this
1101 		 * is very ugly since we have to reach out and grab
1102 		 * ahold of hardware for which we cannot properly
1103 		 * allocate resources. This code is only compiled on
1104 		 * the i386 architecture since the SiS 630E chipset
1105 		 * is for x86 motherboards only. Note that there are
1106 		 * a lot of magic numbers in this hack. These are
1107 		 * taken from SiS's Linux driver. I'd like to replace
1108 		 * them with proper symbolic definitions, but that
1109 		 * requires some datasheets that I don't have access
1110 		 * to at the moment.
1111 		 */
1112 		if (sc->sis_rev == SIS_REV_630S ||
1113 		    sc->sis_rev == SIS_REV_630E ||
1114 		    sc->sis_rev == SIS_REV_630EA1)
1115 			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1116 
1117 		else if (sc->sis_rev == SIS_REV_635 ||
1118 			 sc->sis_rev == SIS_REV_630ET)
1119 			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1120 		else if (sc->sis_rev == SIS_REV_96x) {
1121 			/*
1122 			 * Allow to read EEPROM from LAN. It is shared
1123 			 * between a 1394 controller and the NIC and each
1124 			 * time we access it, we need to set SIS_EECMD_REQ.
1125 			 */
1126 			SIO_SET(SIS_EECMD_REQ);
1127 			for (waittime = 0; waittime < SIS_TIMEOUT;
1128 			    waittime++) {
1129 				/* Force EEPROM to idle state. */
1130 				sis_eeprom_idle(sc);
1131 				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1132 					sis_read_eeprom(sc, (caddr_t)&eaddr,
1133 					    SIS_EE_NODEADDR, 3, 0);
1134 					break;
1135 				}
1136 				DELAY(1);
1137 			}
1138 			/*
1139 			 * Set SIS_EECTL_CLK to high, so a other master
1140 			 * can operate on the i2c bus.
1141 			 */
1142 			SIO_SET(SIS_EECTL_CLK);
1143 			/* Refuse EEPROM access by LAN */
1144 			SIO_SET(SIS_EECMD_DONE);
1145 		} else
1146 #endif
1147 			sis_read_eeprom(sc, (caddr_t)&eaddr,
1148 			    SIS_EE_NODEADDR, 3, 0);
1149 		break;
1150 	}
1151 
1152 	callout_init(&sc->sis_timer);
1153 
1154 	/*
1155 	 * Allocate the parent bus DMA tag appropriate for PCI.
1156 	 */
1157 #define SIS_NSEG_NEW 32
1158 	error = bus_dma_tag_create(NULL,	/* parent */
1159 			1, 0,			/* alignment, boundary */
1160 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1161 			BUS_SPACE_MAXADDR,	/* highaddr */
1162 			NULL, NULL,		/* filter, filterarg */
1163 			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1164 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1165 			BUS_DMA_ALLOCNOW,	/* flags */
1166 			&sc->sis_parent_tag);
1167 	if (error)
1168 		goto fail;
1169 
1170 	/*
1171 	 * Now allocate a tag for the DMA descriptor lists and a chunk
1172 	 * of DMA-able memory based on the tag. Also obtain the physical
1173 	 * addresses of the RX and TX ring, which we'll need later.
1174 	 * All of our lists are allocated as a contiguous block of memory.
1175 	 */
1176 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1177 			1, 0,			/* alignment, boundary */
1178 			BUS_SPACE_MAXADDR,	/* lowaddr */
1179 			BUS_SPACE_MAXADDR,	/* highaddr */
1180 			NULL, NULL,		/* filter, filterarg */
1181 			SIS_RX_LIST_SZ, 1,	/* maxsize, nsegments */
1182 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1183 			0,			/* flags */
1184 			&sc->sis_ldata.sis_rx_tag);
1185 	if (error)
1186 		goto fail;
1187 
1188 	error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
1189 				 (void **)&sc->sis_ldata.sis_rx_list,
1190 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1191 				 &sc->sis_ldata.sis_rx_dmamap);
1192 
1193 	if (error) {
1194 		device_printf(dev, "no memory for rx list buffers!\n");
1195 		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1196 		sc->sis_ldata.sis_rx_tag = NULL;
1197 		goto fail;
1198 	}
1199 
1200 	error = bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1201 				sc->sis_ldata.sis_rx_dmamap,
1202 				sc->sis_ldata.sis_rx_list,
1203 				sizeof(struct sis_desc), sis_dma_map_ring,
1204 				&sc->sis_cdata.sis_rx_paddr, 0);
1205 
1206 	if (error) {
1207 		device_printf(dev, "cannot get address of the rx ring!\n");
1208 		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1209 				sc->sis_ldata.sis_rx_list,
1210 				sc->sis_ldata.sis_rx_dmamap);
1211 		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1212 		sc->sis_ldata.sis_rx_tag = NULL;
1213 		goto fail;
1214 	}
1215 
1216 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1217 			1, 0,			/* alignment, boundary */
1218 			BUS_SPACE_MAXADDR,	/* lowaddr */
1219 			BUS_SPACE_MAXADDR,	/* highaddr */
1220 			NULL, NULL,		/* filter, filterarg */
1221 			SIS_TX_LIST_SZ, 1,	/* maxsize, nsegments */
1222 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1223 			0,			/* flags */
1224 			&sc->sis_ldata.sis_tx_tag);
1225 	if (error)
1226 		goto fail;
1227 
1228 	error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
1229 				 (void **)&sc->sis_ldata.sis_tx_list,
1230 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1231 				 &sc->sis_ldata.sis_tx_dmamap);
1232 
1233 	if (error) {
1234 		device_printf(dev, "no memory for tx list buffers!\n");
1235 		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1236 		sc->sis_ldata.sis_tx_tag = NULL;
1237 		goto fail;
1238 	}
1239 
1240 	error = bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1241 				sc->sis_ldata.sis_tx_dmamap,
1242 				sc->sis_ldata.sis_tx_list,
1243 				sizeof(struct sis_desc), sis_dma_map_ring,
1244 				&sc->sis_cdata.sis_tx_paddr, 0);
1245 
1246 	if (error) {
1247 		device_printf(dev, "cannot get address of the tx ring!\n");
1248 		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1249 				sc->sis_ldata.sis_tx_list,
1250 				sc->sis_ldata.sis_tx_dmamap);
1251 		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1252 		sc->sis_ldata.sis_tx_tag = NULL;
1253 		goto fail;
1254 	}
1255 
1256 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1257 			1, 0,			/* alignment, boundary */
1258 			BUS_SPACE_MAXADDR,	/* lowaddr */
1259 			BUS_SPACE_MAXADDR,	/* highaddr */
1260 			NULL, NULL,		/* filter, filterarg */
1261 			MCLBYTES, 1,		/* maxsize, nsegments */
1262 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1263 			0,			/* flags */
1264 			&sc->sis_tag);
1265 	if (error)
1266 		goto fail;
1267 
1268 	ifp = &sc->arpcom.ac_if;
1269 	ifp->if_softc = sc;
1270 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1271 	ifp->if_mtu = ETHERMTU;
1272 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1273 	ifp->if_ioctl = sis_ioctl;
1274 	ifp->if_start = sis_start;
1275 	ifp->if_watchdog = sis_watchdog;
1276 	ifp->if_init = sis_init;
1277 	ifp->if_baudrate = 10000000;
1278 	ifq_set_maxlen(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1279 	ifq_set_ready(&ifp->if_snd);
1280 #ifdef DEVICE_POLLING
1281 	ifp->if_poll = sis_poll;
1282 #endif
1283 	ifp->if_capenable = ifp->if_capabilities;
1284 
1285 	/*
1286 	 * Do MII setup.
1287 	 */
1288 	if (mii_phy_probe(dev, &sc->sis_miibus,
1289 	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1290 		device_printf(dev, "MII without any PHY!\n");
1291 		error = ENXIO;
1292 		goto fail;
1293 	}
1294 
1295 	/*
1296 	 * Call MI attach routine.
1297 	 */
1298 	ether_ifattach(ifp, eaddr, NULL);
1299 
1300 	/*
1301 	 * Tell the upper layer(s) we support long frames.
1302 	 */
1303 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1304 
1305 	error = bus_setup_intr(dev, sc->sis_irq, INTR_NETSAFE,
1306 			       sis_intr, sc,
1307 			       &sc->sis_intrhand,
1308 			       ifp->if_serializer);
1309 
1310 	if (error) {
1311 		device_printf(dev, "couldn't set up irq\n");
1312 		ether_ifdetach(ifp);
1313 		goto fail;
1314 	}
1315 
1316 fail:
1317 	if (error)
1318 		sis_detach(dev);
1319 
1320 	return(error);
1321 }
1322 
1323 /*
1324  * Shutdown hardware and free up resources. It is called in both the error case
1325  * and the normal detach case so it needs to be careful about only freeing
1326  * resources that have actually been allocated.
1327  */
1328 static int
1329 sis_detach(device_t dev)
1330 {
1331 	struct sis_softc *sc = device_get_softc(dev);
1332 	struct ifnet *ifp = &sc->arpcom.ac_if;
1333 
1334 
1335 	if (device_is_attached(dev)) {
1336 		lwkt_serialize_enter(ifp->if_serializer);
1337 		sis_reset(sc);
1338 		sis_stop(sc);
1339 		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1340 		lwkt_serialize_exit(ifp->if_serializer);
1341 
1342 		ether_ifdetach(ifp);
1343 	}
1344 	if (sc->sis_miibus)
1345 		device_delete_child(dev, sc->sis_miibus);
1346 	bus_generic_detach(dev);
1347 
1348 	if (sc->sis_irq)
1349 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1350 	if (sc->sis_res)
1351 		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1352 
1353 	if (sc->sis_ldata.sis_rx_tag) {
1354 		bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
1355 				  sc->sis_ldata.sis_rx_dmamap);
1356 		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1357 				sc->sis_ldata.sis_rx_list,
1358 				sc->sis_ldata.sis_rx_dmamap);
1359 		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1360 	}
1361 
1362 	if (sc->sis_ldata.sis_tx_tag) {
1363 		bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
1364 				  sc->sis_ldata.sis_tx_dmamap);
1365 		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1366 				sc->sis_ldata.sis_tx_list,
1367 				sc->sis_ldata.sis_tx_dmamap);
1368 		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1369 	}
1370 	if (sc->sis_tag)
1371 		bus_dma_tag_destroy(sc->sis_tag);
1372 	if (sc->sis_parent_tag)
1373 		bus_dma_tag_destroy(sc->sis_parent_tag);
1374 
1375 	return(0);
1376 }
1377 
1378 /*
1379  * Initialize the transmit descriptors.
1380  */
1381 static int
1382 sis_list_tx_init(struct sis_softc *sc)
1383 {
1384 	struct sis_list_data *ld;
1385 	struct sis_ring_data *cd;
1386 	int i, nexti;
1387 
1388 	cd = &sc->sis_cdata;
1389 	ld = &sc->sis_ldata;
1390 
1391 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1392 		nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
1393 		ld->sis_tx_list[i].sis_nextdesc =
1394 			    &ld->sis_tx_list[nexti];
1395 		bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1396 				sc->sis_ldata.sis_tx_dmamap,
1397 				&ld->sis_tx_list[nexti],
1398 				sizeof(struct sis_desc), sis_dma_map_desc_next,
1399 				&ld->sis_tx_list[i], 0);
1400 		ld->sis_tx_list[i].sis_mbuf = NULL;
1401 		ld->sis_tx_list[i].sis_ptr = 0;
1402 		ld->sis_tx_list[i].sis_ctl = 0;
1403 	}
1404 
1405 	cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
1406 
1407 	bus_dmamap_sync(sc->sis_ldata.sis_tx_tag, sc->sis_ldata.sis_tx_dmamap,
1408 			BUS_DMASYNC_PREWRITE);
1409 
1410 	return(0);
1411 }
1412 
1413 /*
1414  * Initialize the RX descriptors and allocate mbufs for them. Note that
1415  * we arrange the descriptors in a closed ring, so that the last descriptor
1416  * points back to the first.
1417  */
1418 static int
1419 sis_list_rx_init(struct sis_softc *sc)
1420 {
1421 	struct sis_list_data *ld;
1422 	struct sis_ring_data *cd;
1423 	int i, nexti;
1424 
1425 	ld = &sc->sis_ldata;
1426 	cd = &sc->sis_cdata;
1427 
1428 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1429 		if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
1430 			return(ENOBUFS);
1431 		nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
1432 		ld->sis_rx_list[i].sis_nextdesc =
1433 			    &ld->sis_rx_list[nexti];
1434 		bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1435 				sc->sis_ldata.sis_rx_dmamap,
1436 				&ld->sis_rx_list[nexti],
1437 				sizeof(struct sis_desc), sis_dma_map_desc_next,
1438 				&ld->sis_rx_list[i], 0);
1439 	}
1440 
1441 	bus_dmamap_sync(sc->sis_ldata.sis_rx_tag, sc->sis_ldata.sis_rx_dmamap,
1442 			BUS_DMASYNC_PREWRITE);
1443 
1444 	cd->sis_rx_prod = 0;
1445 
1446 	return(0);
1447 }
1448 
1449 /*
1450  * Initialize an RX descriptor and attach an MBUF cluster.
1451  */
1452 static int
1453 sis_newbuf(struct sis_softc *sc, struct sis_desc *c, struct mbuf *m)
1454 {
1455 	if (m == NULL) {
1456 		m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1457 		if (m == NULL)
1458 			return(ENOBUFS);
1459 	} else {
1460 		m->m_data = m->m_ext.ext_buf;
1461 	}
1462 
1463 	c->sis_mbuf = m;
1464 	c->sis_ctl = SIS_RXLEN;
1465 
1466 	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1467 	bus_dmamap_load(sc->sis_tag, c->sis_map, mtod(m, void *), MCLBYTES,
1468 			sis_dma_map_desc_ptr, c, 0);
1469 	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
1470 
1471 	return(0);
1472 }
1473 
1474 /*
1475  * A frame has been uploaded: pass the resulting mbuf chain up to
1476  * the higher level protocols.
1477  */
1478 static void
1479 sis_rxeof(struct sis_softc *sc)
1480 {
1481 	struct mbuf *m;
1482 	struct ifnet *ifp;
1483 	struct sis_desc	*cur_rx;
1484 	int i, total_len = 0;
1485 	uint32_t rxstat;
1486 
1487 	ifp = &sc->arpcom.ac_if;
1488 	i = sc->sis_cdata.sis_rx_prod;
1489 
1490 	while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
1491 
1492 #ifdef DEVICE_POLLING
1493 		if (ifp->if_flags & IFF_POLLING) {
1494 			if (sc->rxcycles <= 0)
1495 				break;
1496 			sc->rxcycles--;
1497 		}
1498 #endif /* DEVICE_POLLING */
1499 		cur_rx = &sc->sis_ldata.sis_rx_list[i];
1500 		rxstat = cur_rx->sis_rxstat;
1501 		bus_dmamap_sync(sc->sis_tag, cur_rx->sis_map,
1502 				BUS_DMASYNC_POSTWRITE);
1503 		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1504 		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1505 		m = cur_rx->sis_mbuf;
1506 		cur_rx->sis_mbuf = NULL;
1507 		total_len = SIS_RXBYTES(cur_rx);
1508 		SIS_INC(i, SIS_RX_LIST_CNT);
1509 
1510 		/*
1511 		 * If an error occurs, update stats, clear the
1512 		 * status word and leave the mbuf cluster in place:
1513 		 * it should simply get re-used next time this descriptor
1514 	 	 * comes up in the ring.
1515 		 */
1516 		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1517 			ifp->if_ierrors++;
1518 			if (rxstat & SIS_RXSTAT_COLL)
1519 				ifp->if_collisions++;
1520 			sis_newbuf(sc, cur_rx, m);
1521 			continue;
1522 		}
1523 
1524 		/* No errors; receive the packet. */
1525 #ifdef __i386__
1526 		/*
1527 		 * On the x86 we do not have alignment problems, so try to
1528 		 * allocate a new buffer for the receive ring, and pass up
1529 		 * the one where the packet is already, saving the expensive
1530 		 * copy done in m_devget().
1531 		 * If we are on an architecture with alignment problems, or
1532 		 * if the allocation fails, then use m_devget and leave the
1533 		 * existing buffer in the receive ring.
1534 		 */
1535 		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1536 			m->m_pkthdr.len = m->m_len = total_len;
1537 		else
1538 #endif
1539 		{
1540 			struct mbuf *m0;
1541 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1542 				total_len + ETHER_ALIGN, 0, ifp, NULL);
1543 			sis_newbuf(sc, cur_rx, m);
1544 			if (m0 == NULL) {
1545 				ifp->if_ierrors++;
1546 				continue;
1547 			}
1548 			m_adj(m0, ETHER_ALIGN);
1549 			m = m0;
1550 		}
1551 
1552 		ifp->if_ipackets++;
1553 		ifp->if_input(ifp, m);
1554 	}
1555 
1556 	sc->sis_cdata.sis_rx_prod = i;
1557 }
1558 
1559 static void
1560 sis_rxeoc(struct sis_softc *sc)
1561 {
1562 	sis_rxeof(sc);
1563 	sis_init(sc);
1564 }
1565 
1566 /*
1567  * A frame was downloaded to the chip. It's safe for us to clean up
1568  * the list buffers.
1569  */
1570 
1571 static void
1572 sis_txeof(struct sis_softc *sc)
1573 {
1574 	struct sis_desc *cur_tx;
1575 	struct ifnet *ifp;
1576 	uint32_t idx;
1577 
1578 	ifp = &sc->arpcom.ac_if;
1579 
1580 	/*
1581 	 * Go through our tx list and free mbufs for those
1582 	 * frames that have been transmitted.
1583 	 */
1584 	for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
1585 	     sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1586 		cur_tx = &sc->sis_ldata.sis_tx_list[idx];
1587 
1588 		if (SIS_OWNDESC(cur_tx))
1589 			break;
1590 
1591 		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1592 			continue;
1593 
1594 		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1595 			ifp->if_oerrors++;
1596 			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1597 				ifp->if_collisions++;
1598 			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1599 				ifp->if_collisions++;
1600 		}
1601 
1602 		ifp->if_collisions +=
1603 		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1604 
1605 		ifp->if_opackets++;
1606 		if (cur_tx->sis_mbuf != NULL) {
1607 			m_freem(cur_tx->sis_mbuf);
1608 			cur_tx->sis_mbuf = NULL;
1609 			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1610 			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1611 		}
1612 	}
1613 
1614 	if (idx != sc->sis_cdata.sis_tx_cons) {
1615 		/* we freed up some buffers */
1616 		sc->sis_cdata.sis_tx_cons = idx;
1617 		ifp->if_flags &= ~IFF_OACTIVE;
1618 	}
1619 
1620 	ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
1621 }
1622 
1623 static void
1624 sis_tick(void *xsc)
1625 {
1626 	struct sis_softc *sc = xsc;
1627 	struct mii_data *mii;
1628 	struct ifnet *ifp = &sc->arpcom.ac_if;
1629 
1630 	lwkt_serialize_enter(ifp->if_serializer);
1631 
1632 	mii = device_get_softc(sc->sis_miibus);
1633 	mii_tick(mii);
1634 
1635 	if (!sc->sis_link) {
1636 		mii_pollstat(mii);
1637 		if (mii->mii_media_status & IFM_ACTIVE &&
1638 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1639 			sc->sis_link++;
1640 		if (!ifq_is_empty(&ifp->if_snd))
1641 			sis_start(ifp);
1642 	}
1643 
1644 	callout_reset(&sc->sis_timer, hz, sis_tick, sc);
1645 	lwkt_serialize_exit(ifp->if_serializer);
1646 }
1647 
1648 #ifdef DEVICE_POLLING
1649 
1650 static void
1651 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1652 {
1653 	struct  sis_softc *sc = ifp->if_softc;
1654 
1655 	switch(cmd) {
1656 	case POLL_REGISTER:
1657 		/* disable interrupts */
1658 		CSR_WRITE_4(sc, SIS_IER, 0);
1659 		break;
1660 	case POLL_DEREGISTER:
1661 		/* enable interrupts */
1662 		CSR_WRITE_4(sc, SIS_IER, 1);
1663 		break;
1664 	default:
1665 		/*
1666 		 * On the sis, reading the status register also clears it.
1667 		 * So before returning to intr mode we must make sure that all
1668 		 * possible pending sources of interrupts have been served.
1669 		 * In practice this means run to completion the *eof routines,
1670 		 * and then call the interrupt routine
1671 		 */
1672 		sc->rxcycles = count;
1673 		sis_rxeof(sc);
1674 		sis_txeof(sc);
1675 		if (!ifq_is_empty(&ifp->if_snd))
1676 			sis_start(ifp);
1677 
1678 		if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1679 			uint32_t status;
1680 
1681 			/* Reading the ISR register clears all interrupts. */
1682 			status = CSR_READ_4(sc, SIS_ISR);
1683 
1684 			if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1685 				sis_rxeoc(sc);
1686 
1687 			if (status & (SIS_ISR_RX_IDLE))
1688 				SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1689 
1690 			if (status & SIS_ISR_SYSERR) {
1691 				sis_reset(sc);
1692 				sis_init(sc);
1693 			}
1694 		}
1695 		break;
1696 	}
1697 }
1698 #endif /* DEVICE_POLLING */
1699 
1700 static void
1701 sis_intr(void *arg)
1702 {
1703 	struct sis_softc *sc;
1704 	struct ifnet *ifp;
1705 	uint32_t status;
1706 
1707 	sc = arg;
1708 	ifp = &sc->arpcom.ac_if;
1709 
1710 	/* Supress unwanted interrupts */
1711 	if (!(ifp->if_flags & IFF_UP)) {
1712 		sis_stop(sc);
1713 		return;
1714 	}
1715 
1716 	/* Disable interrupts. */
1717 	CSR_WRITE_4(sc, SIS_IER, 0);
1718 
1719 	for (;;) {
1720 		/* Reading the ISR register clears all interrupts. */
1721 		status = CSR_READ_4(sc, SIS_ISR);
1722 
1723 		if ((status & SIS_INTRS) == 0)
1724 			break;
1725 
1726 		if (status &
1727 		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR | SIS_ISR_TX_OK |
1728 		     SIS_ISR_TX_IDLE) )
1729 			sis_txeof(sc);
1730 
1731 		if (status &
1732 		    (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK | SIS_ISR_RX_IDLE))
1733 			sis_rxeof(sc);
1734 
1735 		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1736 			sis_rxeoc(sc);
1737 
1738 		if (status & (SIS_ISR_RX_IDLE))
1739 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1740 
1741 		if (status & SIS_ISR_SYSERR) {
1742 			sis_reset(sc);
1743 			sis_init(sc);
1744 		}
1745 	}
1746 
1747 	/* Re-enable interrupts. */
1748 	CSR_WRITE_4(sc, SIS_IER, 1);
1749 
1750 	if (!ifq_is_empty(&ifp->if_snd))
1751 		sis_start(ifp);
1752 }
1753 
1754 /*
1755  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1756  * pointers to the fragment pointers.
1757  */
1758 static int
1759 sis_encap(struct sis_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1760 {
1761 	struct sis_desc *f = NULL;
1762 	struct mbuf *m;
1763 	int frag, cur, cnt = 0;
1764 
1765 	/*
1766 	 * If there's no way we can send any packets, return now.
1767 	 */
1768 	if (SIS_TX_LIST_CNT - sc->sis_cdata.sis_tx_cnt < 2)
1769 		return (ENOBUFS);
1770 
1771 	/*
1772  	 * Start packing the mbufs in this chain into
1773 	 * the fragment pointers. Stop when we run out
1774  	 * of fragments or hit the end of the mbuf chain.
1775 	 */
1776 	m = m_head;
1777 	cur = frag = *txidx;
1778 
1779 	for (m = m_head; m != NULL; m = m->m_next) {
1780 		if (m->m_len != 0) {
1781 			if ((SIS_TX_LIST_CNT -
1782 			    (sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
1783 				return(ENOBUFS);
1784 			f = &sc->sis_ldata.sis_tx_list[frag];
1785 			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1786 			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1787 			bus_dmamap_load(sc->sis_tag, f->sis_map,
1788 					mtod(m, void *), m->m_len,
1789 					sis_dma_map_desc_ptr, f, 0);
1790 			bus_dmamap_sync(sc->sis_tag, f->sis_map,
1791 					BUS_DMASYNC_PREREAD);
1792 			if (cnt != 0)
1793 				f->sis_ctl |= SIS_CMDSTS_OWN;
1794 			cur = frag;
1795 			SIS_INC(frag, SIS_TX_LIST_CNT);
1796 			cnt++;
1797 		}
1798 	}
1799 
1800 	if (m != NULL)
1801 		return(ENOBUFS);
1802 
1803 	sc->sis_ldata.sis_tx_list[cur].sis_mbuf = m_head;
1804 	sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1805 	sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1806 	sc->sis_cdata.sis_tx_cnt += cnt;
1807 	*txidx = frag;
1808 
1809 	return(0);
1810 }
1811 
1812 /*
1813  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1814  * to the mbuf data regions directly in the transmit lists. We also save a
1815  * copy of the pointers since the transmit list fragment pointers are
1816  * physical addresses.
1817  */
1818 
1819 static void
1820 sis_start(struct ifnet *ifp)
1821 {
1822 	struct sis_softc *sc;
1823 	struct mbuf *m_head = NULL;
1824 	uint32_t idx;
1825 	int need_trans;
1826 
1827 	sc = ifp->if_softc;
1828 
1829 	if (!sc->sis_link)
1830 		return;
1831 
1832 	idx = sc->sis_cdata.sis_tx_prod;
1833 
1834 	if (ifp->if_flags & IFF_OACTIVE)
1835 		return;
1836 
1837 	need_trans = 0;
1838 	while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
1839 		m_head = ifq_poll(&ifp->if_snd);
1840 		if (m_head == NULL)
1841 			break;
1842 
1843 		if (sis_encap(sc, m_head, &idx)) {
1844 			ifp->if_flags |= IFF_OACTIVE;
1845 			break;
1846 		}
1847 		ifq_dequeue(&ifp->if_snd, m_head);
1848 		need_trans = 1;
1849 
1850 		/*
1851 		 * If there's a BPF listener, bounce a copy of this frame
1852 		 * to him.
1853 		 */
1854 		BPF_MTAP(ifp, m_head);
1855 	}
1856 
1857 	if (!need_trans)
1858 		return;
1859 
1860 	/* Transmit */
1861 	sc->sis_cdata.sis_tx_prod = idx;
1862 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1863 
1864 	/*
1865 	 * Set a timeout in case the chip goes out to lunch.
1866 	 */
1867 	ifp->if_timer = 5;
1868 }
1869 
1870 static void
1871 sis_init(void *xsc)
1872 {
1873 	struct sis_softc *sc = xsc;
1874 	struct ifnet *ifp = &sc->arpcom.ac_if;
1875 	struct mii_data *mii;
1876 
1877 	/*
1878 	 * Cancel pending I/O and free all RX/TX buffers.
1879 	 */
1880 	sis_stop(sc);
1881 
1882 	mii = device_get_softc(sc->sis_miibus);
1883 
1884 	/* Set MAC address */
1885 	if (sc->sis_type == SIS_TYPE_83815) {
1886 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1887 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1888 		    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1889 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1890 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1891 		    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1892 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1893 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1894 		    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1895 	} else {
1896 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1897 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1898 		    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1899 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1900 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1901 		    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1902 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1903 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1904 		    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1905 	}
1906 
1907 	/* Init circular RX list. */
1908 	if (sis_list_rx_init(sc) == ENOBUFS) {
1909 		if_printf(ifp, "initialization failed: "
1910 			  "no memory for rx buffers\n");
1911 		sis_stop(sc);
1912 		return;
1913 	}
1914 
1915 	/*
1916 	 * Init tx descriptors.
1917 	 */
1918 	sis_list_tx_init(sc);
1919 
1920 	/*
1921 	 * For the NatSemi chip, we have to explicitly enable the
1922 	 * reception of ARP frames, as well as turn on the 'perfect
1923 	 * match' filter where we store the station address, otherwise
1924 	 * we won't receive unicasts meant for this host.
1925 	 */
1926 	if (sc->sis_type == SIS_TYPE_83815) {
1927 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
1928 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
1929 	}
1930 
1931 	 /* If we want promiscuous mode, set the allframes bit. */
1932 	if (ifp->if_flags & IFF_PROMISC)
1933 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1934 	else
1935 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1936 
1937 	/*
1938 	 * Set the capture broadcast bit to capture broadcast frames.
1939 	 */
1940 	if (ifp->if_flags & IFF_BROADCAST)
1941 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1942 	else
1943 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1944 
1945 	/*
1946 	 * Load the multicast filter.
1947 	 */
1948 	if (sc->sis_type == SIS_TYPE_83815)
1949 		sis_setmulti_ns(sc);
1950 	else
1951 		sis_setmulti_sis(sc);
1952 
1953 	/* Turn the receive filter on */
1954 	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
1955 
1956 	/*
1957 	 * Load the address of the RX and TX lists.
1958 	 */
1959 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
1960 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
1961 
1962 	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
1963 	 * the PCI bus. When this bit is set, the Max DMA Burst Size
1964 	 * for TX/RX DMA should be no larger than 16 double words.
1965 	 */
1966 	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN)
1967 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
1968 	else
1969 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
1970 
1971 	/* Accept Long Packets for VLAN support */
1972 	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
1973 
1974 	/* Set TX configuration */
1975 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T)
1976 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
1977 	else
1978 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
1979 
1980 	/* Set full/half duplex mode. */
1981 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1982 		SIS_SETBIT(sc, SIS_TX_CFG,
1983 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1984 		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1985 	} else {
1986 		SIS_CLRBIT(sc, SIS_TX_CFG,
1987 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1988 		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1989 	}
1990 
1991 	/*
1992 	 * Enable interrupts.
1993 	 */
1994 	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
1995 #ifdef DEVICE_POLLING
1996 	/*
1997 	 * ... only enable interrupts if we are not polling, make sure
1998 	 * they are off otherwise.
1999 	 */
2000 	if (ifp->if_flags & IFF_POLLING)
2001 		CSR_WRITE_4(sc, SIS_IER, 0);
2002 	else
2003 #endif /* DEVICE_POLLING */
2004 	CSR_WRITE_4(sc, SIS_IER, 1);
2005 
2006 	/* Enable receiver and transmitter. */
2007 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2008 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2009 
2010 #ifdef notdef
2011 	mii_mediachg(mii);
2012 #endif
2013 
2014 	/*
2015 	 * Page 75 of the DP83815 manual recommends the
2016 	 * following register settings "for optimum
2017 	 * performance." Note however that at least three
2018 	 * of the registers are listed as "reserved" in
2019 	 * the register map, so who knows what they do.
2020 	 */
2021 	if (sc->sis_type == SIS_TYPE_83815) {
2022 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2023 		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2024 		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2025 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2026 		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2027 	}
2028 
2029 	ifp->if_flags |= IFF_RUNNING;
2030 	ifp->if_flags &= ~IFF_OACTIVE;
2031 
2032 	callout_reset(&sc->sis_timer, hz, sis_tick, sc);
2033 }
2034 
2035 /*
2036  * Set media options.
2037  */
2038 static int
2039 sis_ifmedia_upd(struct ifnet *ifp)
2040 {
2041 	struct sis_softc *sc;
2042 	struct mii_data *mii;
2043 
2044 	sc = ifp->if_softc;
2045 
2046 	mii = device_get_softc(sc->sis_miibus);
2047 	sc->sis_link = 0;
2048 	if (mii->mii_instance) {
2049 		struct mii_softc	*miisc;
2050 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2051 			mii_phy_reset(miisc);
2052 	}
2053 	mii_mediachg(mii);
2054 
2055 	return(0);
2056 }
2057 
2058 /*
2059  * Report current media status.
2060  */
2061 static void
2062 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2063 {
2064 	struct sis_softc *sc;
2065 	struct mii_data *mii;
2066 
2067 	sc = ifp->if_softc;
2068 
2069 	mii = device_get_softc(sc->sis_miibus);
2070 	mii_pollstat(mii);
2071 	ifmr->ifm_active = mii->mii_media_active;
2072 	ifmr->ifm_status = mii->mii_media_status;
2073 }
2074 
2075 static int
2076 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2077 {
2078 	struct sis_softc *sc = ifp->if_softc;
2079 	struct ifreq *ifr = (struct ifreq *) data;
2080 	struct mii_data *mii;
2081 	int error = 0;
2082 
2083 	switch(command) {
2084 	case SIOCSIFFLAGS:
2085 		if (ifp->if_flags & IFF_UP) {
2086 			sis_init(sc);
2087 		} else {
2088 			if (ifp->if_flags & IFF_RUNNING)
2089 				sis_stop(sc);
2090 		}
2091 		error = 0;
2092 		break;
2093 	case SIOCADDMULTI:
2094 	case SIOCDELMULTI:
2095 		if (sc->sis_type == SIS_TYPE_83815)
2096 			sis_setmulti_ns(sc);
2097 		else
2098 			sis_setmulti_sis(sc);
2099 		error = 0;
2100 		break;
2101 	case SIOCGIFMEDIA:
2102 	case SIOCSIFMEDIA:
2103 		mii = device_get_softc(sc->sis_miibus);
2104 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2105 		break;
2106 	default:
2107 		error = ether_ioctl(ifp, command, data);
2108 		break;
2109 	}
2110 	return(error);
2111 }
2112 
2113 static void
2114 sis_watchdog(struct ifnet *ifp)
2115 {
2116 	struct sis_softc *sc;
2117 
2118 	sc = ifp->if_softc;
2119 
2120 	ifp->if_oerrors++;
2121 	if_printf(ifp, "watchdog timeout\n");
2122 
2123 	sis_stop(sc);
2124 	sis_reset(sc);
2125 	sis_init(sc);
2126 
2127 	if (!ifq_is_empty(&ifp->if_snd))
2128 		sis_start(ifp);
2129 }
2130 
2131 /*
2132  * Stop the adapter and free any mbufs allocated to the
2133  * RX and TX lists.
2134  */
2135 static void
2136 sis_stop(struct sis_softc *sc)
2137 {
2138 	int i;
2139 	struct ifnet *ifp;
2140 
2141 	ifp = &sc->arpcom.ac_if;
2142 	ifp->if_timer = 0;
2143 
2144 	callout_stop(&sc->sis_timer);
2145 
2146 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2147 	CSR_WRITE_4(sc, SIS_IER, 0);
2148 	CSR_WRITE_4(sc, SIS_IMR, 0);
2149 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2150 	DELAY(1000);
2151 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2152 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2153 
2154 	sc->sis_link = 0;
2155 
2156 	/*
2157 	 * Free data in the RX lists.
2158 	 */
2159 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2160 		if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
2161 			bus_dmamap_unload(sc->sis_tag,
2162 					  sc->sis_ldata.sis_rx_list[i].sis_map);
2163 			bus_dmamap_destroy(sc->sis_tag,
2164 					  sc->sis_ldata.sis_rx_list[i].sis_map);
2165 			m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
2166 			sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
2167 		}
2168 	}
2169 	bzero(sc->sis_ldata.sis_rx_list, sizeof(sc->sis_ldata.sis_rx_list));
2170 
2171 	/*
2172 	 * Free the TX list buffers.
2173 	 */
2174 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2175 		if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
2176 			bus_dmamap_unload(sc->sis_tag,
2177 					  sc->sis_ldata.sis_tx_list[i].sis_map);
2178 			bus_dmamap_destroy(sc->sis_tag,
2179 					  sc->sis_ldata.sis_tx_list[i].sis_map);
2180 			m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
2181 			sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
2182 		}
2183 	}
2184 
2185 	bzero(sc->sis_ldata.sis_tx_list, sizeof(sc->sis_ldata.sis_tx_list));
2186 }
2187 
2188 /*
2189  * Stop all chip I/O so that the kernel's probe routines don't
2190  * get confused by errant DMAs when rebooting.
2191  */
2192 static void
2193 sis_shutdown(device_t dev)
2194 {
2195 	struct sis_softc	*sc;
2196 	struct ifnet *ifp;
2197 
2198 	sc = device_get_softc(dev);
2199 	ifp = &sc->arpcom.ac_if;
2200 	lwkt_serialize_enter(ifp->if_serializer);
2201 	sis_reset(sc);
2202 	sis_stop(sc);
2203 	lwkt_serialize_exit(ifp->if_serializer);
2204 }
2205 
2206