xref: /dragonfly/sys/dev/netif/sis/if_sis.c (revision 7d84b73d)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sis.c,v 1.13.4.24 2003/03/05 18:42:33 njl Exp $
33  */
34 
35 /*
36  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
37  * available from http://www.sis.com.tw.
38  *
39  * This driver also supports the NatSemi DP83815. Datasheets are
40  * available from http://www.national.com.
41  *
42  * Written by Bill Paul <wpaul@ee.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
49  * simple TX and RX descriptors of 3 longwords in size. The receiver
50  * has a single perfect filter entry for the station address and a
51  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
52  * transceiver while the 7016 requires an external transceiver chip.
53  * Both chips offer the standard bit-bang MII interface as well as
54  * an enchanced PHY interface which simplifies accessing MII registers.
55  *
56  * The only downside to this chipset is that RX descriptors must be
57  * longword aligned.
58  */
59 
60 #include "opt_ifpoll.h"
61 
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/sysctl.h>
70 #include <sys/serialize.h>
71 #include <sys/bus.h>
72 #include <sys/rman.h>
73 #include <sys/interrupt.h>
74 
75 #include <net/if.h>
76 #include <net/ifq_var.h>
77 #include <net/if_arp.h>
78 #include <net/ethernet.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_poll.h>
82 #include <net/if_types.h>
83 #include <net/vlan/if_vlan_var.h>
84 
85 #include <net/bpf.h>
86 
87 #include <dev/netif/mii_layer/mii.h>
88 #include <dev/netif/mii_layer/miivar.h>
89 
90 #include "pcidevs.h"
91 #include <bus/pci/pcireg.h>
92 #include <bus/pci/pcivar.h>
93 
94 #define SIS_USEIOSPACE
95 
96 #include "if_sisreg.h"
97 
98 /* "controller miibus0" required.  See GENERIC if you get errors here. */
99 #include "miibus_if.h"
100 
101 /*
102  * Various supported device vendors/types and their names.
103  */
104 static struct sis_type sis_devs[] = {
105 	{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, "SiS 900 10/100BaseTX" },
106 	{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016, "SiS 7016 10/100BaseTX" },
107 	{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
108 	{ 0, 0, NULL }
109 };
110 
111 static int	sis_probe(device_t);
112 static int	sis_attach(device_t);
113 static int	sis_detach(device_t);
114 
115 static int	sis_newbuf(struct sis_softc *, int, int);
116 static void	sis_setup_rxdesc(struct sis_softc *, int);
117 static int	sis_encap(struct sis_softc *, struct mbuf **, uint32_t *);
118 static void	sis_rxeof(struct sis_softc *);
119 static void	sis_rxeoc(struct sis_softc *);
120 static void	sis_txeof(struct sis_softc *);
121 static void	sis_intr(void *);
122 static void	sis_tick(void *);
123 static void	sis_start(struct ifnet *, struct ifaltq_subque *);
124 static int	sis_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
125 static void	sis_init(void *);
126 static void	sis_stop(struct sis_softc *);
127 static void	sis_watchdog(struct ifnet *);
128 static void	sis_shutdown(device_t);
129 static int	sis_ifmedia_upd(struct ifnet *);
130 static void	sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
131 
132 static uint16_t	sis_reverse(uint16_t);
133 static void	sis_delay(struct sis_softc *);
134 static void	sis_eeprom_idle(struct sis_softc *);
135 static void	sis_eeprom_putbyte(struct sis_softc *, int);
136 static void	sis_eeprom_getword(struct sis_softc *, int, uint16_t *);
137 static void	sis_read_eeprom(struct sis_softc *, caddr_t, int, int, int);
138 #ifdef __x86_64__
139 static void	sis_read_cmos(struct sis_softc *, device_t, caddr_t, int, int);
140 static void	sis_read_mac(struct sis_softc *, device_t, caddr_t);
141 static device_t	sis_find_bridge(device_t);
142 #endif
143 
144 static void	sis_mii_sync(struct sis_softc *);
145 static void	sis_mii_send(struct sis_softc *, uint32_t, int);
146 static int	sis_mii_readreg(struct sis_softc *, struct sis_mii_frame *);
147 static int	sis_mii_writereg(struct sis_softc *, struct sis_mii_frame *);
148 static int	sis_miibus_readreg(device_t, int, int);
149 static int	sis_miibus_writereg(device_t, int, int, int);
150 static void	sis_miibus_statchg(device_t);
151 
152 static void	sis_setmulti_sis(struct sis_softc *);
153 static void	sis_setmulti_ns(struct sis_softc *);
154 static uint32_t	sis_mchash(struct sis_softc *, const uint8_t *);
155 static void	sis_reset(struct sis_softc *);
156 static int	sis_list_rx_init(struct sis_softc *);
157 static int	sis_list_tx_init(struct sis_softc *);
158 
159 static int	sis_dma_alloc(device_t dev);
160 static void	sis_dma_free(device_t dev);
161 #ifdef IFPOLL_ENABLE
162 static void	sis_npoll(struct ifnet *, struct ifpoll_info *);
163 static void	sis_npoll_compat(struct ifnet *, void *, int);
164 #endif
165 #ifdef SIS_USEIOSPACE
166 #define SIS_RES			SYS_RES_IOPORT
167 #define SIS_RID			SIS_PCI_LOIO
168 #else
169 #define SIS_RES			SYS_RES_MEMORY
170 #define SIS_RID			SIS_PCI_LOMEM
171 #endif
172 
173 static device_method_t sis_methods[] = {
174 	/* Device interface */
175 	DEVMETHOD(device_probe,		sis_probe),
176 	DEVMETHOD(device_attach,	sis_attach),
177 	DEVMETHOD(device_detach,	sis_detach),
178 	DEVMETHOD(device_shutdown,	sis_shutdown),
179 
180 	/* bus interface */
181 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
182 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
183 
184 	/* MII interface */
185 	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
186 	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
187 	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
188 
189 	DEVMETHOD_END
190 };
191 
192 static driver_t sis_driver = {
193 	"sis",
194 	sis_methods,
195 	sizeof(struct sis_softc)
196 };
197 
198 static devclass_t sis_devclass;
199 
200 DECLARE_DUMMY_MODULE(if_sis);
201 DRIVER_MODULE(if_sis, pci, sis_driver, sis_devclass, NULL, NULL);
202 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, NULL, NULL);
203 
204 #define SIS_SETBIT(sc, reg, x)				\
205 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
206 
207 #define SIS_CLRBIT(sc, reg, x)				\
208 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
209 
210 #define SIO_SET(x)					\
211 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
212 
213 #define SIO_CLR(x)					\
214 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
215 
216 /*
217  * Routine to reverse the bits in a word. Stolen almost
218  * verbatim from /usr/games/fortune.
219  */
220 static uint16_t
221 sis_reverse(uint16_t n)
222 {
223 	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
224 	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
225 	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
226 	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
227 
228 	return(n);
229 }
230 
231 static void
232 sis_delay(struct sis_softc *sc)
233 {
234 	int idx;
235 
236 	for (idx = (300 / 33) + 1; idx > 0; idx--)
237 		CSR_READ_4(sc, SIS_CSR);
238 }
239 
240 static void
241 sis_eeprom_idle(struct sis_softc *sc)
242 {
243 	int i;
244 
245 	SIO_SET(SIS_EECTL_CSEL);
246 	sis_delay(sc);
247 	SIO_SET(SIS_EECTL_CLK);
248 	sis_delay(sc);
249 
250 	for (i = 0; i < 25; i++) {
251 		SIO_CLR(SIS_EECTL_CLK);
252 		sis_delay(sc);
253 		SIO_SET(SIS_EECTL_CLK);
254 		sis_delay(sc);
255 	}
256 
257 	SIO_CLR(SIS_EECTL_CLK);
258 	sis_delay(sc);
259 	SIO_CLR(SIS_EECTL_CSEL);
260 	sis_delay(sc);
261 	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
262 }
263 
264 /*
265  * Send a read command and address to the EEPROM, check for ACK.
266  */
267 static void
268 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
269 {
270 	int d, i;
271 
272 	d = addr | SIS_EECMD_READ;
273 
274 	/*
275 	 * Feed in each bit and stobe the clock.
276 	 */
277 	for (i = 0x400; i; i >>= 1) {
278 		if (d & i)
279 			SIO_SET(SIS_EECTL_DIN);
280 		else
281 			SIO_CLR(SIS_EECTL_DIN);
282 		sis_delay(sc);
283 		SIO_SET(SIS_EECTL_CLK);
284 		sis_delay(sc);
285 		SIO_CLR(SIS_EECTL_CLK);
286 		sis_delay(sc);
287 	}
288 }
289 
290 /*
291  * Read a word of data stored in the EEPROM at address 'addr.'
292  */
293 static void
294 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
295 {
296 	int i;
297 	uint16_t word = 0;
298 
299 	/* Force EEPROM to idle state. */
300 	sis_eeprom_idle(sc);
301 
302 	/* Enter EEPROM access mode. */
303 	sis_delay(sc);
304 	SIO_CLR(SIS_EECTL_CLK);
305 	sis_delay(sc);
306 	SIO_SET(SIS_EECTL_CSEL);
307 	sis_delay(sc);
308 
309 	/*
310 	 * Send address of word we want to read.
311 	 */
312 	sis_eeprom_putbyte(sc, addr);
313 
314 	/*
315 	 * Start reading bits from EEPROM.
316 	 */
317 	for (i = 0x8000; i; i >>= 1) {
318 		SIO_SET(SIS_EECTL_CLK);
319 		sis_delay(sc);
320 		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
321 			word |= i;
322 		sis_delay(sc);
323 		SIO_CLR(SIS_EECTL_CLK);
324 		sis_delay(sc);
325 	}
326 
327 	/* Turn off EEPROM access mode. */
328 	sis_eeprom_idle(sc);
329 
330 	*dest = word;
331 }
332 
333 /*
334  * Read a sequence of words from the EEPROM.
335  */
336 static void
337 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
338 {
339 	int i;
340 	uint16_t word = 0, *ptr;
341 
342 	for (i = 0; i < cnt; i++) {
343 		sis_eeprom_getword(sc, off + i, &word);
344 		ptr = (uint16_t *)(dest + (i * 2));
345 		if (swap)
346 			*ptr = ntohs(word);
347 		else
348 			*ptr = word;
349 	}
350 }
351 
352 #ifdef __x86_64__
353 static device_t
354 sis_find_bridge(device_t dev)
355 {
356 	devclass_t pci_devclass;
357 	device_t *pci_devices;
358 	int pci_count = 0;
359 	device_t *pci_children;
360 	int pci_childcount = 0;
361 	device_t *busp, *childp;
362 	device_t child = NULL;
363 	int i, j;
364 
365 	if ((pci_devclass = devclass_find("pci")) == NULL)
366 		return(NULL);
367 
368 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
369 
370 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
371 		pci_childcount = 0;
372 		device_get_children(*busp, &pci_children, &pci_childcount);
373 		for (j = 0, childp = pci_children; j < pci_childcount;
374 		     j++, childp++) {
375 			if (pci_get_vendor(*childp) == PCI_VENDOR_SIS &&
376 			    pci_get_device(*childp) == 0x0008) {
377 				child = *childp;
378 				goto done;
379 			}
380 		}
381 	}
382 
383 done:
384 	kfree(pci_devices, M_TEMP);
385 	kfree(pci_children, M_TEMP);
386 	return(child);
387 }
388 
389 static void
390 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off,
391 	      int cnt)
392 {
393 	device_t bridge;
394 	uint8_t reg;
395 	int i;
396 	bus_space_tag_t	btag;
397 
398 	bridge = sis_find_bridge(dev);
399 	if (bridge == NULL)
400 		return;
401 	reg = pci_read_config(bridge, 0x48, 1);
402 	pci_write_config(bridge, 0x48, reg|0x40, 1);
403 
404 	/* XXX */
405 	btag = X86_64_BUS_SPACE_IO;
406 
407 	for (i = 0; i < cnt; i++) {
408 		bus_space_write_1(btag, 0x0, 0x70, i + off);
409 		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
410 	}
411 
412 	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
413 }
414 
415 static void
416 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
417 {
418 	uint32_t filtsave, csrsave;
419 
420 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
421 	csrsave = CSR_READ_4(sc, SIS_CSR);
422 
423 	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
424 	CSR_WRITE_4(sc, SIS_CSR, 0);
425 
426 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
427 
428 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
429 	((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
430 	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
431 	((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
432 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
433 	((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
434 
435 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
436 	CSR_WRITE_4(sc, SIS_CSR, csrsave);
437 }
438 #endif
439 
440 /*
441  * Sync the PHYs by setting data bit and strobing the clock 32 times.
442  */
443 static void
444 sis_mii_sync(struct sis_softc *sc)
445 {
446 	int i;
447 
448 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
449 
450 	for (i = 0; i < 32; i++) {
451 		SIO_SET(SIS_MII_CLK);
452 		DELAY(1);
453 		SIO_CLR(SIS_MII_CLK);
454 		DELAY(1);
455 	}
456 }
457 
458 /*
459  * Clock a series of bits through the MII.
460  */
461 static void
462 sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt)
463 {
464 	int i;
465 
466 	SIO_CLR(SIS_MII_CLK);
467 
468 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
469 		if (bits & i)
470 			SIO_SET(SIS_MII_DATA);
471 		else
472 			SIO_CLR(SIS_MII_DATA);
473 		DELAY(1);
474 		SIO_CLR(SIS_MII_CLK);
475 		DELAY(1);
476 		SIO_SET(SIS_MII_CLK);
477 	}
478 }
479 
480 /*
481  * Read an PHY register through the MII.
482  */
483 static int
484 sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
485 {
486 	int i, ack;
487 
488 	/*
489 	 * Set up frame for RX.
490 	 */
491 	frame->mii_stdelim = SIS_MII_STARTDELIM;
492 	frame->mii_opcode = SIS_MII_READOP;
493 	frame->mii_turnaround = 0;
494 	frame->mii_data = 0;
495 
496 	/*
497  	 * Turn on data xmit.
498 	 */
499 	SIO_SET(SIS_MII_DIR);
500 
501 	sis_mii_sync(sc);
502 
503 	/*
504 	 * Send command/address info.
505 	 */
506 	sis_mii_send(sc, frame->mii_stdelim, 2);
507 	sis_mii_send(sc, frame->mii_opcode, 2);
508 	sis_mii_send(sc, frame->mii_phyaddr, 5);
509 	sis_mii_send(sc, frame->mii_regaddr, 5);
510 
511 	/* Idle bit */
512 	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
513 	DELAY(1);
514 	SIO_SET(SIS_MII_CLK);
515 	DELAY(1);
516 
517 	/* Turn off xmit. */
518 	SIO_CLR(SIS_MII_DIR);
519 
520 	/* Check for ack */
521 	SIO_CLR(SIS_MII_CLK);
522 	DELAY(1);
523 	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
524 	SIO_SET(SIS_MII_CLK);
525 	DELAY(1);
526 
527 	/*
528 	 * Now try reading data bits. If the ack failed, we still
529 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
530 	 */
531 	if (ack) {
532 		for(i = 0; i < 16; i++) {
533 			SIO_CLR(SIS_MII_CLK);
534 			DELAY(1);
535 			SIO_SET(SIS_MII_CLK);
536 			DELAY(1);
537 		}
538 		goto fail;
539 	}
540 
541 	for (i = 0x8000; i; i >>= 1) {
542 		SIO_CLR(SIS_MII_CLK);
543 		DELAY(1);
544 		if (!ack) {
545 			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
546 				frame->mii_data |= i;
547 			DELAY(1);
548 		}
549 		SIO_SET(SIS_MII_CLK);
550 		DELAY(1);
551 	}
552 
553 fail:
554 
555 	SIO_CLR(SIS_MII_CLK);
556 	DELAY(1);
557 	SIO_SET(SIS_MII_CLK);
558 	DELAY(1);
559 
560 	if (ack)
561 		return(1);
562 	return(0);
563 }
564 
565 /*
566  * Write to a PHY register through the MII.
567  */
568 static int
569 sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
570 {
571 	/*
572 	 * Set up frame for TX.
573 	 */
574 
575 	frame->mii_stdelim = SIS_MII_STARTDELIM;
576 	frame->mii_opcode = SIS_MII_WRITEOP;
577 	frame->mii_turnaround = SIS_MII_TURNAROUND;
578 
579 	/*
580 	 * Turn on data output.
581 	 */
582 	SIO_SET(SIS_MII_DIR);
583 
584 	sis_mii_sync(sc);
585 
586 	sis_mii_send(sc, frame->mii_stdelim, 2);
587 	sis_mii_send(sc, frame->mii_opcode, 2);
588 	sis_mii_send(sc, frame->mii_phyaddr, 5);
589 	sis_mii_send(sc, frame->mii_regaddr, 5);
590 	sis_mii_send(sc, frame->mii_turnaround, 2);
591 	sis_mii_send(sc, frame->mii_data, 16);
592 
593 	/* Idle bit. */
594 	SIO_SET(SIS_MII_CLK);
595 	DELAY(1);
596 	SIO_CLR(SIS_MII_CLK);
597 	DELAY(1);
598 
599 	/*
600 	 * Turn off xmit.
601 	 */
602 	SIO_CLR(SIS_MII_DIR);
603 
604 	return(0);
605 }
606 
607 static int
608 sis_miibus_readreg(device_t dev, int phy, int reg)
609 {
610 	struct sis_softc *sc;
611 	struct sis_mii_frame frame;
612 
613 	sc = device_get_softc(dev);
614 
615 	if (sc->sis_type == SIS_TYPE_83815) {
616 		if (phy != 0)
617 			return(0);
618 		/*
619 		 * The NatSemi chip can take a while after
620 		 * a reset to come ready, during which the BMSR
621 		 * returns a value of 0. This is *never* supposed
622 		 * to happen: some of the BMSR bits are meant to
623 		 * be hardwired in the on position, and this can
624 		 * confuse the miibus code a bit during the probe
625 		 * and attach phase. So we make an effort to check
626 		 * for this condition and wait for it to clear.
627 		 */
628 		if (!CSR_READ_4(sc, NS_BMSR))
629 			DELAY(1000);
630 		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
631 	}
632 	/*
633 	 * Chipsets < SIS_635 seem not to be able to read/write
634 	 * through mdio. Use the enhanced PHY access register
635 	 * again for them.
636 	 */
637 	if (sc->sis_type == SIS_TYPE_900 &&
638 	    sc->sis_rev < SIS_REV_635) {
639 		int i, val = 0;
640 
641 		if (phy != 0)
642 			return(0);
643 
644 		CSR_WRITE_4(sc, SIS_PHYCTL,
645 		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
646 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
647 
648 		for (i = 0; i < SIS_TIMEOUT; i++) {
649 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
650 				break;
651 		}
652 
653 		if (i == SIS_TIMEOUT) {
654 			device_printf(dev, "PHY failed to come ready\n");
655 			return(0);
656 		}
657 
658 		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
659 
660 		if (val == 0xFFFF)
661 			return(0);
662 
663 		return(val);
664 	} else {
665 		bzero((char *)&frame, sizeof(frame));
666 
667 		frame.mii_phyaddr = phy;
668 		frame.mii_regaddr = reg;
669 		sis_mii_readreg(sc, &frame);
670 
671 		return(frame.mii_data);
672 	}
673 }
674 
675 static int
676 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
677 {
678 	struct sis_softc *sc;
679 	struct sis_mii_frame frame;
680 
681 	sc = device_get_softc(dev);
682 
683 	if (sc->sis_type == SIS_TYPE_83815) {
684 		if (phy != 0)
685 			return(0);
686 		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
687 		return(0);
688 	}
689 
690 	if (sc->sis_type == SIS_TYPE_900 &&
691 	    sc->sis_rev < SIS_REV_635) {
692 		int i;
693 
694 		if (phy != 0)
695 			return(0);
696 
697 		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
698 		    (reg << 6) | SIS_PHYOP_WRITE);
699 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
700 
701 		for (i = 0; i < SIS_TIMEOUT; i++) {
702 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
703 				break;
704 		}
705 
706 		if (i == SIS_TIMEOUT)
707 			device_printf(dev, "PHY failed to come ready\n");
708 	} else {
709 		bzero((char *)&frame, sizeof(frame));
710 
711 		frame.mii_phyaddr = phy;
712 		frame.mii_regaddr = reg;
713 		frame.mii_data = data;
714 		sis_mii_writereg(sc, &frame);
715 	}
716 	return(0);
717 }
718 
719 static void
720 sis_miibus_statchg(device_t dev)
721 {
722 	struct sis_softc *sc;
723 
724 	sc = device_get_softc(dev);
725 	sis_init(sc);
726 }
727 
728 static uint32_t
729 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
730 {
731 	uint32_t crc, carry;
732 	int i, j;
733 	uint8_t c;
734 
735 	/* Compute CRC for the address value. */
736 	crc = 0xFFFFFFFF; /* initial value */
737 
738 	for (i = 0; i < 6; i++) {
739 		c = *(addr + i);
740 		for (j = 0; j < 8; j++) {
741 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
742 			crc <<= 1;
743 			c >>= 1;
744 			if (carry)
745 				crc = (crc ^ 0x04c11db6) | carry;
746 		}
747 	}
748 
749 	/*
750 	 * return the filter bit position
751 	 *
752 	 * The NatSemi chip has a 512-bit filter, which is
753 	 * different than the SiS, so we special-case it.
754 	 */
755 	if (sc->sis_type == SIS_TYPE_83815)
756 		return (crc >> 23);
757 	else if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
758 		return (crc >> 24);
759 	else
760 		return (crc >> 25);
761 }
762 
763 static void
764 sis_setmulti_ns(struct sis_softc *sc)
765 {
766 	struct ifnet *ifp;
767 	struct ifmultiaddr *ifma;
768 	uint32_t h = 0, i, filtsave;
769 	int bit, index;
770 
771 	ifp = &sc->arpcom.ac_if;
772 
773 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
774 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
775 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
776 		return;
777 	}
778 
779 	/*
780 	 * We have to explicitly enable the multicast hash table
781 	 * on the NatSemi chip if we want to use it, which we do.
782 	 */
783 	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
784 	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
785 
786 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
787 
788 	/* first, zot all the existing hash bits */
789 	for (i = 0; i < 32; i++) {
790 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
791 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
792 	}
793 
794 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
795 		if (ifma->ifma_addr->sa_family != AF_LINK)
796 			continue;
797 		h = sis_mchash(sc,
798 			       LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
799 		index = h >> 3;
800 		bit = h & 0x1F;
801 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
802 		if (bit > 0xF)
803 			bit -= 0x10;
804 		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
805 	}
806 
807 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
808 }
809 
810 static void
811 sis_setmulti_sis(struct sis_softc *sc)
812 {
813 	struct ifnet *ifp;
814 	struct ifmultiaddr *ifma;
815 	uint32_t h, i, n, ctl;
816 	uint16_t hashes[16];
817 
818 	ifp = &sc->arpcom.ac_if;
819 
820 	/* hash table size */
821 	if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
822 		n = 16;
823 	else
824 		n = 8;
825 
826 	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
827 
828 	if (ifp->if_flags & IFF_BROADCAST)
829 		ctl |= SIS_RXFILTCTL_BROAD;
830 
831 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
832 		ctl |= SIS_RXFILTCTL_ALLMULTI;
833 		if (ifp->if_flags & IFF_PROMISC)
834 			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
835 		for (i = 0; i < n; i++)
836 			hashes[i] = ~0;
837 	} else {
838 		for (i = 0; i < n; i++)
839 			hashes[i] = 0;
840 		i = 0;
841 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
842 			if (ifma->ifma_addr->sa_family != AF_LINK)
843 				continue;
844 			h = sis_mchash(sc,
845 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
846 			hashes[h >> 4] |= 1 << (h & 0xf);
847 			i++;
848 		}
849 		if (i > n) {
850 			ctl |= SIS_RXFILTCTL_ALLMULTI;
851 			for (i = 0; i < n; i++)
852 				hashes[i] = ~0;
853 		}
854 	}
855 
856 	for (i = 0; i < n; i++) {
857 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
858 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
859 	}
860 
861 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
862 }
863 
864 static void
865 sis_reset(struct sis_softc *sc)
866 {
867 	struct ifnet *ifp = &sc->arpcom.ac_if;
868 	int i;
869 
870 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
871 
872 	for (i = 0; i < SIS_TIMEOUT; i++) {
873 		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
874 			break;
875 	}
876 
877 	if (i == SIS_TIMEOUT)
878 		if_printf(ifp, "reset never completed\n");
879 
880 	/* Wait a little while for the chip to get its brains in order. */
881 	DELAY(1000);
882 
883 	/*
884 	 * If this is a NetSemi chip, make sure to clear
885 	 * PME mode.
886 	 */
887 	if (sc->sis_type == SIS_TYPE_83815) {
888 		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
889 		CSR_WRITE_4(sc, NS_CLKRUN, 0);
890 	}
891 }
892 
893 /*
894  * Probe for an SiS chip. Check the PCI vendor and device
895  * IDs against our list and return a device name if we find a match.
896  */
897 static int
898 sis_probe(device_t dev)
899 {
900 	struct sis_type *t;
901 
902 	t = sis_devs;
903 
904 	while(t->sis_name != NULL) {
905 		if ((pci_get_vendor(dev) == t->sis_vid) &&
906 		    (pci_get_device(dev) == t->sis_did)) {
907 			device_set_desc(dev, t->sis_name);
908 			return(0);
909 		}
910 		t++;
911 	}
912 
913 	return(ENXIO);
914 }
915 
916 /*
917  * Attach the interface. Allocate softc structures, do ifmedia
918  * setup and ethernet/BPF attach.
919  */
920 static int
921 sis_attach(device_t dev)
922 {
923 	uint8_t eaddr[ETHER_ADDR_LEN];
924 	uint32_t command;
925 	struct sis_softc *sc;
926 	struct ifnet *ifp;
927 	int error, rid, waittime;
928 
929 	error = waittime = 0;
930 	sc = device_get_softc(dev);
931 
932 	if (pci_get_device(dev) == PCI_PRODUCT_SIS_900)
933 		sc->sis_type = SIS_TYPE_900;
934 	if (pci_get_device(dev) == PCI_PRODUCT_SIS_7016)
935 		sc->sis_type = SIS_TYPE_7016;
936 	if (pci_get_vendor(dev) == PCI_VENDOR_NS)
937 		sc->sis_type = SIS_TYPE_83815;
938 
939 	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
940 
941 	/*
942 	 * Handle power management nonsense.
943 	 */
944 
945 	command = pci_read_config(dev, SIS_PCI_CAPID, 4) & 0x000000FF;
946 	if (command == 0x01) {
947 
948 		command = pci_read_config(dev, SIS_PCI_PWRMGMTCTRL, 4);
949 		if (command & SIS_PSTATE_MASK) {
950 			uint32_t		iobase, membase, irq;
951 
952 			/* Save important PCI config data. */
953 			iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
954 			membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
955 			irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
956 
957 			/* Reset the power state. */
958 			device_printf(dev, "chip is in D%d power mode "
959 			    "-- setting to D0\n", command & SIS_PSTATE_MASK);
960 			command &= 0xFFFFFFFC;
961 			pci_write_config(dev, SIS_PCI_PWRMGMTCTRL, command, 4);
962 
963 			/* Restore PCI config data. */
964 			pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
965 			pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
966 			pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
967 		}
968 	}
969 
970 	/*
971 	 * Map control/status registers.
972 	 */
973 	command = pci_read_config(dev, PCIR_COMMAND, 4);
974 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
975 	pci_write_config(dev, PCIR_COMMAND, command, 4);
976 	command = pci_read_config(dev, PCIR_COMMAND, 4);
977 
978 #ifdef SIS_USEIOSPACE
979 	if (!(command & PCIM_CMD_PORTEN)) {
980 		device_printf(dev, "failed to enable I/O ports!\n");
981 		error = ENXIO;
982 		goto fail;
983 	}
984 #else
985 	if (!(command & PCIM_CMD_MEMEN)) {
986 		device_printf(dev, "failed to enable memory mapping!\n");
987 		error = ENXIO;
988 		goto fail;
989 	}
990 #endif
991 
992 	rid = SIS_RID;
993 	sc->sis_res = bus_alloc_resource_any(dev, SIS_RES, &rid, RF_ACTIVE);
994 
995 	if (sc->sis_res == NULL) {
996 		device_printf(dev, "couldn't map ports/memory\n");
997 		error = ENXIO;
998 		goto fail;
999 	}
1000 
1001 	sc->sis_btag = rman_get_bustag(sc->sis_res);
1002 	sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
1003 
1004 	/* Allocate interrupt */
1005 	rid = 0;
1006 	sc->sis_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1007 	    RF_SHAREABLE | RF_ACTIVE);
1008 
1009 	if (sc->sis_irq == NULL) {
1010 		device_printf(dev, "couldn't map interrupt\n");
1011 		error = ENXIO;
1012 		goto fail;
1013 	}
1014 
1015 	/* Reset the adapter. */
1016 	sis_reset(sc);
1017 
1018 	if (sc->sis_type == SIS_TYPE_900 &&
1019             (sc->sis_rev == SIS_REV_635 ||
1020              sc->sis_rev == SIS_REV_900B)) {
1021 		SIO_SET(SIS_CFG_RND_CNT);
1022 		SIO_SET(SIS_CFG_PERR_DETECT);
1023 	}
1024 
1025 	/*
1026 	 * Get station address from the EEPROM.
1027 	 */
1028 	switch (pci_get_vendor(dev)) {
1029 	case PCI_VENDOR_NS:
1030 		/*
1031 		 * Reading the MAC address out of the EEPROM on
1032 		 * the NatSemi chip takes a bit more work than
1033 		 * you'd expect. The address spans 4 16-bit words,
1034 		 * with the first word containing only a single bit.
1035 		 * You have to shift everything over one bit to
1036 		 * get it aligned properly. Also, the bits are
1037 		 * stored backwards (the LSB is really the MSB,
1038 		 * and so on) so you have to reverse them in order
1039 		 * to get the MAC address into the form we want.
1040 		 * Why? Who the hell knows.
1041 		 */
1042 		{
1043 			uint16_t		tmp[4];
1044 
1045 			sis_read_eeprom(sc, (caddr_t)&tmp,
1046 			    NS_EE_NODEADDR, 4, 0);
1047 
1048 			/* Shift everything over one bit. */
1049 			tmp[3] = tmp[3] >> 1;
1050 			tmp[3] |= tmp[2] << 15;
1051 			tmp[2] = tmp[2] >> 1;
1052 			tmp[2] |= tmp[1] << 15;
1053 			tmp[1] = tmp[1] >> 1;
1054 			tmp[1] |= tmp[0] << 15;
1055 
1056 			/* Now reverse all the bits. */
1057 			tmp[3] = sis_reverse(tmp[3]);
1058 			tmp[2] = sis_reverse(tmp[2]);
1059 			tmp[1] = sis_reverse(tmp[1]);
1060 
1061 			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1062 		}
1063 		break;
1064 	case PCI_VENDOR_SIS:
1065 	default:
1066 #ifdef __x86_64__
1067 		/*
1068 		 * If this is a SiS 630E chipset with an embedded
1069 		 * SiS 900 controller, we have to read the MAC address
1070 		 * from the APC CMOS RAM. Our method for doing this
1071 		 * is very ugly since we have to reach out and grab
1072 		 * ahold of hardware for which we cannot properly
1073 		 * allocate resources. This code is only compiled on
1074 		 * the x86_64 architecture since the SiS 630E chipset
1075 		 * is for x86 motherboards only. Note that there are
1076 		 * a lot of magic numbers in this hack. These are
1077 		 * taken from SiS's Linux driver. I'd like to replace
1078 		 * them with proper symbolic definitions, but that
1079 		 * requires some datasheets that I don't have access
1080 		 * to at the moment.
1081 		 */
1082 		if (sc->sis_rev == SIS_REV_630S ||
1083 		    sc->sis_rev == SIS_REV_630E ||
1084 		    sc->sis_rev == SIS_REV_630EA1)
1085 			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1086 
1087 		else if (sc->sis_rev == SIS_REV_635 ||
1088 			 sc->sis_rev == SIS_REV_630ET)
1089 			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1090 		else if (sc->sis_rev == SIS_REV_96x) {
1091 			/*
1092 			 * Allow to read EEPROM from LAN. It is shared
1093 			 * between a 1394 controller and the NIC and each
1094 			 * time we access it, we need to set SIS_EECMD_REQ.
1095 			 */
1096 			SIO_SET(SIS_EECMD_REQ);
1097 			for (waittime = 0; waittime < SIS_TIMEOUT;
1098 			    waittime++) {
1099 				/* Force EEPROM to idle state. */
1100 				sis_eeprom_idle(sc);
1101 				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1102 					sis_read_eeprom(sc, (caddr_t)&eaddr,
1103 					    SIS_EE_NODEADDR, 3, 0);
1104 					break;
1105 				}
1106 				DELAY(1);
1107 			}
1108 			/*
1109 			 * Set SIS_EECTL_CLK to high, so a other master
1110 			 * can operate on the i2c bus.
1111 			 */
1112 			SIO_SET(SIS_EECTL_CLK);
1113 			/* Refuse EEPROM access by LAN */
1114 			SIO_SET(SIS_EECMD_DONE);
1115 		} else
1116 #endif
1117 			sis_read_eeprom(sc, (caddr_t)&eaddr,
1118 			    SIS_EE_NODEADDR, 3, 0);
1119 		break;
1120 	}
1121 
1122 	callout_init(&sc->sis_timer);
1123 
1124 	error = sis_dma_alloc(dev);
1125 	if (error)
1126 		goto fail;
1127 
1128 	ifp = &sc->arpcom.ac_if;
1129 	ifp->if_softc = sc;
1130 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1131 	ifp->if_mtu = ETHERMTU;
1132 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1133 	ifp->if_ioctl = sis_ioctl;
1134 	ifp->if_start = sis_start;
1135 	ifp->if_watchdog = sis_watchdog;
1136 	ifp->if_init = sis_init;
1137 	ifp->if_baudrate = 10000000;
1138 	ifq_set_maxlen(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1139 	ifq_set_ready(&ifp->if_snd);
1140 #ifdef IFPOLL_ENABLE
1141 	ifp->if_npoll = sis_npoll;
1142 #endif
1143 	ifp->if_capenable = ifp->if_capabilities;
1144 
1145 	/*
1146 	 * Do MII setup.
1147 	 */
1148 	if (mii_phy_probe(dev, &sc->sis_miibus,
1149 	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1150 		device_printf(dev, "MII without any PHY!\n");
1151 		error = ENXIO;
1152 		goto fail;
1153 	}
1154 
1155 	/*
1156 	 * Call MI attach routine.
1157 	 */
1158 	ether_ifattach(ifp, eaddr, NULL);
1159 
1160 #ifdef IFPOLL_ENABLE
1161 	ifpoll_compat_setup(&sc->sis_npoll, NULL, NULL, device_get_unit(dev),
1162 	    ifp->if_serializer);
1163 #endif
1164 
1165 	/*
1166 	 * Tell the upper layer(s) we support long frames.
1167 	 */
1168 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1169 
1170 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->sis_irq));
1171 
1172 	error = bus_setup_intr(dev, sc->sis_irq, INTR_MPSAFE,
1173 			       sis_intr, sc,
1174 			       &sc->sis_intrhand,
1175 			       ifp->if_serializer);
1176 
1177 	if (error) {
1178 		device_printf(dev, "couldn't set up irq\n");
1179 		ether_ifdetach(ifp);
1180 		goto fail;
1181 	}
1182 
1183 fail:
1184 	if (error)
1185 		sis_detach(dev);
1186 
1187 	return(error);
1188 }
1189 
1190 /*
1191  * Shutdown hardware and free up resources. It is called in both the error case
1192  * and the normal detach case so it needs to be careful about only freeing
1193  * resources that have actually been allocated.
1194  */
1195 static int
1196 sis_detach(device_t dev)
1197 {
1198 	struct sis_softc *sc = device_get_softc(dev);
1199 	struct ifnet *ifp = &sc->arpcom.ac_if;
1200 
1201 
1202 	if (device_is_attached(dev)) {
1203 		lwkt_serialize_enter(ifp->if_serializer);
1204 		sis_reset(sc);
1205 		sis_stop(sc);
1206 		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1207 		lwkt_serialize_exit(ifp->if_serializer);
1208 
1209 		ether_ifdetach(ifp);
1210 	}
1211 	if (sc->sis_miibus)
1212 		device_delete_child(dev, sc->sis_miibus);
1213 	bus_generic_detach(dev);
1214 
1215 	if (sc->sis_irq)
1216 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1217 	if (sc->sis_res)
1218 		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1219 
1220 	sis_dma_free(dev);
1221 
1222 	return(0);
1223 }
1224 
1225 /*
1226  * Initialize the transmit descriptors.
1227  */
1228 static int
1229 sis_list_tx_init(struct sis_softc *sc)
1230 {
1231 	struct sis_list_data *ld = &sc->sis_ldata;
1232 	struct sis_chain_data *cd = &sc->sis_cdata;
1233 	int i, nexti;
1234 
1235 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1236 		bus_addr_t paddr;
1237 
1238 		/*
1239 		 * Link the TX desc together
1240 		 */
1241 		nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
1242 		paddr = ld->sis_tx_paddr + (nexti * sizeof(struct sis_desc));
1243 		ld->sis_tx_list[i].sis_next = paddr;
1244 	}
1245 	cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
1246 
1247 	return 0;
1248 }
1249 
1250 /*
1251  * Initialize the RX descriptors and allocate mbufs for them. Note that
1252  * we arrange the descriptors in a closed ring, so that the last descriptor
1253  * points back to the first.
1254  */
1255 static int
1256 sis_list_rx_init(struct sis_softc *sc)
1257 {
1258 	struct sis_list_data *ld = &sc->sis_ldata;
1259 	struct sis_chain_data *cd = &sc->sis_cdata;
1260 	int i, error;
1261 
1262 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1263 		bus_addr_t paddr;
1264 		int nexti;
1265 
1266 		error = sis_newbuf(sc, i, 1);
1267 		if (error)
1268 			return error;
1269 
1270 		/*
1271 		 * Link the RX desc together
1272 		 */
1273 		nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
1274 		paddr = ld->sis_rx_paddr + (nexti * sizeof(struct sis_desc));
1275 		ld->sis_rx_list[i].sis_next = paddr;
1276 	}
1277 	cd->sis_rx_prod = 0;
1278 
1279 	return 0;
1280 }
1281 
1282 /*
1283  * Initialize an RX descriptor and attach an MBUF cluster.
1284  */
1285 static int
1286 sis_newbuf(struct sis_softc *sc, int idx, int init)
1287 {
1288 	struct sis_chain_data *cd = &sc->sis_cdata;
1289 	struct sis_rx_data *rd = &cd->sis_rx_data[idx];
1290 	bus_dma_segment_t seg;
1291 	bus_dmamap_t map;
1292 	struct mbuf *m;
1293 	int nseg, error;
1294 
1295 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
1296 	if (m == NULL) {
1297 		if (init)
1298 			if_printf(&sc->arpcom.ac_if, "can't alloc RX mbuf\n");
1299 		return ENOBUFS;
1300 	}
1301 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1302 
1303 	/* Try loading the mbuf into tmp DMA map */
1304 	error = bus_dmamap_load_mbuf_segment(cd->sis_rxbuf_tag,
1305 			cd->sis_rx_tmpmap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
1306 	if (error) {
1307 		m_freem(m);
1308 		if (init)
1309 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1310 		return error;
1311 	}
1312 
1313 	/* Unload the currently loaded mbuf */
1314 	if (rd->sis_mbuf != NULL) {
1315 		bus_dmamap_sync(cd->sis_rxbuf_tag, rd->sis_map,
1316 				BUS_DMASYNC_POSTREAD);
1317 		bus_dmamap_unload(cd->sis_rxbuf_tag, rd->sis_map);
1318 	}
1319 
1320 	/* Swap DMA maps */
1321 	map = cd->sis_rx_tmpmap;
1322 	cd->sis_rx_tmpmap = rd->sis_map;
1323 	rd->sis_map = map;
1324 
1325 	/* Save necessary information */
1326 	rd->sis_mbuf = m;
1327 	rd->sis_paddr = seg.ds_addr;
1328 
1329 	sis_setup_rxdesc(sc, idx);
1330 	return 0;
1331 }
1332 
1333 static void
1334 sis_setup_rxdesc(struct sis_softc *sc, int idx)
1335 {
1336 	struct sis_desc *c = &sc->sis_ldata.sis_rx_list[idx];
1337 
1338 	/* Setup the RX desc */
1339 	c->sis_ctl = SIS_RXLEN;
1340 	c->sis_ptr = sc->sis_cdata.sis_rx_data[idx].sis_paddr;
1341 }
1342 
1343 /*
1344  * A frame has been uploaded: pass the resulting mbuf chain up to
1345  * the higher level protocols.
1346  */
1347 static void
1348 sis_rxeof(struct sis_softc *sc)
1349 {
1350 	struct ifnet *ifp = &sc->arpcom.ac_if;
1351 	int i, total_len = 0;
1352 	uint32_t rxstat;
1353 
1354 	i = sc->sis_cdata.sis_rx_prod;
1355 	while (SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
1356 		struct sis_desc	*cur_rx;
1357 		struct sis_rx_data *rd;
1358 		struct mbuf *m;
1359 		int idx = i;
1360 
1361 #ifdef IFPOLL_ENABLE
1362 		if (ifp->if_flags & IFF_NPOLLING) {
1363 			if (sc->rxcycles <= 0)
1364 				break;
1365 			sc->rxcycles--;
1366 		}
1367 #endif /* IFPOLL_ENABLE */
1368 
1369 		cur_rx = &sc->sis_ldata.sis_rx_list[idx];
1370 		rd = &sc->sis_cdata.sis_rx_data[idx];
1371 
1372 		rxstat = cur_rx->sis_rxstat;
1373 		total_len = SIS_RXBYTES(cur_rx);
1374 
1375 		m = rd->sis_mbuf;
1376 
1377 		SIS_INC(i, SIS_RX_LIST_CNT);
1378 
1379 		/*
1380 		 * If an error occurs, update stats, clear the
1381 		 * status word and leave the mbuf cluster in place:
1382 		 * it should simply get re-used next time this descriptor
1383 	 	 * comes up in the ring.
1384 		 */
1385 		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1386 			IFNET_STAT_INC(ifp, ierrors, 1);
1387 			if (rxstat & SIS_RXSTAT_COLL)
1388 				IFNET_STAT_INC(ifp, collisions, 1);
1389 			sis_setup_rxdesc(sc, idx);
1390 			continue;
1391 		}
1392 
1393 		/* No errors; receive the packet. */
1394 		if (sis_newbuf(sc, idx, 0) == 0) {
1395 			m->m_pkthdr.len = m->m_len = total_len;
1396 			m->m_pkthdr.rcvif = ifp;
1397 		} else {
1398 			IFNET_STAT_INC(ifp, ierrors, 1);
1399 			sis_setup_rxdesc(sc, idx);
1400 			continue;
1401 		}
1402 
1403 		IFNET_STAT_INC(ifp, ipackets, 1);
1404 		ifp->if_input(ifp, m, NULL, -1);
1405 	}
1406 	sc->sis_cdata.sis_rx_prod = i;
1407 }
1408 
1409 static void
1410 sis_rxeoc(struct sis_softc *sc)
1411 {
1412 	sis_rxeof(sc);
1413 	sis_init(sc);
1414 }
1415 
1416 /*
1417  * A frame was downloaded to the chip. It's safe for us to clean up
1418  * the list buffers.
1419  */
1420 
1421 static void
1422 sis_txeof(struct sis_softc *sc)
1423 {
1424 	struct ifnet *ifp = &sc->arpcom.ac_if;
1425 	struct sis_chain_data *cd = &sc->sis_cdata;
1426 	uint32_t idx;
1427 
1428 	/*
1429 	 * Go through our tx list and free mbufs for those
1430 	 * frames that have been transmitted.
1431 	 */
1432 	for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
1433 	     sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1434 		struct sis_desc *cur_tx;
1435 		struct sis_tx_data *td;
1436 
1437 		cur_tx = &sc->sis_ldata.sis_tx_list[idx];
1438 		td = &cd->sis_tx_data[idx];
1439 
1440 		if (SIS_OWNDESC(cur_tx))
1441 			break;
1442 
1443 		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1444 			continue;
1445 
1446 		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1447 			IFNET_STAT_INC(ifp, oerrors, 1);
1448 			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1449 				IFNET_STAT_INC(ifp, collisions, 1);
1450 			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1451 				IFNET_STAT_INC(ifp, collisions, 1);
1452 		}
1453 
1454 		IFNET_STAT_INC(ifp, collisions,
1455 		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16);
1456 
1457 		IFNET_STAT_INC(ifp, opackets, 1);
1458 		if (td->sis_mbuf != NULL) {
1459 			bus_dmamap_unload(cd->sis_txbuf_tag, td->sis_map);
1460 			m_freem(td->sis_mbuf);
1461 			td->sis_mbuf = NULL;
1462 		}
1463 	}
1464 
1465 	if (idx != sc->sis_cdata.sis_tx_cons) {
1466 		/* we freed up some buffers */
1467 		sc->sis_cdata.sis_tx_cons = idx;
1468 	}
1469 
1470 	if (cd->sis_tx_cnt == 0)
1471 		ifp->if_timer = 0;
1472 	if (!SIS_IS_OACTIVE(sc))
1473 		ifq_clr_oactive(&ifp->if_snd);
1474 }
1475 
1476 static void
1477 sis_tick(void *xsc)
1478 {
1479 	struct sis_softc *sc = xsc;
1480 	struct mii_data *mii;
1481 	struct ifnet *ifp = &sc->arpcom.ac_if;
1482 
1483 	lwkt_serialize_enter(ifp->if_serializer);
1484 
1485 	mii = device_get_softc(sc->sis_miibus);
1486 	mii_tick(mii);
1487 
1488 	if (!sc->sis_link) {
1489 		mii_pollstat(mii);
1490 		if (mii->mii_media_status & IFM_ACTIVE &&
1491 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1492 			sc->sis_link++;
1493 		if (!ifq_is_empty(&ifp->if_snd))
1494 			if_devstart(ifp);
1495 	}
1496 
1497 	callout_reset(&sc->sis_timer, hz, sis_tick, sc);
1498 	lwkt_serialize_exit(ifp->if_serializer);
1499 }
1500 
1501 #ifdef IFPOLL_ENABLE
1502 
1503 static void
1504 sis_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1505 {
1506 	struct sis_softc *sc = ifp->if_softc;
1507 
1508 	ASSERT_SERIALIZED(ifp->if_serializer);
1509 
1510 	/*
1511 	 * On the sis, reading the status register also clears it.
1512 	 * So before returning to intr mode we must make sure that all
1513 	 * possible pending sources of interrupts have been served.
1514 	 * In practice this means run to completion the *eof routines,
1515 	 * and then call the interrupt routine
1516 	 */
1517 	sc->rxcycles = count;
1518 	sis_rxeof(sc);
1519 	sis_txeof(sc);
1520 	if (!ifq_is_empty(&ifp->if_snd))
1521 		if_devstart(ifp);
1522 
1523 	if (sc->sis_npoll.ifpc_stcount-- == 0) {
1524 		uint32_t status;
1525 
1526 		sc->sis_npoll.ifpc_stcount = sc->sis_npoll.ifpc_stfrac;
1527 
1528 		/* Reading the ISR register clears all interrupts. */
1529 		status = CSR_READ_4(sc, SIS_ISR);
1530 
1531 		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1532 			sis_rxeoc(sc);
1533 
1534 		if (status & (SIS_ISR_RX_IDLE))
1535 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1536 
1537 		if (status & SIS_ISR_SYSERR) {
1538 			sis_reset(sc);
1539 			sis_init(sc);
1540 		}
1541 	}
1542 }
1543 
1544 static void
1545 sis_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1546 {
1547 	struct sis_softc *sc = ifp->if_softc;
1548 
1549 	ASSERT_SERIALIZED(ifp->if_serializer);
1550 
1551 	if (info != NULL) {
1552 		int cpuid = sc->sis_npoll.ifpc_cpuid;
1553 
1554 		info->ifpi_rx[cpuid].poll_func = sis_npoll_compat;
1555 		info->ifpi_rx[cpuid].arg = NULL;
1556 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1557 
1558 		if (ifp->if_flags & IFF_RUNNING) {
1559 			/* disable interrupts */
1560 			CSR_WRITE_4(sc, SIS_IER, 0);
1561 			sc->sis_npoll.ifpc_stcount = 0;
1562 		}
1563 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1564 	} else {
1565 		if (ifp->if_flags & IFF_RUNNING) {
1566 			/* enable interrupts */
1567 			CSR_WRITE_4(sc, SIS_IER, 1);
1568 		}
1569 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->sis_irq));
1570 	}
1571 }
1572 
1573 #endif /* IFPOLL_ENABLE */
1574 
1575 static void
1576 sis_intr(void *arg)
1577 {
1578 	struct sis_softc *sc;
1579 	struct ifnet *ifp;
1580 	uint32_t status;
1581 
1582 	sc = arg;
1583 	ifp = &sc->arpcom.ac_if;
1584 
1585 	/* Supress unwanted interrupts */
1586 	if (!(ifp->if_flags & IFF_UP)) {
1587 		sis_stop(sc);
1588 		return;
1589 	}
1590 
1591 	/* Disable interrupts. */
1592 	CSR_WRITE_4(sc, SIS_IER, 0);
1593 
1594 	for (;;) {
1595 		/* Reading the ISR register clears all interrupts. */
1596 		status = CSR_READ_4(sc, SIS_ISR);
1597 
1598 		if ((status & SIS_INTRS) == 0)
1599 			break;
1600 
1601 		if (status &
1602 		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR | SIS_ISR_TX_OK |
1603 		     SIS_ISR_TX_IDLE) )
1604 			sis_txeof(sc);
1605 
1606 		if (status &
1607 		    (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK | SIS_ISR_RX_IDLE))
1608 			sis_rxeof(sc);
1609 
1610 		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1611 			sis_rxeoc(sc);
1612 
1613 		if (status & (SIS_ISR_RX_IDLE))
1614 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1615 
1616 		if (status & SIS_ISR_SYSERR) {
1617 			sis_reset(sc);
1618 			sis_init(sc);
1619 		}
1620 	}
1621 
1622 	/* Re-enable interrupts. */
1623 	CSR_WRITE_4(sc, SIS_IER, 1);
1624 
1625 	if (!ifq_is_empty(&ifp->if_snd))
1626 		if_devstart(ifp);
1627 }
1628 
1629 /*
1630  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1631  * pointers to the fragment pointers.
1632  */
1633 static int
1634 sis_encap(struct sis_softc *sc, struct mbuf **m_head, uint32_t *txidx)
1635 {
1636 	struct sis_chain_data *cd = &sc->sis_cdata;
1637 	struct sis_list_data *ld = &sc->sis_ldata;
1638 	bus_dma_segment_t segs[SIS_NSEGS];
1639 	bus_dmamap_t map;
1640 	int frag, cur, maxsegs, nsegs, error, i;
1641 
1642 	maxsegs = SIS_TX_LIST_CNT - SIS_NSEGS_RESERVED - cd->sis_tx_cnt;
1643 	KASSERT(maxsegs >= 1, ("not enough TX descs"));
1644 	if (maxsegs > SIS_NSEGS)
1645 		maxsegs = SIS_NSEGS;
1646 
1647 	map = cd->sis_tx_data[*txidx].sis_map;
1648 	error = bus_dmamap_load_mbuf_defrag(cd->sis_txbuf_tag, map, m_head,
1649 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1650 	if (error) {
1651 		m_freem(*m_head);
1652 		*m_head = NULL;
1653 		return error;
1654 	}
1655 	bus_dmamap_sync(cd->sis_txbuf_tag, map, BUS_DMASYNC_PREWRITE);
1656 
1657 	cur = frag = *txidx;
1658 	for (i = 0; i < nsegs; ++i) {
1659 		struct sis_desc *f = &ld->sis_tx_list[frag];
1660 
1661 		f->sis_ctl = SIS_CMDSTS_MORE | segs[i].ds_len;
1662 		f->sis_ptr = segs[i].ds_addr;
1663 		if (i != 0)
1664 			f->sis_ctl |= SIS_CMDSTS_OWN;
1665 
1666 		cur = frag;
1667 		SIS_INC(frag, SIS_TX_LIST_CNT);
1668 	}
1669 	ld->sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1670 	ld->sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1671 
1672 	/* Swap DMA map */
1673 	cd->sis_tx_data[*txidx].sis_map = cd->sis_tx_data[cur].sis_map;
1674 	cd->sis_tx_data[cur].sis_map = map;
1675 
1676 	cd->sis_tx_data[cur].sis_mbuf = *m_head;
1677 
1678 	cd->sis_tx_cnt += nsegs;
1679 	*txidx = frag;
1680 
1681 	return 0;
1682 }
1683 
1684 /*
1685  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1686  * to the mbuf data regions directly in the transmit lists. We also save a
1687  * copy of the pointers since the transmit list fragment pointers are
1688  * physical addresses.
1689  */
1690 
1691 static void
1692 sis_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1693 {
1694 	struct sis_softc *sc = ifp->if_softc;
1695 	int need_trans, error;
1696 	uint32_t idx;
1697 
1698 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1699 
1700 	if (!sc->sis_link) {
1701 		ifq_purge(&ifp->if_snd);
1702 		return;
1703 	}
1704 
1705 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1706 		return;
1707 
1708 	idx = sc->sis_cdata.sis_tx_prod;
1709 	need_trans = 0;
1710 
1711 	while (sc->sis_cdata.sis_tx_data[idx].sis_mbuf == NULL) {
1712 		struct mbuf *m_head;
1713 
1714 		/*
1715 		 * If there's no way we can send any packets, return now.
1716 		 */
1717 		if (SIS_IS_OACTIVE(sc)) {
1718 			ifq_set_oactive(&ifp->if_snd);
1719 			break;
1720 		}
1721 
1722 		m_head = ifq_dequeue(&ifp->if_snd);
1723 		if (m_head == NULL)
1724 			break;
1725 
1726 		error = sis_encap(sc, &m_head, &idx);
1727 		if (error) {
1728 			IFNET_STAT_INC(ifp, oerrors, 1);
1729 			if (sc->sis_cdata.sis_tx_cnt == 0) {
1730 				continue;
1731 			} else {
1732 				ifq_set_oactive(&ifp->if_snd);
1733 				break;
1734 			}
1735 		}
1736 		need_trans = 1;
1737 
1738 		/*
1739 		 * If there's a BPF listener, bounce a copy of this frame
1740 		 * to him.
1741 		 */
1742 		BPF_MTAP(ifp, m_head);
1743 	}
1744 
1745 	if (!need_trans)
1746 		return;
1747 
1748 	/* Transmit */
1749 	sc->sis_cdata.sis_tx_prod = idx;
1750 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1751 
1752 	/*
1753 	 * Set a timeout in case the chip goes out to lunch.
1754 	 */
1755 	ifp->if_timer = 5;
1756 }
1757 
1758 static void
1759 sis_init(void *xsc)
1760 {
1761 	struct sis_softc *sc = xsc;
1762 	struct ifnet *ifp = &sc->arpcom.ac_if;
1763 	struct mii_data *mii;
1764 
1765 	/*
1766 	 * Cancel pending I/O and free all RX/TX buffers.
1767 	 */
1768 	sis_stop(sc);
1769 
1770 	mii = device_get_softc(sc->sis_miibus);
1771 
1772 	/* Set MAC address */
1773 	if (sc->sis_type == SIS_TYPE_83815) {
1774 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1775 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1776 		    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1777 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1778 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1779 		    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1780 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1781 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1782 		    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1783 	} else {
1784 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1785 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1786 		    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1787 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1788 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1789 		    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1790 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1791 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1792 		    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1793 	}
1794 
1795 	/* Init circular RX list. */
1796 	if (sis_list_rx_init(sc)) {
1797 		if_printf(ifp, "initialization failed: "
1798 			  "no memory for rx buffers\n");
1799 		sis_stop(sc);
1800 		return;
1801 	}
1802 
1803 	/*
1804 	 * Init tx descriptors.
1805 	 */
1806 	sis_list_tx_init(sc);
1807 
1808 	/*
1809 	 * For the NatSemi chip, we have to explicitly enable the
1810 	 * reception of ARP frames, as well as turn on the 'perfect
1811 	 * match' filter where we store the station address, otherwise
1812 	 * we won't receive unicasts meant for this host.
1813 	 */
1814 	if (sc->sis_type == SIS_TYPE_83815) {
1815 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
1816 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
1817 	}
1818 
1819 	 /* If we want promiscuous mode, set the allframes bit. */
1820 	if (ifp->if_flags & IFF_PROMISC)
1821 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1822 	else
1823 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1824 
1825 	/*
1826 	 * Set the capture broadcast bit to capture broadcast frames.
1827 	 */
1828 	if (ifp->if_flags & IFF_BROADCAST)
1829 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1830 	else
1831 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1832 
1833 	/*
1834 	 * Load the multicast filter.
1835 	 */
1836 	if (sc->sis_type == SIS_TYPE_83815)
1837 		sis_setmulti_ns(sc);
1838 	else
1839 		sis_setmulti_sis(sc);
1840 
1841 	/* Turn the receive filter on */
1842 	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
1843 
1844 	/*
1845 	 * Load the address of the RX and TX lists.
1846 	 */
1847 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_ldata.sis_rx_paddr);
1848 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_ldata.sis_tx_paddr);
1849 
1850 	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
1851 	 * the PCI bus. When this bit is set, the Max DMA Burst Size
1852 	 * for TX/RX DMA should be no larger than 16 double words.
1853 	 */
1854 	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN)
1855 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
1856 	else
1857 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
1858 
1859 	/* Accept Long Packets for VLAN support */
1860 	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
1861 
1862 	/* Set TX configuration */
1863 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T)
1864 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
1865 	else
1866 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
1867 
1868 	/* Set full/half duplex mode. */
1869 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1870 		SIS_SETBIT(sc, SIS_TX_CFG,
1871 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1872 		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1873 	} else {
1874 		SIS_CLRBIT(sc, SIS_TX_CFG,
1875 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1876 		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1877 	}
1878 
1879 	/*
1880 	 * Enable interrupts.
1881 	 */
1882 	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
1883 #ifdef IFPOLL_ENABLE
1884 	/*
1885 	 * ... only enable interrupts if we are not polling, make sure
1886 	 * they are off otherwise.
1887 	 */
1888 	if (ifp->if_flags & IFF_NPOLLING) {
1889 		CSR_WRITE_4(sc, SIS_IER, 0);
1890 		sc->sis_npoll.ifpc_stcount = 0;
1891 	} else
1892 #endif /* IFPOLL_ENABLE */
1893 	CSR_WRITE_4(sc, SIS_IER, 1);
1894 
1895 	/* Enable receiver and transmitter. */
1896 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
1897 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1898 
1899 #ifdef notdef
1900 	mii_mediachg(mii);
1901 #endif
1902 
1903 	/*
1904 	 * Page 75 of the DP83815 manual recommends the
1905 	 * following register settings "for optimum
1906 	 * performance." Note however that at least three
1907 	 * of the registers are listed as "reserved" in
1908 	 * the register map, so who knows what they do.
1909 	 */
1910 	if (sc->sis_type == SIS_TYPE_83815) {
1911 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
1912 		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
1913 		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
1914 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
1915 		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
1916 	}
1917 
1918 	ifp->if_flags |= IFF_RUNNING;
1919 	ifq_clr_oactive(&ifp->if_snd);
1920 
1921 	callout_reset(&sc->sis_timer, hz, sis_tick, sc);
1922 }
1923 
1924 /*
1925  * Set media options.
1926  */
1927 static int
1928 sis_ifmedia_upd(struct ifnet *ifp)
1929 {
1930 	struct sis_softc *sc;
1931 	struct mii_data *mii;
1932 
1933 	sc = ifp->if_softc;
1934 
1935 	mii = device_get_softc(sc->sis_miibus);
1936 	sc->sis_link = 0;
1937 	if (mii->mii_instance) {
1938 		struct mii_softc	*miisc;
1939 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1940 			mii_phy_reset(miisc);
1941 	}
1942 	mii_mediachg(mii);
1943 
1944 	return(0);
1945 }
1946 
1947 /*
1948  * Report current media status.
1949  */
1950 static void
1951 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1952 {
1953 	struct sis_softc *sc;
1954 	struct mii_data *mii;
1955 
1956 	sc = ifp->if_softc;
1957 
1958 	mii = device_get_softc(sc->sis_miibus);
1959 	mii_pollstat(mii);
1960 	ifmr->ifm_active = mii->mii_media_active;
1961 	ifmr->ifm_status = mii->mii_media_status;
1962 }
1963 
1964 static int
1965 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1966 {
1967 	struct sis_softc *sc = ifp->if_softc;
1968 	struct ifreq *ifr = (struct ifreq *) data;
1969 	struct mii_data *mii;
1970 	int error = 0;
1971 
1972 	switch(command) {
1973 	case SIOCSIFFLAGS:
1974 		if (ifp->if_flags & IFF_UP) {
1975 			sis_init(sc);
1976 		} else {
1977 			if (ifp->if_flags & IFF_RUNNING)
1978 				sis_stop(sc);
1979 		}
1980 		error = 0;
1981 		break;
1982 	case SIOCADDMULTI:
1983 	case SIOCDELMULTI:
1984 		if (sc->sis_type == SIS_TYPE_83815)
1985 			sis_setmulti_ns(sc);
1986 		else
1987 			sis_setmulti_sis(sc);
1988 		error = 0;
1989 		break;
1990 	case SIOCGIFMEDIA:
1991 	case SIOCSIFMEDIA:
1992 		mii = device_get_softc(sc->sis_miibus);
1993 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1994 		break;
1995 	default:
1996 		error = ether_ioctl(ifp, command, data);
1997 		break;
1998 	}
1999 	return(error);
2000 }
2001 
2002 static void
2003 sis_watchdog(struct ifnet *ifp)
2004 {
2005 	struct sis_softc *sc;
2006 
2007 	sc = ifp->if_softc;
2008 
2009 	IFNET_STAT_INC(ifp, oerrors, 1);
2010 	if_printf(ifp, "watchdog timeout\n");
2011 
2012 	sis_stop(sc);
2013 	sis_reset(sc);
2014 	sis_init(sc);
2015 
2016 	if (!ifq_is_empty(&ifp->if_snd))
2017 		if_devstart(ifp);
2018 }
2019 
2020 /*
2021  * Stop the adapter and free any mbufs allocated to the
2022  * RX and TX lists.
2023  */
2024 static void
2025 sis_stop(struct sis_softc *sc)
2026 {
2027 	struct ifnet *ifp = &sc->arpcom.ac_if;
2028 	struct sis_list_data *ld = &sc->sis_ldata;
2029 	struct sis_chain_data *cd = &sc->sis_cdata;
2030 	int i;
2031 
2032 	callout_stop(&sc->sis_timer);
2033 
2034 	ifp->if_flags &= ~IFF_RUNNING;
2035 	ifq_clr_oactive(&ifp->if_snd);
2036 	ifp->if_timer = 0;
2037 
2038 	CSR_WRITE_4(sc, SIS_IER, 0);
2039 	CSR_WRITE_4(sc, SIS_IMR, 0);
2040 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2041 	DELAY(1000);
2042 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2043 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2044 
2045 	sc->sis_link = 0;
2046 
2047 	/*
2048 	 * Free data in the RX lists.
2049 	 */
2050 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2051 		struct sis_rx_data *rd = &cd->sis_rx_data[i];
2052 
2053 		if (rd->sis_mbuf != NULL) {
2054 			bus_dmamap_unload(cd->sis_rxbuf_tag, rd->sis_map);
2055 			m_freem(rd->sis_mbuf);
2056 			rd->sis_mbuf = NULL;
2057 		}
2058 	}
2059 	bzero(ld->sis_rx_list, SIS_RX_LIST_SZ);
2060 
2061 	/*
2062 	 * Free the TX list buffers.
2063 	 */
2064 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2065 		struct sis_tx_data *td = &cd->sis_tx_data[i];
2066 
2067 		if (td->sis_mbuf != NULL) {
2068 			bus_dmamap_unload(cd->sis_txbuf_tag, td->sis_map);
2069 			m_freem(td->sis_mbuf);
2070 			td->sis_mbuf = NULL;
2071 		}
2072 	}
2073 	bzero(ld->sis_tx_list, SIS_TX_LIST_SZ);
2074 }
2075 
2076 /*
2077  * Stop all chip I/O so that the kernel's probe routines don't
2078  * get confused by errant DMAs when rebooting.
2079  */
2080 static void
2081 sis_shutdown(device_t dev)
2082 {
2083 	struct sis_softc	*sc;
2084 	struct ifnet *ifp;
2085 
2086 	sc = device_get_softc(dev);
2087 	ifp = &sc->arpcom.ac_if;
2088 	lwkt_serialize_enter(ifp->if_serializer);
2089 	sis_reset(sc);
2090 	sis_stop(sc);
2091 	lwkt_serialize_exit(ifp->if_serializer);
2092 }
2093 
2094 static int
2095 sis_dma_alloc(device_t dev)
2096 {
2097 	struct sis_softc *sc = device_get_softc(dev);
2098 	struct sis_chain_data *cd = &sc->sis_cdata;
2099 	struct sis_list_data *ld = &sc->sis_ldata;
2100 	int i, error;
2101 
2102 	/* Create top level DMA tag */
2103 	error = bus_dma_tag_create(NULL,	/* parent */
2104 			1, 0,			/* alignment, boundary */
2105 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2106 			BUS_SPACE_MAXADDR,	/* highaddr */
2107 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2108 			0,			/* nsegments */
2109 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2110 			0,			/* flags */
2111 			&sc->sis_parent_tag);
2112 	if (error) {
2113 		device_printf(dev, "could not create parent DMA tag\n");
2114 		return error;
2115 	}
2116 
2117 	/* Allocate RX ring */
2118 	ld->sis_rx_list = bus_dmamem_coherent_any(sc->sis_parent_tag,
2119 				SIS_RING_ALIGN, SIS_RX_LIST_SZ,
2120 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
2121 				&ld->sis_rx_tag, &ld->sis_rx_dmamap,
2122 				&ld->sis_rx_paddr);
2123 	if (ld->sis_rx_list == NULL) {
2124 		device_printf(dev, "could not allocate RX ring\n");
2125 		return ENOMEM;
2126 	}
2127 
2128 	/* Allocate TX ring */
2129 	ld->sis_tx_list = bus_dmamem_coherent_any(sc->sis_parent_tag,
2130 				SIS_RING_ALIGN, SIS_TX_LIST_SZ,
2131 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
2132 				&ld->sis_tx_tag, &ld->sis_tx_dmamap,
2133 				&ld->sis_tx_paddr);
2134 	if (ld->sis_tx_list == NULL) {
2135 		device_printf(dev, "could not allocate TX ring\n");
2136 		return ENOMEM;
2137 	}
2138 
2139 	/* Create DMA tag for TX mbuf */
2140 	error = bus_dma_tag_create(sc->sis_parent_tag,/* parent */
2141 			1, 0,			/* alignment, boundary */
2142 			BUS_SPACE_MAXADDR,	/* lowaddr */
2143 			BUS_SPACE_MAXADDR,	/* highaddr */
2144 			MCLBYTES,		/* maxsize */
2145 			SIS_NSEGS,		/* nsegments */
2146 			MCLBYTES,		/* maxsegsize */
2147 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,/* flags */
2148 			&cd->sis_txbuf_tag);
2149 	if (error) {
2150 		device_printf(dev, "could not create TX buf DMA tag\n");
2151 		return error;
2152 	}
2153 
2154 	/* Create DMA maps for TX mbufs */
2155 	for (i = 0; i < SIS_TX_LIST_CNT; ++i) {
2156 		error = bus_dmamap_create(cd->sis_txbuf_tag, BUS_DMA_WAITOK,
2157 					  &cd->sis_tx_data[i].sis_map);
2158 		if (error) {
2159 			int j;
2160 
2161 			for (j = 0; j < i; ++j) {
2162 				bus_dmamap_destroy(cd->sis_txbuf_tag,
2163 					cd->sis_tx_data[j].sis_map);
2164 			}
2165 			bus_dma_tag_destroy(cd->sis_txbuf_tag);
2166 			cd->sis_txbuf_tag = NULL;
2167 
2168 			device_printf(dev, "could not create %dth "
2169 				      "TX buf DMA map\n", i);
2170 			return error;
2171 		}
2172 	}
2173 
2174 	/* Create DMA tag for RX mbuf */
2175 	error = bus_dma_tag_create(sc->sis_parent_tag,/* parent */
2176 			SIS_RXBUF_ALIGN, 0,	/* alignment, boundary */
2177 			BUS_SPACE_MAXADDR,	/* lowaddr */
2178 			BUS_SPACE_MAXADDR,	/* highaddr */
2179 			MCLBYTES,		/* maxsize */
2180 			1,			/* nsegments */
2181 			MCLBYTES,		/* maxsegsize */
2182 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
2183 			BUS_DMA_ALIGNED,	/* flags */
2184 			&cd->sis_rxbuf_tag);
2185 	if (error) {
2186 		device_printf(dev, "could not create RX buf DMA tag\n");
2187 		return error;
2188 	}
2189 
2190 	/* Create tmp DMA map for loading RX mbuf */
2191 	error = bus_dmamap_create(cd->sis_rxbuf_tag, BUS_DMA_WAITOK,
2192 				  &cd->sis_rx_tmpmap);
2193 	if (error) {
2194 		device_printf(dev, "could not create RX buf tmp DMA map\n");
2195 		bus_dma_tag_destroy(cd->sis_rxbuf_tag);
2196 		cd->sis_rxbuf_tag = NULL;
2197 		return error;
2198 	}
2199 
2200 	/* Create DMA maps for RX mbufs */
2201 	for (i = 0; i < SIS_RX_LIST_CNT; ++i) {
2202 		error = bus_dmamap_create(cd->sis_rxbuf_tag, BUS_DMA_WAITOK,
2203 					  &cd->sis_rx_data[i].sis_map);
2204 		if (error) {
2205 			int j;
2206 
2207 			for (j = 0; j < i; ++j) {
2208 				bus_dmamap_destroy(cd->sis_rxbuf_tag,
2209 					cd->sis_rx_data[j].sis_map);
2210 			}
2211 			bus_dmamap_destroy(cd->sis_rxbuf_tag,
2212 					   cd->sis_rx_tmpmap);
2213 			bus_dma_tag_destroy(cd->sis_rxbuf_tag);
2214 			cd->sis_rxbuf_tag = NULL;
2215 
2216 			device_printf(dev, "could not create %dth "
2217 				      "RX buf DMA map\n", i);
2218 			return error;
2219 		}
2220 	}
2221 	return 0;
2222 }
2223 
2224 static void
2225 sis_dma_free(device_t dev)
2226 {
2227 	struct sis_softc *sc = device_get_softc(dev);
2228 	struct sis_list_data *ld = &sc->sis_ldata;
2229 	struct sis_chain_data *cd = &sc->sis_cdata;
2230 	int i;
2231 
2232 	/* Free TX ring */
2233 	if (ld->sis_tx_list != NULL) {
2234 		bus_dmamap_unload(ld->sis_tx_tag, ld->sis_tx_dmamap);
2235 		bus_dmamem_free(ld->sis_tx_tag, ld->sis_tx_list,
2236 				ld->sis_tx_dmamap);
2237 		bus_dma_tag_destroy(ld->sis_tx_tag);
2238 	}
2239 
2240 	/* Free RX ring */
2241 	if (ld->sis_rx_list != NULL) {
2242 		bus_dmamap_unload(ld->sis_rx_tag, ld->sis_rx_dmamap);
2243 		bus_dmamem_free(ld->sis_rx_tag, ld->sis_rx_list,
2244 				ld->sis_rx_dmamap);
2245 		bus_dma_tag_destroy(ld->sis_rx_tag);
2246 	}
2247 
2248 	/* Destroy DMA stuffs for TX mbufs */
2249 	if (cd->sis_txbuf_tag != NULL) {
2250 		for (i = 0; i < SIS_TX_LIST_CNT; ++i) {
2251 			KKASSERT(cd->sis_tx_data[i].sis_mbuf == NULL);
2252 			bus_dmamap_destroy(cd->sis_txbuf_tag,
2253 					   cd->sis_tx_data[i].sis_map);
2254 		}
2255 		bus_dma_tag_destroy(cd->sis_txbuf_tag);
2256 	}
2257 
2258 	/* Destroy DMA stuffs for RX mbufs */
2259 	if (cd->sis_rxbuf_tag != NULL) {
2260 		for (i = 0; i < SIS_RX_LIST_CNT; ++i) {
2261 			KKASSERT(cd->sis_rx_data[i].sis_mbuf == NULL);
2262 			bus_dmamap_destroy(cd->sis_rxbuf_tag,
2263 					   cd->sis_rx_data[i].sis_map);
2264 		}
2265 		bus_dmamap_destroy(cd->sis_rxbuf_tag, cd->sis_rx_tmpmap);
2266 		bus_dma_tag_destroy(cd->sis_rxbuf_tag);
2267 	}
2268 }
2269