xref: /dragonfly/sys/dev/netif/sis/if_sis.c (revision 99dd49c5)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sis.c,v 1.13.4.24 2003/03/05 18:42:33 njl Exp $
33  * $DragonFly: src/sys/dev/netif/sis/if_sis.c,v 1.38 2008/08/17 04:32:34 sephe Exp $
34  */
35 
36 /*
37  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
38  * available from http://www.sis.com.tw.
39  *
40  * This driver also supports the NatSemi DP83815. Datasheets are
41  * available from http://www.national.com.
42  *
43  * Written by Bill Paul <wpaul@ee.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50  * simple TX and RX descriptors of 3 longwords in size. The receiver
51  * has a single perfect filter entry for the station address and a
52  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53  * transceiver while the 7016 requires an external transceiver chip.
54  * Both chips offer the standard bit-bang MII interface as well as
55  * an enchanced PHY interface which simplifies accessing MII registers.
56  *
57  * The only downside to this chipset is that RX descriptors must be
58  * longword aligned.
59  */
60 
61 #include "opt_polling.h"
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/sockio.h>
66 #include <sys/mbuf.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sysctl.h>
71 #include <sys/serialize.h>
72 #include <sys/thread2.h>
73 #include <sys/bus.h>
74 #include <sys/rman.h>
75 #include <sys/interrupt.h>
76 
77 #include <net/if.h>
78 #include <net/ifq_var.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_dl.h>
82 #include <net/if_media.h>
83 #include <net/if_types.h>
84 #include <net/vlan/if_vlan_var.h>
85 
86 #include <net/bpf.h>
87 
88 #include <dev/netif/mii_layer/mii.h>
89 #include <dev/netif/mii_layer/miivar.h>
90 
91 #include <bus/pci/pcidevs.h>
92 #include <bus/pci/pcireg.h>
93 #include <bus/pci/pcivar.h>
94 
95 #define SIS_USEIOSPACE
96 
97 #include "if_sisreg.h"
98 
99 /* "controller miibus0" required.  See GENERIC if you get errors here. */
100 #include "miibus_if.h"
101 
102 /*
103  * Various supported device vendors/types and their names.
104  */
105 static struct sis_type sis_devs[] = {
106 	{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, "SiS 900 10/100BaseTX" },
107 	{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016, "SiS 7016 10/100BaseTX" },
108 	{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
109 	{ 0, 0, NULL }
110 };
111 
112 static int	sis_probe(device_t);
113 static int	sis_attach(device_t);
114 static int	sis_detach(device_t);
115 
116 static int	sis_newbuf(struct sis_softc *, int, int);
117 static void	sis_setup_rxdesc(struct sis_softc *, int);
118 static int	sis_encap(struct sis_softc *, struct mbuf **, uint32_t *);
119 static void	sis_rxeof(struct sis_softc *);
120 static void	sis_rxeoc(struct sis_softc *);
121 static void	sis_txeof(struct sis_softc *);
122 static void	sis_intr(void *);
123 static void	sis_tick(void *);
124 static void	sis_start(struct ifnet *);
125 static int	sis_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
126 static void	sis_init(void *);
127 static void	sis_stop(struct sis_softc *);
128 static void	sis_watchdog(struct ifnet *);
129 static void	sis_shutdown(device_t);
130 static int	sis_ifmedia_upd(struct ifnet *);
131 static void	sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
132 
133 static uint16_t	sis_reverse(uint16_t);
134 static void	sis_delay(struct sis_softc *);
135 static void	sis_eeprom_idle(struct sis_softc *);
136 static void	sis_eeprom_putbyte(struct sis_softc *, int);
137 static void	sis_eeprom_getword(struct sis_softc *, int, uint16_t *);
138 static void	sis_read_eeprom(struct sis_softc *, caddr_t, int, int, int);
139 #ifdef __i386__
140 static void	sis_read_cmos(struct sis_softc *, device_t, caddr_t, int, int);
141 static void	sis_read_mac(struct sis_softc *, device_t, caddr_t);
142 static device_t	sis_find_bridge(device_t);
143 #endif
144 
145 static void	sis_mii_sync(struct sis_softc *);
146 static void	sis_mii_send(struct sis_softc *, uint32_t, int);
147 static int	sis_mii_readreg(struct sis_softc *, struct sis_mii_frame *);
148 static int	sis_mii_writereg(struct sis_softc *, struct sis_mii_frame *);
149 static int	sis_miibus_readreg(device_t, int, int);
150 static int	sis_miibus_writereg(device_t, int, int, int);
151 static void	sis_miibus_statchg(device_t);
152 
153 static void	sis_setmulti_sis(struct sis_softc *);
154 static void	sis_setmulti_ns(struct sis_softc *);
155 static uint32_t	sis_mchash(struct sis_softc *, const uint8_t *);
156 static void	sis_reset(struct sis_softc *);
157 static int	sis_list_rx_init(struct sis_softc *);
158 static int	sis_list_tx_init(struct sis_softc *);
159 
160 static int	sis_dma_alloc(device_t dev);
161 static void	sis_dma_free(device_t dev);
162 #ifdef DEVICE_POLLING
163 static poll_handler_t sis_poll;
164 #endif
165 #ifdef SIS_USEIOSPACE
166 #define SIS_RES			SYS_RES_IOPORT
167 #define SIS_RID			SIS_PCI_LOIO
168 #else
169 #define SIS_RES			SYS_RES_MEMORY
170 #define SIS_RID			SIS_PCI_LOMEM
171 #endif
172 
173 static device_method_t sis_methods[] = {
174 	/* Device interface */
175 	DEVMETHOD(device_probe,		sis_probe),
176 	DEVMETHOD(device_attach,	sis_attach),
177 	DEVMETHOD(device_detach,	sis_detach),
178 	DEVMETHOD(device_shutdown,	sis_shutdown),
179 
180 	/* bus interface */
181 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
182 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
183 
184 	/* MII interface */
185 	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
186 	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
187 	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
188 
189 	{ 0, 0 }
190 };
191 
192 static driver_t sis_driver = {
193 	"sis",
194 	sis_methods,
195 	sizeof(struct sis_softc)
196 };
197 
198 static devclass_t sis_devclass;
199 
200 DECLARE_DUMMY_MODULE(if_sis);
201 DRIVER_MODULE(if_sis, pci, sis_driver, sis_devclass, 0, 0);
202 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
203 
204 #define SIS_SETBIT(sc, reg, x)				\
205 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
206 
207 #define SIS_CLRBIT(sc, reg, x)				\
208 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
209 
210 #define SIO_SET(x)					\
211 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
212 
213 #define SIO_CLR(x)					\
214 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
215 
216 /*
217  * Routine to reverse the bits in a word. Stolen almost
218  * verbatim from /usr/games/fortune.
219  */
220 static uint16_t
221 sis_reverse(uint16_t n)
222 {
223 	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
224 	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
225 	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
226 	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
227 
228 	return(n);
229 }
230 
231 static void
232 sis_delay(struct sis_softc *sc)
233 {
234 	int idx;
235 
236 	for (idx = (300 / 33) + 1; idx > 0; idx--)
237 		CSR_READ_4(sc, SIS_CSR);
238 }
239 
240 static void
241 sis_eeprom_idle(struct sis_softc *sc)
242 {
243 	int i;
244 
245 	SIO_SET(SIS_EECTL_CSEL);
246 	sis_delay(sc);
247 	SIO_SET(SIS_EECTL_CLK);
248 	sis_delay(sc);
249 
250 	for (i = 0; i < 25; i++) {
251 		SIO_CLR(SIS_EECTL_CLK);
252 		sis_delay(sc);
253 		SIO_SET(SIS_EECTL_CLK);
254 		sis_delay(sc);
255 	}
256 
257 	SIO_CLR(SIS_EECTL_CLK);
258 	sis_delay(sc);
259 	SIO_CLR(SIS_EECTL_CSEL);
260 	sis_delay(sc);
261 	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
262 }
263 
264 /*
265  * Send a read command and address to the EEPROM, check for ACK.
266  */
267 static void
268 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
269 {
270 	int d, i;
271 
272 	d = addr | SIS_EECMD_READ;
273 
274 	/*
275 	 * Feed in each bit and stobe the clock.
276 	 */
277 	for (i = 0x400; i; i >>= 1) {
278 		if (d & i)
279 			SIO_SET(SIS_EECTL_DIN);
280 		else
281 			SIO_CLR(SIS_EECTL_DIN);
282 		sis_delay(sc);
283 		SIO_SET(SIS_EECTL_CLK);
284 		sis_delay(sc);
285 		SIO_CLR(SIS_EECTL_CLK);
286 		sis_delay(sc);
287 	}
288 }
289 
290 /*
291  * Read a word of data stored in the EEPROM at address 'addr.'
292  */
293 static void
294 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
295 {
296 	int i;
297 	uint16_t word = 0;
298 
299 	/* Force EEPROM to idle state. */
300 	sis_eeprom_idle(sc);
301 
302 	/* Enter EEPROM access mode. */
303 	sis_delay(sc);
304 	SIO_CLR(SIS_EECTL_CLK);
305 	sis_delay(sc);
306 	SIO_SET(SIS_EECTL_CSEL);
307 	sis_delay(sc);
308 
309 	/*
310 	 * Send address of word we want to read.
311 	 */
312 	sis_eeprom_putbyte(sc, addr);
313 
314 	/*
315 	 * Start reading bits from EEPROM.
316 	 */
317 	for (i = 0x8000; i; i >>= 1) {
318 		SIO_SET(SIS_EECTL_CLK);
319 		sis_delay(sc);
320 		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
321 			word |= i;
322 		sis_delay(sc);
323 		SIO_CLR(SIS_EECTL_CLK);
324 		sis_delay(sc);
325 	}
326 
327 	/* Turn off EEPROM access mode. */
328 	sis_eeprom_idle(sc);
329 
330 	*dest = word;
331 }
332 
333 /*
334  * Read a sequence of words from the EEPROM.
335  */
336 static void
337 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
338 {
339 	int i;
340 	uint16_t word = 0, *ptr;
341 
342 	for (i = 0; i < cnt; i++) {
343 		sis_eeprom_getword(sc, off + i, &word);
344 		ptr = (uint16_t *)(dest + (i * 2));
345 		if (swap)
346 			*ptr = ntohs(word);
347 		else
348 			*ptr = word;
349 	}
350 }
351 
352 #ifdef __i386__
353 static device_t
354 sis_find_bridge(device_t dev)
355 {
356 	devclass_t pci_devclass;
357 	device_t *pci_devices;
358 	int pci_count = 0;
359 	device_t *pci_children;
360 	int pci_childcount = 0;
361 	device_t *busp, *childp;
362 	device_t child = NULL;
363 	int i, j;
364 
365 	if ((pci_devclass = devclass_find("pci")) == NULL)
366 		return(NULL);
367 
368 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
369 
370 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
371 		pci_childcount = 0;
372 		device_get_children(*busp, &pci_children, &pci_childcount);
373 		for (j = 0, childp = pci_children; j < pci_childcount;
374 		     j++, childp++) {
375 			if (pci_get_vendor(*childp) == PCI_VENDOR_SIS &&
376 			    pci_get_device(*childp) == 0x0008) {
377 				child = *childp;
378 				goto done;
379 			}
380 		}
381 	}
382 
383 done:
384 	kfree(pci_devices, M_TEMP);
385 	kfree(pci_children, M_TEMP);
386 	return(child);
387 }
388 
389 static void
390 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off,
391 	      int cnt)
392 {
393 	device_t bridge;
394 	uint8_t reg;
395 	int i;
396 	bus_space_tag_t	btag;
397 
398 	bridge = sis_find_bridge(dev);
399 	if (bridge == NULL)
400 		return;
401 	reg = pci_read_config(bridge, 0x48, 1);
402 	pci_write_config(bridge, 0x48, reg|0x40, 1);
403 
404 	/* XXX */
405 	btag = I386_BUS_SPACE_IO;
406 
407 	for (i = 0; i < cnt; i++) {
408 		bus_space_write_1(btag, 0x0, 0x70, i + off);
409 		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
410 	}
411 
412 	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
413 }
414 
415 static void
416 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
417 {
418 	uint32_t filtsave, csrsave;
419 
420 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
421 	csrsave = CSR_READ_4(sc, SIS_CSR);
422 
423 	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
424 	CSR_WRITE_4(sc, SIS_CSR, 0);
425 
426 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
427 
428 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
429 	((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
430 	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
431 	((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
432 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
433 	((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
434 
435 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
436 	CSR_WRITE_4(sc, SIS_CSR, csrsave);
437 }
438 #endif
439 
440 /*
441  * Sync the PHYs by setting data bit and strobing the clock 32 times.
442  */
443 static void
444 sis_mii_sync(struct sis_softc *sc)
445 {
446 	int i;
447 
448 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
449 
450 	for (i = 0; i < 32; i++) {
451 		SIO_SET(SIS_MII_CLK);
452 		DELAY(1);
453 		SIO_CLR(SIS_MII_CLK);
454 		DELAY(1);
455 	}
456 }
457 
458 /*
459  * Clock a series of bits through the MII.
460  */
461 static void
462 sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt)
463 {
464 	int i;
465 
466 	SIO_CLR(SIS_MII_CLK);
467 
468 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
469 		if (bits & i)
470 			SIO_SET(SIS_MII_DATA);
471 		else
472 			SIO_CLR(SIS_MII_DATA);
473 		DELAY(1);
474 		SIO_CLR(SIS_MII_CLK);
475 		DELAY(1);
476 		SIO_SET(SIS_MII_CLK);
477 	}
478 }
479 
480 /*
481  * Read an PHY register through the MII.
482  */
483 static int
484 sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
485 {
486 	int i, ack;
487 
488 	/*
489 	 * Set up frame for RX.
490 	 */
491 	frame->mii_stdelim = SIS_MII_STARTDELIM;
492 	frame->mii_opcode = SIS_MII_READOP;
493 	frame->mii_turnaround = 0;
494 	frame->mii_data = 0;
495 
496 	/*
497  	 * Turn on data xmit.
498 	 */
499 	SIO_SET(SIS_MII_DIR);
500 
501 	sis_mii_sync(sc);
502 
503 	/*
504 	 * Send command/address info.
505 	 */
506 	sis_mii_send(sc, frame->mii_stdelim, 2);
507 	sis_mii_send(sc, frame->mii_opcode, 2);
508 	sis_mii_send(sc, frame->mii_phyaddr, 5);
509 	sis_mii_send(sc, frame->mii_regaddr, 5);
510 
511 	/* Idle bit */
512 	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
513 	DELAY(1);
514 	SIO_SET(SIS_MII_CLK);
515 	DELAY(1);
516 
517 	/* Turn off xmit. */
518 	SIO_CLR(SIS_MII_DIR);
519 
520 	/* Check for ack */
521 	SIO_CLR(SIS_MII_CLK);
522 	DELAY(1);
523 	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
524 	SIO_SET(SIS_MII_CLK);
525 	DELAY(1);
526 
527 	/*
528 	 * Now try reading data bits. If the ack failed, we still
529 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
530 	 */
531 	if (ack) {
532 		for(i = 0; i < 16; i++) {
533 			SIO_CLR(SIS_MII_CLK);
534 			DELAY(1);
535 			SIO_SET(SIS_MII_CLK);
536 			DELAY(1);
537 		}
538 		goto fail;
539 	}
540 
541 	for (i = 0x8000; i; i >>= 1) {
542 		SIO_CLR(SIS_MII_CLK);
543 		DELAY(1);
544 		if (!ack) {
545 			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
546 				frame->mii_data |= i;
547 			DELAY(1);
548 		}
549 		SIO_SET(SIS_MII_CLK);
550 		DELAY(1);
551 	}
552 
553 fail:
554 
555 	SIO_CLR(SIS_MII_CLK);
556 	DELAY(1);
557 	SIO_SET(SIS_MII_CLK);
558 	DELAY(1);
559 
560 	if (ack)
561 		return(1);
562 	return(0);
563 }
564 
565 /*
566  * Write to a PHY register through the MII.
567  */
568 static int
569 sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
570 {
571 	/*
572 	 * Set up frame for TX.
573 	 */
574 
575 	frame->mii_stdelim = SIS_MII_STARTDELIM;
576 	frame->mii_opcode = SIS_MII_WRITEOP;
577 	frame->mii_turnaround = SIS_MII_TURNAROUND;
578 
579 	/*
580 	 * Turn on data output.
581 	 */
582 	SIO_SET(SIS_MII_DIR);
583 
584 	sis_mii_sync(sc);
585 
586 	sis_mii_send(sc, frame->mii_stdelim, 2);
587 	sis_mii_send(sc, frame->mii_opcode, 2);
588 	sis_mii_send(sc, frame->mii_phyaddr, 5);
589 	sis_mii_send(sc, frame->mii_regaddr, 5);
590 	sis_mii_send(sc, frame->mii_turnaround, 2);
591 	sis_mii_send(sc, frame->mii_data, 16);
592 
593 	/* Idle bit. */
594 	SIO_SET(SIS_MII_CLK);
595 	DELAY(1);
596 	SIO_CLR(SIS_MII_CLK);
597 	DELAY(1);
598 
599 	/*
600 	 * Turn off xmit.
601 	 */
602 	SIO_CLR(SIS_MII_DIR);
603 
604 	return(0);
605 }
606 
607 static int
608 sis_miibus_readreg(device_t dev, int phy, int reg)
609 {
610 	struct sis_softc *sc;
611 	struct sis_mii_frame frame;
612 
613 	sc = device_get_softc(dev);
614 
615 	if (sc->sis_type == SIS_TYPE_83815) {
616 		if (phy != 0)
617 			return(0);
618 		/*
619 		 * The NatSemi chip can take a while after
620 		 * a reset to come ready, during which the BMSR
621 		 * returns a value of 0. This is *never* supposed
622 		 * to happen: some of the BMSR bits are meant to
623 		 * be hardwired in the on position, and this can
624 		 * confuse the miibus code a bit during the probe
625 		 * and attach phase. So we make an effort to check
626 		 * for this condition and wait for it to clear.
627 		 */
628 		if (!CSR_READ_4(sc, NS_BMSR))
629 			DELAY(1000);
630 		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
631 	}
632 	/*
633 	 * Chipsets < SIS_635 seem not to be able to read/write
634 	 * through mdio. Use the enhanced PHY access register
635 	 * again for them.
636 	 */
637 	if (sc->sis_type == SIS_TYPE_900 &&
638 	    sc->sis_rev < SIS_REV_635) {
639 		int i, val = 0;
640 
641 		if (phy != 0)
642 			return(0);
643 
644 		CSR_WRITE_4(sc, SIS_PHYCTL,
645 		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
646 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
647 
648 		for (i = 0; i < SIS_TIMEOUT; i++) {
649 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
650 				break;
651 		}
652 
653 		if (i == SIS_TIMEOUT) {
654 			device_printf(dev, "PHY failed to come ready\n");
655 			return(0);
656 		}
657 
658 		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
659 
660 		if (val == 0xFFFF)
661 			return(0);
662 
663 		return(val);
664 	} else {
665 		bzero((char *)&frame, sizeof(frame));
666 
667 		frame.mii_phyaddr = phy;
668 		frame.mii_regaddr = reg;
669 		sis_mii_readreg(sc, &frame);
670 
671 		return(frame.mii_data);
672 	}
673 }
674 
675 static int
676 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
677 {
678 	struct sis_softc *sc;
679 	struct sis_mii_frame frame;
680 
681 	sc = device_get_softc(dev);
682 
683 	if (sc->sis_type == SIS_TYPE_83815) {
684 		if (phy != 0)
685 			return(0);
686 		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
687 		return(0);
688 	}
689 
690 	if (sc->sis_type == SIS_TYPE_900 &&
691 	    sc->sis_rev < SIS_REV_635) {
692 		int i;
693 
694 		if (phy != 0)
695 			return(0);
696 
697 		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
698 		    (reg << 6) | SIS_PHYOP_WRITE);
699 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
700 
701 		for (i = 0; i < SIS_TIMEOUT; i++) {
702 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
703 				break;
704 		}
705 
706 		if (i == SIS_TIMEOUT)
707 			device_printf(dev, "PHY failed to come ready\n");
708 	} else {
709 		bzero((char *)&frame, sizeof(frame));
710 
711 		frame.mii_phyaddr = phy;
712 		frame.mii_regaddr = reg;
713 		frame.mii_data = data;
714 		sis_mii_writereg(sc, &frame);
715 	}
716 	return(0);
717 }
718 
719 static void
720 sis_miibus_statchg(device_t dev)
721 {
722 	struct sis_softc *sc;
723 
724 	sc = device_get_softc(dev);
725 	sis_init(sc);
726 }
727 
728 static uint32_t
729 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
730 {
731 	uint32_t crc, carry;
732 	int i, j;
733 	uint8_t c;
734 
735 	/* Compute CRC for the address value. */
736 	crc = 0xFFFFFFFF; /* initial value */
737 
738 	for (i = 0; i < 6; i++) {
739 		c = *(addr + i);
740 		for (j = 0; j < 8; j++) {
741 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
742 			crc <<= 1;
743 			c >>= 1;
744 			if (carry)
745 				crc = (crc ^ 0x04c11db6) | carry;
746 		}
747 	}
748 
749 	/*
750 	 * return the filter bit position
751 	 *
752 	 * The NatSemi chip has a 512-bit filter, which is
753 	 * different than the SiS, so we special-case it.
754 	 */
755 	if (sc->sis_type == SIS_TYPE_83815)
756 		return (crc >> 23);
757 	else if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
758 		return (crc >> 24);
759 	else
760 		return (crc >> 25);
761 }
762 
763 static void
764 sis_setmulti_ns(struct sis_softc *sc)
765 {
766 	struct ifnet *ifp;
767 	struct ifmultiaddr *ifma;
768 	uint32_t h = 0, i, filtsave;
769 	int bit, index;
770 
771 	ifp = &sc->arpcom.ac_if;
772 
773 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
774 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
775 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
776 		return;
777 	}
778 
779 	/*
780 	 * We have to explicitly enable the multicast hash table
781 	 * on the NatSemi chip if we want to use it, which we do.
782 	 */
783 	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
784 	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
785 
786 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
787 
788 	/* first, zot all the existing hash bits */
789 	for (i = 0; i < 32; i++) {
790 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
791 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
792 	}
793 
794 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
795 		if (ifma->ifma_addr->sa_family != AF_LINK)
796 			continue;
797 		h = sis_mchash(sc,
798 			       LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
799 		index = h >> 3;
800 		bit = h & 0x1F;
801 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
802 		if (bit > 0xF)
803 			bit -= 0x10;
804 		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
805 	}
806 
807 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
808 }
809 
810 static void
811 sis_setmulti_sis(struct sis_softc *sc)
812 {
813 	struct ifnet *ifp;
814 	struct ifmultiaddr *ifma;
815 	uint32_t h, i, n, ctl;
816 	uint16_t hashes[16];
817 
818 	ifp = &sc->arpcom.ac_if;
819 
820 	/* hash table size */
821 	if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
822 		n = 16;
823 	else
824 		n = 8;
825 
826 	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
827 
828 	if (ifp->if_flags & IFF_BROADCAST)
829 		ctl |= SIS_RXFILTCTL_BROAD;
830 
831 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
832 		ctl |= SIS_RXFILTCTL_ALLMULTI;
833 		if (ifp->if_flags & IFF_PROMISC)
834 			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
835 		for (i = 0; i < n; i++)
836 			hashes[i] = ~0;
837 	} else {
838 		for (i = 0; i < n; i++)
839 			hashes[i] = 0;
840 		i = 0;
841 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
842 			if (ifma->ifma_addr->sa_family != AF_LINK)
843 				continue;
844 			h = sis_mchash(sc,
845 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
846 			hashes[h >> 4] |= 1 << (h & 0xf);
847 			i++;
848 		}
849 		if (i > n) {
850 			ctl |= SIS_RXFILTCTL_ALLMULTI;
851 			for (i = 0; i < n; i++)
852 				hashes[i] = ~0;
853 		}
854 	}
855 
856 	for (i = 0; i < n; i++) {
857 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
858 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
859 	}
860 
861 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
862 }
863 
864 static void
865 sis_reset(struct sis_softc *sc)
866 {
867 	struct ifnet *ifp = &sc->arpcom.ac_if;
868 	int i;
869 
870 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
871 
872 	for (i = 0; i < SIS_TIMEOUT; i++) {
873 		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
874 			break;
875 	}
876 
877 	if (i == SIS_TIMEOUT)
878 		if_printf(ifp, "reset never completed\n");
879 
880 	/* Wait a little while for the chip to get its brains in order. */
881 	DELAY(1000);
882 
883 	/*
884 	 * If this is a NetSemi chip, make sure to clear
885 	 * PME mode.
886 	 */
887 	if (sc->sis_type == SIS_TYPE_83815) {
888 		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
889 		CSR_WRITE_4(sc, NS_CLKRUN, 0);
890 	}
891 }
892 
893 /*
894  * Probe for an SiS chip. Check the PCI vendor and device
895  * IDs against our list and return a device name if we find a match.
896  */
897 static int
898 sis_probe(device_t dev)
899 {
900 	struct sis_type *t;
901 
902 	t = sis_devs;
903 
904 	while(t->sis_name != NULL) {
905 		if ((pci_get_vendor(dev) == t->sis_vid) &&
906 		    (pci_get_device(dev) == t->sis_did)) {
907 			device_set_desc(dev, t->sis_name);
908 			return(0);
909 		}
910 		t++;
911 	}
912 
913 	return(ENXIO);
914 }
915 
916 /*
917  * Attach the interface. Allocate softc structures, do ifmedia
918  * setup and ethernet/BPF attach.
919  */
920 static int
921 sis_attach(device_t dev)
922 {
923 	uint8_t eaddr[ETHER_ADDR_LEN];
924 	uint32_t command;
925 	struct sis_softc *sc;
926 	struct ifnet *ifp;
927 	int error, rid, waittime;
928 
929 	error = waittime = 0;
930 	sc = device_get_softc(dev);
931 
932 	if (pci_get_device(dev) == PCI_PRODUCT_SIS_900)
933 		sc->sis_type = SIS_TYPE_900;
934 	if (pci_get_device(dev) == PCI_PRODUCT_SIS_7016)
935 		sc->sis_type = SIS_TYPE_7016;
936 	if (pci_get_vendor(dev) == PCI_VENDOR_NS)
937 		sc->sis_type = SIS_TYPE_83815;
938 
939 	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
940 
941 	/*
942 	 * Handle power management nonsense.
943 	 */
944 
945 	command = pci_read_config(dev, SIS_PCI_CAPID, 4) & 0x000000FF;
946 	if (command == 0x01) {
947 
948 		command = pci_read_config(dev, SIS_PCI_PWRMGMTCTRL, 4);
949 		if (command & SIS_PSTATE_MASK) {
950 			uint32_t		iobase, membase, irq;
951 
952 			/* Save important PCI config data. */
953 			iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
954 			membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
955 			irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
956 
957 			/* Reset the power state. */
958 			device_printf(dev, "chip is in D%d power mode "
959 			    "-- setting to D0\n", command & SIS_PSTATE_MASK);
960 			command &= 0xFFFFFFFC;
961 			pci_write_config(dev, SIS_PCI_PWRMGMTCTRL, command, 4);
962 
963 			/* Restore PCI config data. */
964 			pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
965 			pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
966 			pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
967 		}
968 	}
969 
970 	/*
971 	 * Map control/status registers.
972 	 */
973 	command = pci_read_config(dev, PCIR_COMMAND, 4);
974 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
975 	pci_write_config(dev, PCIR_COMMAND, command, 4);
976 	command = pci_read_config(dev, PCIR_COMMAND, 4);
977 
978 #ifdef SIS_USEIOSPACE
979 	if (!(command & PCIM_CMD_PORTEN)) {
980 		device_printf(dev, "failed to enable I/O ports!\n");
981 		error = ENXIO;
982 		goto fail;
983 	}
984 #else
985 	if (!(command & PCIM_CMD_MEMEN)) {
986 		device_printf(dev, "failed to enable memory mapping!\n");
987 		error = ENXIO;
988 		goto fail;
989 	}
990 #endif
991 
992 	rid = SIS_RID;
993 	sc->sis_res = bus_alloc_resource_any(dev, SIS_RES, &rid, RF_ACTIVE);
994 
995 	if (sc->sis_res == NULL) {
996 		device_printf(dev, "couldn't map ports/memory\n");
997 		error = ENXIO;
998 		goto fail;
999 	}
1000 
1001 	sc->sis_btag = rman_get_bustag(sc->sis_res);
1002 	sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
1003 
1004 	/* Allocate interrupt */
1005 	rid = 0;
1006 	sc->sis_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1007 	    RF_SHAREABLE | RF_ACTIVE);
1008 
1009 	if (sc->sis_irq == NULL) {
1010 		device_printf(dev, "couldn't map interrupt\n");
1011 		error = ENXIO;
1012 		goto fail;
1013 	}
1014 
1015 	/* Reset the adapter. */
1016 	sis_reset(sc);
1017 
1018 	if (sc->sis_type == SIS_TYPE_900 &&
1019             (sc->sis_rev == SIS_REV_635 ||
1020              sc->sis_rev == SIS_REV_900B)) {
1021 		SIO_SET(SIS_CFG_RND_CNT);
1022 		SIO_SET(SIS_CFG_PERR_DETECT);
1023 	}
1024 
1025 	/*
1026 	 * Get station address from the EEPROM.
1027 	 */
1028 	switch (pci_get_vendor(dev)) {
1029 	case PCI_VENDOR_NS:
1030 		/*
1031 		 * Reading the MAC address out of the EEPROM on
1032 		 * the NatSemi chip takes a bit more work than
1033 		 * you'd expect. The address spans 4 16-bit words,
1034 		 * with the first word containing only a single bit.
1035 		 * You have to shift everything over one bit to
1036 		 * get it aligned properly. Also, the bits are
1037 		 * stored backwards (the LSB is really the MSB,
1038 		 * and so on) so you have to reverse them in order
1039 		 * to get the MAC address into the form we want.
1040 		 * Why? Who the hell knows.
1041 		 */
1042 		{
1043 			uint16_t		tmp[4];
1044 
1045 			sis_read_eeprom(sc, (caddr_t)&tmp,
1046 			    NS_EE_NODEADDR, 4, 0);
1047 
1048 			/* Shift everything over one bit. */
1049 			tmp[3] = tmp[3] >> 1;
1050 			tmp[3] |= tmp[2] << 15;
1051 			tmp[2] = tmp[2] >> 1;
1052 			tmp[2] |= tmp[1] << 15;
1053 			tmp[1] = tmp[1] >> 1;
1054 			tmp[1] |= tmp[0] << 15;
1055 
1056 			/* Now reverse all the bits. */
1057 			tmp[3] = sis_reverse(tmp[3]);
1058 			tmp[2] = sis_reverse(tmp[2]);
1059 			tmp[1] = sis_reverse(tmp[1]);
1060 
1061 			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1062 		}
1063 		break;
1064 	case PCI_VENDOR_SIS:
1065 	default:
1066 #ifdef __i386__
1067 		/*
1068 		 * If this is a SiS 630E chipset with an embedded
1069 		 * SiS 900 controller, we have to read the MAC address
1070 		 * from the APC CMOS RAM. Our method for doing this
1071 		 * is very ugly since we have to reach out and grab
1072 		 * ahold of hardware for which we cannot properly
1073 		 * allocate resources. This code is only compiled on
1074 		 * the i386 architecture since the SiS 630E chipset
1075 		 * is for x86 motherboards only. Note that there are
1076 		 * a lot of magic numbers in this hack. These are
1077 		 * taken from SiS's Linux driver. I'd like to replace
1078 		 * them with proper symbolic definitions, but that
1079 		 * requires some datasheets that I don't have access
1080 		 * to at the moment.
1081 		 */
1082 		if (sc->sis_rev == SIS_REV_630S ||
1083 		    sc->sis_rev == SIS_REV_630E ||
1084 		    sc->sis_rev == SIS_REV_630EA1)
1085 			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1086 
1087 		else if (sc->sis_rev == SIS_REV_635 ||
1088 			 sc->sis_rev == SIS_REV_630ET)
1089 			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1090 		else if (sc->sis_rev == SIS_REV_96x) {
1091 			/*
1092 			 * Allow to read EEPROM from LAN. It is shared
1093 			 * between a 1394 controller and the NIC and each
1094 			 * time we access it, we need to set SIS_EECMD_REQ.
1095 			 */
1096 			SIO_SET(SIS_EECMD_REQ);
1097 			for (waittime = 0; waittime < SIS_TIMEOUT;
1098 			    waittime++) {
1099 				/* Force EEPROM to idle state. */
1100 				sis_eeprom_idle(sc);
1101 				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1102 					sis_read_eeprom(sc, (caddr_t)&eaddr,
1103 					    SIS_EE_NODEADDR, 3, 0);
1104 					break;
1105 				}
1106 				DELAY(1);
1107 			}
1108 			/*
1109 			 * Set SIS_EECTL_CLK to high, so a other master
1110 			 * can operate on the i2c bus.
1111 			 */
1112 			SIO_SET(SIS_EECTL_CLK);
1113 			/* Refuse EEPROM access by LAN */
1114 			SIO_SET(SIS_EECMD_DONE);
1115 		} else
1116 #endif
1117 			sis_read_eeprom(sc, (caddr_t)&eaddr,
1118 			    SIS_EE_NODEADDR, 3, 0);
1119 		break;
1120 	}
1121 
1122 	callout_init(&sc->sis_timer);
1123 
1124 	error = sis_dma_alloc(dev);
1125 	if (error)
1126 		goto fail;
1127 
1128 	ifp = &sc->arpcom.ac_if;
1129 	ifp->if_softc = sc;
1130 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1131 	ifp->if_mtu = ETHERMTU;
1132 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1133 	ifp->if_ioctl = sis_ioctl;
1134 	ifp->if_start = sis_start;
1135 	ifp->if_watchdog = sis_watchdog;
1136 	ifp->if_init = sis_init;
1137 	ifp->if_baudrate = 10000000;
1138 	ifq_set_maxlen(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1139 	ifq_set_ready(&ifp->if_snd);
1140 #ifdef DEVICE_POLLING
1141 	ifp->if_poll = sis_poll;
1142 #endif
1143 	ifp->if_capenable = ifp->if_capabilities;
1144 
1145 	/*
1146 	 * Do MII setup.
1147 	 */
1148 	if (mii_phy_probe(dev, &sc->sis_miibus,
1149 	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1150 		device_printf(dev, "MII without any PHY!\n");
1151 		error = ENXIO;
1152 		goto fail;
1153 	}
1154 
1155 	/*
1156 	 * Call MI attach routine.
1157 	 */
1158 	ether_ifattach(ifp, eaddr, NULL);
1159 
1160 	/*
1161 	 * Tell the upper layer(s) we support long frames.
1162 	 */
1163 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1164 
1165 	error = bus_setup_intr(dev, sc->sis_irq, INTR_MPSAFE,
1166 			       sis_intr, sc,
1167 			       &sc->sis_intrhand,
1168 			       ifp->if_serializer);
1169 
1170 	if (error) {
1171 		device_printf(dev, "couldn't set up irq\n");
1172 		ether_ifdetach(ifp);
1173 		goto fail;
1174 	}
1175 
1176 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->sis_irq));
1177 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1178 
1179 fail:
1180 	if (error)
1181 		sis_detach(dev);
1182 
1183 	return(error);
1184 }
1185 
1186 /*
1187  * Shutdown hardware and free up resources. It is called in both the error case
1188  * and the normal detach case so it needs to be careful about only freeing
1189  * resources that have actually been allocated.
1190  */
1191 static int
1192 sis_detach(device_t dev)
1193 {
1194 	struct sis_softc *sc = device_get_softc(dev);
1195 	struct ifnet *ifp = &sc->arpcom.ac_if;
1196 
1197 
1198 	if (device_is_attached(dev)) {
1199 		lwkt_serialize_enter(ifp->if_serializer);
1200 		sis_reset(sc);
1201 		sis_stop(sc);
1202 		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1203 		lwkt_serialize_exit(ifp->if_serializer);
1204 
1205 		ether_ifdetach(ifp);
1206 	}
1207 	if (sc->sis_miibus)
1208 		device_delete_child(dev, sc->sis_miibus);
1209 	bus_generic_detach(dev);
1210 
1211 	if (sc->sis_irq)
1212 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1213 	if (sc->sis_res)
1214 		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1215 
1216 	sis_dma_free(dev);
1217 
1218 	return(0);
1219 }
1220 
1221 /*
1222  * Initialize the transmit descriptors.
1223  */
1224 static int
1225 sis_list_tx_init(struct sis_softc *sc)
1226 {
1227 	struct sis_list_data *ld = &sc->sis_ldata;
1228 	struct sis_chain_data *cd = &sc->sis_cdata;
1229 	int i, nexti;
1230 
1231 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1232 		bus_addr_t paddr;
1233 
1234 		/*
1235 		 * Link the TX desc together
1236 		 */
1237 		nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
1238 		paddr = ld->sis_tx_paddr + (nexti * sizeof(struct sis_desc));
1239 		ld->sis_tx_list[i].sis_next = paddr;
1240 	}
1241 	cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
1242 
1243 	return 0;
1244 }
1245 
1246 /*
1247  * Initialize the RX descriptors and allocate mbufs for them. Note that
1248  * we arrange the descriptors in a closed ring, so that the last descriptor
1249  * points back to the first.
1250  */
1251 static int
1252 sis_list_rx_init(struct sis_softc *sc)
1253 {
1254 	struct sis_list_data *ld = &sc->sis_ldata;
1255 	struct sis_chain_data *cd = &sc->sis_cdata;
1256 	int i, error;
1257 
1258 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1259 		bus_addr_t paddr;
1260 		int nexti;
1261 
1262 		error = sis_newbuf(sc, i, 1);
1263 		if (error)
1264 			return error;
1265 
1266 		/*
1267 		 * Link the RX desc together
1268 		 */
1269 		nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
1270 		paddr = ld->sis_rx_paddr + (nexti * sizeof(struct sis_desc));
1271 		ld->sis_rx_list[i].sis_next = paddr;
1272 	}
1273 	cd->sis_rx_prod = 0;
1274 
1275 	return 0;
1276 }
1277 
1278 /*
1279  * Initialize an RX descriptor and attach an MBUF cluster.
1280  */
1281 static int
1282 sis_newbuf(struct sis_softc *sc, int idx, int init)
1283 {
1284 	struct sis_chain_data *cd = &sc->sis_cdata;
1285 	struct sis_rx_data *rd = &cd->sis_rx_data[idx];
1286 	bus_dma_segment_t seg;
1287 	bus_dmamap_t map;
1288 	struct mbuf *m;
1289 	int nseg, error;
1290 
1291 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1292 	if (m == NULL) {
1293 		if (init)
1294 			if_printf(&sc->arpcom.ac_if, "can't alloc RX mbuf\n");
1295 		return ENOBUFS;
1296 	}
1297 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1298 
1299 	/* Try loading the mbuf into tmp DMA map */
1300 	error = bus_dmamap_load_mbuf_segment(cd->sis_rxbuf_tag,
1301 			cd->sis_rx_tmpmap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
1302 	if (error) {
1303 		m_freem(m);
1304 		if (init)
1305 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1306 		return error;
1307 	}
1308 
1309 	/* Unload the currently loaded mbuf */
1310 	if (rd->sis_mbuf != NULL) {
1311 		bus_dmamap_sync(cd->sis_rxbuf_tag, rd->sis_map,
1312 				BUS_DMASYNC_POSTREAD);
1313 		bus_dmamap_unload(cd->sis_rxbuf_tag, rd->sis_map);
1314 	}
1315 
1316 	/* Swap DMA maps */
1317 	map = cd->sis_rx_tmpmap;
1318 	cd->sis_rx_tmpmap = rd->sis_map;
1319 	rd->sis_map = map;
1320 
1321 	/* Save necessary information */
1322 	rd->sis_mbuf = m;
1323 	rd->sis_paddr = seg.ds_addr;
1324 
1325 	sis_setup_rxdesc(sc, idx);
1326 	return 0;
1327 }
1328 
1329 static void
1330 sis_setup_rxdesc(struct sis_softc *sc, int idx)
1331 {
1332 	struct sis_desc *c = &sc->sis_ldata.sis_rx_list[idx];
1333 
1334 	/* Setup the RX desc */
1335 	c->sis_ctl = SIS_RXLEN;
1336 	c->sis_ptr = sc->sis_cdata.sis_rx_data[idx].sis_paddr;
1337 }
1338 
1339 /*
1340  * A frame has been uploaded: pass the resulting mbuf chain up to
1341  * the higher level protocols.
1342  */
1343 static void
1344 sis_rxeof(struct sis_softc *sc)
1345 {
1346 	struct ifnet *ifp = &sc->arpcom.ac_if;
1347 	int i, total_len = 0;
1348 	uint32_t rxstat;
1349 
1350 	i = sc->sis_cdata.sis_rx_prod;
1351 	while (SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
1352 		struct sis_desc	*cur_rx;
1353 		struct sis_rx_data *rd;
1354 		struct mbuf *m;
1355 		int idx = i;
1356 
1357 #ifdef DEVICE_POLLING
1358 		if (ifp->if_flags & IFF_POLLING) {
1359 			if (sc->rxcycles <= 0)
1360 				break;
1361 			sc->rxcycles--;
1362 		}
1363 #endif /* DEVICE_POLLING */
1364 
1365 		cur_rx = &sc->sis_ldata.sis_rx_list[idx];
1366 		rd = &sc->sis_cdata.sis_rx_data[idx];
1367 
1368 		rxstat = cur_rx->sis_rxstat;
1369 		total_len = SIS_RXBYTES(cur_rx);
1370 
1371 		m = rd->sis_mbuf;
1372 
1373 		SIS_INC(i, SIS_RX_LIST_CNT);
1374 
1375 		/*
1376 		 * If an error occurs, update stats, clear the
1377 		 * status word and leave the mbuf cluster in place:
1378 		 * it should simply get re-used next time this descriptor
1379 	 	 * comes up in the ring.
1380 		 */
1381 		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1382 			ifp->if_ierrors++;
1383 			if (rxstat & SIS_RXSTAT_COLL)
1384 				ifp->if_collisions++;
1385 			sis_setup_rxdesc(sc, idx);
1386 			continue;
1387 		}
1388 
1389 		/* No errors; receive the packet. */
1390 		if (sis_newbuf(sc, idx, 0) == 0) {
1391 			m->m_pkthdr.len = m->m_len = total_len;
1392 			m->m_pkthdr.rcvif = ifp;
1393 		} else {
1394 			ifp->if_ierrors++;
1395 			sis_setup_rxdesc(sc, idx);
1396 			continue;
1397 		}
1398 
1399 		ifp->if_ipackets++;
1400 		ifp->if_input(ifp, m);
1401 	}
1402 	sc->sis_cdata.sis_rx_prod = i;
1403 }
1404 
1405 static void
1406 sis_rxeoc(struct sis_softc *sc)
1407 {
1408 	sis_rxeof(sc);
1409 	sis_init(sc);
1410 }
1411 
1412 /*
1413  * A frame was downloaded to the chip. It's safe for us to clean up
1414  * the list buffers.
1415  */
1416 
1417 static void
1418 sis_txeof(struct sis_softc *sc)
1419 {
1420 	struct ifnet *ifp = &sc->arpcom.ac_if;
1421 	struct sis_chain_data *cd = &sc->sis_cdata;
1422 	uint32_t idx;
1423 
1424 	/*
1425 	 * Go through our tx list and free mbufs for those
1426 	 * frames that have been transmitted.
1427 	 */
1428 	for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
1429 	     sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1430 		struct sis_desc *cur_tx;
1431 		struct sis_tx_data *td;
1432 
1433 		cur_tx = &sc->sis_ldata.sis_tx_list[idx];
1434 		td = &cd->sis_tx_data[idx];
1435 
1436 		if (SIS_OWNDESC(cur_tx))
1437 			break;
1438 
1439 		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1440 			continue;
1441 
1442 		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1443 			ifp->if_oerrors++;
1444 			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1445 				ifp->if_collisions++;
1446 			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1447 				ifp->if_collisions++;
1448 		}
1449 
1450 		ifp->if_collisions +=
1451 		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1452 
1453 		ifp->if_opackets++;
1454 		if (td->sis_mbuf != NULL) {
1455 			bus_dmamap_unload(cd->sis_txbuf_tag, td->sis_map);
1456 			m_freem(td->sis_mbuf);
1457 			td->sis_mbuf = NULL;
1458 		}
1459 	}
1460 
1461 	if (idx != sc->sis_cdata.sis_tx_cons) {
1462 		/* we freed up some buffers */
1463 		sc->sis_cdata.sis_tx_cons = idx;
1464 	}
1465 
1466 	if (cd->sis_tx_cnt == 0)
1467 		ifp->if_timer = 0;
1468 	if (!SIS_IS_OACTIVE(sc))
1469 		ifp->if_flags &= ~IFF_OACTIVE;
1470 }
1471 
1472 static void
1473 sis_tick(void *xsc)
1474 {
1475 	struct sis_softc *sc = xsc;
1476 	struct mii_data *mii;
1477 	struct ifnet *ifp = &sc->arpcom.ac_if;
1478 
1479 	lwkt_serialize_enter(ifp->if_serializer);
1480 
1481 	mii = device_get_softc(sc->sis_miibus);
1482 	mii_tick(mii);
1483 
1484 	if (!sc->sis_link) {
1485 		mii_pollstat(mii);
1486 		if (mii->mii_media_status & IFM_ACTIVE &&
1487 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1488 			sc->sis_link++;
1489 		if (!ifq_is_empty(&ifp->if_snd))
1490 			if_devstart(ifp);
1491 	}
1492 
1493 	callout_reset(&sc->sis_timer, hz, sis_tick, sc);
1494 	lwkt_serialize_exit(ifp->if_serializer);
1495 }
1496 
1497 #ifdef DEVICE_POLLING
1498 
1499 static void
1500 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1501 {
1502 	struct  sis_softc *sc = ifp->if_softc;
1503 
1504 	switch(cmd) {
1505 	case POLL_REGISTER:
1506 		/* disable interrupts */
1507 		CSR_WRITE_4(sc, SIS_IER, 0);
1508 		break;
1509 	case POLL_DEREGISTER:
1510 		/* enable interrupts */
1511 		CSR_WRITE_4(sc, SIS_IER, 1);
1512 		break;
1513 	default:
1514 		/*
1515 		 * On the sis, reading the status register also clears it.
1516 		 * So before returning to intr mode we must make sure that all
1517 		 * possible pending sources of interrupts have been served.
1518 		 * In practice this means run to completion the *eof routines,
1519 		 * and then call the interrupt routine
1520 		 */
1521 		sc->rxcycles = count;
1522 		sis_rxeof(sc);
1523 		sis_txeof(sc);
1524 		if (!ifq_is_empty(&ifp->if_snd))
1525 			if_devstart(ifp);
1526 
1527 		if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1528 			uint32_t status;
1529 
1530 			/* Reading the ISR register clears all interrupts. */
1531 			status = CSR_READ_4(sc, SIS_ISR);
1532 
1533 			if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1534 				sis_rxeoc(sc);
1535 
1536 			if (status & (SIS_ISR_RX_IDLE))
1537 				SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1538 
1539 			if (status & SIS_ISR_SYSERR) {
1540 				sis_reset(sc);
1541 				sis_init(sc);
1542 			}
1543 		}
1544 		break;
1545 	}
1546 }
1547 #endif /* DEVICE_POLLING */
1548 
1549 static void
1550 sis_intr(void *arg)
1551 {
1552 	struct sis_softc *sc;
1553 	struct ifnet *ifp;
1554 	uint32_t status;
1555 
1556 	sc = arg;
1557 	ifp = &sc->arpcom.ac_if;
1558 
1559 	/* Supress unwanted interrupts */
1560 	if (!(ifp->if_flags & IFF_UP)) {
1561 		sis_stop(sc);
1562 		return;
1563 	}
1564 
1565 	/* Disable interrupts. */
1566 	CSR_WRITE_4(sc, SIS_IER, 0);
1567 
1568 	for (;;) {
1569 		/* Reading the ISR register clears all interrupts. */
1570 		status = CSR_READ_4(sc, SIS_ISR);
1571 
1572 		if ((status & SIS_INTRS) == 0)
1573 			break;
1574 
1575 		if (status &
1576 		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR | SIS_ISR_TX_OK |
1577 		     SIS_ISR_TX_IDLE) )
1578 			sis_txeof(sc);
1579 
1580 		if (status &
1581 		    (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK | SIS_ISR_RX_IDLE))
1582 			sis_rxeof(sc);
1583 
1584 		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1585 			sis_rxeoc(sc);
1586 
1587 		if (status & (SIS_ISR_RX_IDLE))
1588 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1589 
1590 		if (status & SIS_ISR_SYSERR) {
1591 			sis_reset(sc);
1592 			sis_init(sc);
1593 		}
1594 	}
1595 
1596 	/* Re-enable interrupts. */
1597 	CSR_WRITE_4(sc, SIS_IER, 1);
1598 
1599 	if (!ifq_is_empty(&ifp->if_snd))
1600 		if_devstart(ifp);
1601 }
1602 
1603 /*
1604  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1605  * pointers to the fragment pointers.
1606  */
1607 static int
1608 sis_encap(struct sis_softc *sc, struct mbuf **m_head, uint32_t *txidx)
1609 {
1610 	struct sis_chain_data *cd = &sc->sis_cdata;
1611 	struct sis_list_data *ld = &sc->sis_ldata;
1612 	bus_dma_segment_t segs[SIS_NSEGS];
1613 	bus_dmamap_t map;
1614 	int frag, cur, maxsegs, nsegs, error, i;
1615 
1616 	maxsegs = SIS_TX_LIST_CNT - SIS_NSEGS_RESERVED - cd->sis_tx_cnt;
1617 	KASSERT(maxsegs >= 1, ("not enough TX descs\n"));
1618 	if (maxsegs > SIS_NSEGS)
1619 		maxsegs = SIS_NSEGS;
1620 
1621 	map = cd->sis_tx_data[*txidx].sis_map;
1622 	error = bus_dmamap_load_mbuf_defrag(cd->sis_txbuf_tag, map, m_head,
1623 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1624 	if (error) {
1625 		m_freem(*m_head);
1626 		*m_head = NULL;
1627 		return error;
1628 	}
1629 	bus_dmamap_sync(cd->sis_txbuf_tag, map, BUS_DMASYNC_PREWRITE);
1630 
1631 	cur = frag = *txidx;
1632 	for (i = 0; i < nsegs; ++i) {
1633 		struct sis_desc *f = &ld->sis_tx_list[frag];
1634 
1635 		f->sis_ctl = SIS_CMDSTS_MORE | segs[i].ds_len;
1636 		f->sis_ptr = segs[i].ds_addr;
1637 		if (i != 0)
1638 			f->sis_ctl |= SIS_CMDSTS_OWN;
1639 
1640 		cur = frag;
1641 		SIS_INC(frag, SIS_TX_LIST_CNT);
1642 	}
1643 	ld->sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1644 	ld->sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1645 
1646 	/* Swap DMA map */
1647 	cd->sis_tx_data[*txidx].sis_map = cd->sis_tx_data[cur].sis_map;
1648 	cd->sis_tx_data[cur].sis_map = map;
1649 
1650 	cd->sis_tx_data[cur].sis_mbuf = *m_head;
1651 
1652 	cd->sis_tx_cnt += nsegs;
1653 	*txidx = frag;
1654 
1655 	return 0;
1656 }
1657 
1658 /*
1659  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1660  * to the mbuf data regions directly in the transmit lists. We also save a
1661  * copy of the pointers since the transmit list fragment pointers are
1662  * physical addresses.
1663  */
1664 
1665 static void
1666 sis_start(struct ifnet *ifp)
1667 {
1668 	struct sis_softc *sc = ifp->if_softc;
1669 	int need_trans, error;
1670 	uint32_t idx;
1671 
1672 	if (!sc->sis_link) {
1673 		ifq_purge(&ifp->if_snd);
1674 		return;
1675 	}
1676 
1677 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1678 		return;
1679 
1680 	idx = sc->sis_cdata.sis_tx_prod;
1681 	need_trans = 0;
1682 
1683 	while (sc->sis_cdata.sis_tx_data[idx].sis_mbuf == NULL) {
1684 		struct mbuf *m_head;
1685 
1686 		/*
1687 		 * If there's no way we can send any packets, return now.
1688 		 */
1689 		if (SIS_IS_OACTIVE(sc)) {
1690 			ifp->if_flags |= IFF_OACTIVE;
1691 			break;
1692 		}
1693 
1694 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1695 		if (m_head == NULL)
1696 			break;
1697 
1698 		error = sis_encap(sc, &m_head, &idx);
1699 		if (error) {
1700 			ifp->if_oerrors++;
1701 			if (sc->sis_cdata.sis_tx_cnt == 0) {
1702 				continue;
1703 			} else {
1704 				ifp->if_flags |= IFF_OACTIVE;
1705 				break;
1706 			}
1707 		}
1708 		need_trans = 1;
1709 
1710 		/*
1711 		 * If there's a BPF listener, bounce a copy of this frame
1712 		 * to him.
1713 		 */
1714 		BPF_MTAP(ifp, m_head);
1715 	}
1716 
1717 	if (!need_trans)
1718 		return;
1719 
1720 	/* Transmit */
1721 	sc->sis_cdata.sis_tx_prod = idx;
1722 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1723 
1724 	/*
1725 	 * Set a timeout in case the chip goes out to lunch.
1726 	 */
1727 	ifp->if_timer = 5;
1728 }
1729 
1730 static void
1731 sis_init(void *xsc)
1732 {
1733 	struct sis_softc *sc = xsc;
1734 	struct ifnet *ifp = &sc->arpcom.ac_if;
1735 	struct mii_data *mii;
1736 
1737 	/*
1738 	 * Cancel pending I/O and free all RX/TX buffers.
1739 	 */
1740 	sis_stop(sc);
1741 
1742 	mii = device_get_softc(sc->sis_miibus);
1743 
1744 	/* Set MAC address */
1745 	if (sc->sis_type == SIS_TYPE_83815) {
1746 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1747 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1748 		    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1749 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1750 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1751 		    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1752 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1753 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1754 		    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1755 	} else {
1756 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1757 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1758 		    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1759 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1760 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1761 		    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1762 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1763 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1764 		    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1765 	}
1766 
1767 	/* Init circular RX list. */
1768 	if (sis_list_rx_init(sc)) {
1769 		if_printf(ifp, "initialization failed: "
1770 			  "no memory for rx buffers\n");
1771 		sis_stop(sc);
1772 		return;
1773 	}
1774 
1775 	/*
1776 	 * Init tx descriptors.
1777 	 */
1778 	sis_list_tx_init(sc);
1779 
1780 	/*
1781 	 * For the NatSemi chip, we have to explicitly enable the
1782 	 * reception of ARP frames, as well as turn on the 'perfect
1783 	 * match' filter where we store the station address, otherwise
1784 	 * we won't receive unicasts meant for this host.
1785 	 */
1786 	if (sc->sis_type == SIS_TYPE_83815) {
1787 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
1788 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
1789 	}
1790 
1791 	 /* If we want promiscuous mode, set the allframes bit. */
1792 	if (ifp->if_flags & IFF_PROMISC)
1793 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1794 	else
1795 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1796 
1797 	/*
1798 	 * Set the capture broadcast bit to capture broadcast frames.
1799 	 */
1800 	if (ifp->if_flags & IFF_BROADCAST)
1801 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1802 	else
1803 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1804 
1805 	/*
1806 	 * Load the multicast filter.
1807 	 */
1808 	if (sc->sis_type == SIS_TYPE_83815)
1809 		sis_setmulti_ns(sc);
1810 	else
1811 		sis_setmulti_sis(sc);
1812 
1813 	/* Turn the receive filter on */
1814 	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
1815 
1816 	/*
1817 	 * Load the address of the RX and TX lists.
1818 	 */
1819 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_ldata.sis_rx_paddr);
1820 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_ldata.sis_tx_paddr);
1821 
1822 	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
1823 	 * the PCI bus. When this bit is set, the Max DMA Burst Size
1824 	 * for TX/RX DMA should be no larger than 16 double words.
1825 	 */
1826 	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN)
1827 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
1828 	else
1829 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
1830 
1831 	/* Accept Long Packets for VLAN support */
1832 	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
1833 
1834 	/* Set TX configuration */
1835 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T)
1836 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
1837 	else
1838 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
1839 
1840 	/* Set full/half duplex mode. */
1841 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1842 		SIS_SETBIT(sc, SIS_TX_CFG,
1843 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1844 		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1845 	} else {
1846 		SIS_CLRBIT(sc, SIS_TX_CFG,
1847 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1848 		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1849 	}
1850 
1851 	/*
1852 	 * Enable interrupts.
1853 	 */
1854 	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
1855 #ifdef DEVICE_POLLING
1856 	/*
1857 	 * ... only enable interrupts if we are not polling, make sure
1858 	 * they are off otherwise.
1859 	 */
1860 	if (ifp->if_flags & IFF_POLLING)
1861 		CSR_WRITE_4(sc, SIS_IER, 0);
1862 	else
1863 #endif /* DEVICE_POLLING */
1864 	CSR_WRITE_4(sc, SIS_IER, 1);
1865 
1866 	/* Enable receiver and transmitter. */
1867 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
1868 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1869 
1870 #ifdef notdef
1871 	mii_mediachg(mii);
1872 #endif
1873 
1874 	/*
1875 	 * Page 75 of the DP83815 manual recommends the
1876 	 * following register settings "for optimum
1877 	 * performance." Note however that at least three
1878 	 * of the registers are listed as "reserved" in
1879 	 * the register map, so who knows what they do.
1880 	 */
1881 	if (sc->sis_type == SIS_TYPE_83815) {
1882 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
1883 		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
1884 		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
1885 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
1886 		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
1887 	}
1888 
1889 	ifp->if_flags |= IFF_RUNNING;
1890 	ifp->if_flags &= ~IFF_OACTIVE;
1891 
1892 	callout_reset(&sc->sis_timer, hz, sis_tick, sc);
1893 }
1894 
1895 /*
1896  * Set media options.
1897  */
1898 static int
1899 sis_ifmedia_upd(struct ifnet *ifp)
1900 {
1901 	struct sis_softc *sc;
1902 	struct mii_data *mii;
1903 
1904 	sc = ifp->if_softc;
1905 
1906 	mii = device_get_softc(sc->sis_miibus);
1907 	sc->sis_link = 0;
1908 	if (mii->mii_instance) {
1909 		struct mii_softc	*miisc;
1910 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1911 			mii_phy_reset(miisc);
1912 	}
1913 	mii_mediachg(mii);
1914 
1915 	return(0);
1916 }
1917 
1918 /*
1919  * Report current media status.
1920  */
1921 static void
1922 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1923 {
1924 	struct sis_softc *sc;
1925 	struct mii_data *mii;
1926 
1927 	sc = ifp->if_softc;
1928 
1929 	mii = device_get_softc(sc->sis_miibus);
1930 	mii_pollstat(mii);
1931 	ifmr->ifm_active = mii->mii_media_active;
1932 	ifmr->ifm_status = mii->mii_media_status;
1933 }
1934 
1935 static int
1936 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1937 {
1938 	struct sis_softc *sc = ifp->if_softc;
1939 	struct ifreq *ifr = (struct ifreq *) data;
1940 	struct mii_data *mii;
1941 	int error = 0;
1942 
1943 	switch(command) {
1944 	case SIOCSIFFLAGS:
1945 		if (ifp->if_flags & IFF_UP) {
1946 			sis_init(sc);
1947 		} else {
1948 			if (ifp->if_flags & IFF_RUNNING)
1949 				sis_stop(sc);
1950 		}
1951 		error = 0;
1952 		break;
1953 	case SIOCADDMULTI:
1954 	case SIOCDELMULTI:
1955 		if (sc->sis_type == SIS_TYPE_83815)
1956 			sis_setmulti_ns(sc);
1957 		else
1958 			sis_setmulti_sis(sc);
1959 		error = 0;
1960 		break;
1961 	case SIOCGIFMEDIA:
1962 	case SIOCSIFMEDIA:
1963 		mii = device_get_softc(sc->sis_miibus);
1964 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1965 		break;
1966 	default:
1967 		error = ether_ioctl(ifp, command, data);
1968 		break;
1969 	}
1970 	return(error);
1971 }
1972 
1973 static void
1974 sis_watchdog(struct ifnet *ifp)
1975 {
1976 	struct sis_softc *sc;
1977 
1978 	sc = ifp->if_softc;
1979 
1980 	ifp->if_oerrors++;
1981 	if_printf(ifp, "watchdog timeout\n");
1982 
1983 	sis_stop(sc);
1984 	sis_reset(sc);
1985 	sis_init(sc);
1986 
1987 	if (!ifq_is_empty(&ifp->if_snd))
1988 		if_devstart(ifp);
1989 }
1990 
1991 /*
1992  * Stop the adapter and free any mbufs allocated to the
1993  * RX and TX lists.
1994  */
1995 static void
1996 sis_stop(struct sis_softc *sc)
1997 {
1998 	struct ifnet *ifp = &sc->arpcom.ac_if;
1999 	struct sis_list_data *ld = &sc->sis_ldata;
2000 	struct sis_chain_data *cd = &sc->sis_cdata;
2001 	int i;
2002 
2003 	callout_stop(&sc->sis_timer);
2004 
2005 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2006 	ifp->if_timer = 0;
2007 
2008 	CSR_WRITE_4(sc, SIS_IER, 0);
2009 	CSR_WRITE_4(sc, SIS_IMR, 0);
2010 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2011 	DELAY(1000);
2012 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2013 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2014 
2015 	sc->sis_link = 0;
2016 
2017 	/*
2018 	 * Free data in the RX lists.
2019 	 */
2020 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2021 		struct sis_rx_data *rd = &cd->sis_rx_data[i];
2022 
2023 		if (rd->sis_mbuf != NULL) {
2024 			bus_dmamap_unload(cd->sis_rxbuf_tag, rd->sis_map);
2025 			m_freem(rd->sis_mbuf);
2026 			rd->sis_mbuf = NULL;
2027 		}
2028 	}
2029 	bzero(ld->sis_rx_list, SIS_RX_LIST_SZ);
2030 
2031 	/*
2032 	 * Free the TX list buffers.
2033 	 */
2034 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2035 		struct sis_tx_data *td = &cd->sis_tx_data[i];
2036 
2037 		if (td->sis_mbuf != NULL) {
2038 			bus_dmamap_unload(cd->sis_txbuf_tag, td->sis_map);
2039 			m_freem(td->sis_mbuf);
2040 			td->sis_mbuf = NULL;
2041 		}
2042 	}
2043 	bzero(ld->sis_tx_list, SIS_TX_LIST_SZ);
2044 }
2045 
2046 /*
2047  * Stop all chip I/O so that the kernel's probe routines don't
2048  * get confused by errant DMAs when rebooting.
2049  */
2050 static void
2051 sis_shutdown(device_t dev)
2052 {
2053 	struct sis_softc	*sc;
2054 	struct ifnet *ifp;
2055 
2056 	sc = device_get_softc(dev);
2057 	ifp = &sc->arpcom.ac_if;
2058 	lwkt_serialize_enter(ifp->if_serializer);
2059 	sis_reset(sc);
2060 	sis_stop(sc);
2061 	lwkt_serialize_exit(ifp->if_serializer);
2062 }
2063 
2064 static int
2065 sis_dma_alloc(device_t dev)
2066 {
2067 	struct sis_softc *sc = device_get_softc(dev);
2068 	struct sis_chain_data *cd = &sc->sis_cdata;
2069 	struct sis_list_data *ld = &sc->sis_ldata;
2070 	int i, error;
2071 
2072 	/* Create top level DMA tag */
2073 	error = bus_dma_tag_create(NULL,	/* parent */
2074 			1, 0,			/* alignment, boundary */
2075 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2076 			BUS_SPACE_MAXADDR,	/* highaddr */
2077 			NULL, NULL,		/* filter, filterarg */
2078 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2079 			0,			/* nsegments */
2080 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2081 			0,			/* flags */
2082 			&sc->sis_parent_tag);
2083 	if (error) {
2084 		device_printf(dev, "could not create parent DMA tag\n");
2085 		return error;
2086 	}
2087 
2088 	/* Allocate RX ring */
2089 	ld->sis_rx_list = bus_dmamem_coherent_any(sc->sis_parent_tag,
2090 				SIS_RING_ALIGN, SIS_RX_LIST_SZ,
2091 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
2092 				&ld->sis_rx_tag, &ld->sis_rx_dmamap,
2093 				&ld->sis_rx_paddr);
2094 	if (ld->sis_rx_list == NULL) {
2095 		device_printf(dev, "could not allocate RX ring\n");
2096 		return ENOMEM;
2097 	}
2098 
2099 	/* Allocate TX ring */
2100 	ld->sis_tx_list = bus_dmamem_coherent_any(sc->sis_parent_tag,
2101 				SIS_RING_ALIGN, SIS_TX_LIST_SZ,
2102 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
2103 				&ld->sis_tx_tag, &ld->sis_tx_dmamap,
2104 				&ld->sis_tx_paddr);
2105 	if (ld->sis_tx_list == NULL) {
2106 		device_printf(dev, "could not allocate TX ring\n");
2107 		return ENOMEM;
2108 	}
2109 
2110 	/* Create DMA tag for TX mbuf */
2111 	error = bus_dma_tag_create(sc->sis_parent_tag,/* parent */
2112 			1, 0,			/* alignment, boundary */
2113 			BUS_SPACE_MAXADDR,	/* lowaddr */
2114 			BUS_SPACE_MAXADDR,	/* highaddr */
2115 			NULL, NULL,		/* filter, filterarg */
2116 			MCLBYTES,		/* maxsize */
2117 			SIS_NSEGS,		/* nsegments */
2118 			MCLBYTES,		/* maxsegsize */
2119 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,/* flags */
2120 			&cd->sis_txbuf_tag);
2121 	if (error) {
2122 		device_printf(dev, "could not create TX buf DMA tag\n");
2123 		return error;
2124 	}
2125 
2126 	/* Create DMA maps for TX mbufs */
2127 	for (i = 0; i < SIS_TX_LIST_CNT; ++i) {
2128 		error = bus_dmamap_create(cd->sis_txbuf_tag, BUS_DMA_WAITOK,
2129 					  &cd->sis_tx_data[i].sis_map);
2130 		if (error) {
2131 			int j;
2132 
2133 			for (j = 0; j < i; ++j) {
2134 				bus_dmamap_destroy(cd->sis_txbuf_tag,
2135 					cd->sis_tx_data[j].sis_map);
2136 			}
2137 			bus_dma_tag_destroy(cd->sis_txbuf_tag);
2138 			cd->sis_txbuf_tag = NULL;
2139 
2140 			device_printf(dev, "could not create %dth "
2141 				      "TX buf DMA map\n", i);
2142 			return error;
2143 		}
2144 	}
2145 
2146 	/* Create DMA tag for RX mbuf */
2147 	error = bus_dma_tag_create(sc->sis_parent_tag,/* parent */
2148 			SIS_RXBUF_ALIGN, 0,	/* alignment, boundary */
2149 			BUS_SPACE_MAXADDR,	/* lowaddr */
2150 			BUS_SPACE_MAXADDR,	/* highaddr */
2151 			NULL, NULL,		/* filter, filterarg */
2152 			MCLBYTES,		/* maxsize */
2153 			1,			/* nsegments */
2154 			MCLBYTES,		/* maxsegsize */
2155 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
2156 			BUS_DMA_ALIGNED,	/* flags */
2157 			&cd->sis_rxbuf_tag);
2158 	if (error) {
2159 		device_printf(dev, "could not create RX buf DMA tag\n");
2160 		return error;
2161 	}
2162 
2163 	/* Create tmp DMA map for loading RX mbuf */
2164 	error = bus_dmamap_create(cd->sis_rxbuf_tag, BUS_DMA_WAITOK,
2165 				  &cd->sis_rx_tmpmap);
2166 	if (error) {
2167 		device_printf(dev, "could not create RX buf tmp DMA map\n");
2168 		bus_dma_tag_destroy(cd->sis_rxbuf_tag);
2169 		cd->sis_rxbuf_tag = NULL;
2170 		return error;
2171 	}
2172 
2173 	/* Create DMA maps for RX mbufs */
2174 	for (i = 0; i < SIS_RX_LIST_CNT; ++i) {
2175 		error = bus_dmamap_create(cd->sis_rxbuf_tag, BUS_DMA_WAITOK,
2176 					  &cd->sis_rx_data[i].sis_map);
2177 		if (error) {
2178 			int j;
2179 
2180 			for (j = 0; j < i; ++j) {
2181 				bus_dmamap_destroy(cd->sis_rxbuf_tag,
2182 					cd->sis_rx_data[j].sis_map);
2183 			}
2184 			bus_dmamap_destroy(cd->sis_rxbuf_tag,
2185 					   cd->sis_rx_tmpmap);
2186 			bus_dma_tag_destroy(cd->sis_rxbuf_tag);
2187 			cd->sis_rxbuf_tag = NULL;
2188 
2189 			device_printf(dev, "could not create %dth "
2190 				      "RX buf DMA map\n", i);
2191 			return error;
2192 		}
2193 	}
2194 	return 0;
2195 }
2196 
2197 static void
2198 sis_dma_free(device_t dev)
2199 {
2200 	struct sis_softc *sc = device_get_softc(dev);
2201 	struct sis_list_data *ld = &sc->sis_ldata;
2202 	struct sis_chain_data *cd = &sc->sis_cdata;
2203 	int i;
2204 
2205 	/* Free TX ring */
2206 	if (ld->sis_tx_list != NULL) {
2207 		bus_dmamap_unload(ld->sis_tx_tag, ld->sis_tx_dmamap);
2208 		bus_dmamem_free(ld->sis_tx_tag, ld->sis_tx_list,
2209 				ld->sis_tx_dmamap);
2210 		bus_dma_tag_destroy(ld->sis_tx_tag);
2211 	}
2212 
2213 	/* Free RX ring */
2214 	if (ld->sis_rx_list != NULL) {
2215 		bus_dmamap_unload(ld->sis_rx_tag, ld->sis_rx_dmamap);
2216 		bus_dmamem_free(ld->sis_rx_tag, ld->sis_rx_list,
2217 				ld->sis_rx_dmamap);
2218 		bus_dma_tag_destroy(ld->sis_rx_tag);
2219 	}
2220 
2221 	/* Destroy DMA stuffs for TX mbufs */
2222 	if (cd->sis_txbuf_tag != NULL) {
2223 		for (i = 0; i < SIS_TX_LIST_CNT; ++i) {
2224 			KKASSERT(cd->sis_tx_data[i].sis_mbuf == NULL);
2225 			bus_dmamap_destroy(cd->sis_txbuf_tag,
2226 					   cd->sis_tx_data[i].sis_map);
2227 		}
2228 		bus_dma_tag_destroy(cd->sis_txbuf_tag);
2229 	}
2230 
2231 	/* Destroy DMA stuffs for RX mbufs */
2232 	if (cd->sis_rxbuf_tag != NULL) {
2233 		for (i = 0; i < SIS_RX_LIST_CNT; ++i) {
2234 			KKASSERT(cd->sis_rx_data[i].sis_mbuf == NULL);
2235 			bus_dmamap_destroy(cd->sis_rxbuf_tag,
2236 					   cd->sis_rx_data[i].sis_map);
2237 		}
2238 		bus_dmamap_destroy(cd->sis_rxbuf_tag, cd->sis_rx_tmpmap);
2239 		bus_dma_tag_destroy(cd->sis_rxbuf_tag);
2240 	}
2241 }
2242