xref: /dragonfly/sys/dev/netif/sis/if_sis.c (revision f02303f9)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sis.c,v 1.13.4.24 2003/03/05 18:42:33 njl Exp $
33  * $DragonFly: src/sys/dev/netif/sis/if_sis.c,v 1.36 2006/10/25 20:55:59 dillon Exp $
34  */
35 
36 /*
37  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
38  * available from http://www.sis.com.tw.
39  *
40  * This driver also supports the NatSemi DP83815. Datasheets are
41  * available from http://www.national.com.
42  *
43  * Written by Bill Paul <wpaul@ee.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50  * simple TX and RX descriptors of 3 longwords in size. The receiver
51  * has a single perfect filter entry for the station address and a
52  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53  * transceiver while the 7016 requires an external transceiver chip.
54  * Both chips offer the standard bit-bang MII interface as well as
55  * an enchanced PHY interface which simplifies accessing MII registers.
56  *
57  * The only downside to this chipset is that RX descriptors must be
58  * longword aligned.
59  */
60 
61 #include "opt_polling.h"
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/sockio.h>
66 #include <sys/mbuf.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sysctl.h>
71 #include <sys/serialize.h>
72 #include <sys/thread2.h>
73 #include <sys/bus.h>
74 #include <sys/rman.h>
75 
76 #include <net/if.h>
77 #include <net/ifq_var.h>
78 #include <net/if_arp.h>
79 #include <net/ethernet.h>
80 #include <net/if_dl.h>
81 #include <net/if_media.h>
82 #include <net/if_types.h>
83 #include <net/vlan/if_vlan_var.h>
84 
85 #include <net/bpf.h>
86 
87 #include <dev/netif/mii_layer/mii.h>
88 #include <dev/netif/mii_layer/miivar.h>
89 
90 #include <bus/pci/pcidevs.h>
91 #include <bus/pci/pcireg.h>
92 #include <bus/pci/pcivar.h>
93 
94 #define SIS_USEIOSPACE
95 
96 #include "if_sisreg.h"
97 
98 /* "controller miibus0" required.  See GENERIC if you get errors here. */
99 #include "miibus_if.h"
100 
101 /*
102  * Various supported device vendors/types and their names.
103  */
104 static struct sis_type sis_devs[] = {
105 	{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, "SiS 900 10/100BaseTX" },
106 	{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016, "SiS 7016 10/100BaseTX" },
107 	{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
108 	{ 0, 0, NULL }
109 };
110 
111 static int	sis_probe(device_t);
112 static int	sis_attach(device_t);
113 static int	sis_detach(device_t);
114 
115 static int	sis_newbuf(struct sis_softc *, struct sis_desc *,
116 			   struct mbuf *);
117 static int	sis_encap(struct sis_softc *, struct mbuf *, uint32_t *);
118 static void	sis_rxeof(struct sis_softc *);
119 static void	sis_rxeoc(struct sis_softc *);
120 static void	sis_txeof(struct sis_softc *);
121 static void	sis_intr(void *);
122 static void	sis_tick(void *);
123 static void	sis_start(struct ifnet *);
124 static int	sis_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
125 static void	sis_init(void *);
126 static void	sis_stop(struct sis_softc *);
127 static void	sis_watchdog(struct ifnet *);
128 static void	sis_shutdown(device_t);
129 static int	sis_ifmedia_upd(struct ifnet *);
130 static void	sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
131 
132 static uint16_t	sis_reverse(uint16_t);
133 static void	sis_delay(struct sis_softc *);
134 static void	sis_eeprom_idle(struct sis_softc *);
135 static void	sis_eeprom_putbyte(struct sis_softc *, int);
136 static void	sis_eeprom_getword(struct sis_softc *, int, uint16_t *);
137 static void	sis_read_eeprom(struct sis_softc *, caddr_t, int, int, int);
138 #ifdef __i386__
139 static void	sis_read_cmos(struct sis_softc *, device_t, caddr_t, int, int);
140 static void	sis_read_mac(struct sis_softc *, device_t, caddr_t);
141 static device_t	sis_find_bridge(device_t);
142 #endif
143 
144 static void	sis_mii_sync(struct sis_softc *);
145 static void	sis_mii_send(struct sis_softc *, uint32_t, int);
146 static int	sis_mii_readreg(struct sis_softc *, struct sis_mii_frame *);
147 static int	sis_mii_writereg(struct sis_softc *, struct sis_mii_frame *);
148 static int	sis_miibus_readreg(device_t, int, int);
149 static int	sis_miibus_writereg(device_t, int, int, int);
150 static void	sis_miibus_statchg(device_t);
151 
152 static void	sis_setmulti_sis(struct sis_softc *);
153 static void	sis_setmulti_ns(struct sis_softc *);
154 static uint32_t	sis_mchash(struct sis_softc *, const uint8_t *);
155 static void	sis_reset(struct sis_softc *);
156 static int	sis_list_rx_init(struct sis_softc *);
157 static int	sis_list_tx_init(struct sis_softc *);
158 
159 static void	sis_dma_map_desc_ptr(void *, bus_dma_segment_t *, int, int);
160 static void	sis_dma_map_desc_next(void *, bus_dma_segment_t *, int, int);
161 static void	sis_dma_map_ring(void *, bus_dma_segment_t *, int, int);
162 #ifdef DEVICE_POLLING
163 static poll_handler_t sis_poll;
164 #endif
165 #ifdef SIS_USEIOSPACE
166 #define SIS_RES			SYS_RES_IOPORT
167 #define SIS_RID			SIS_PCI_LOIO
168 #else
169 #define SIS_RES			SYS_RES_MEMORY
170 #define SIS_RID			SIS_PCI_LOMEM
171 #endif
172 
173 static device_method_t sis_methods[] = {
174 	/* Device interface */
175 	DEVMETHOD(device_probe,		sis_probe),
176 	DEVMETHOD(device_attach,	sis_attach),
177 	DEVMETHOD(device_detach,	sis_detach),
178 	DEVMETHOD(device_shutdown,	sis_shutdown),
179 
180 	/* bus interface */
181 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
182 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
183 
184 	/* MII interface */
185 	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
186 	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
187 	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
188 
189 	{ 0, 0 }
190 };
191 
192 static driver_t sis_driver = {
193 	"sis",
194 	sis_methods,
195 	sizeof(struct sis_softc)
196 };
197 
198 static devclass_t sis_devclass;
199 
200 DECLARE_DUMMY_MODULE(if_sis);
201 DRIVER_MODULE(if_sis, pci, sis_driver, sis_devclass, 0, 0);
202 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
203 
204 #define SIS_SETBIT(sc, reg, x)				\
205 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
206 
207 #define SIS_CLRBIT(sc, reg, x)				\
208 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
209 
210 #define SIO_SET(x)					\
211 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
212 
213 #define SIO_CLR(x)					\
214 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
215 
216 static void
217 sis_dma_map_desc_next(void *arg, bus_dma_segment_t *segs, int nseg, int error)
218 {
219 	struct sis_desc	*r;
220 
221 	r = arg;
222 	r->sis_next = segs->ds_addr;
223 }
224 
225 static void
226 sis_dma_map_desc_ptr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
227 {
228 	struct sis_desc	*r;
229 
230 	r = arg;
231 	r->sis_ptr = segs->ds_addr;
232 }
233 
234 static void
235 sis_dma_map_ring(void *arg, bus_dma_segment_t *segs, int nseg, int error)
236 {
237 	uint32_t *p;
238 
239 	p = arg;
240 	*p = segs->ds_addr;
241 }
242 
243 /*
244  * Routine to reverse the bits in a word. Stolen almost
245  * verbatim from /usr/games/fortune.
246  */
247 static uint16_t
248 sis_reverse(uint16_t n)
249 {
250 	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
251 	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
252 	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
253 	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
254 
255 	return(n);
256 }
257 
258 static void
259 sis_delay(struct sis_softc *sc)
260 {
261 	int idx;
262 
263 	for (idx = (300 / 33) + 1; idx > 0; idx--)
264 		CSR_READ_4(sc, SIS_CSR);
265 }
266 
267 static void
268 sis_eeprom_idle(struct sis_softc *sc)
269 {
270 	int i;
271 
272 	SIO_SET(SIS_EECTL_CSEL);
273 	sis_delay(sc);
274 	SIO_SET(SIS_EECTL_CLK);
275 	sis_delay(sc);
276 
277 	for (i = 0; i < 25; i++) {
278 		SIO_CLR(SIS_EECTL_CLK);
279 		sis_delay(sc);
280 		SIO_SET(SIS_EECTL_CLK);
281 		sis_delay(sc);
282 	}
283 
284 	SIO_CLR(SIS_EECTL_CLK);
285 	sis_delay(sc);
286 	SIO_CLR(SIS_EECTL_CSEL);
287 	sis_delay(sc);
288 	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
289 }
290 
291 /*
292  * Send a read command and address to the EEPROM, check for ACK.
293  */
294 static void
295 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
296 {
297 	int d, i;
298 
299 	d = addr | SIS_EECMD_READ;
300 
301 	/*
302 	 * Feed in each bit and stobe the clock.
303 	 */
304 	for (i = 0x400; i; i >>= 1) {
305 		if (d & i)
306 			SIO_SET(SIS_EECTL_DIN);
307 		else
308 			SIO_CLR(SIS_EECTL_DIN);
309 		sis_delay(sc);
310 		SIO_SET(SIS_EECTL_CLK);
311 		sis_delay(sc);
312 		SIO_CLR(SIS_EECTL_CLK);
313 		sis_delay(sc);
314 	}
315 }
316 
317 /*
318  * Read a word of data stored in the EEPROM at address 'addr.'
319  */
320 static void
321 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
322 {
323 	int i;
324 	uint16_t word = 0;
325 
326 	/* Force EEPROM to idle state. */
327 	sis_eeprom_idle(sc);
328 
329 	/* Enter EEPROM access mode. */
330 	sis_delay(sc);
331 	SIO_CLR(SIS_EECTL_CLK);
332 	sis_delay(sc);
333 	SIO_SET(SIS_EECTL_CSEL);
334 	sis_delay(sc);
335 
336 	/*
337 	 * Send address of word we want to read.
338 	 */
339 	sis_eeprom_putbyte(sc, addr);
340 
341 	/*
342 	 * Start reading bits from EEPROM.
343 	 */
344 	for (i = 0x8000; i; i >>= 1) {
345 		SIO_SET(SIS_EECTL_CLK);
346 		sis_delay(sc);
347 		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
348 			word |= i;
349 		sis_delay(sc);
350 		SIO_CLR(SIS_EECTL_CLK);
351 		sis_delay(sc);
352 	}
353 
354 	/* Turn off EEPROM access mode. */
355 	sis_eeprom_idle(sc);
356 
357 	*dest = word;
358 }
359 
360 /*
361  * Read a sequence of words from the EEPROM.
362  */
363 static void
364 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
365 {
366 	int i;
367 	uint16_t word = 0, *ptr;
368 
369 	for (i = 0; i < cnt; i++) {
370 		sis_eeprom_getword(sc, off + i, &word);
371 		ptr = (uint16_t *)(dest + (i * 2));
372 		if (swap)
373 			*ptr = ntohs(word);
374 		else
375 			*ptr = word;
376 	}
377 }
378 
379 #ifdef __i386__
380 static device_t
381 sis_find_bridge(device_t dev)
382 {
383 	devclass_t pci_devclass;
384 	device_t *pci_devices;
385 	int pci_count = 0;
386 	device_t *pci_children;
387 	int pci_childcount = 0;
388 	device_t *busp, *childp;
389 	device_t child = NULL;
390 	int i, j;
391 
392 	if ((pci_devclass = devclass_find("pci")) == NULL)
393 		return(NULL);
394 
395 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
396 
397 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
398 		pci_childcount = 0;
399 		device_get_children(*busp, &pci_children, &pci_childcount);
400 		for (j = 0, childp = pci_children; j < pci_childcount;
401 		     j++, childp++) {
402 			if (pci_get_vendor(*childp) == PCI_VENDOR_SIS &&
403 			    pci_get_device(*childp) == 0x0008) {
404 				child = *childp;
405 				goto done;
406 			}
407 		}
408 	}
409 
410 done:
411 	kfree(pci_devices, M_TEMP);
412 	kfree(pci_children, M_TEMP);
413 	return(child);
414 }
415 
416 static void
417 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off,
418 	      int cnt)
419 {
420 	device_t bridge;
421 	uint8_t reg;
422 	int i;
423 	bus_space_tag_t	btag;
424 
425 	bridge = sis_find_bridge(dev);
426 	if (bridge == NULL)
427 		return;
428 	reg = pci_read_config(bridge, 0x48, 1);
429 	pci_write_config(bridge, 0x48, reg|0x40, 1);
430 
431 	/* XXX */
432 	btag = I386_BUS_SPACE_IO;
433 
434 	for (i = 0; i < cnt; i++) {
435 		bus_space_write_1(btag, 0x0, 0x70, i + off);
436 		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
437 	}
438 
439 	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
440 }
441 
442 static void
443 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
444 {
445 	uint32_t filtsave, csrsave;
446 
447 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
448 	csrsave = CSR_READ_4(sc, SIS_CSR);
449 
450 	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
451 	CSR_WRITE_4(sc, SIS_CSR, 0);
452 
453 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
454 
455 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
456 	((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
457 	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
458 	((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
459 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
460 	((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
461 
462 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
463 	CSR_WRITE_4(sc, SIS_CSR, csrsave);
464 }
465 #endif
466 
467 /*
468  * Sync the PHYs by setting data bit and strobing the clock 32 times.
469  */
470 static void
471 sis_mii_sync(struct sis_softc *sc)
472 {
473 	int i;
474 
475 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
476 
477 	for (i = 0; i < 32; i++) {
478 		SIO_SET(SIS_MII_CLK);
479 		DELAY(1);
480 		SIO_CLR(SIS_MII_CLK);
481 		DELAY(1);
482 	}
483 }
484 
485 /*
486  * Clock a series of bits through the MII.
487  */
488 static void
489 sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt)
490 {
491 	int i;
492 
493 	SIO_CLR(SIS_MII_CLK);
494 
495 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
496 		if (bits & i)
497 			SIO_SET(SIS_MII_DATA);
498 		else
499 			SIO_CLR(SIS_MII_DATA);
500 		DELAY(1);
501 		SIO_CLR(SIS_MII_CLK);
502 		DELAY(1);
503 		SIO_SET(SIS_MII_CLK);
504 	}
505 }
506 
507 /*
508  * Read an PHY register through the MII.
509  */
510 static int
511 sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
512 {
513 	int i, ack;
514 
515 	/*
516 	 * Set up frame for RX.
517 	 */
518 	frame->mii_stdelim = SIS_MII_STARTDELIM;
519 	frame->mii_opcode = SIS_MII_READOP;
520 	frame->mii_turnaround = 0;
521 	frame->mii_data = 0;
522 
523 	/*
524  	 * Turn on data xmit.
525 	 */
526 	SIO_SET(SIS_MII_DIR);
527 
528 	sis_mii_sync(sc);
529 
530 	/*
531 	 * Send command/address info.
532 	 */
533 	sis_mii_send(sc, frame->mii_stdelim, 2);
534 	sis_mii_send(sc, frame->mii_opcode, 2);
535 	sis_mii_send(sc, frame->mii_phyaddr, 5);
536 	sis_mii_send(sc, frame->mii_regaddr, 5);
537 
538 	/* Idle bit */
539 	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
540 	DELAY(1);
541 	SIO_SET(SIS_MII_CLK);
542 	DELAY(1);
543 
544 	/* Turn off xmit. */
545 	SIO_CLR(SIS_MII_DIR);
546 
547 	/* Check for ack */
548 	SIO_CLR(SIS_MII_CLK);
549 	DELAY(1);
550 	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
551 	SIO_SET(SIS_MII_CLK);
552 	DELAY(1);
553 
554 	/*
555 	 * Now try reading data bits. If the ack failed, we still
556 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
557 	 */
558 	if (ack) {
559 		for(i = 0; i < 16; i++) {
560 			SIO_CLR(SIS_MII_CLK);
561 			DELAY(1);
562 			SIO_SET(SIS_MII_CLK);
563 			DELAY(1);
564 		}
565 		goto fail;
566 	}
567 
568 	for (i = 0x8000; i; i >>= 1) {
569 		SIO_CLR(SIS_MII_CLK);
570 		DELAY(1);
571 		if (!ack) {
572 			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
573 				frame->mii_data |= i;
574 			DELAY(1);
575 		}
576 		SIO_SET(SIS_MII_CLK);
577 		DELAY(1);
578 	}
579 
580 fail:
581 
582 	SIO_CLR(SIS_MII_CLK);
583 	DELAY(1);
584 	SIO_SET(SIS_MII_CLK);
585 	DELAY(1);
586 
587 	if (ack)
588 		return(1);
589 	return(0);
590 }
591 
592 /*
593  * Write to a PHY register through the MII.
594  */
595 static int
596 sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
597 {
598 	/*
599 	 * Set up frame for TX.
600 	 */
601 
602 	frame->mii_stdelim = SIS_MII_STARTDELIM;
603 	frame->mii_opcode = SIS_MII_WRITEOP;
604 	frame->mii_turnaround = SIS_MII_TURNAROUND;
605 
606 	/*
607 	 * Turn on data output.
608 	 */
609 	SIO_SET(SIS_MII_DIR);
610 
611 	sis_mii_sync(sc);
612 
613 	sis_mii_send(sc, frame->mii_stdelim, 2);
614 	sis_mii_send(sc, frame->mii_opcode, 2);
615 	sis_mii_send(sc, frame->mii_phyaddr, 5);
616 	sis_mii_send(sc, frame->mii_regaddr, 5);
617 	sis_mii_send(sc, frame->mii_turnaround, 2);
618 	sis_mii_send(sc, frame->mii_data, 16);
619 
620 	/* Idle bit. */
621 	SIO_SET(SIS_MII_CLK);
622 	DELAY(1);
623 	SIO_CLR(SIS_MII_CLK);
624 	DELAY(1);
625 
626 	/*
627 	 * Turn off xmit.
628 	 */
629 	SIO_CLR(SIS_MII_DIR);
630 
631 	return(0);
632 }
633 
634 static int
635 sis_miibus_readreg(device_t dev, int phy, int reg)
636 {
637 	struct sis_softc *sc;
638 	struct sis_mii_frame frame;
639 
640 	sc = device_get_softc(dev);
641 
642 	if (sc->sis_type == SIS_TYPE_83815) {
643 		if (phy != 0)
644 			return(0);
645 		/*
646 		 * The NatSemi chip can take a while after
647 		 * a reset to come ready, during which the BMSR
648 		 * returns a value of 0. This is *never* supposed
649 		 * to happen: some of the BMSR bits are meant to
650 		 * be hardwired in the on position, and this can
651 		 * confuse the miibus code a bit during the probe
652 		 * and attach phase. So we make an effort to check
653 		 * for this condition and wait for it to clear.
654 		 */
655 		if (!CSR_READ_4(sc, NS_BMSR))
656 			DELAY(1000);
657 		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
658 	}
659 	/*
660 	 * Chipsets < SIS_635 seem not to be able to read/write
661 	 * through mdio. Use the enhanced PHY access register
662 	 * again for them.
663 	 */
664 	if (sc->sis_type == SIS_TYPE_900 &&
665 	    sc->sis_rev < SIS_REV_635) {
666 		int i, val = 0;
667 
668 		if (phy != 0)
669 			return(0);
670 
671 		CSR_WRITE_4(sc, SIS_PHYCTL,
672 		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
673 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
674 
675 		for (i = 0; i < SIS_TIMEOUT; i++) {
676 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
677 				break;
678 		}
679 
680 		if (i == SIS_TIMEOUT) {
681 			device_printf(dev, "PHY failed to come ready\n");
682 			return(0);
683 		}
684 
685 		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
686 
687 		if (val == 0xFFFF)
688 			return(0);
689 
690 		return(val);
691 	} else {
692 		bzero((char *)&frame, sizeof(frame));
693 
694 		frame.mii_phyaddr = phy;
695 		frame.mii_regaddr = reg;
696 		sis_mii_readreg(sc, &frame);
697 
698 		return(frame.mii_data);
699 	}
700 }
701 
702 static int
703 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
704 {
705 	struct sis_softc *sc;
706 	struct sis_mii_frame frame;
707 
708 	sc = device_get_softc(dev);
709 
710 	if (sc->sis_type == SIS_TYPE_83815) {
711 		if (phy != 0)
712 			return(0);
713 		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
714 		return(0);
715 	}
716 
717 	if (sc->sis_type == SIS_TYPE_900 &&
718 	    sc->sis_rev < SIS_REV_635) {
719 		int i;
720 
721 		if (phy != 0)
722 			return(0);
723 
724 		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
725 		    (reg << 6) | SIS_PHYOP_WRITE);
726 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
727 
728 		for (i = 0; i < SIS_TIMEOUT; i++) {
729 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
730 				break;
731 		}
732 
733 		if (i == SIS_TIMEOUT)
734 			device_printf(dev, "PHY failed to come ready\n");
735 	} else {
736 		bzero((char *)&frame, sizeof(frame));
737 
738 		frame.mii_phyaddr = phy;
739 		frame.mii_regaddr = reg;
740 		frame.mii_data = data;
741 		sis_mii_writereg(sc, &frame);
742 	}
743 	return(0);
744 }
745 
746 static void
747 sis_miibus_statchg(device_t dev)
748 {
749 	struct sis_softc *sc;
750 
751 	sc = device_get_softc(dev);
752 	sis_init(sc);
753 }
754 
755 static uint32_t
756 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
757 {
758 	uint32_t crc, carry;
759 	int i, j;
760 	uint8_t c;
761 
762 	/* Compute CRC for the address value. */
763 	crc = 0xFFFFFFFF; /* initial value */
764 
765 	for (i = 0; i < 6; i++) {
766 		c = *(addr + i);
767 		for (j = 0; j < 8; j++) {
768 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
769 			crc <<= 1;
770 			c >>= 1;
771 			if (carry)
772 				crc = (crc ^ 0x04c11db6) | carry;
773 		}
774 	}
775 
776 	/*
777 	 * return the filter bit position
778 	 *
779 	 * The NatSemi chip has a 512-bit filter, which is
780 	 * different than the SiS, so we special-case it.
781 	 */
782 	if (sc->sis_type == SIS_TYPE_83815)
783 		return (crc >> 23);
784 	else if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
785 		return (crc >> 24);
786 	else
787 		return (crc >> 25);
788 }
789 
790 static void
791 sis_setmulti_ns(struct sis_softc *sc)
792 {
793 	struct ifnet *ifp;
794 	struct ifmultiaddr *ifma;
795 	uint32_t h = 0, i, filtsave;
796 	int bit, index;
797 
798 	ifp = &sc->arpcom.ac_if;
799 
800 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
801 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
802 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
803 		return;
804 	}
805 
806 	/*
807 	 * We have to explicitly enable the multicast hash table
808 	 * on the NatSemi chip if we want to use it, which we do.
809 	 */
810 	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
811 	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
812 
813 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
814 
815 	/* first, zot all the existing hash bits */
816 	for (i = 0; i < 32; i++) {
817 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
818 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
819 	}
820 
821 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
822 		if (ifma->ifma_addr->sa_family != AF_LINK)
823 			continue;
824 		h = sis_mchash(sc,
825 			       LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
826 		index = h >> 3;
827 		bit = h & 0x1F;
828 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
829 		if (bit > 0xF)
830 			bit -= 0x10;
831 		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
832 	}
833 
834 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
835 }
836 
837 static void
838 sis_setmulti_sis(struct sis_softc *sc)
839 {
840 	struct ifnet *ifp;
841 	struct ifmultiaddr *ifma;
842 	uint32_t h, i, n, ctl;
843 	uint16_t hashes[16];
844 
845 	ifp = &sc->arpcom.ac_if;
846 
847 	/* hash table size */
848 	if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
849 		n = 16;
850 	else
851 		n = 8;
852 
853 	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
854 
855 	if (ifp->if_flags & IFF_BROADCAST)
856 		ctl |= SIS_RXFILTCTL_BROAD;
857 
858 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
859 		ctl |= SIS_RXFILTCTL_ALLMULTI;
860 		if (ifp->if_flags & IFF_PROMISC)
861 			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
862 		for (i = 0; i < n; i++)
863 			hashes[i] = ~0;
864 	} else {
865 		for (i = 0; i < n; i++)
866 			hashes[i] = 0;
867 		i = 0;
868 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
869 			if (ifma->ifma_addr->sa_family != AF_LINK)
870 				continue;
871 			h = sis_mchash(sc,
872 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
873 			hashes[h >> 4] |= 1 << (h & 0xf);
874 			i++;
875 		}
876 		if (i > n) {
877 			ctl |= SIS_RXFILTCTL_ALLMULTI;
878 			for (i = 0; i < n; i++)
879 				hashes[i] = ~0;
880 		}
881 	}
882 
883 	for (i = 0; i < n; i++) {
884 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
885 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
886 	}
887 
888 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
889 }
890 
891 static void
892 sis_reset(struct sis_softc *sc)
893 {
894 	struct ifnet *ifp = &sc->arpcom.ac_if;
895 	int i;
896 
897 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
898 
899 	for (i = 0; i < SIS_TIMEOUT; i++) {
900 		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
901 			break;
902 	}
903 
904 	if (i == SIS_TIMEOUT)
905 		if_printf(ifp, "reset never completed\n");
906 
907 	/* Wait a little while for the chip to get its brains in order. */
908 	DELAY(1000);
909 
910 	/*
911 	 * If this is a NetSemi chip, make sure to clear
912 	 * PME mode.
913 	 */
914 	if (sc->sis_type == SIS_TYPE_83815) {
915 		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
916 		CSR_WRITE_4(sc, NS_CLKRUN, 0);
917 	}
918 }
919 
920 /*
921  * Probe for an SiS chip. Check the PCI vendor and device
922  * IDs against our list and return a device name if we find a match.
923  */
924 static int
925 sis_probe(device_t dev)
926 {
927 	struct sis_type *t;
928 
929 	t = sis_devs;
930 
931 	while(t->sis_name != NULL) {
932 		if ((pci_get_vendor(dev) == t->sis_vid) &&
933 		    (pci_get_device(dev) == t->sis_did)) {
934 			device_set_desc(dev, t->sis_name);
935 			return(0);
936 		}
937 		t++;
938 	}
939 
940 	return(ENXIO);
941 }
942 
943 /*
944  * Attach the interface. Allocate softc structures, do ifmedia
945  * setup and ethernet/BPF attach.
946  */
947 static int
948 sis_attach(device_t dev)
949 {
950 	uint8_t eaddr[ETHER_ADDR_LEN];
951 	uint32_t command;
952 	struct sis_softc *sc;
953 	struct ifnet *ifp;
954 	int error, rid, waittime;
955 
956 	error = waittime = 0;
957 	sc = device_get_softc(dev);
958 
959 	if (pci_get_device(dev) == PCI_PRODUCT_SIS_900)
960 		sc->sis_type = SIS_TYPE_900;
961 	if (pci_get_device(dev) == PCI_PRODUCT_SIS_7016)
962 		sc->sis_type = SIS_TYPE_7016;
963 	if (pci_get_vendor(dev) == PCI_VENDOR_NS)
964 		sc->sis_type = SIS_TYPE_83815;
965 
966 	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
967 
968 	/*
969 	 * Handle power management nonsense.
970 	 */
971 
972 	command = pci_read_config(dev, SIS_PCI_CAPID, 4) & 0x000000FF;
973 	if (command == 0x01) {
974 
975 		command = pci_read_config(dev, SIS_PCI_PWRMGMTCTRL, 4);
976 		if (command & SIS_PSTATE_MASK) {
977 			uint32_t		iobase, membase, irq;
978 
979 			/* Save important PCI config data. */
980 			iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
981 			membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
982 			irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
983 
984 			/* Reset the power state. */
985 			device_printf(dev, "chip is in D%d power mode "
986 			    "-- setting to D0\n", command & SIS_PSTATE_MASK);
987 			command &= 0xFFFFFFFC;
988 			pci_write_config(dev, SIS_PCI_PWRMGMTCTRL, command, 4);
989 
990 			/* Restore PCI config data. */
991 			pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
992 			pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
993 			pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
994 		}
995 	}
996 
997 	/*
998 	 * Map control/status registers.
999 	 */
1000 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1001 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1002 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1003 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1004 
1005 #ifdef SIS_USEIOSPACE
1006 	if (!(command & PCIM_CMD_PORTEN)) {
1007 		device_printf(dev, "failed to enable I/O ports!\n");
1008 		error = ENXIO;
1009 		goto fail;
1010 	}
1011 #else
1012 	if (!(command & PCIM_CMD_MEMEN)) {
1013 		device_printf(dev, "failed to enable memory mapping!\n");
1014 		error = ENXIO;
1015 		goto fail;
1016 	}
1017 #endif
1018 
1019 	rid = SIS_RID;
1020 	sc->sis_res = bus_alloc_resource_any(dev, SIS_RES, &rid, RF_ACTIVE);
1021 
1022 	if (sc->sis_res == NULL) {
1023 		device_printf(dev, "couldn't map ports/memory\n");
1024 		error = ENXIO;
1025 		goto fail;
1026 	}
1027 
1028 	sc->sis_btag = rman_get_bustag(sc->sis_res);
1029 	sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
1030 
1031 	/* Allocate interrupt */
1032 	rid = 0;
1033 	sc->sis_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1034 	    RF_SHAREABLE | RF_ACTIVE);
1035 
1036 	if (sc->sis_irq == NULL) {
1037 		device_printf(dev, "couldn't map interrupt\n");
1038 		error = ENXIO;
1039 		goto fail;
1040 	}
1041 
1042 	/* Reset the adapter. */
1043 	sis_reset(sc);
1044 
1045 	if (sc->sis_type == SIS_TYPE_900 &&
1046             (sc->sis_rev == SIS_REV_635 ||
1047              sc->sis_rev == SIS_REV_900B)) {
1048 		SIO_SET(SIS_CFG_RND_CNT);
1049 		SIO_SET(SIS_CFG_PERR_DETECT);
1050 	}
1051 
1052 	/*
1053 	 * Get station address from the EEPROM.
1054 	 */
1055 	switch (pci_get_vendor(dev)) {
1056 	case PCI_VENDOR_NS:
1057 		/*
1058 		 * Reading the MAC address out of the EEPROM on
1059 		 * the NatSemi chip takes a bit more work than
1060 		 * you'd expect. The address spans 4 16-bit words,
1061 		 * with the first word containing only a single bit.
1062 		 * You have to shift everything over one bit to
1063 		 * get it aligned properly. Also, the bits are
1064 		 * stored backwards (the LSB is really the MSB,
1065 		 * and so on) so you have to reverse them in order
1066 		 * to get the MAC address into the form we want.
1067 		 * Why? Who the hell knows.
1068 		 */
1069 		{
1070 			uint16_t		tmp[4];
1071 
1072 			sis_read_eeprom(sc, (caddr_t)&tmp,
1073 			    NS_EE_NODEADDR, 4, 0);
1074 
1075 			/* Shift everything over one bit. */
1076 			tmp[3] = tmp[3] >> 1;
1077 			tmp[3] |= tmp[2] << 15;
1078 			tmp[2] = tmp[2] >> 1;
1079 			tmp[2] |= tmp[1] << 15;
1080 			tmp[1] = tmp[1] >> 1;
1081 			tmp[1] |= tmp[0] << 15;
1082 
1083 			/* Now reverse all the bits. */
1084 			tmp[3] = sis_reverse(tmp[3]);
1085 			tmp[2] = sis_reverse(tmp[2]);
1086 			tmp[1] = sis_reverse(tmp[1]);
1087 
1088 			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1089 		}
1090 		break;
1091 	case PCI_VENDOR_SIS:
1092 	default:
1093 #ifdef __i386__
1094 		/*
1095 		 * If this is a SiS 630E chipset with an embedded
1096 		 * SiS 900 controller, we have to read the MAC address
1097 		 * from the APC CMOS RAM. Our method for doing this
1098 		 * is very ugly since we have to reach out and grab
1099 		 * ahold of hardware for which we cannot properly
1100 		 * allocate resources. This code is only compiled on
1101 		 * the i386 architecture since the SiS 630E chipset
1102 		 * is for x86 motherboards only. Note that there are
1103 		 * a lot of magic numbers in this hack. These are
1104 		 * taken from SiS's Linux driver. I'd like to replace
1105 		 * them with proper symbolic definitions, but that
1106 		 * requires some datasheets that I don't have access
1107 		 * to at the moment.
1108 		 */
1109 		if (sc->sis_rev == SIS_REV_630S ||
1110 		    sc->sis_rev == SIS_REV_630E ||
1111 		    sc->sis_rev == SIS_REV_630EA1)
1112 			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1113 
1114 		else if (sc->sis_rev == SIS_REV_635 ||
1115 			 sc->sis_rev == SIS_REV_630ET)
1116 			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1117 		else if (sc->sis_rev == SIS_REV_96x) {
1118 			/*
1119 			 * Allow to read EEPROM from LAN. It is shared
1120 			 * between a 1394 controller and the NIC and each
1121 			 * time we access it, we need to set SIS_EECMD_REQ.
1122 			 */
1123 			SIO_SET(SIS_EECMD_REQ);
1124 			for (waittime = 0; waittime < SIS_TIMEOUT;
1125 			    waittime++) {
1126 				/* Force EEPROM to idle state. */
1127 				sis_eeprom_idle(sc);
1128 				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1129 					sis_read_eeprom(sc, (caddr_t)&eaddr,
1130 					    SIS_EE_NODEADDR, 3, 0);
1131 					break;
1132 				}
1133 				DELAY(1);
1134 			}
1135 			/*
1136 			 * Set SIS_EECTL_CLK to high, so a other master
1137 			 * can operate on the i2c bus.
1138 			 */
1139 			SIO_SET(SIS_EECTL_CLK);
1140 			/* Refuse EEPROM access by LAN */
1141 			SIO_SET(SIS_EECMD_DONE);
1142 		} else
1143 #endif
1144 			sis_read_eeprom(sc, (caddr_t)&eaddr,
1145 			    SIS_EE_NODEADDR, 3, 0);
1146 		break;
1147 	}
1148 
1149 	callout_init(&sc->sis_timer);
1150 
1151 	/*
1152 	 * Allocate the parent bus DMA tag appropriate for PCI.
1153 	 */
1154 #define SIS_NSEG_NEW 32
1155 	error = bus_dma_tag_create(NULL,	/* parent */
1156 			1, 0,			/* alignment, boundary */
1157 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1158 			BUS_SPACE_MAXADDR,	/* highaddr */
1159 			NULL, NULL,		/* filter, filterarg */
1160 			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1161 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1162 			BUS_DMA_ALLOCNOW,	/* flags */
1163 			&sc->sis_parent_tag);
1164 	if (error)
1165 		goto fail;
1166 
1167 	/*
1168 	 * Now allocate a tag for the DMA descriptor lists and a chunk
1169 	 * of DMA-able memory based on the tag. Also obtain the physical
1170 	 * addresses of the RX and TX ring, which we'll need later.
1171 	 * All of our lists are allocated as a contiguous block of memory.
1172 	 */
1173 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1174 			1, 0,			/* alignment, boundary */
1175 			BUS_SPACE_MAXADDR,	/* lowaddr */
1176 			BUS_SPACE_MAXADDR,	/* highaddr */
1177 			NULL, NULL,		/* filter, filterarg */
1178 			SIS_RX_LIST_SZ, 1,	/* maxsize, nsegments */
1179 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1180 			0,			/* flags */
1181 			&sc->sis_ldata.sis_rx_tag);
1182 	if (error)
1183 		goto fail;
1184 
1185 	error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
1186 				 (void **)&sc->sis_ldata.sis_rx_list,
1187 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1188 				 &sc->sis_ldata.sis_rx_dmamap);
1189 
1190 	if (error) {
1191 		device_printf(dev, "no memory for rx list buffers!\n");
1192 		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1193 		sc->sis_ldata.sis_rx_tag = NULL;
1194 		goto fail;
1195 	}
1196 
1197 	error = bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1198 				sc->sis_ldata.sis_rx_dmamap,
1199 				sc->sis_ldata.sis_rx_list,
1200 				sizeof(struct sis_desc), sis_dma_map_ring,
1201 				&sc->sis_cdata.sis_rx_paddr, 0);
1202 
1203 	if (error) {
1204 		device_printf(dev, "cannot get address of the rx ring!\n");
1205 		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1206 				sc->sis_ldata.sis_rx_list,
1207 				sc->sis_ldata.sis_rx_dmamap);
1208 		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1209 		sc->sis_ldata.sis_rx_tag = NULL;
1210 		goto fail;
1211 	}
1212 
1213 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1214 			1, 0,			/* alignment, boundary */
1215 			BUS_SPACE_MAXADDR,	/* lowaddr */
1216 			BUS_SPACE_MAXADDR,	/* highaddr */
1217 			NULL, NULL,		/* filter, filterarg */
1218 			SIS_TX_LIST_SZ, 1,	/* maxsize, nsegments */
1219 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1220 			0,			/* flags */
1221 			&sc->sis_ldata.sis_tx_tag);
1222 	if (error)
1223 		goto fail;
1224 
1225 	error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
1226 				 (void **)&sc->sis_ldata.sis_tx_list,
1227 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1228 				 &sc->sis_ldata.sis_tx_dmamap);
1229 
1230 	if (error) {
1231 		device_printf(dev, "no memory for tx list buffers!\n");
1232 		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1233 		sc->sis_ldata.sis_tx_tag = NULL;
1234 		goto fail;
1235 	}
1236 
1237 	error = bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1238 				sc->sis_ldata.sis_tx_dmamap,
1239 				sc->sis_ldata.sis_tx_list,
1240 				sizeof(struct sis_desc), sis_dma_map_ring,
1241 				&sc->sis_cdata.sis_tx_paddr, 0);
1242 
1243 	if (error) {
1244 		device_printf(dev, "cannot get address of the tx ring!\n");
1245 		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1246 				sc->sis_ldata.sis_tx_list,
1247 				sc->sis_ldata.sis_tx_dmamap);
1248 		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1249 		sc->sis_ldata.sis_tx_tag = NULL;
1250 		goto fail;
1251 	}
1252 
1253 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1254 			1, 0,			/* alignment, boundary */
1255 			BUS_SPACE_MAXADDR,	/* lowaddr */
1256 			BUS_SPACE_MAXADDR,	/* highaddr */
1257 			NULL, NULL,		/* filter, filterarg */
1258 			MCLBYTES, 1,		/* maxsize, nsegments */
1259 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1260 			0,			/* flags */
1261 			&sc->sis_tag);
1262 	if (error)
1263 		goto fail;
1264 
1265 	ifp = &sc->arpcom.ac_if;
1266 	ifp->if_softc = sc;
1267 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1268 	ifp->if_mtu = ETHERMTU;
1269 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1270 	ifp->if_ioctl = sis_ioctl;
1271 	ifp->if_start = sis_start;
1272 	ifp->if_watchdog = sis_watchdog;
1273 	ifp->if_init = sis_init;
1274 	ifp->if_baudrate = 10000000;
1275 	ifq_set_maxlen(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1276 	ifq_set_ready(&ifp->if_snd);
1277 #ifdef DEVICE_POLLING
1278 	ifp->if_poll = sis_poll;
1279 #endif
1280 	ifp->if_capenable = ifp->if_capabilities;
1281 
1282 	/*
1283 	 * Do MII setup.
1284 	 */
1285 	if (mii_phy_probe(dev, &sc->sis_miibus,
1286 	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1287 		device_printf(dev, "MII without any PHY!\n");
1288 		error = ENXIO;
1289 		goto fail;
1290 	}
1291 
1292 	/*
1293 	 * Call MI attach routine.
1294 	 */
1295 	ether_ifattach(ifp, eaddr, NULL);
1296 
1297 	/*
1298 	 * Tell the upper layer(s) we support long frames.
1299 	 */
1300 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1301 
1302 	error = bus_setup_intr(dev, sc->sis_irq, INTR_NETSAFE,
1303 			       sis_intr, sc,
1304 			       &sc->sis_intrhand,
1305 			       ifp->if_serializer);
1306 
1307 	if (error) {
1308 		device_printf(dev, "couldn't set up irq\n");
1309 		ether_ifdetach(ifp);
1310 		goto fail;
1311 	}
1312 
1313 fail:
1314 	if (error)
1315 		sis_detach(dev);
1316 
1317 	return(error);
1318 }
1319 
1320 /*
1321  * Shutdown hardware and free up resources. It is called in both the error case
1322  * and the normal detach case so it needs to be careful about only freeing
1323  * resources that have actually been allocated.
1324  */
1325 static int
1326 sis_detach(device_t dev)
1327 {
1328 	struct sis_softc *sc = device_get_softc(dev);
1329 	struct ifnet *ifp = &sc->arpcom.ac_if;
1330 
1331 
1332 	if (device_is_attached(dev)) {
1333 		lwkt_serialize_enter(ifp->if_serializer);
1334 		sis_reset(sc);
1335 		sis_stop(sc);
1336 		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1337 		lwkt_serialize_exit(ifp->if_serializer);
1338 
1339 		ether_ifdetach(ifp);
1340 	}
1341 	if (sc->sis_miibus)
1342 		device_delete_child(dev, sc->sis_miibus);
1343 	bus_generic_detach(dev);
1344 
1345 	if (sc->sis_irq)
1346 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1347 	if (sc->sis_res)
1348 		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1349 
1350 	if (sc->sis_ldata.sis_rx_tag) {
1351 		bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
1352 				  sc->sis_ldata.sis_rx_dmamap);
1353 		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1354 				sc->sis_ldata.sis_rx_list,
1355 				sc->sis_ldata.sis_rx_dmamap);
1356 		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1357 	}
1358 
1359 	if (sc->sis_ldata.sis_tx_tag) {
1360 		bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
1361 				  sc->sis_ldata.sis_tx_dmamap);
1362 		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1363 				sc->sis_ldata.sis_tx_list,
1364 				sc->sis_ldata.sis_tx_dmamap);
1365 		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1366 	}
1367 	if (sc->sis_tag)
1368 		bus_dma_tag_destroy(sc->sis_tag);
1369 	if (sc->sis_parent_tag)
1370 		bus_dma_tag_destroy(sc->sis_parent_tag);
1371 
1372 	return(0);
1373 }
1374 
1375 /*
1376  * Initialize the transmit descriptors.
1377  */
1378 static int
1379 sis_list_tx_init(struct sis_softc *sc)
1380 {
1381 	struct sis_list_data *ld;
1382 	struct sis_ring_data *cd;
1383 	int i, nexti;
1384 
1385 	cd = &sc->sis_cdata;
1386 	ld = &sc->sis_ldata;
1387 
1388 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1389 		nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
1390 		ld->sis_tx_list[i].sis_nextdesc =
1391 			    &ld->sis_tx_list[nexti];
1392 		bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1393 				sc->sis_ldata.sis_tx_dmamap,
1394 				&ld->sis_tx_list[nexti],
1395 				sizeof(struct sis_desc), sis_dma_map_desc_next,
1396 				&ld->sis_tx_list[i], 0);
1397 		ld->sis_tx_list[i].sis_mbuf = NULL;
1398 		ld->sis_tx_list[i].sis_ptr = 0;
1399 		ld->sis_tx_list[i].sis_ctl = 0;
1400 	}
1401 
1402 	cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
1403 
1404 	bus_dmamap_sync(sc->sis_ldata.sis_tx_tag, sc->sis_ldata.sis_tx_dmamap,
1405 			BUS_DMASYNC_PREWRITE);
1406 
1407 	return(0);
1408 }
1409 
1410 /*
1411  * Initialize the RX descriptors and allocate mbufs for them. Note that
1412  * we arrange the descriptors in a closed ring, so that the last descriptor
1413  * points back to the first.
1414  */
1415 static int
1416 sis_list_rx_init(struct sis_softc *sc)
1417 {
1418 	struct sis_list_data *ld;
1419 	struct sis_ring_data *cd;
1420 	int i, nexti;
1421 
1422 	ld = &sc->sis_ldata;
1423 	cd = &sc->sis_cdata;
1424 
1425 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1426 		if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
1427 			return(ENOBUFS);
1428 		nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
1429 		ld->sis_rx_list[i].sis_nextdesc =
1430 			    &ld->sis_rx_list[nexti];
1431 		bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1432 				sc->sis_ldata.sis_rx_dmamap,
1433 				&ld->sis_rx_list[nexti],
1434 				sizeof(struct sis_desc), sis_dma_map_desc_next,
1435 				&ld->sis_rx_list[i], 0);
1436 	}
1437 
1438 	bus_dmamap_sync(sc->sis_ldata.sis_rx_tag, sc->sis_ldata.sis_rx_dmamap,
1439 			BUS_DMASYNC_PREWRITE);
1440 
1441 	cd->sis_rx_prod = 0;
1442 
1443 	return(0);
1444 }
1445 
1446 /*
1447  * Initialize an RX descriptor and attach an MBUF cluster.
1448  */
1449 static int
1450 sis_newbuf(struct sis_softc *sc, struct sis_desc *c, struct mbuf *m)
1451 {
1452 	if (m == NULL) {
1453 		m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1454 		if (m == NULL)
1455 			return(ENOBUFS);
1456 	} else {
1457 		m->m_data = m->m_ext.ext_buf;
1458 	}
1459 
1460 	c->sis_mbuf = m;
1461 	c->sis_ctl = SIS_RXLEN;
1462 
1463 	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1464 	bus_dmamap_load(sc->sis_tag, c->sis_map, mtod(m, void *), MCLBYTES,
1465 			sis_dma_map_desc_ptr, c, 0);
1466 	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
1467 
1468 	return(0);
1469 }
1470 
1471 /*
1472  * A frame has been uploaded: pass the resulting mbuf chain up to
1473  * the higher level protocols.
1474  */
1475 static void
1476 sis_rxeof(struct sis_softc *sc)
1477 {
1478 	struct mbuf *m;
1479 	struct ifnet *ifp;
1480 	struct sis_desc	*cur_rx;
1481 	int i, total_len = 0;
1482 	uint32_t rxstat;
1483 
1484 	ifp = &sc->arpcom.ac_if;
1485 	i = sc->sis_cdata.sis_rx_prod;
1486 
1487 	while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
1488 
1489 #ifdef DEVICE_POLLING
1490 		if (ifp->if_flags & IFF_POLLING) {
1491 			if (sc->rxcycles <= 0)
1492 				break;
1493 			sc->rxcycles--;
1494 		}
1495 #endif /* DEVICE_POLLING */
1496 		cur_rx = &sc->sis_ldata.sis_rx_list[i];
1497 		rxstat = cur_rx->sis_rxstat;
1498 		bus_dmamap_sync(sc->sis_tag, cur_rx->sis_map,
1499 				BUS_DMASYNC_POSTWRITE);
1500 		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1501 		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1502 		m = cur_rx->sis_mbuf;
1503 		cur_rx->sis_mbuf = NULL;
1504 		total_len = SIS_RXBYTES(cur_rx);
1505 		SIS_INC(i, SIS_RX_LIST_CNT);
1506 
1507 		/*
1508 		 * If an error occurs, update stats, clear the
1509 		 * status word and leave the mbuf cluster in place:
1510 		 * it should simply get re-used next time this descriptor
1511 	 	 * comes up in the ring.
1512 		 */
1513 		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1514 			ifp->if_ierrors++;
1515 			if (rxstat & SIS_RXSTAT_COLL)
1516 				ifp->if_collisions++;
1517 			sis_newbuf(sc, cur_rx, m);
1518 			continue;
1519 		}
1520 
1521 		/* No errors; receive the packet. */
1522 #ifdef __i386__
1523 		/*
1524 		 * On the x86 we do not have alignment problems, so try to
1525 		 * allocate a new buffer for the receive ring, and pass up
1526 		 * the one where the packet is already, saving the expensive
1527 		 * copy done in m_devget().
1528 		 * If we are on an architecture with alignment problems, or
1529 		 * if the allocation fails, then use m_devget and leave the
1530 		 * existing buffer in the receive ring.
1531 		 */
1532 		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1533 			m->m_pkthdr.len = m->m_len = total_len;
1534 		else
1535 #endif
1536 		{
1537 			struct mbuf *m0;
1538 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1539 				total_len + ETHER_ALIGN, 0, ifp, NULL);
1540 			sis_newbuf(sc, cur_rx, m);
1541 			if (m0 == NULL) {
1542 				ifp->if_ierrors++;
1543 				continue;
1544 			}
1545 			m_adj(m0, ETHER_ALIGN);
1546 			m = m0;
1547 		}
1548 
1549 		ifp->if_ipackets++;
1550 		ifp->if_input(ifp, m);
1551 	}
1552 
1553 	sc->sis_cdata.sis_rx_prod = i;
1554 }
1555 
1556 static void
1557 sis_rxeoc(struct sis_softc *sc)
1558 {
1559 	sis_rxeof(sc);
1560 	sis_init(sc);
1561 }
1562 
1563 /*
1564  * A frame was downloaded to the chip. It's safe for us to clean up
1565  * the list buffers.
1566  */
1567 
1568 static void
1569 sis_txeof(struct sis_softc *sc)
1570 {
1571 	struct sis_desc *cur_tx;
1572 	struct ifnet *ifp;
1573 	uint32_t idx;
1574 
1575 	ifp = &sc->arpcom.ac_if;
1576 
1577 	/*
1578 	 * Go through our tx list and free mbufs for those
1579 	 * frames that have been transmitted.
1580 	 */
1581 	for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
1582 	     sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1583 		cur_tx = &sc->sis_ldata.sis_tx_list[idx];
1584 
1585 		if (SIS_OWNDESC(cur_tx))
1586 			break;
1587 
1588 		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1589 			continue;
1590 
1591 		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1592 			ifp->if_oerrors++;
1593 			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1594 				ifp->if_collisions++;
1595 			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1596 				ifp->if_collisions++;
1597 		}
1598 
1599 		ifp->if_collisions +=
1600 		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1601 
1602 		ifp->if_opackets++;
1603 		if (cur_tx->sis_mbuf != NULL) {
1604 			m_freem(cur_tx->sis_mbuf);
1605 			cur_tx->sis_mbuf = NULL;
1606 			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1607 			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1608 		}
1609 	}
1610 
1611 	if (idx != sc->sis_cdata.sis_tx_cons) {
1612 		/* we freed up some buffers */
1613 		sc->sis_cdata.sis_tx_cons = idx;
1614 		ifp->if_flags &= ~IFF_OACTIVE;
1615 	}
1616 
1617 	ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
1618 }
1619 
1620 static void
1621 sis_tick(void *xsc)
1622 {
1623 	struct sis_softc *sc = xsc;
1624 	struct mii_data *mii;
1625 	struct ifnet *ifp = &sc->arpcom.ac_if;
1626 
1627 	lwkt_serialize_enter(ifp->if_serializer);
1628 
1629 	mii = device_get_softc(sc->sis_miibus);
1630 	mii_tick(mii);
1631 
1632 	if (!sc->sis_link) {
1633 		mii_pollstat(mii);
1634 		if (mii->mii_media_status & IFM_ACTIVE &&
1635 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1636 			sc->sis_link++;
1637 		if (!ifq_is_empty(&ifp->if_snd))
1638 			sis_start(ifp);
1639 	}
1640 
1641 	callout_reset(&sc->sis_timer, hz, sis_tick, sc);
1642 	lwkt_serialize_exit(ifp->if_serializer);
1643 }
1644 
1645 #ifdef DEVICE_POLLING
1646 
1647 static void
1648 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1649 {
1650 	struct  sis_softc *sc = ifp->if_softc;
1651 
1652 	switch(cmd) {
1653 	case POLL_REGISTER:
1654 		/* disable interrupts */
1655 		CSR_WRITE_4(sc, SIS_IER, 0);
1656 		break;
1657 	case POLL_DEREGISTER:
1658 		/* enable interrupts */
1659 		CSR_WRITE_4(sc, SIS_IER, 1);
1660 		break;
1661 	default:
1662 		/*
1663 		 * On the sis, reading the status register also clears it.
1664 		 * So before returning to intr mode we must make sure that all
1665 		 * possible pending sources of interrupts have been served.
1666 		 * In practice this means run to completion the *eof routines,
1667 		 * and then call the interrupt routine
1668 		 */
1669 		sc->rxcycles = count;
1670 		sis_rxeof(sc);
1671 		sis_txeof(sc);
1672 		if (!ifq_is_empty(&ifp->if_snd))
1673 			sis_start(ifp);
1674 
1675 		if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1676 			uint32_t status;
1677 
1678 			/* Reading the ISR register clears all interrupts. */
1679 			status = CSR_READ_4(sc, SIS_ISR);
1680 
1681 			if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1682 				sis_rxeoc(sc);
1683 
1684 			if (status & (SIS_ISR_RX_IDLE))
1685 				SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1686 
1687 			if (status & SIS_ISR_SYSERR) {
1688 				sis_reset(sc);
1689 				sis_init(sc);
1690 			}
1691 		}
1692 		break;
1693 	}
1694 }
1695 #endif /* DEVICE_POLLING */
1696 
1697 static void
1698 sis_intr(void *arg)
1699 {
1700 	struct sis_softc *sc;
1701 	struct ifnet *ifp;
1702 	uint32_t status;
1703 
1704 	sc = arg;
1705 	ifp = &sc->arpcom.ac_if;
1706 
1707 	/* Supress unwanted interrupts */
1708 	if (!(ifp->if_flags & IFF_UP)) {
1709 		sis_stop(sc);
1710 		return;
1711 	}
1712 
1713 	/* Disable interrupts. */
1714 	CSR_WRITE_4(sc, SIS_IER, 0);
1715 
1716 	for (;;) {
1717 		/* Reading the ISR register clears all interrupts. */
1718 		status = CSR_READ_4(sc, SIS_ISR);
1719 
1720 		if ((status & SIS_INTRS) == 0)
1721 			break;
1722 
1723 		if (status &
1724 		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR | SIS_ISR_TX_OK |
1725 		     SIS_ISR_TX_IDLE) )
1726 			sis_txeof(sc);
1727 
1728 		if (status &
1729 		    (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK | SIS_ISR_RX_IDLE))
1730 			sis_rxeof(sc);
1731 
1732 		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1733 			sis_rxeoc(sc);
1734 
1735 		if (status & (SIS_ISR_RX_IDLE))
1736 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1737 
1738 		if (status & SIS_ISR_SYSERR) {
1739 			sis_reset(sc);
1740 			sis_init(sc);
1741 		}
1742 	}
1743 
1744 	/* Re-enable interrupts. */
1745 	CSR_WRITE_4(sc, SIS_IER, 1);
1746 
1747 	if (!ifq_is_empty(&ifp->if_snd))
1748 		sis_start(ifp);
1749 }
1750 
1751 /*
1752  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1753  * pointers to the fragment pointers.
1754  */
1755 static int
1756 sis_encap(struct sis_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1757 {
1758 	struct sis_desc *f = NULL;
1759 	struct mbuf *m;
1760 	int frag, cur, cnt = 0;
1761 
1762 	/*
1763 	 * If there's no way we can send any packets, return now.
1764 	 */
1765 	if (SIS_TX_LIST_CNT - sc->sis_cdata.sis_tx_cnt < 2)
1766 		return (ENOBUFS);
1767 
1768 	/*
1769  	 * Start packing the mbufs in this chain into
1770 	 * the fragment pointers. Stop when we run out
1771  	 * of fragments or hit the end of the mbuf chain.
1772 	 */
1773 	m = m_head;
1774 	cur = frag = *txidx;
1775 
1776 	for (m = m_head; m != NULL; m = m->m_next) {
1777 		if (m->m_len != 0) {
1778 			if ((SIS_TX_LIST_CNT -
1779 			    (sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
1780 				return(ENOBUFS);
1781 			f = &sc->sis_ldata.sis_tx_list[frag];
1782 			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1783 			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1784 			bus_dmamap_load(sc->sis_tag, f->sis_map,
1785 					mtod(m, void *), m->m_len,
1786 					sis_dma_map_desc_ptr, f, 0);
1787 			bus_dmamap_sync(sc->sis_tag, f->sis_map,
1788 					BUS_DMASYNC_PREREAD);
1789 			if (cnt != 0)
1790 				f->sis_ctl |= SIS_CMDSTS_OWN;
1791 			cur = frag;
1792 			SIS_INC(frag, SIS_TX_LIST_CNT);
1793 			cnt++;
1794 		}
1795 	}
1796 
1797 	if (m != NULL)
1798 		return(ENOBUFS);
1799 
1800 	sc->sis_ldata.sis_tx_list[cur].sis_mbuf = m_head;
1801 	sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1802 	sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1803 	sc->sis_cdata.sis_tx_cnt += cnt;
1804 	*txidx = frag;
1805 
1806 	return(0);
1807 }
1808 
1809 /*
1810  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1811  * to the mbuf data regions directly in the transmit lists. We also save a
1812  * copy of the pointers since the transmit list fragment pointers are
1813  * physical addresses.
1814  */
1815 
1816 static void
1817 sis_start(struct ifnet *ifp)
1818 {
1819 	struct sis_softc *sc;
1820 	struct mbuf *m_head = NULL;
1821 	uint32_t idx;
1822 	int need_trans;
1823 
1824 	sc = ifp->if_softc;
1825 
1826 	if (!sc->sis_link)
1827 		return;
1828 
1829 	idx = sc->sis_cdata.sis_tx_prod;
1830 
1831 	if (ifp->if_flags & IFF_OACTIVE)
1832 		return;
1833 
1834 	need_trans = 0;
1835 	while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
1836 		m_head = ifq_poll(&ifp->if_snd);
1837 		if (m_head == NULL)
1838 			break;
1839 
1840 		if (sis_encap(sc, m_head, &idx)) {
1841 			ifp->if_flags |= IFF_OACTIVE;
1842 			break;
1843 		}
1844 		ifq_dequeue(&ifp->if_snd, m_head);
1845 		need_trans = 1;
1846 
1847 		/*
1848 		 * If there's a BPF listener, bounce a copy of this frame
1849 		 * to him.
1850 		 */
1851 		BPF_MTAP(ifp, m_head);
1852 	}
1853 
1854 	if (!need_trans)
1855 		return;
1856 
1857 	/* Transmit */
1858 	sc->sis_cdata.sis_tx_prod = idx;
1859 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1860 
1861 	/*
1862 	 * Set a timeout in case the chip goes out to lunch.
1863 	 */
1864 	ifp->if_timer = 5;
1865 }
1866 
1867 static void
1868 sis_init(void *xsc)
1869 {
1870 	struct sis_softc *sc = xsc;
1871 	struct ifnet *ifp = &sc->arpcom.ac_if;
1872 	struct mii_data *mii;
1873 
1874 	/*
1875 	 * Cancel pending I/O and free all RX/TX buffers.
1876 	 */
1877 	sis_stop(sc);
1878 
1879 	mii = device_get_softc(sc->sis_miibus);
1880 
1881 	/* Set MAC address */
1882 	if (sc->sis_type == SIS_TYPE_83815) {
1883 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1884 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1885 		    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1886 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1887 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1888 		    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1889 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1890 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1891 		    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1892 	} else {
1893 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1894 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1895 		    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1896 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1897 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1898 		    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1899 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1900 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1901 		    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1902 	}
1903 
1904 	/* Init circular RX list. */
1905 	if (sis_list_rx_init(sc) == ENOBUFS) {
1906 		if_printf(ifp, "initialization failed: "
1907 			  "no memory for rx buffers\n");
1908 		sis_stop(sc);
1909 		return;
1910 	}
1911 
1912 	/*
1913 	 * Init tx descriptors.
1914 	 */
1915 	sis_list_tx_init(sc);
1916 
1917 	/*
1918 	 * For the NatSemi chip, we have to explicitly enable the
1919 	 * reception of ARP frames, as well as turn on the 'perfect
1920 	 * match' filter where we store the station address, otherwise
1921 	 * we won't receive unicasts meant for this host.
1922 	 */
1923 	if (sc->sis_type == SIS_TYPE_83815) {
1924 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
1925 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
1926 	}
1927 
1928 	 /* If we want promiscuous mode, set the allframes bit. */
1929 	if (ifp->if_flags & IFF_PROMISC)
1930 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1931 	else
1932 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1933 
1934 	/*
1935 	 * Set the capture broadcast bit to capture broadcast frames.
1936 	 */
1937 	if (ifp->if_flags & IFF_BROADCAST)
1938 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1939 	else
1940 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1941 
1942 	/*
1943 	 * Load the multicast filter.
1944 	 */
1945 	if (sc->sis_type == SIS_TYPE_83815)
1946 		sis_setmulti_ns(sc);
1947 	else
1948 		sis_setmulti_sis(sc);
1949 
1950 	/* Turn the receive filter on */
1951 	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
1952 
1953 	/*
1954 	 * Load the address of the RX and TX lists.
1955 	 */
1956 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
1957 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
1958 
1959 	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
1960 	 * the PCI bus. When this bit is set, the Max DMA Burst Size
1961 	 * for TX/RX DMA should be no larger than 16 double words.
1962 	 */
1963 	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN)
1964 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
1965 	else
1966 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
1967 
1968 	/* Accept Long Packets for VLAN support */
1969 	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
1970 
1971 	/* Set TX configuration */
1972 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T)
1973 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
1974 	else
1975 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
1976 
1977 	/* Set full/half duplex mode. */
1978 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1979 		SIS_SETBIT(sc, SIS_TX_CFG,
1980 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1981 		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1982 	} else {
1983 		SIS_CLRBIT(sc, SIS_TX_CFG,
1984 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1985 		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1986 	}
1987 
1988 	/*
1989 	 * Enable interrupts.
1990 	 */
1991 	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
1992 #ifdef DEVICE_POLLING
1993 	/*
1994 	 * ... only enable interrupts if we are not polling, make sure
1995 	 * they are off otherwise.
1996 	 */
1997 	if (ifp->if_flags & IFF_POLLING)
1998 		CSR_WRITE_4(sc, SIS_IER, 0);
1999 	else
2000 #endif /* DEVICE_POLLING */
2001 	CSR_WRITE_4(sc, SIS_IER, 1);
2002 
2003 	/* Enable receiver and transmitter. */
2004 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2005 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2006 
2007 #ifdef notdef
2008 	mii_mediachg(mii);
2009 #endif
2010 
2011 	/*
2012 	 * Page 75 of the DP83815 manual recommends the
2013 	 * following register settings "for optimum
2014 	 * performance." Note however that at least three
2015 	 * of the registers are listed as "reserved" in
2016 	 * the register map, so who knows what they do.
2017 	 */
2018 	if (sc->sis_type == SIS_TYPE_83815) {
2019 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2020 		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2021 		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2022 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2023 		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2024 	}
2025 
2026 	ifp->if_flags |= IFF_RUNNING;
2027 	ifp->if_flags &= ~IFF_OACTIVE;
2028 
2029 	callout_reset(&sc->sis_timer, hz, sis_tick, sc);
2030 }
2031 
2032 /*
2033  * Set media options.
2034  */
2035 static int
2036 sis_ifmedia_upd(struct ifnet *ifp)
2037 {
2038 	struct sis_softc *sc;
2039 	struct mii_data *mii;
2040 
2041 	sc = ifp->if_softc;
2042 
2043 	mii = device_get_softc(sc->sis_miibus);
2044 	sc->sis_link = 0;
2045 	if (mii->mii_instance) {
2046 		struct mii_softc	*miisc;
2047 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2048 			mii_phy_reset(miisc);
2049 	}
2050 	mii_mediachg(mii);
2051 
2052 	return(0);
2053 }
2054 
2055 /*
2056  * Report current media status.
2057  */
2058 static void
2059 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2060 {
2061 	struct sis_softc *sc;
2062 	struct mii_data *mii;
2063 
2064 	sc = ifp->if_softc;
2065 
2066 	mii = device_get_softc(sc->sis_miibus);
2067 	mii_pollstat(mii);
2068 	ifmr->ifm_active = mii->mii_media_active;
2069 	ifmr->ifm_status = mii->mii_media_status;
2070 }
2071 
2072 static int
2073 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2074 {
2075 	struct sis_softc *sc = ifp->if_softc;
2076 	struct ifreq *ifr = (struct ifreq *) data;
2077 	struct mii_data *mii;
2078 	int error = 0;
2079 
2080 	switch(command) {
2081 	case SIOCSIFFLAGS:
2082 		if (ifp->if_flags & IFF_UP) {
2083 			sis_init(sc);
2084 		} else {
2085 			if (ifp->if_flags & IFF_RUNNING)
2086 				sis_stop(sc);
2087 		}
2088 		error = 0;
2089 		break;
2090 	case SIOCADDMULTI:
2091 	case SIOCDELMULTI:
2092 		if (sc->sis_type == SIS_TYPE_83815)
2093 			sis_setmulti_ns(sc);
2094 		else
2095 			sis_setmulti_sis(sc);
2096 		error = 0;
2097 		break;
2098 	case SIOCGIFMEDIA:
2099 	case SIOCSIFMEDIA:
2100 		mii = device_get_softc(sc->sis_miibus);
2101 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2102 		break;
2103 	default:
2104 		error = ether_ioctl(ifp, command, data);
2105 		break;
2106 	}
2107 	return(error);
2108 }
2109 
2110 static void
2111 sis_watchdog(struct ifnet *ifp)
2112 {
2113 	struct sis_softc *sc;
2114 
2115 	sc = ifp->if_softc;
2116 
2117 	ifp->if_oerrors++;
2118 	if_printf(ifp, "watchdog timeout\n");
2119 
2120 	sis_stop(sc);
2121 	sis_reset(sc);
2122 	sis_init(sc);
2123 
2124 	if (!ifq_is_empty(&ifp->if_snd))
2125 		sis_start(ifp);
2126 }
2127 
2128 /*
2129  * Stop the adapter and free any mbufs allocated to the
2130  * RX and TX lists.
2131  */
2132 static void
2133 sis_stop(struct sis_softc *sc)
2134 {
2135 	int i;
2136 	struct ifnet *ifp;
2137 
2138 	ifp = &sc->arpcom.ac_if;
2139 	ifp->if_timer = 0;
2140 
2141 	callout_stop(&sc->sis_timer);
2142 
2143 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2144 	CSR_WRITE_4(sc, SIS_IER, 0);
2145 	CSR_WRITE_4(sc, SIS_IMR, 0);
2146 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2147 	DELAY(1000);
2148 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2149 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2150 
2151 	sc->sis_link = 0;
2152 
2153 	/*
2154 	 * Free data in the RX lists.
2155 	 */
2156 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2157 		if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
2158 			bus_dmamap_unload(sc->sis_tag,
2159 					  sc->sis_ldata.sis_rx_list[i].sis_map);
2160 			bus_dmamap_destroy(sc->sis_tag,
2161 					  sc->sis_ldata.sis_rx_list[i].sis_map);
2162 			m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
2163 			sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
2164 		}
2165 	}
2166 	bzero(sc->sis_ldata.sis_rx_list, sizeof(sc->sis_ldata.sis_rx_list));
2167 
2168 	/*
2169 	 * Free the TX list buffers.
2170 	 */
2171 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2172 		if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
2173 			bus_dmamap_unload(sc->sis_tag,
2174 					  sc->sis_ldata.sis_tx_list[i].sis_map);
2175 			bus_dmamap_destroy(sc->sis_tag,
2176 					  sc->sis_ldata.sis_tx_list[i].sis_map);
2177 			m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
2178 			sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
2179 		}
2180 	}
2181 
2182 	bzero(sc->sis_ldata.sis_tx_list, sizeof(sc->sis_ldata.sis_tx_list));
2183 }
2184 
2185 /*
2186  * Stop all chip I/O so that the kernel's probe routines don't
2187  * get confused by errant DMAs when rebooting.
2188  */
2189 static void
2190 sis_shutdown(device_t dev)
2191 {
2192 	struct sis_softc	*sc;
2193 	struct ifnet *ifp;
2194 
2195 	sc = device_get_softc(dev);
2196 	ifp = &sc->arpcom.ac_if;
2197 	lwkt_serialize_enter(ifp->if_serializer);
2198 	sis_reset(sc);
2199 	sis_stop(sc);
2200 	lwkt_serialize_exit(ifp->if_serializer);
2201 }
2202 
2203