xref: /dragonfly/sys/dev/netif/sk/if_sk.c (revision 2d8a3be7)
1 /*
2  * Copyright (c) 1997, 1998, 1999, 2000
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $
33  * $DragonFly: src/sys/dev/netif/sk/if_sk.c,v 1.5 2003/08/27 09:38:32 rob Exp $
34  *
35  * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $
36  */
37 
38 /*
39  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
40  * the SK-984x series adapters, both single port and dual port.
41  * References:
42  * 	The XaQti XMAC II datasheet,
43  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
44  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
45  *
46  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
47  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
48  * convenience to others until Vitesse corrects this problem:
49  *
50  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
51  *
52  * Written by Bill Paul <wpaul@ee.columbia.edu>
53  * Department of Electrical Engineering
54  * Columbia University, New York City
55  */
56 
57 /*
58  * The SysKonnect gigabit ethernet adapters consist of two main
59  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
60  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
61  * components and a PHY while the GEnesis controller provides a PCI
62  * interface with DMA support. Each card may have between 512K and
63  * 2MB of SRAM on board depending on the configuration.
64  *
65  * The SysKonnect GEnesis controller can have either one or two XMAC
66  * chips connected to it, allowing single or dual port NIC configurations.
67  * SysKonnect has the distinction of being the only vendor on the market
68  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
69  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
70  * XMAC registers. This driver takes advantage of these features to allow
71  * both XMACs to operate as independent interfaces.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/socket.h>
81 #include <sys/queue.h>
82 
83 #include <net/if.h>
84 #include <net/if_arp.h>
85 #include <net/ethernet.h>
86 #include <net/if_dl.h>
87 #include <net/if_media.h>
88 
89 #include <net/bpf.h>
90 
91 #include <vm/vm.h>              /* for vtophys */
92 #include <vm/pmap.h>            /* for vtophys */
93 #include <machine/clock.h>      /* for DELAY */
94 #include <machine/bus_pio.h>
95 #include <machine/bus_memio.h>
96 #include <machine/bus.h>
97 #include <machine/resource.h>
98 #include <sys/bus.h>
99 #include <sys/rman.h>
100 
101 #include "../mii_layer/mii.h"
102 #include "../mii_layer/miivar.h"
103 #include "../mii_layer/brgphyreg.h"
104 
105 #include <bus/pci/pcireg.h>
106 #include <bus/pci/pcivar.h>
107 
108 #define SK_USEIOSPACE
109 
110 #include "if_skreg.h"
111 #include "xmaciireg.h"
112 
113 /* "controller miibus0" required.  See GENERIC if you get errors here. */
114 #include "miibus_if.h"
115 
116 static struct sk_type sk_devs[] = {
117 	{ SK_VENDORID, SK_DEVICEID_GE, "SysKonnect Gigabit Ethernet" },
118 	{ 0, 0, NULL }
119 };
120 
121 static int sk_probe		(device_t);
122 static int sk_attach		(device_t);
123 static int sk_detach		(device_t);
124 static int sk_detach_xmac	(device_t);
125 static int sk_probe_xmac	(device_t);
126 static int sk_attach_xmac	(device_t);
127 static void sk_tick		(void *);
128 static void sk_intr		(void *);
129 static void sk_intr_xmac	(struct sk_if_softc *);
130 static void sk_intr_bcom	(struct sk_if_softc *);
131 static void sk_rxeof		(struct sk_if_softc *);
132 static void sk_txeof		(struct sk_if_softc *);
133 static int sk_encap		(struct sk_if_softc *, struct mbuf *,
134 					u_int32_t *);
135 static void sk_start		(struct ifnet *);
136 static int sk_ioctl		(struct ifnet *, u_long, caddr_t);
137 static void sk_init		(void *);
138 static void sk_init_xmac	(struct sk_if_softc *);
139 static void sk_stop		(struct sk_if_softc *);
140 static void sk_watchdog		(struct ifnet *);
141 static void sk_shutdown		(device_t);
142 static int sk_ifmedia_upd	(struct ifnet *);
143 static void sk_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
144 static void sk_reset		(struct sk_softc *);
145 static int sk_newbuf		(struct sk_if_softc *,
146 					struct sk_chain *, struct mbuf *);
147 static int sk_alloc_jumbo_mem	(struct sk_if_softc *);
148 static void *sk_jalloc		(struct sk_if_softc *);
149 static void sk_jfree		(caddr_t, u_int);
150 static void sk_jref		(caddr_t, u_int);
151 static int sk_init_rx_ring	(struct sk_if_softc *);
152 static void sk_init_tx_ring	(struct sk_if_softc *);
153 static u_int32_t sk_win_read_4	(struct sk_softc *, int);
154 static u_int16_t sk_win_read_2	(struct sk_softc *, int);
155 static u_int8_t sk_win_read_1	(struct sk_softc *, int);
156 static void sk_win_write_4	(struct sk_softc *, int, u_int32_t);
157 static void sk_win_write_2	(struct sk_softc *, int, u_int32_t);
158 static void sk_win_write_1	(struct sk_softc *, int, u_int32_t);
159 static u_int8_t sk_vpd_readbyte	(struct sk_softc *, int);
160 static void sk_vpd_read_res	(struct sk_softc *,
161 					struct vpd_res *, int);
162 static void sk_vpd_read		(struct sk_softc *);
163 
164 static int sk_miibus_readreg	(device_t, int, int);
165 static int sk_miibus_writereg	(device_t, int, int, int);
166 static void sk_miibus_statchg	(device_t);
167 
168 static u_int32_t sk_calchash	(caddr_t);
169 static void sk_setfilt		(struct sk_if_softc *, caddr_t, int);
170 static void sk_setmulti		(struct sk_if_softc *);
171 
172 #ifdef SK_USEIOSPACE
173 #define SK_RES		SYS_RES_IOPORT
174 #define SK_RID		SK_PCI_LOIO
175 #else
176 #define SK_RES		SYS_RES_MEMORY
177 #define SK_RID		SK_PCI_LOMEM
178 #endif
179 
180 /*
181  * Note that we have newbus methods for both the GEnesis controller
182  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
183  * the miibus code is a child of the XMACs. We need to do it this way
184  * so that the miibus drivers can access the PHY registers on the
185  * right PHY. It's not quite what I had in mind, but it's the only
186  * design that achieves the desired effect.
187  */
188 static device_method_t skc_methods[] = {
189 	/* Device interface */
190 	DEVMETHOD(device_probe,		sk_probe),
191 	DEVMETHOD(device_attach,	sk_attach),
192 	DEVMETHOD(device_detach,	sk_detach),
193 	DEVMETHOD(device_shutdown,	sk_shutdown),
194 
195 	/* bus interface */
196 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
197 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
198 
199 	{ 0, 0 }
200 };
201 
202 static driver_t skc_driver = {
203 	"skc",
204 	skc_methods,
205 	sizeof(struct sk_softc)
206 };
207 
208 static devclass_t skc_devclass;
209 
210 static device_method_t sk_methods[] = {
211 	/* Device interface */
212 	DEVMETHOD(device_probe,		sk_probe_xmac),
213 	DEVMETHOD(device_attach,	sk_attach_xmac),
214 	DEVMETHOD(device_detach,	sk_detach_xmac),
215 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
216 
217 	/* bus interface */
218 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
219 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
220 
221 	/* MII interface */
222 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
223 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
224 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
225 
226 	{ 0, 0 }
227 };
228 
229 static driver_t sk_driver = {
230 	"sk",
231 	sk_methods,
232 	sizeof(struct sk_if_softc)
233 };
234 
235 static devclass_t sk_devclass;
236 
237 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
238 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
239 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
240 
241 #define SK_SETBIT(sc, reg, x)		\
242 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
243 
244 #define SK_CLRBIT(sc, reg, x)		\
245 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
246 
247 #define SK_WIN_SETBIT_4(sc, reg, x)	\
248 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
249 
250 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
251 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
252 
253 #define SK_WIN_SETBIT_2(sc, reg, x)	\
254 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
255 
256 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
257 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
258 
259 static u_int32_t sk_win_read_4(sc, reg)
260 	struct sk_softc		*sc;
261 	int			reg;
262 {
263 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
264 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
265 }
266 
267 static u_int16_t sk_win_read_2(sc, reg)
268 	struct sk_softc		*sc;
269 	int			reg;
270 {
271 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
272 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
273 }
274 
275 static u_int8_t sk_win_read_1(sc, reg)
276 	struct sk_softc		*sc;
277 	int			reg;
278 {
279 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
280 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
281 }
282 
283 static void sk_win_write_4(sc, reg, val)
284 	struct sk_softc		*sc;
285 	int			reg;
286 	u_int32_t		val;
287 {
288 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
289 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
290 	return;
291 }
292 
293 static void sk_win_write_2(sc, reg, val)
294 	struct sk_softc		*sc;
295 	int			reg;
296 	u_int32_t		val;
297 {
298 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
299 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), (u_int32_t)val);
300 	return;
301 }
302 
303 static void sk_win_write_1(sc, reg, val)
304 	struct sk_softc		*sc;
305 	int			reg;
306 	u_int32_t		val;
307 {
308 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
309 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
310 	return;
311 }
312 
313 /*
314  * The VPD EEPROM contains Vital Product Data, as suggested in
315  * the PCI 2.1 specification. The VPD data is separared into areas
316  * denoted by resource IDs. The SysKonnect VPD contains an ID string
317  * resource (the name of the adapter), a read-only area resource
318  * containing various key/data fields and a read/write area which
319  * can be used to store asset management information or log messages.
320  * We read the ID string and read-only into buffers attached to
321  * the controller softc structure for later use. At the moment,
322  * we only use the ID string during sk_attach().
323  */
324 static u_int8_t sk_vpd_readbyte(sc, addr)
325 	struct sk_softc		*sc;
326 	int			addr;
327 {
328 	int			i;
329 
330 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
331 	for (i = 0; i < SK_TIMEOUT; i++) {
332 		DELAY(1);
333 		if (sk_win_read_2(sc,
334 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
335 			break;
336 	}
337 
338 	if (i == SK_TIMEOUT)
339 		return(0);
340 
341 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
342 }
343 
344 static void sk_vpd_read_res(sc, res, addr)
345 	struct sk_softc		*sc;
346 	struct vpd_res		*res;
347 	int			addr;
348 {
349 	int			i;
350 	u_int8_t		*ptr;
351 
352 	ptr = (u_int8_t *)res;
353 	for (i = 0; i < sizeof(struct vpd_res); i++)
354 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
355 
356 	return;
357 }
358 
359 static void sk_vpd_read(sc)
360 	struct sk_softc		*sc;
361 {
362 	int			pos = 0, i;
363 	struct vpd_res		res;
364 
365 	if (sc->sk_vpd_prodname != NULL)
366 		free(sc->sk_vpd_prodname, M_DEVBUF);
367 	if (sc->sk_vpd_readonly != NULL)
368 		free(sc->sk_vpd_readonly, M_DEVBUF);
369 	sc->sk_vpd_prodname = NULL;
370 	sc->sk_vpd_readonly = NULL;
371 
372 	sk_vpd_read_res(sc, &res, pos);
373 
374 	if (res.vr_id != VPD_RES_ID) {
375 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
376 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
377 		return;
378 	}
379 
380 	pos += sizeof(res);
381 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
382 	for (i = 0; i < res.vr_len; i++)
383 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
384 	sc->sk_vpd_prodname[i] = '\0';
385 	pos += i;
386 
387 	sk_vpd_read_res(sc, &res, pos);
388 
389 	if (res.vr_id != VPD_RES_READ) {
390 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
391 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
392 		return;
393 	}
394 
395 	pos += sizeof(res);
396 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
397 	for (i = 0; i < res.vr_len + 1; i++)
398 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
399 
400 	return;
401 }
402 
403 static int sk_miibus_readreg(dev, phy, reg)
404 	device_t		dev;
405 	int			phy, reg;
406 {
407 	struct sk_if_softc	*sc_if;
408 	int			i;
409 
410 	sc_if = device_get_softc(dev);
411 
412 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
413 		return(0);
414 
415 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
416 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
417 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
418 		for (i = 0; i < SK_TIMEOUT; i++) {
419 			DELAY(1);
420 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
421 			    XM_MMUCMD_PHYDATARDY)
422 				break;
423 		}
424 
425 		if (i == SK_TIMEOUT) {
426 			printf("sk%d: phy failed to come ready\n",
427 			    sc_if->sk_unit);
428 			return(0);
429 		}
430 	}
431 	DELAY(1);
432 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
433 }
434 
435 static int sk_miibus_writereg(dev, phy, reg, val)
436 	device_t		dev;
437 	int			phy, reg, val;
438 {
439 	struct sk_if_softc	*sc_if;
440 	int			i;
441 
442 	sc_if = device_get_softc(dev);
443 
444 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
445 	for (i = 0; i < SK_TIMEOUT; i++) {
446 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
447 			break;
448 	}
449 
450 	if (i == SK_TIMEOUT) {
451 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
452 		return(ETIMEDOUT);
453 	}
454 
455 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
456 	for (i = 0; i < SK_TIMEOUT; i++) {
457 		DELAY(1);
458 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
459 			break;
460 	}
461 
462 	if (i == SK_TIMEOUT)
463 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
464 
465 	return(0);
466 }
467 
468 static void sk_miibus_statchg(dev)
469 	device_t		dev;
470 {
471 	struct sk_if_softc	*sc_if;
472 	struct mii_data		*mii;
473 
474 	sc_if = device_get_softc(dev);
475 	mii = device_get_softc(sc_if->sk_miibus);
476 
477 	/*
478 	 * If this is a GMII PHY, manually set the XMAC's
479 	 * duplex mode accordingly.
480 	 */
481 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
482 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
483 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
484 		} else {
485 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
486 		}
487 	}
488 
489 	return;
490 }
491 
492 #define SK_POLY		0xEDB88320
493 #define SK_BITS		6
494 
495 static u_int32_t sk_calchash(addr)
496 	caddr_t			addr;
497 {
498 	u_int32_t		idx, bit, data, crc;
499 
500 	/* Compute CRC for the address value. */
501 	crc = 0xFFFFFFFF; /* initial value */
502 
503 	for (idx = 0; idx < 6; idx++) {
504 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
505 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0);
506 	}
507 
508 	return (~crc & ((1 << SK_BITS) - 1));
509 }
510 
511 static void sk_setfilt(sc_if, addr, slot)
512 	struct sk_if_softc	*sc_if;
513 	caddr_t			addr;
514 	int			slot;
515 {
516 	int			base;
517 
518 	base = XM_RXFILT_ENTRY(slot);
519 
520 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
521 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
522 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
523 
524 	return;
525 }
526 
527 static void sk_setmulti(sc_if)
528 	struct sk_if_softc	*sc_if;
529 {
530 	struct ifnet		*ifp;
531 	u_int32_t		hashes[2] = { 0, 0 };
532 	int			h, i;
533 	struct ifmultiaddr	*ifma;
534 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
535 
536 	ifp = &sc_if->arpcom.ac_if;
537 
538 	/* First, zot all the existing filters. */
539 	for (i = 1; i < XM_RXFILT_MAX; i++)
540 		sk_setfilt(sc_if, (caddr_t)&dummy, i);
541 	SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
542 	SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
543 
544 	/* Now program new ones. */
545 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
546 		hashes[0] = 0xFFFFFFFF;
547 		hashes[1] = 0xFFFFFFFF;
548 	} else {
549 		i = 1;
550 		/* First find the tail of the list. */
551 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
552 					ifma = ifma->ifma_link.le_next) {
553 			if (ifma->ifma_link.le_next == NULL)
554 				break;
555 		}
556 		/* Now traverse the list backwards. */
557 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
558 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
559 			if (ifma->ifma_addr->sa_family != AF_LINK)
560 				continue;
561 			/*
562 			 * Program the first XM_RXFILT_MAX multicast groups
563 			 * into the perfect filter. For all others,
564 			 * use the hash table.
565 			 */
566 			if (i < XM_RXFILT_MAX) {
567 				sk_setfilt(sc_if,
568 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
569 				i++;
570 				continue;
571 			}
572 
573 			h = sk_calchash(
574 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
575 			if (h < 32)
576 				hashes[0] |= (1 << h);
577 			else
578 				hashes[1] |= (1 << (h - 32));
579 		}
580 	}
581 
582 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
583 	    XM_MODE_RX_USE_PERFECT);
584 	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
585 	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
586 
587 	return;
588 }
589 
590 static int sk_init_rx_ring(sc_if)
591 	struct sk_if_softc	*sc_if;
592 {
593 	struct sk_chain_data	*cd;
594 	struct sk_ring_data	*rd;
595 	int			i;
596 
597 	cd = &sc_if->sk_cdata;
598 	rd = sc_if->sk_rdata;
599 
600 	bzero((char *)rd->sk_rx_ring,
601 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
602 
603 	for (i = 0; i < SK_RX_RING_CNT; i++) {
604 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
605 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
606 			return(ENOBUFS);
607 		if (i == (SK_RX_RING_CNT - 1)) {
608 			cd->sk_rx_chain[i].sk_next =
609 			    &cd->sk_rx_chain[0];
610 			rd->sk_rx_ring[i].sk_next =
611 			    vtophys(&rd->sk_rx_ring[0]);
612 		} else {
613 			cd->sk_rx_chain[i].sk_next =
614 			    &cd->sk_rx_chain[i + 1];
615 			rd->sk_rx_ring[i].sk_next =
616 			    vtophys(&rd->sk_rx_ring[i + 1]);
617 		}
618 	}
619 
620 	sc_if->sk_cdata.sk_rx_prod = 0;
621 	sc_if->sk_cdata.sk_rx_cons = 0;
622 
623 	return(0);
624 }
625 
626 static void sk_init_tx_ring(sc_if)
627 	struct sk_if_softc	*sc_if;
628 {
629 	struct sk_chain_data	*cd;
630 	struct sk_ring_data	*rd;
631 	int			i;
632 
633 	cd = &sc_if->sk_cdata;
634 	rd = sc_if->sk_rdata;
635 
636 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
637 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
638 
639 	for (i = 0; i < SK_TX_RING_CNT; i++) {
640 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
641 		if (i == (SK_TX_RING_CNT - 1)) {
642 			cd->sk_tx_chain[i].sk_next =
643 			    &cd->sk_tx_chain[0];
644 			rd->sk_tx_ring[i].sk_next =
645 			    vtophys(&rd->sk_tx_ring[0]);
646 		} else {
647 			cd->sk_tx_chain[i].sk_next =
648 			    &cd->sk_tx_chain[i + 1];
649 			rd->sk_tx_ring[i].sk_next =
650 			    vtophys(&rd->sk_tx_ring[i + 1]);
651 		}
652 	}
653 
654 	sc_if->sk_cdata.sk_tx_prod = 0;
655 	sc_if->sk_cdata.sk_tx_cons = 0;
656 	sc_if->sk_cdata.sk_tx_cnt = 0;
657 
658 	return;
659 }
660 
661 static int sk_newbuf(sc_if, c, m)
662 	struct sk_if_softc	*sc_if;
663 	struct sk_chain		*c;
664 	struct mbuf		*m;
665 {
666 	struct mbuf		*m_new = NULL;
667 	struct sk_rx_desc	*r;
668 
669 	if (m == NULL) {
670 		caddr_t			*buf = NULL;
671 
672 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
673 		if (m_new == NULL)
674 			return(ENOBUFS);
675 
676 		/* Allocate the jumbo buffer */
677 		buf = sk_jalloc(sc_if);
678 		if (buf == NULL) {
679 			m_freem(m_new);
680 #ifdef SK_VERBOSE
681 			printf("sk%d: jumbo allocation failed "
682 			    "-- packet dropped!\n", sc_if->sk_unit);
683 #endif
684 			return(ENOBUFS);
685 		}
686 
687 		/* Attach the buffer to the mbuf */
688 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
689 		m_new->m_flags |= M_EXT;
690 		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
691 		    m_new->m_len = SK_MCLBYTES;
692 		m_new->m_ext.ext_free = sk_jfree;
693 		m_new->m_ext.ext_ref = sk_jref;
694 	} else {
695 		/*
696 	 	 * We're re-using a previously allocated mbuf;
697 		 * be sure to re-init pointers and lengths to
698 		 * default values.
699 		 */
700 		m_new = m;
701 		m_new->m_len = m_new->m_pkthdr.len = SK_MCLBYTES;
702 		m_new->m_data = m_new->m_ext.ext_buf;
703 	}
704 
705 	/*
706 	 * Adjust alignment so packet payload begins on a
707 	 * longword boundary. Mandatory for Alpha, useful on
708 	 * x86 too.
709 	 */
710 	m_adj(m_new, ETHER_ALIGN);
711 
712 	r = c->sk_desc;
713 	c->sk_mbuf = m_new;
714 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
715 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
716 
717 	return(0);
718 }
719 
720 /*
721  * Allocate jumbo buffer storage. The SysKonnect adapters support
722  * "jumbograms" (9K frames), although SysKonnect doesn't currently
723  * use them in their drivers. In order for us to use them, we need
724  * large 9K receive buffers, however standard mbuf clusters are only
725  * 2048 bytes in size. Consequently, we need to allocate and manage
726  * our own jumbo buffer pool. Fortunately, this does not require an
727  * excessive amount of additional code.
728  */
729 static int sk_alloc_jumbo_mem(sc_if)
730 	struct sk_if_softc	*sc_if;
731 {
732 	caddr_t			ptr;
733 	int		i;
734 	struct sk_jpool_entry   *entry;
735 
736 	/* Grab a big chunk o' storage. */
737 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
738 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
739 
740 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
741 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
742 		return(ENOBUFS);
743 	}
744 
745 	SLIST_INIT(&sc_if->sk_jfree_listhead);
746 	SLIST_INIT(&sc_if->sk_jinuse_listhead);
747 
748 	/*
749 	 * Now divide it up into 9K pieces and save the addresses
750 	 * in an array. Note that we play an evil trick here by using
751 	 * the first few bytes in the buffer to hold the the address
752 	 * of the softc structure for this interface. This is because
753 	 * sk_jfree() needs it, but it is called by the mbuf management
754 	 * code which will not pass it to us explicitly.
755 	 */
756 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
757 	for (i = 0; i < SK_JSLOTS; i++) {
758 		u_int64_t		**aptr;
759 		aptr = (u_int64_t **)ptr;
760 		aptr[0] = (u_int64_t *)sc_if;
761 		ptr += sizeof(u_int64_t);
762 		sc_if->sk_cdata.sk_jslots[i].sk_buf = ptr;
763 		sc_if->sk_cdata.sk_jslots[i].sk_inuse = 0;
764 		ptr += SK_MCLBYTES;
765 		entry = malloc(sizeof(struct sk_jpool_entry),
766 		    M_DEVBUF, M_NOWAIT);
767 		if (entry == NULL) {
768 			free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
769 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
770 			printf("sk%d: no memory for jumbo "
771 			    "buffer queue!\n", sc_if->sk_unit);
772 			return(ENOBUFS);
773 		}
774 		entry->slot = i;
775 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
776 		    entry, jpool_entries);
777 	}
778 
779 	return(0);
780 }
781 
782 /*
783  * Allocate a jumbo buffer.
784  */
785 static void *sk_jalloc(sc_if)
786 	struct sk_if_softc	*sc_if;
787 {
788 	struct sk_jpool_entry   *entry;
789 
790 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
791 
792 	if (entry == NULL) {
793 #ifdef SK_VERBOSE
794 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
795 #endif
796 		return(NULL);
797 	}
798 
799 	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
800 	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
801 	sc_if->sk_cdata.sk_jslots[entry->slot].sk_inuse = 1;
802 	return(sc_if->sk_cdata.sk_jslots[entry->slot].sk_buf);
803 }
804 
805 /*
806  * Adjust usage count on a jumbo buffer. In general this doesn't
807  * get used much because our jumbo buffers don't get passed around
808  * a lot, but it's implemented for correctness.
809  */
810 static void sk_jref(buf, size)
811 	caddr_t			buf;
812 	u_int			size;
813 {
814 	struct sk_if_softc	*sc_if;
815 	u_int64_t		**aptr;
816 	int		i;
817 
818 	/* Extract the softc struct pointer. */
819 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
820 	sc_if = (struct sk_if_softc *)(aptr[0]);
821 
822 	if (sc_if == NULL)
823 		panic("sk_jref: can't find softc pointer!");
824 
825 	if (size != SK_MCLBYTES)
826 		panic("sk_jref: adjusting refcount of buf of wrong size!");
827 
828 	/* calculate the slot this buffer belongs to */
829 
830 	i = ((vm_offset_t)aptr
831 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
832 
833 	if ((i < 0) || (i >= SK_JSLOTS))
834 		panic("sk_jref: asked to reference buffer "
835 		    "that we don't manage!");
836 	else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
837 		panic("sk_jref: buffer already free!");
838 	else
839 		sc_if->sk_cdata.sk_jslots[i].sk_inuse++;
840 
841 	return;
842 }
843 
844 /*
845  * Release a jumbo buffer.
846  */
847 static void sk_jfree(buf, size)
848 	caddr_t			buf;
849 	u_int			size;
850 {
851 	struct sk_if_softc	*sc_if;
852 	u_int64_t		**aptr;
853 	int		        i;
854 	struct sk_jpool_entry   *entry;
855 
856 	/* Extract the softc struct pointer. */
857 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
858 	sc_if = (struct sk_if_softc *)(aptr[0]);
859 
860 	if (sc_if == NULL)
861 		panic("sk_jfree: can't find softc pointer!");
862 
863 	if (size != SK_MCLBYTES)
864 		panic("sk_jfree: freeing buffer of wrong size!");
865 
866 	/* calculate the slot this buffer belongs to */
867 
868 	i = ((vm_offset_t)aptr
869 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
870 
871 	if ((i < 0) || (i >= SK_JSLOTS))
872 		panic("sk_jfree: asked to free buffer that we don't manage!");
873 	else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
874 		panic("sk_jfree: buffer already free!");
875 	else {
876 		sc_if->sk_cdata.sk_jslots[i].sk_inuse--;
877 		if(sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0) {
878 			entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
879 			if (entry == NULL)
880 				panic("sk_jfree: buffer not in use!");
881 			entry->slot = i;
882 			SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead,
883 					  jpool_entries);
884 			SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
885 					  entry, jpool_entries);
886 		}
887 	}
888 
889 	return;
890 }
891 
892 /*
893  * Set media options.
894  */
895 static int sk_ifmedia_upd(ifp)
896 	struct ifnet		*ifp;
897 {
898 	struct sk_if_softc	*sc_if;
899 	struct mii_data		*mii;
900 
901 	sc_if = ifp->if_softc;
902 	mii = device_get_softc(sc_if->sk_miibus);
903 	sk_init(sc_if);
904 	mii_mediachg(mii);
905 
906 	return(0);
907 }
908 
909 /*
910  * Report current media status.
911  */
912 static void sk_ifmedia_sts(ifp, ifmr)
913 	struct ifnet		*ifp;
914 	struct ifmediareq	*ifmr;
915 {
916 	struct sk_if_softc	*sc_if;
917 	struct mii_data		*mii;
918 
919 	sc_if = ifp->if_softc;
920 	mii = device_get_softc(sc_if->sk_miibus);
921 
922 	mii_pollstat(mii);
923 	ifmr->ifm_active = mii->mii_media_active;
924 	ifmr->ifm_status = mii->mii_media_status;
925 
926 	return;
927 }
928 
929 static int sk_ioctl(ifp, command, data)
930 	struct ifnet		*ifp;
931 	u_long			command;
932 	caddr_t			data;
933 {
934 	struct sk_if_softc	*sc_if = ifp->if_softc;
935 	struct ifreq		*ifr = (struct ifreq *) data;
936 	int			s, error = 0;
937 	struct mii_data		*mii;
938 
939 	s = splimp();
940 
941 	switch(command) {
942 	case SIOCSIFADDR:
943 	case SIOCGIFADDR:
944 		error = ether_ioctl(ifp, command, data);
945 		break;
946 	case SIOCSIFMTU:
947 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
948 			error = EINVAL;
949 		else {
950 			ifp->if_mtu = ifr->ifr_mtu;
951 			sk_init(sc_if);
952 		}
953 		break;
954 	case SIOCSIFFLAGS:
955 		if (ifp->if_flags & IFF_UP) {
956 			if (ifp->if_flags & IFF_RUNNING &&
957 			    ifp->if_flags & IFF_PROMISC &&
958 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
959 				SK_XM_SETBIT_4(sc_if, XM_MODE,
960 				    XM_MODE_RX_PROMISC);
961 				sk_setmulti(sc_if);
962 			} else if (ifp->if_flags & IFF_RUNNING &&
963 			    !(ifp->if_flags & IFF_PROMISC) &&
964 			    sc_if->sk_if_flags & IFF_PROMISC) {
965 				SK_XM_CLRBIT_4(sc_if, XM_MODE,
966 				    XM_MODE_RX_PROMISC);
967 				sk_setmulti(sc_if);
968 			} else
969 				sk_init(sc_if);
970 		} else {
971 			if (ifp->if_flags & IFF_RUNNING)
972 				sk_stop(sc_if);
973 		}
974 		sc_if->sk_if_flags = ifp->if_flags;
975 		error = 0;
976 		break;
977 	case SIOCADDMULTI:
978 	case SIOCDELMULTI:
979 		sk_setmulti(sc_if);
980 		error = 0;
981 		break;
982 	case SIOCGIFMEDIA:
983 	case SIOCSIFMEDIA:
984 		mii = device_get_softc(sc_if->sk_miibus);
985 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
986 		break;
987 	default:
988 		error = EINVAL;
989 		break;
990 	}
991 
992 	(void)splx(s);
993 
994 	return(error);
995 }
996 
997 /*
998  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
999  * IDs against our list and return a device name if we find a match.
1000  */
1001 static int sk_probe(dev)
1002 	device_t		dev;
1003 {
1004 	struct sk_type		*t;
1005 
1006 	t = sk_devs;
1007 
1008 	while(t->sk_name != NULL) {
1009 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1010 		    (pci_get_device(dev) == t->sk_did)) {
1011 			device_set_desc(dev, t->sk_name);
1012 			return(0);
1013 		}
1014 		t++;
1015 	}
1016 
1017 	return(ENXIO);
1018 }
1019 
1020 /*
1021  * Force the GEnesis into reset, then bring it out of reset.
1022  */
1023 static void sk_reset(sc)
1024 	struct sk_softc		*sc;
1025 {
1026 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_RESET);
1027 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_RESET);
1028 	DELAY(1000);
1029 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_UNRESET);
1030 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1031 
1032 	/* Configure packet arbiter */
1033 	sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1034 	sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1035 	sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1036 	sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1037 	sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1038 
1039 	/* Enable RAM interface */
1040 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1041 
1042 	/*
1043          * Configure interrupt moderation. The moderation timer
1044 	 * defers interrupts specified in the interrupt moderation
1045 	 * timer mask based on the timeout specified in the interrupt
1046 	 * moderation timer init register. Each bit in the timer
1047 	 * register represents 18.825ns, so to specify a timeout in
1048 	 * microseconds, we have to multiply by 54.
1049 	 */
1050         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1051         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1052 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1053         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1054 
1055 	return;
1056 }
1057 
1058 static int sk_probe_xmac(dev)
1059 	device_t		dev;
1060 {
1061 	/*
1062 	 * Not much to do here. We always know there will be
1063 	 * at least one XMAC present, and if there are two,
1064 	 * sk_attach() will create a second device instance
1065 	 * for us.
1066 	 */
1067 	device_set_desc(dev, "XaQti Corp. XMAC II");
1068 
1069 	return(0);
1070 }
1071 
1072 /*
1073  * Each XMAC chip is attached as a separate logical IP interface.
1074  * Single port cards will have only one logical interface of course.
1075  */
1076 static int sk_attach_xmac(dev)
1077 	device_t		dev;
1078 {
1079 	struct sk_softc		*sc;
1080 	struct sk_if_softc	*sc_if;
1081 	struct ifnet		*ifp;
1082 	int			i, port;
1083 
1084 	if (dev == NULL)
1085 		return(EINVAL);
1086 
1087 	sc_if = device_get_softc(dev);
1088 	sc = device_get_softc(device_get_parent(dev));
1089 	port = *(int *)device_get_ivars(dev);
1090 	free(device_get_ivars(dev), M_DEVBUF);
1091 	device_set_ivars(dev, NULL);
1092 	sc_if->sk_dev = dev;
1093 
1094 	bzero((char *)sc_if, sizeof(struct sk_if_softc));
1095 
1096 	sc_if->sk_dev = dev;
1097 	sc_if->sk_unit = device_get_unit(dev);
1098 	sc_if->sk_port = port;
1099 	sc_if->sk_softc = sc;
1100 	sc->sk_if[port] = sc_if;
1101 	if (port == SK_PORT_A)
1102 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1103 	if (port == SK_PORT_B)
1104 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1105 
1106 	/*
1107 	 * Get station address for this interface. Note that
1108 	 * dual port cards actually come with three station
1109 	 * addresses: one for each port, plus an extra. The
1110 	 * extra one is used by the SysKonnect driver software
1111 	 * as a 'virtual' station address for when both ports
1112 	 * are operating in failover mode. Currently we don't
1113 	 * use this extra address.
1114 	 */
1115 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1116 		sc_if->arpcom.ac_enaddr[i] =
1117 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1118 
1119 	printf("sk%d: Ethernet address: %6D\n",
1120 	    sc_if->sk_unit, sc_if->arpcom.ac_enaddr, ":");
1121 
1122 	/*
1123 	 * Set up RAM buffer addresses. The NIC will have a certain
1124 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1125 	 * need to divide this up a) between the transmitter and
1126  	 * receiver and b) between the two XMACs, if this is a
1127 	 * dual port NIC. Our algotithm is to divide up the memory
1128 	 * evenly so that everyone gets a fair share.
1129 	 */
1130 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1131 		u_int32_t		chunk, val;
1132 
1133 		chunk = sc->sk_ramsize / 2;
1134 		val = sc->sk_rboff / sizeof(u_int64_t);
1135 		sc_if->sk_rx_ramstart = val;
1136 		val += (chunk / sizeof(u_int64_t));
1137 		sc_if->sk_rx_ramend = val - 1;
1138 		sc_if->sk_tx_ramstart = val;
1139 		val += (chunk / sizeof(u_int64_t));
1140 		sc_if->sk_tx_ramend = val - 1;
1141 	} else {
1142 		u_int32_t		chunk, val;
1143 
1144 		chunk = sc->sk_ramsize / 4;
1145 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1146 		    sizeof(u_int64_t);
1147 		sc_if->sk_rx_ramstart = val;
1148 		val += (chunk / sizeof(u_int64_t));
1149 		sc_if->sk_rx_ramend = val - 1;
1150 		sc_if->sk_tx_ramstart = val;
1151 		val += (chunk / sizeof(u_int64_t));
1152 		sc_if->sk_tx_ramend = val - 1;
1153 	}
1154 
1155 	/* Read and save PHY type and set PHY address */
1156 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1157 	switch(sc_if->sk_phytype) {
1158 	case SK_PHYTYPE_XMAC:
1159 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1160 		break;
1161 	case SK_PHYTYPE_BCOM:
1162 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1163 		break;
1164 	default:
1165 		printf("skc%d: unsupported PHY type: %d\n",
1166 		    sc->sk_unit, sc_if->sk_phytype);
1167 		return(ENODEV);
1168 	}
1169 
1170 	/* Allocate the descriptor queues. */
1171 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1172 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1173 
1174 	if (sc_if->sk_rdata == NULL) {
1175 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1176 		sc->sk_if[port] = NULL;
1177 		return(ENOMEM);
1178 	}
1179 
1180 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1181 
1182 	/* Try to allocate memory for jumbo buffers. */
1183 	if (sk_alloc_jumbo_mem(sc_if)) {
1184 		printf("sk%d: jumbo buffer allocation failed\n",
1185 		    sc_if->sk_unit);
1186 		contigfree(sc_if->sk_rdata,
1187 		    sizeof(struct sk_ring_data), M_DEVBUF);
1188 		sc->sk_if[port] = NULL;
1189 		return(ENOMEM);
1190 	}
1191 
1192 	ifp = &sc_if->arpcom.ac_if;
1193 	ifp->if_softc = sc_if;
1194 	ifp->if_unit = sc_if->sk_unit;
1195 	ifp->if_name = "sk";
1196 	ifp->if_mtu = ETHERMTU;
1197 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1198 	ifp->if_ioctl = sk_ioctl;
1199 	ifp->if_output = ether_output;
1200 	ifp->if_start = sk_start;
1201 	ifp->if_watchdog = sk_watchdog;
1202 	ifp->if_init = sk_init;
1203 	ifp->if_baudrate = 1000000000;
1204 	ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
1205 
1206 	/*
1207 	 * Do miibus setup.
1208 	 */
1209 	sk_init_xmac(sc_if);
1210 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1211 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1212 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1213 		contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM,
1214 		    M_DEVBUF);
1215 		contigfree(sc_if->sk_rdata,
1216 		    sizeof(struct sk_ring_data), M_DEVBUF);
1217 		return(ENXIO);
1218 	}
1219 
1220 	/*
1221 	 * Call MI attach routine.
1222 	 */
1223 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1224 	callout_handle_init(&sc_if->sk_tick_ch);
1225 
1226 	return(0);
1227 }
1228 
1229 /*
1230  * Attach the interface. Allocate softc structures, do ifmedia
1231  * setup and ethernet/BPF attach.
1232  */
1233 static int sk_attach(dev)
1234 	device_t		dev;
1235 {
1236 	int			s;
1237 	u_int32_t		command;
1238 	struct sk_softc		*sc;
1239 	int			unit, error = 0, rid, *port;
1240 
1241 	s = splimp();
1242 
1243 	sc = device_get_softc(dev);
1244 	unit = device_get_unit(dev);
1245 	bzero(sc, sizeof(struct sk_softc));
1246 
1247 	/*
1248 	 * Handle power management nonsense.
1249 	 */
1250 	command = pci_read_config(dev, SK_PCI_CAPID, 4) & 0x000000FF;
1251 	if (command == 0x01) {
1252 
1253 		command = pci_read_config(dev, SK_PCI_PWRMGMTCTRL, 4);
1254 		if (command & SK_PSTATE_MASK) {
1255 			u_int32_t		iobase, membase, irq;
1256 
1257 			/* Save important PCI config data. */
1258 			iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1259 			membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1260 			irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1261 
1262 			/* Reset the power state. */
1263 			printf("skc%d: chip is in D%d power mode "
1264 			"-- setting to D0\n", unit, command & SK_PSTATE_MASK);
1265 			command &= 0xFFFFFFFC;
1266 			pci_write_config(dev, SK_PCI_PWRMGMTCTRL, command, 4);
1267 
1268 			/* Restore PCI config data. */
1269 			pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1270 			pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1271 			pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1272 		}
1273 	}
1274 
1275 	/*
1276 	 * Map control/status registers.
1277 	 */
1278 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1279 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1280 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1281 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1282 
1283 #ifdef SK_USEIOSPACE
1284 	if (!(command & PCIM_CMD_PORTEN)) {
1285 		printf("skc%d: failed to enable I/O ports!\n", unit);
1286 		error = ENXIO;
1287 		goto fail;
1288 	}
1289 #else
1290 	if (!(command & PCIM_CMD_MEMEN)) {
1291 		printf("skc%d: failed to enable memory mapping!\n", unit);
1292 		error = ENXIO;
1293 		goto fail;
1294 	}
1295 #endif
1296 
1297 	rid = SK_RID;
1298 	sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid,
1299 	    0, ~0, 1, RF_ACTIVE);
1300 
1301 	if (sc->sk_res == NULL) {
1302 		printf("sk%d: couldn't map ports/memory\n", unit);
1303 		error = ENXIO;
1304 		goto fail;
1305 	}
1306 
1307 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1308 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1309 
1310 	/* Allocate interrupt */
1311 	rid = 0;
1312 	sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1313 	    RF_SHAREABLE | RF_ACTIVE);
1314 
1315 	if (sc->sk_irq == NULL) {
1316 		printf("skc%d: couldn't map interrupt\n", unit);
1317 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1318 		error = ENXIO;
1319 		goto fail;
1320 	}
1321 
1322 	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
1323 	    sk_intr, sc, &sc->sk_intrhand);
1324 
1325 	if (error) {
1326 		printf("skc%d: couldn't set up irq\n", unit);
1327 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1328 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1329 		goto fail;
1330 	}
1331 
1332 	/* Reset the adapter. */
1333 	sk_reset(sc);
1334 
1335 	sc->sk_unit = unit;
1336 
1337 	/* Read and save vital product data from EEPROM. */
1338 	sk_vpd_read(sc);
1339 
1340 	/* Read and save RAM size and RAMbuffer offset */
1341 	switch(sk_win_read_1(sc, SK_EPROM0)) {
1342 	case SK_RAMSIZE_512K_64:
1343 		sc->sk_ramsize = 0x80000;
1344 		sc->sk_rboff = SK_RBOFF_0;
1345 		break;
1346 	case SK_RAMSIZE_1024K_64:
1347 		sc->sk_ramsize = 0x100000;
1348 		sc->sk_rboff = SK_RBOFF_80000;
1349 		break;
1350 	case SK_RAMSIZE_1024K_128:
1351 		sc->sk_ramsize = 0x100000;
1352 		sc->sk_rboff = SK_RBOFF_0;
1353 		break;
1354 	case SK_RAMSIZE_2048K_128:
1355 		sc->sk_ramsize = 0x200000;
1356 		sc->sk_rboff = SK_RBOFF_0;
1357 		break;
1358 	default:
1359 		printf("skc%d: unknown ram size: %d\n",
1360 		    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1361 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1362 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1363 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1364 		error = ENXIO;
1365 		goto fail;
1366 		break;
1367 	}
1368 
1369 	/* Read and save physical media type */
1370 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1371 	case SK_PMD_1000BASESX:
1372 		sc->sk_pmd = IFM_1000_SX;
1373 		break;
1374 	case SK_PMD_1000BASELX:
1375 		sc->sk_pmd = IFM_1000_LX;
1376 		break;
1377 	case SK_PMD_1000BASECX:
1378 		sc->sk_pmd = IFM_1000_CX;
1379 		break;
1380 	case SK_PMD_1000BASETX:
1381 		sc->sk_pmd = IFM_1000_TX;
1382 		break;
1383 	default:
1384 		printf("skc%d: unknown media type: 0x%x\n",
1385 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1386 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1387 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1388 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1389 		error = ENXIO;
1390 		goto fail;
1391 	}
1392 
1393 	/* Announce the product name. */
1394 	printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1395 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1396 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1397 	*port = SK_PORT_A;
1398 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1399 
1400 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1401 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1402 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1403 		*port = SK_PORT_B;
1404 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1405 	}
1406 
1407 	/* Turn on the 'driver is loaded' LED. */
1408 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1409 
1410 	bus_generic_attach(dev);
1411 
1412 fail:
1413 	splx(s);
1414 	return(error);
1415 }
1416 
1417 static int sk_detach_xmac(dev)
1418 	device_t		dev;
1419 {
1420 	struct sk_softc		*sc;
1421 	struct sk_if_softc	*sc_if;
1422 	struct ifnet		*ifp;
1423 	int			s;
1424 
1425 	s = splimp();
1426 
1427 	sc = device_get_softc(device_get_parent(dev));
1428 	sc_if = device_get_softc(dev);
1429 	ifp = &sc_if->arpcom.ac_if;
1430 	sk_stop(sc_if);
1431 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1432 	bus_generic_detach(dev);
1433 	if (sc_if->sk_miibus != NULL)
1434 		device_delete_child(dev, sc_if->sk_miibus);
1435 	contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1436 	contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), M_DEVBUF);
1437 
1438 	return(0);
1439 }
1440 
1441 static int sk_detach(dev)
1442 	device_t		dev;
1443 {
1444 	struct sk_softc		*sc;
1445 	int			s;
1446 
1447 	s = splimp();
1448 
1449 	sc = device_get_softc(dev);
1450 
1451 	bus_generic_detach(dev);
1452 	if (sc->sk_devs[SK_PORT_A] != NULL)
1453 		device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1454 	if (sc->sk_devs[SK_PORT_B] != NULL)
1455 		device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1456 
1457 	bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1458 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1459 	bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1460 
1461 	splx(s);
1462 
1463 	return(0);
1464 }
1465 
1466 static int sk_encap(sc_if, m_head, txidx)
1467         struct sk_if_softc	*sc_if;
1468         struct mbuf		*m_head;
1469         u_int32_t		*txidx;
1470 {
1471 	struct sk_tx_desc	*f = NULL;
1472 	struct mbuf		*m;
1473 	u_int32_t		frag, cur, cnt = 0;
1474 
1475 	m = m_head;
1476 	cur = frag = *txidx;
1477 
1478 	/*
1479 	 * Start packing the mbufs in this chain into
1480 	 * the fragment pointers. Stop when we run out
1481 	 * of fragments or hit the end of the mbuf chain.
1482 	 */
1483 	for (m = m_head; m != NULL; m = m->m_next) {
1484 		if (m->m_len != 0) {
1485 			if ((SK_TX_RING_CNT -
1486 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1487 				return(ENOBUFS);
1488 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1489 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1490 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1491 			if (cnt == 0)
1492 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1493 			else
1494 				f->sk_ctl |= SK_TXCTL_OWN;
1495 			cur = frag;
1496 			SK_INC(frag, SK_TX_RING_CNT);
1497 			cnt++;
1498 		}
1499 	}
1500 
1501 	if (m != NULL)
1502 		return(ENOBUFS);
1503 
1504 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1505 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1506 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1507 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1508 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1509 
1510 	*txidx = frag;
1511 
1512 	return(0);
1513 }
1514 
1515 static void sk_start(ifp)
1516 	struct ifnet		*ifp;
1517 {
1518         struct sk_softc		*sc;
1519         struct sk_if_softc	*sc_if;
1520         struct mbuf		*m_head = NULL;
1521         u_int32_t		idx;
1522 
1523 	sc_if = ifp->if_softc;
1524 	sc = sc_if->sk_softc;
1525 
1526 	idx = sc_if->sk_cdata.sk_tx_prod;
1527 
1528 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1529 		IF_DEQUEUE(&ifp->if_snd, m_head);
1530 		if (m_head == NULL)
1531 			break;
1532 
1533 		/*
1534 		 * Pack the data into the transmit ring. If we
1535 		 * don't have room, set the OACTIVE flag and wait
1536 		 * for the NIC to drain the ring.
1537 		 */
1538 		if (sk_encap(sc_if, m_head, &idx)) {
1539 			IF_PREPEND(&ifp->if_snd, m_head);
1540 			ifp->if_flags |= IFF_OACTIVE;
1541 			break;
1542 		}
1543 
1544 		/*
1545 		 * If there's a BPF listener, bounce a copy of this frame
1546 		 * to him.
1547 		 */
1548 		if (ifp->if_bpf)
1549 			bpf_mtap(ifp, m_head);
1550 	}
1551 
1552 	/* Transmit */
1553 	sc_if->sk_cdata.sk_tx_prod = idx;
1554 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1555 
1556 	/* Set a timeout in case the chip goes out to lunch. */
1557 	ifp->if_timer = 5;
1558 
1559 	return;
1560 }
1561 
1562 
1563 static void sk_watchdog(ifp)
1564 	struct ifnet		*ifp;
1565 {
1566 	struct sk_if_softc	*sc_if;
1567 
1568 	sc_if = ifp->if_softc;
1569 
1570 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1571 	sk_init(sc_if);
1572 
1573 	return;
1574 }
1575 
1576 static void sk_shutdown(dev)
1577 	device_t		dev;
1578 {
1579 	struct sk_softc		*sc;
1580 
1581 	sc = device_get_softc(dev);
1582 
1583 	/* Turn off the 'driver is loaded' LED. */
1584 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1585 
1586 	/*
1587 	 * Reset the GEnesis controller. Doing this should also
1588 	 * assert the resets on the attached XMAC(s).
1589 	 */
1590 	sk_reset(sc);
1591 
1592 	return;
1593 }
1594 
1595 static void sk_rxeof(sc_if)
1596 	struct sk_if_softc	*sc_if;
1597 {
1598 	struct ether_header	*eh;
1599 	struct mbuf		*m;
1600 	struct ifnet		*ifp;
1601 	struct sk_chain		*cur_rx;
1602 	int			total_len = 0;
1603 	int			i;
1604 	u_int32_t		rxstat;
1605 
1606 	ifp = &sc_if->arpcom.ac_if;
1607 	i = sc_if->sk_cdata.sk_rx_prod;
1608 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1609 
1610 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1611 
1612 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1613 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1614 		m = cur_rx->sk_mbuf;
1615 		cur_rx->sk_mbuf = NULL;
1616 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1617 		SK_INC(i, SK_RX_RING_CNT);
1618 
1619 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1620 			ifp->if_ierrors++;
1621 			sk_newbuf(sc_if, cur_rx, m);
1622 			continue;
1623 		}
1624 
1625 		/*
1626 		 * Try to allocate a new jumbo buffer. If that
1627 		 * fails, copy the packet to mbufs and put the
1628 		 * jumbo buffer back in the ring so it can be
1629 		 * re-used. If allocating mbufs fails, then we
1630 		 * have to drop the packet.
1631 		 */
1632 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1633 			struct mbuf		*m0;
1634 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1635 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1636 			sk_newbuf(sc_if, cur_rx, m);
1637 			if (m0 == NULL) {
1638 				printf("sk%d: no receive buffers "
1639 				    "available -- packet dropped!\n",
1640 				    sc_if->sk_unit);
1641 				ifp->if_ierrors++;
1642 				continue;
1643 			}
1644 			m_adj(m0, ETHER_ALIGN);
1645 			m = m0;
1646 		} else {
1647 			m->m_pkthdr.rcvif = ifp;
1648 			m->m_pkthdr.len = m->m_len = total_len;
1649 		}
1650 
1651 		ifp->if_ipackets++;
1652 		eh = mtod(m, struct ether_header *);
1653 
1654 		/* Remove header from mbuf and pass it on. */
1655 		m_adj(m, sizeof(struct ether_header));
1656 		ether_input(ifp, eh, m);
1657 	}
1658 
1659 	sc_if->sk_cdata.sk_rx_prod = i;
1660 
1661 	return;
1662 }
1663 
1664 static void sk_txeof(sc_if)
1665 	struct sk_if_softc	*sc_if;
1666 {
1667 	struct sk_tx_desc	*cur_tx = NULL;
1668 	struct ifnet		*ifp;
1669 	u_int32_t		idx;
1670 
1671 	ifp = &sc_if->arpcom.ac_if;
1672 
1673 	/*
1674 	 * Go through our tx ring and free mbufs for those
1675 	 * frames that have been sent.
1676 	 */
1677 	idx = sc_if->sk_cdata.sk_tx_cons;
1678 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1679 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1680 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1681 			break;
1682 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1683 			ifp->if_opackets++;
1684 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1685 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1686 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1687 		}
1688 		sc_if->sk_cdata.sk_tx_cnt--;
1689 		SK_INC(idx, SK_TX_RING_CNT);
1690 		ifp->if_timer = 0;
1691 	}
1692 
1693 	sc_if->sk_cdata.sk_tx_cons = idx;
1694 
1695 	if (cur_tx != NULL)
1696 		ifp->if_flags &= ~IFF_OACTIVE;
1697 
1698 	return;
1699 }
1700 
1701 static void sk_tick(xsc_if)
1702 	void			*xsc_if;
1703 {
1704 	struct sk_if_softc	*sc_if;
1705 	struct mii_data		*mii;
1706 	struct ifnet		*ifp;
1707 	int			i;
1708 
1709 	sc_if = xsc_if;
1710 	ifp = &sc_if->arpcom.ac_if;
1711 	mii = device_get_softc(sc_if->sk_miibus);
1712 
1713 	if (!(ifp->if_flags & IFF_UP))
1714 		return;
1715 
1716 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1717 		sk_intr_bcom(sc_if);
1718 		return;
1719 	}
1720 
1721 	/*
1722 	 * According to SysKonnect, the correct way to verify that
1723 	 * the link has come back up is to poll bit 0 of the GPIO
1724 	 * register three times. This pin has the signal from the
1725 	 * link_sync pin connected to it; if we read the same link
1726 	 * state 3 times in a row, we know the link is up.
1727 	 */
1728 	for (i = 0; i < 3; i++) {
1729 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1730 			break;
1731 	}
1732 
1733 	if (i != 3) {
1734 		sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1735 		return;
1736 	}
1737 
1738 	/* Turn the GP0 interrupt back on. */
1739 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1740 	SK_XM_READ_2(sc_if, XM_ISR);
1741 	mii_tick(mii);
1742 	mii_pollstat(mii);
1743 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
1744 
1745 	return;
1746 }
1747 
1748 static void sk_intr_bcom(sc_if)
1749 	struct sk_if_softc	*sc_if;
1750 {
1751 	struct sk_softc		*sc;
1752 	struct mii_data		*mii;
1753 	struct ifnet		*ifp;
1754 	int			status;
1755 
1756 	sc = sc_if->sk_softc;
1757 	mii = device_get_softc(sc_if->sk_miibus);
1758 	ifp = &sc_if->arpcom.ac_if;
1759 
1760 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1761 
1762 	/*
1763 	 * Read the PHY interrupt register to make sure
1764 	 * we clear any pending interrupts.
1765 	 */
1766 	status = sk_miibus_readreg(sc_if->sk_dev,
1767 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1768 
1769 	if (!(ifp->if_flags & IFF_RUNNING)) {
1770 		sk_init_xmac(sc_if);
1771 		return;
1772 	}
1773 
1774 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1775 		int			lstat;
1776 		lstat = sk_miibus_readreg(sc_if->sk_dev,
1777 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
1778 
1779 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1780 			mii_mediachg(mii);
1781 			/* Turn off the link LED. */
1782 			SK_IF_WRITE_1(sc_if, 0,
1783 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
1784 			sc_if->sk_link = 0;
1785 		} else if (status & BRGPHY_ISR_LNK_CHG) {
1786 			sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
1787 	    		    BRGPHY_MII_IMR, 0xFF00);
1788 			mii_tick(mii);
1789 			sc_if->sk_link = 1;
1790 			/* Turn on the link LED. */
1791 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1792 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1793 			    SK_LINKLED_BLINK_OFF);
1794 			mii_pollstat(mii);
1795 		} else {
1796 			mii_tick(mii);
1797 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1798 		}
1799 	}
1800 
1801 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1802 
1803 	return;
1804 }
1805 
1806 static void sk_intr_xmac(sc_if)
1807 	struct sk_if_softc	*sc_if;
1808 {
1809 	struct sk_softc		*sc;
1810 	u_int16_t		status;
1811 	struct mii_data		*mii;
1812 
1813 	sc = sc_if->sk_softc;
1814 	mii = device_get_softc(sc_if->sk_miibus);
1815 	status = SK_XM_READ_2(sc_if, XM_ISR);
1816 
1817 	/*
1818 	 * Link has gone down. Start MII tick timeout to
1819 	 * watch for link resync.
1820 	 */
1821 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
1822 		if (status & XM_ISR_GP0_SET) {
1823 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1824 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1825 		}
1826 
1827 		if (status & XM_ISR_AUTONEG_DONE) {
1828 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1829 		}
1830 	}
1831 
1832 	if (status & XM_IMR_TX_UNDERRUN)
1833 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1834 
1835 	if (status & XM_IMR_RX_OVERRUN)
1836 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1837 
1838 	status = SK_XM_READ_2(sc_if, XM_ISR);
1839 
1840 	return;
1841 }
1842 
1843 static void sk_intr(xsc)
1844 	void			*xsc;
1845 {
1846 	struct sk_softc		*sc = xsc;
1847 	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
1848 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1849 	u_int32_t		status;
1850 
1851 	sc_if0 = sc->sk_if[SK_PORT_A];
1852 	sc_if1 = sc->sk_if[SK_PORT_B];
1853 
1854 	if (sc_if0 != NULL)
1855 		ifp0 = &sc_if0->arpcom.ac_if;
1856 	if (sc_if1 != NULL)
1857 		ifp1 = &sc_if1->arpcom.ac_if;
1858 
1859 	for (;;) {
1860 		status = CSR_READ_4(sc, SK_ISSR);
1861 		if (!(status & sc->sk_intrmask))
1862 			break;
1863 
1864 		/* Handle receive interrupts first. */
1865 		if (status & SK_ISR_RX1_EOF) {
1866 			sk_rxeof(sc_if0);
1867 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1868 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1869 		}
1870 		if (status & SK_ISR_RX2_EOF) {
1871 			sk_rxeof(sc_if1);
1872 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1873 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1874 		}
1875 
1876 		/* Then transmit interrupts. */
1877 		if (status & SK_ISR_TX1_S_EOF) {
1878 			sk_txeof(sc_if0);
1879 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
1880 			    SK_TXBMU_CLR_IRQ_EOF);
1881 		}
1882 		if (status & SK_ISR_TX2_S_EOF) {
1883 			sk_txeof(sc_if1);
1884 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
1885 			    SK_TXBMU_CLR_IRQ_EOF);
1886 		}
1887 
1888 		/* Then MAC interrupts. */
1889 		if (status & SK_ISR_MAC1 &&
1890 		    ifp0->if_flags & IFF_RUNNING)
1891 			sk_intr_xmac(sc_if0);
1892 
1893 		if (status & SK_ISR_MAC2 &&
1894 		    ifp1->if_flags & IFF_RUNNING)
1895 			sk_intr_xmac(sc_if1);
1896 
1897 		if (status & SK_ISR_EXTERNAL_REG) {
1898 			if (ifp0 != NULL)
1899 				sk_intr_bcom(sc_if0);
1900 			if (ifp1 != NULL)
1901 				sk_intr_bcom(sc_if1);
1902 		}
1903 	}
1904 
1905 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
1906 
1907 	if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
1908 		sk_start(ifp0);
1909 	if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
1910 		sk_start(ifp1);
1911 
1912 	return;
1913 }
1914 
1915 static void sk_init_xmac(sc_if)
1916 	struct sk_if_softc	*sc_if;
1917 {
1918 	struct sk_softc		*sc;
1919 	struct ifnet		*ifp;
1920 	struct sk_bcom_hack	bhack[] = {
1921 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
1922 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
1923 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1924 	{ 0, 0 } };
1925 
1926 	sc = sc_if->sk_softc;
1927 	ifp = &sc_if->arpcom.ac_if;
1928 
1929 	/* Unreset the XMAC. */
1930 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
1931 	DELAY(1000);
1932 
1933 	/* Reset the XMAC's internal state. */
1934 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
1935 
1936 	/* Save the XMAC II revision */
1937 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
1938 
1939 	/*
1940 	 * Perform additional initialization for external PHYs,
1941 	 * namely for the 1000baseTX cards that use the XMAC's
1942 	 * GMII mode.
1943 	 */
1944 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1945 		int			i = 0;
1946 		u_int32_t		val;
1947 
1948 		/* Take PHY out of reset. */
1949 		val = sk_win_read_4(sc, SK_GPIO);
1950 		if (sc_if->sk_port == SK_PORT_A)
1951 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
1952 		else
1953 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
1954 		sk_win_write_4(sc, SK_GPIO, val);
1955 
1956 		/* Enable GMII mode on the XMAC. */
1957 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
1958 
1959 		sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
1960 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
1961 		DELAY(10000);
1962 		sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
1963 		    BRGPHY_MII_IMR, 0xFFF0);
1964 
1965 		/*
1966 		 * Early versions of the BCM5400 apparently have
1967 		 * a bug that requires them to have their reserved
1968 		 * registers initialized to some magic values. I don't
1969 		 * know what the numbers do, I'm just the messenger.
1970 		 */
1971 		if (sk_miibus_readreg(sc_if->sk_dev,
1972 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
1973 			while(bhack[i].reg) {
1974 				sk_miibus_writereg(sc_if->sk_dev,
1975 				    SK_PHYADDR_BCOM, bhack[i].reg,
1976 				    bhack[i].val);
1977 				i++;
1978 			}
1979 		}
1980 	}
1981 
1982 	/* Set station address */
1983 	SK_XM_WRITE_2(sc_if, XM_PAR0,
1984 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
1985 	SK_XM_WRITE_2(sc_if, XM_PAR1,
1986 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
1987 	SK_XM_WRITE_2(sc_if, XM_PAR2,
1988 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
1989 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
1990 
1991 	if (ifp->if_flags & IFF_PROMISC) {
1992 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1993 	} else {
1994 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1995 	}
1996 
1997 	if (ifp->if_flags & IFF_BROADCAST) {
1998 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
1999 	} else {
2000 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2001 	}
2002 
2003 	/* We don't need the FCS appended to the packet. */
2004 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2005 
2006 	/* We want short frames padded to 60 bytes. */
2007 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2008 
2009 	/*
2010 	 * Enable the reception of all error frames. This is is
2011 	 * a necessary evil due to the design of the XMAC. The
2012 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2013 	 * frames can be up to 9000 bytes in length. When bad
2014 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2015 	 * in 'store and forward' mode. For this to work, the
2016 	 * entire frame has to fit into the FIFO, but that means
2017 	 * that jumbo frames larger than 8192 bytes will be
2018 	 * truncated. Disabling all bad frame filtering causes
2019 	 * the RX FIFO to operate in streaming mode, in which
2020 	 * case the XMAC will start transfering frames out of the
2021 	 * RX FIFO as soon as the FIFO threshold is reached.
2022 	 */
2023 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2024 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2025 	    XM_MODE_RX_INRANGELEN);
2026 
2027 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2028 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2029 	else
2030 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2031 
2032 	/*
2033 	 * Bump up the transmit threshold. This helps hold off transmit
2034 	 * underruns when we're blasting traffic from both ports at once.
2035 	 */
2036 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2037 
2038 	/* Set multicast filter */
2039 	sk_setmulti(sc_if);
2040 
2041 	/* Clear and enable interrupts */
2042 	SK_XM_READ_2(sc_if, XM_ISR);
2043 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2044 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2045 	else
2046 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2047 
2048 	/* Configure MAC arbiter */
2049 	switch(sc_if->sk_xmac_rev) {
2050 	case XM_XMAC_REV_B2:
2051 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2052 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2053 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2054 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2055 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2056 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2057 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2058 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2059 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2060 		break;
2061 	case XM_XMAC_REV_C1:
2062 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2063 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2064 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2065 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2066 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2067 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2068 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2069 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2070 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2071 		break;
2072 	default:
2073 		break;
2074 	}
2075 	sk_win_write_2(sc, SK_MACARB_CTL,
2076 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2077 
2078 	sc_if->sk_link = 1;
2079 
2080 	return;
2081 }
2082 
2083 /*
2084  * Note that to properly initialize any part of the GEnesis chip,
2085  * you first have to take it out of reset mode.
2086  */
2087 static void sk_init(xsc)
2088 	void			*xsc;
2089 {
2090 	struct sk_if_softc	*sc_if = xsc;
2091 	struct sk_softc		*sc;
2092 	struct ifnet		*ifp;
2093 	struct mii_data		*mii;
2094 	int			s;
2095 
2096 	s = splimp();
2097 
2098 	ifp = &sc_if->arpcom.ac_if;
2099 	sc = sc_if->sk_softc;
2100 	mii = device_get_softc(sc_if->sk_miibus);
2101 
2102 	/* Cancel pending I/O and free all RX/TX buffers. */
2103 	sk_stop(sc_if);
2104 
2105 	/* Configure LINK_SYNC LED */
2106 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2107 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON);
2108 
2109 	/* Configure RX LED */
2110 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START);
2111 
2112 	/* Configure TX LED */
2113 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START);
2114 
2115 	/* Configure I2C registers */
2116 
2117 	/* Configure XMAC(s) */
2118 	sk_init_xmac(sc_if);
2119 	mii_mediachg(mii);
2120 
2121 	/* Configure MAC FIFOs */
2122 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2123 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2124 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2125 
2126 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2127 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2128 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2129 
2130 	/* Configure transmit arbiter(s) */
2131 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2132 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2133 
2134 	/* Configure RAMbuffers */
2135 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2136 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2137 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2138 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2139 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2140 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2141 
2142 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2143 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2144 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2145 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2146 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2147 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2148 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2149 
2150 	/* Configure BMUs */
2151 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2152 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2153 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2154 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2155 
2156 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2157 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2158 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2159 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2160 
2161 	/* Init descriptors */
2162 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2163 		printf("sk%d: initialization failed: no "
2164 		    "memory for rx buffers\n", sc_if->sk_unit);
2165 		sk_stop(sc_if);
2166 		(void)splx(s);
2167 		return;
2168 	}
2169 	sk_init_tx_ring(sc_if);
2170 
2171 	/* Configure interrupt handling */
2172 	CSR_READ_4(sc, SK_ISSR);
2173 	if (sc_if->sk_port == SK_PORT_A)
2174 		sc->sk_intrmask |= SK_INTRS1;
2175 	else
2176 		sc->sk_intrmask |= SK_INTRS2;
2177 
2178 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2179 
2180 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2181 
2182 	/* Start BMUs. */
2183 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2184 
2185 	/* Enable XMACs TX and RX state machines */
2186 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2187 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2188 
2189 	ifp->if_flags |= IFF_RUNNING;
2190 	ifp->if_flags &= ~IFF_OACTIVE;
2191 
2192 	splx(s);
2193 
2194 	return;
2195 }
2196 
2197 static void sk_stop(sc_if)
2198 	struct sk_if_softc	*sc_if;
2199 {
2200 	int			i;
2201 	struct sk_softc		*sc;
2202 	struct ifnet		*ifp;
2203 
2204 	sc = sc_if->sk_softc;
2205 	ifp = &sc_if->arpcom.ac_if;
2206 
2207 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2208 
2209 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2210 		u_int32_t		val;
2211 
2212 		/* Put PHY back into reset. */
2213 		val = sk_win_read_4(sc, SK_GPIO);
2214 		if (sc_if->sk_port == SK_PORT_A) {
2215 			val |= SK_GPIO_DIR0;
2216 			val &= ~SK_GPIO_DAT0;
2217 		} else {
2218 			val |= SK_GPIO_DIR2;
2219 			val &= ~SK_GPIO_DAT2;
2220 		}
2221 		sk_win_write_4(sc, SK_GPIO, val);
2222 	}
2223 
2224 	/* Turn off various components of this interface. */
2225 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2226 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2227 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2228 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2229 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2230 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2231 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2232 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2233 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2234 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2235 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2236 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2237 
2238 	/* Disable interrupts */
2239 	if (sc_if->sk_port == SK_PORT_A)
2240 		sc->sk_intrmask &= ~SK_INTRS1;
2241 	else
2242 		sc->sk_intrmask &= ~SK_INTRS2;
2243 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2244 
2245 	SK_XM_READ_2(sc_if, XM_ISR);
2246 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2247 
2248 	/* Free RX and TX mbufs still in the queues. */
2249 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2250 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2251 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2252 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2253 		}
2254 	}
2255 
2256 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2257 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2258 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2259 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2260 		}
2261 	}
2262 
2263 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2264 
2265 	return;
2266 }
2267