xref: /dragonfly/sys/dev/netif/sk/if_sk.c (revision 36a3d1d6)
1 /*
2  * Copyright (c) 1997, 1998, 1999, 2000
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $OpenBSD: if_sk.c,v 1.129 2006/10/16 12:30:08 tom Exp $
33  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
34  * $DragonFly: src/sys/dev/netif/sk/if_sk.c,v 1.58 2008/10/12 11:17:08 sephe Exp $
35  */
36 
37 /*
38  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
39  *
40  * Permission to use, copy, modify, and distribute this software for any
41  * purpose with or without fee is hereby granted, provided that the above
42  * copyright notice and this permission notice appear in all copies.
43  *
44  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
45  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
46  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
47  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
48  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
49  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
50  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
51  */
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 
72 /*
73  * The SysKonnect gigabit ethernet adapters consist of two main
74  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
75  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
76  * components and a PHY while the GEnesis controller provides a PCI
77  * interface with DMA support. Each card may have between 512K and
78  * 2MB of SRAM on board depending on the configuration.
79  *
80  * The SysKonnect GEnesis controller can have either one or two XMAC
81  * chips connected to it, allowing single or dual port NIC configurations.
82  * SysKonnect has the distinction of being the only vendor on the market
83  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
84  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
85  * XMAC registers. This driver takes advantage of these features to allow
86  * both XMACs to operate as independent interfaces.
87  */
88 
89 #include <sys/param.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/in_cksum.h>
93 #include <sys/kernel.h>
94 #include <sys/interrupt.h>
95 #include <sys/mbuf.h>
96 #include <sys/malloc.h>
97 #include <sys/queue.h>
98 #include <sys/rman.h>
99 #include <sys/serialize.h>
100 #include <sys/socket.h>
101 #include <sys/sockio.h>
102 #include <sys/sysctl.h>
103 
104 #include <net/bpf.h>
105 #include <net/ethernet.h>
106 #include <net/if.h>
107 #include <net/if_arp.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/ifq_var.h>
111 #include <net/vlan/if_vlan_var.h>
112 
113 #include <netinet/ip.h>
114 #include <netinet/udp.h>
115 
116 #include <dev/netif/mii_layer/mii.h>
117 #include <dev/netif/mii_layer/miivar.h>
118 #include <dev/netif/mii_layer/brgphyreg.h>
119 
120 #include <bus/pci/pcireg.h>
121 #include <bus/pci/pcivar.h>
122 #include <bus/pci/pcidevs.h>
123 
124 #include <dev/netif/sk/if_skreg.h>
125 #include <dev/netif/sk/yukonreg.h>
126 #include <dev/netif/sk/xmaciireg.h>
127 #include <dev/netif/sk/if_skvar.h>
128 
129 #include "miibus_if.h"
130 
131 #if 0
132 #define SK_DEBUG
133 #endif
134 
135 #if 0
136 #define SK_RXCSUM
137 #endif
138 
139 /* supported device vendors */
140 static const struct skc_type {
141 	uint16_t	skc_vid;
142 	uint16_t	skc_did;
143 	const char	*skc_name;
144 } skc_devs[] = {
145 	{ PCI_VENDOR_3COM,		PCI_PRODUCT_3COM_3C940,
146 	  "3Com 3C940" },
147 	{ PCI_VENDOR_3COM,		PCI_PRODUCT_3COM_3C940B,
148 	  "3Com 3C940B" },
149 
150 	{ PCI_VENDOR_CNET,		PCI_PRODUCT_CNET_GIGACARD,
151 	  "CNet GigaCard" },
152 
153 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE530T_A1,
154 	  "D-Link DGE-530T A1" },
155 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE530T_B1,
156 	  "D-Link DGE-530T B1" },
157 
158 	{ PCI_VENDOR_LINKSYS,		PCI_PRODUCT_LINKSYS_EG1032,
159 	  "Linksys EG1032 v2" },
160 	{ PCI_VENDOR_LINKSYS,		PCI_PRODUCT_LINKSYS_EG1064,
161 	  "Linksys EG1064" },
162 
163 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON,
164 	  "Marvell Yukon 88E8001/8003/8010" },
165 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_BELKIN,
166 	  "Belkin F5D5005" },
167 
168 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE,
169 	  "SysKonnect SK-NET" },
170 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2,
171 	  "SysKonnect SK9821 v2" },
172 
173 	{ 0, 0, NULL }
174 };
175 
176 static int	skc_probe(device_t);
177 static int	skc_attach(device_t);
178 static int	skc_detach(device_t);
179 static void	skc_shutdown(device_t);
180 static int	skc_sysctl_imtime(SYSCTL_HANDLER_ARGS);
181 
182 static int	sk_probe(device_t);
183 static int	sk_attach(device_t);
184 static int	sk_detach(device_t);
185 static void	sk_tick(void *);
186 static void	sk_yukon_tick(void *);
187 static void	sk_intr(void *);
188 static void	sk_intr_bcom(struct sk_if_softc *);
189 static void	sk_intr_xmac(struct sk_if_softc *);
190 static void	sk_intr_yukon(struct sk_if_softc *);
191 static void	sk_rxeof(struct sk_if_softc *);
192 static void	sk_txeof(struct sk_if_softc *);
193 static int	sk_encap(struct sk_if_softc *, struct mbuf **, uint32_t *);
194 static void	sk_start(struct ifnet *);
195 static int	sk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
196 static void	sk_init(void *);
197 static void	sk_init_xmac(struct sk_if_softc *);
198 static void	sk_init_yukon(struct sk_if_softc *);
199 static void	sk_stop(struct sk_if_softc *);
200 static void	sk_watchdog(struct ifnet *);
201 static int	sk_ifmedia_upd(struct ifnet *);
202 static void	sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
203 static void	sk_reset(struct sk_softc *);
204 static int	sk_newbuf_jumbo(struct sk_if_softc *, int, int);
205 static int	sk_newbuf_std(struct sk_if_softc *, int, int);
206 static int	sk_jpool_alloc(device_t);
207 static void	sk_jpool_free(struct sk_if_softc *);
208 static struct sk_jpool_entry
209 		*sk_jalloc(struct sk_if_softc *);
210 static void	sk_jfree(void *);
211 static void	sk_jref(void *);
212 static int	sk_init_rx_ring(struct sk_if_softc *);
213 static int	sk_init_tx_ring(struct sk_if_softc *);
214 
215 static int	sk_miibus_readreg(device_t, int, int);
216 static int	sk_miibus_writereg(device_t, int, int, int);
217 static void	sk_miibus_statchg(device_t);
218 
219 static int	sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
220 static int	sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, int);
221 static void	sk_xmac_miibus_statchg(struct sk_if_softc *);
222 
223 static int	sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
224 static int	sk_marv_miibus_writereg(struct sk_if_softc *, int, int, int);
225 static void	sk_marv_miibus_statchg(struct sk_if_softc *);
226 
227 static void	sk_setfilt(struct sk_if_softc *, caddr_t, int);
228 static void	sk_setmulti(struct sk_if_softc *);
229 static void	sk_setpromisc(struct sk_if_softc *);
230 
231 #ifdef SK_RXCSUM
232 static void	sk_rxcsum(struct ifnet *, struct mbuf *, const uint16_t,
233 			  const uint16_t);
234 #endif
235 static int	sk_dma_alloc(device_t);
236 static void	sk_dma_free(device_t);
237 
238 #ifdef SK_DEBUG
239 #define DPRINTF(x)	if (skdebug) kprintf x
240 #define DPRINTFN(n,x)	if (skdebug >= (n)) kprintf x
241 static int	skdebug = 2;
242 
243 static void	sk_dump_txdesc(struct sk_tx_desc *, int);
244 static void	sk_dump_mbuf(struct mbuf *);
245 static void	sk_dump_bytes(const char *, int);
246 #else
247 #define DPRINTF(x)
248 #define DPRINTFN(n,x)
249 #endif
250 
251 /* Interrupt moderation time. */
252 static int	skc_imtime = SK_IMTIME_DEFAULT;
253 TUNABLE_INT("hw.skc.imtime", &skc_imtime);
254 
255 /*
256  * Note that we have newbus methods for both the GEnesis controller
257  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
258  * the miibus code is a child of the XMACs. We need to do it this way
259  * so that the miibus drivers can access the PHY registers on the
260  * right PHY. It's not quite what I had in mind, but it's the only
261  * design that achieves the desired effect.
262  */
263 static device_method_t skc_methods[] = {
264 	/* Device interface */
265 	DEVMETHOD(device_probe,		skc_probe),
266 	DEVMETHOD(device_attach,	skc_attach),
267 	DEVMETHOD(device_detach,	skc_detach),
268 	DEVMETHOD(device_shutdown,	skc_shutdown),
269 
270 	/* bus interface */
271 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
272 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
273 
274 	{ 0, 0 }
275 };
276 
277 static DEFINE_CLASS_0(skc, skc_driver, skc_methods, sizeof(struct sk_softc));
278 static devclass_t skc_devclass;
279 
280 static device_method_t sk_methods[] = {
281 	/* Device interface */
282 	DEVMETHOD(device_probe,		sk_probe),
283 	DEVMETHOD(device_attach,	sk_attach),
284 	DEVMETHOD(device_detach,	sk_detach),
285 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
286 
287 	/* bus interface */
288 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
289 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
290 
291 	/* MII interface */
292 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
293 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
294 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
295 
296 	{ 0, 0 }
297 };
298 
299 static DEFINE_CLASS_0(sk, sk_driver, sk_methods, sizeof(struct sk_if_softc));
300 static devclass_t sk_devclass;
301 
302 DECLARE_DUMMY_MODULE(if_sk);
303 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
304 DRIVER_MODULE(if_sk, skc, sk_driver, sk_devclass, 0, 0);
305 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
306 
307 static __inline uint32_t
308 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
309 {
310 	return CSR_READ_4(sc, reg);
311 }
312 
313 static __inline uint16_t
314 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
315 {
316 	return CSR_READ_2(sc, reg);
317 }
318 
319 static __inline uint8_t
320 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
321 {
322 	return CSR_READ_1(sc, reg);
323 }
324 
325 static __inline void
326 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
327 {
328 	CSR_WRITE_4(sc, reg, x);
329 }
330 
331 static __inline void
332 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
333 {
334 	CSR_WRITE_2(sc, reg, x);
335 }
336 
337 static __inline void
338 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
339 {
340 	CSR_WRITE_1(sc, reg, x);
341 }
342 
343 static __inline int
344 sk_newbuf(struct sk_if_softc *sc_if, int idx, int wait)
345 {
346 	int ret;
347 
348 	if (sc_if->sk_use_jumbo)
349 		ret = sk_newbuf_jumbo(sc_if, idx, wait);
350 	else
351 		ret = sk_newbuf_std(sc_if, idx, wait);
352 	return ret;
353 }
354 
355 static int
356 sk_miibus_readreg(device_t dev, int phy, int reg)
357 {
358 	struct sk_if_softc *sc_if = device_get_softc(dev);
359 
360 	if (SK_IS_GENESIS(sc_if->sk_softc))
361 		return sk_xmac_miibus_readreg(sc_if, phy, reg);
362 	else
363 		return sk_marv_miibus_readreg(sc_if, phy, reg);
364 }
365 
366 static int
367 sk_miibus_writereg(device_t dev, int phy, int reg, int val)
368 {
369 	struct sk_if_softc *sc_if = device_get_softc(dev);
370 
371 	if (SK_IS_GENESIS(sc_if->sk_softc))
372 		return sk_xmac_miibus_writereg(sc_if, phy, reg, val);
373 	else
374 		return sk_marv_miibus_writereg(sc_if, phy, reg, val);
375 }
376 
377 static void
378 sk_miibus_statchg(device_t dev)
379 {
380 	struct sk_if_softc *sc_if = device_get_softc(dev);
381 
382 	if (SK_IS_GENESIS(sc_if->sk_softc))
383 		sk_xmac_miibus_statchg(sc_if);
384 	else
385 		sk_marv_miibus_statchg(sc_if);
386 }
387 
388 static int
389 sk_xmac_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
390 {
391 	int i;
392 
393 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
394 
395 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
396 		return(0);
397 
398 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
399 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
400 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
401 		for (i = 0; i < SK_TIMEOUT; i++) {
402 			DELAY(1);
403 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
404 			    XM_MMUCMD_PHYDATARDY)
405 				break;
406 		}
407 
408 		if (i == SK_TIMEOUT) {
409 			if_printf(&sc_if->arpcom.ac_if,
410 				  "phy failed to come ready\n");
411 			return(0);
412 		}
413 	}
414 	DELAY(1);
415 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
416 }
417 
418 static int
419 sk_xmac_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
420 {
421 	int i;
422 
423 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
424 
425 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
426 	for (i = 0; i < SK_TIMEOUT; i++) {
427 		if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
428 			break;
429 	}
430 
431 	if (i == SK_TIMEOUT) {
432 		if_printf(&sc_if->arpcom.ac_if, "phy failed to come ready\n");
433 		return(ETIMEDOUT);
434 	}
435 
436 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
437 	for (i = 0; i < SK_TIMEOUT; i++) {
438 		DELAY(1);
439 		if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
440 			break;
441 	}
442 
443 	if (i == SK_TIMEOUT)
444 		if_printf(&sc_if->arpcom.ac_if, "phy write timed out\n");
445 	return(0);
446 }
447 
448 static void
449 sk_xmac_miibus_statchg(struct sk_if_softc *sc_if)
450 {
451 	struct mii_data *mii;
452 
453 	mii = device_get_softc(sc_if->sk_miibus);
454 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
455 
456 	/*
457 	 * If this is a GMII PHY, manually set the XMAC's
458 	 * duplex mode accordingly.
459 	 */
460 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
461 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
462 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
463 		else
464 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
465 	}
466 }
467 
468 static int
469 sk_marv_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
470 {
471 	uint16_t val;
472 	int i;
473 
474 	if (phy != 0 ||
475 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
476 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
477 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
478 			     phy, reg));
479 		return(0);
480 	}
481 
482         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
483 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
484 
485 	for (i = 0; i < SK_TIMEOUT; i++) {
486 		DELAY(1);
487 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
488 		if (val & YU_SMICR_READ_VALID)
489 			break;
490 	}
491 
492 	if (i == SK_TIMEOUT) {
493 		if_printf(&sc_if->arpcom.ac_if, "phy failed to come ready\n");
494 		return(0);
495 	}
496 
497  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
498 		     SK_TIMEOUT));
499 
500 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
501 
502 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
503 		     phy, reg, val));
504 
505 	return(val);
506 }
507 
508 static int
509 sk_marv_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
510 {
511 	int i;
512 
513 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
514 		     phy, reg, val));
515 
516 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
517 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
518 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
519 
520 	for (i = 0; i < SK_TIMEOUT; i++) {
521 		DELAY(1);
522 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
523 			break;
524 	}
525 
526 	if (i == SK_TIMEOUT)
527 		if_printf(&sc_if->arpcom.ac_if, "phy write timed out\n");
528 
529 	return(0);
530 }
531 
532 static void
533 sk_marv_miibus_statchg(struct sk_if_softc *sc_if)
534 {
535 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
536 		     SK_YU_READ_2(sc_if, YUKON_GPCR)));
537 }
538 
539 #define HASH_BITS	6
540 
541 static uint32_t
542 sk_xmac_hash(caddr_t addr)
543 {
544 	uint32_t crc;
545 
546 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
547 	return (~crc & ((1 << HASH_BITS) - 1));
548 }
549 
550 static uint32_t
551 sk_yukon_hash(caddr_t addr)
552 {
553 	uint32_t crc;
554 
555 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
556 	return (crc & ((1 << HASH_BITS) - 1));
557 }
558 
559 static void
560 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
561 {
562 	int base;
563 
564 	base = XM_RXFILT_ENTRY(slot);
565 
566 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
567 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
568 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
569 }
570 
571 static void
572 sk_setmulti(struct sk_if_softc *sc_if)
573 {
574 	struct sk_softc *sc = sc_if->sk_softc;
575 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
576 	uint32_t hashes[2] = { 0, 0 };
577 	int h = 0, i;
578 	struct ifmultiaddr *ifma;
579 	uint8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
580 
581 	/* First, zot all the existing filters. */
582 	switch(sc->sk_type) {
583 	case SK_GENESIS:
584 		for (i = 1; i < XM_RXFILT_MAX; i++)
585 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
586 
587 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
588 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
589 		break;
590 	case SK_YUKON:
591 	case SK_YUKON_LITE:
592 	case SK_YUKON_LP:
593 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
594 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
595 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
596 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
597 		break;
598 	}
599 
600 	/* Now program new ones. */
601 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
602 		hashes[0] = 0xFFFFFFFF;
603 		hashes[1] = 0xFFFFFFFF;
604 	} else {
605 		i = 1;
606 		/* First find the tail of the list. */
607 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
608 		    ifma_link) {
609 			caddr_t maddr;
610 
611 			if (ifma->ifma_addr->sa_family != AF_LINK)
612 				continue;
613 
614 			maddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
615 
616 			/*
617 			 * Program the first XM_RXFILT_MAX multicast groups
618 			 * into the perfect filter. For all others,
619 			 * use the hash table.
620 			 */
621 			if (SK_IS_GENESIS(sc) && i < XM_RXFILT_MAX) {
622 				sk_setfilt(sc_if, maddr, i);
623 				i++;
624 				continue;
625 			}
626 
627 			switch(sc->sk_type) {
628 			case SK_GENESIS:
629 				h = sk_xmac_hash(maddr);
630 				break;
631 
632 			case SK_YUKON:
633 			case SK_YUKON_LITE:
634 			case SK_YUKON_LP:
635 				h = sk_yukon_hash(maddr);
636 				break;
637 			}
638 			if (h < 32)
639 				hashes[0] |= (1 << h);
640 			else
641 				hashes[1] |= (1 << (h - 32));
642 		}
643 	}
644 
645 	switch(sc->sk_type) {
646 	case SK_GENESIS:
647 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
648 			       XM_MODE_RX_USE_PERFECT);
649 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
650 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
651 		break;
652 	case SK_YUKON:
653 	case SK_YUKON_LITE:
654 	case SK_YUKON_LP:
655 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
656 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
657 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
658 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
659 		break;
660 	}
661 }
662 
663 static void
664 sk_setpromisc(struct sk_if_softc *sc_if)
665 {
666 	struct sk_softc	*sc = sc_if->sk_softc;
667 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
668 
669 	switch(sc->sk_type) {
670 	case SK_GENESIS:
671 		if (ifp->if_flags & IFF_PROMISC)
672 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
673 		else
674 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
675 		break;
676 	case SK_YUKON:
677 	case SK_YUKON_LITE:
678 	case SK_YUKON_LP:
679 		if (ifp->if_flags & IFF_PROMISC) {
680 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
681 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
682 		} else {
683 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
684 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
685 		}
686 		break;
687 	}
688 }
689 
690 static int
691 sk_init_rx_ring(struct sk_if_softc *sc_if)
692 {
693 	struct sk_chain_data *cd = &sc_if->sk_cdata;
694 	struct sk_ring_data *rd = &sc_if->sk_rdata;
695 	int i, nexti, error;
696 
697 	bzero(rd->sk_rx_ring, SK_RX_RING_SIZE);
698 
699 	for (i = 0; i < SK_RX_RING_CNT; i++) {
700 		bus_addr_t paddr;
701 
702 		if (i == (SK_RX_RING_CNT - 1))
703 			nexti = 0;
704 		else
705 			nexti = i + 1;
706 		paddr = rd->sk_rx_ring_paddr +
707 			(nexti * sizeof(struct sk_rx_desc));
708 
709 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(paddr));
710 		rd->sk_rx_ring[i].sk_csum1_start = htole16(ETHER_HDR_LEN);
711 		rd->sk_rx_ring[i].sk_csum2_start =
712 			htole16(ETHER_HDR_LEN + sizeof(struct ip));
713 
714 		error = sk_newbuf(sc_if, i, 1);
715 		if (error) {
716 			if_printf(&sc_if->arpcom.ac_if,
717 				  "failed alloc of %dth mbuf\n", i);
718 			return error;
719 		}
720 	}
721 
722 	cd->sk_rx_prod = 0;
723 	cd->sk_rx_cons = 0;
724 
725 	return (0);
726 }
727 
728 static int
729 sk_init_tx_ring(struct sk_if_softc *sc_if)
730 {
731 	struct sk_ring_data *rd = &sc_if->sk_rdata;
732 	int i, nexti;
733 
734 	bzero(rd->sk_tx_ring, SK_TX_RING_SIZE);
735 
736 	for (i = 0; i < SK_TX_RING_CNT; i++) {
737 		bus_addr_t paddr;
738 
739 		if (i == (SK_TX_RING_CNT - 1))
740 			nexti = 0;
741 		else
742 			nexti = i + 1;
743 		paddr = rd->sk_tx_ring_paddr +
744 			(nexti * sizeof(struct sk_tx_desc));
745 
746 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(paddr));
747 	}
748 
749 	sc_if->sk_cdata.sk_tx_prod = 0;
750 	sc_if->sk_cdata.sk_tx_cons = 0;
751 	sc_if->sk_cdata.sk_tx_cnt = 0;
752 
753 	return (0);
754 }
755 
756 static int
757 sk_newbuf_jumbo(struct sk_if_softc *sc_if, int idx, int wait)
758 {
759 	struct sk_jpool_entry *entry;
760 	struct mbuf *m_new = NULL;
761 	struct sk_rx_desc *r;
762 	bus_addr_t paddr;
763 
764 	KKASSERT(idx < SK_RX_RING_CNT && idx >= 0);
765 
766 	MGETHDR(m_new, wait ? MB_WAIT : MB_DONTWAIT, MT_DATA);
767 	if (m_new == NULL)
768 		return ENOBUFS;
769 
770 	/* Allocate the jumbo buffer */
771 	entry = sk_jalloc(sc_if);
772 	if (entry == NULL) {
773 		m_freem(m_new);
774 		DPRINTFN(1, ("%s jumbo allocation failed -- packet "
775 		    "dropped!\n", sc_if->arpcom.ac_if.if_xname));
776 		return ENOBUFS;
777 	}
778 
779 	m_new->m_ext.ext_arg = entry;
780 	m_new->m_ext.ext_buf = entry->buf;
781 	m_new->m_ext.ext_free = sk_jfree;
782 	m_new->m_ext.ext_ref = sk_jref;
783 	m_new->m_ext.ext_size = SK_JLEN;
784 
785 	m_new->m_flags |= M_EXT;
786 
787 	m_new->m_data = m_new->m_ext.ext_buf;
788 	m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
789 
790 	paddr = entry->paddr;
791 
792 	/*
793 	 * Adjust alignment so packet payload begins on a
794 	 * longword boundary. Mandatory for Alpha, useful on
795 	 * x86 too.
796 	 */
797 	m_adj(m_new, ETHER_ALIGN);
798 	paddr += ETHER_ALIGN;
799 
800 	sc_if->sk_cdata.sk_rx_mbuf[idx] = m_new;
801 
802 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
803 	r->sk_data_lo = htole32(SK_ADDR_LO(paddr));
804 	r->sk_data_hi = htole32(SK_ADDR_HI(paddr));
805 	r->sk_ctl = htole32(m_new->m_pkthdr.len | SK_RXSTAT);
806 
807 	return 0;
808 }
809 
810 static int
811 sk_newbuf_std(struct sk_if_softc *sc_if, int idx, int wait)
812 {
813 	struct mbuf *m_new = NULL;
814 	struct sk_chain_data *cd = &sc_if->sk_cdata;
815 	struct sk_rx_desc *r;
816 	bus_dma_segment_t seg;
817 	bus_dmamap_t map;
818 	int error, nseg;
819 
820 	KKASSERT(idx < SK_RX_RING_CNT && idx >= 0);
821 
822 	m_new = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
823 	if (m_new == NULL)
824 		return ENOBUFS;
825 
826 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
827 
828 	/*
829 	 * Adjust alignment so packet payload begins on a
830 	 * longword boundary. Mandatory for Alpha, useful on
831 	 * x86 too.
832 	 */
833 	m_adj(m_new, ETHER_ALIGN);
834 
835 	error = bus_dmamap_load_mbuf_segment(cd->sk_rx_dtag, cd->sk_rx_dmap_tmp,
836 			m_new, &seg, 1, &nseg, BUS_DMA_NOWAIT);
837 	if (error) {
838 		m_freem(m_new);
839 		if (wait) {
840 			if_printf(&sc_if->arpcom.ac_if,
841 				  "could not map RX mbuf\n");
842 		}
843 		return error;
844 	}
845 
846 	/* Unload originally mapped mbuf */
847 	if (cd->sk_rx_mbuf[idx] != NULL) {
848 		bus_dmamap_sync(cd->sk_rx_dtag, cd->sk_rx_dmap[idx],
849 				BUS_DMASYNC_POSTREAD);
850 		bus_dmamap_unload(cd->sk_rx_dtag, cd->sk_rx_dmap[idx]);
851 	}
852 
853 	/* Switch DMA map with tmp DMA map */
854 	map = cd->sk_rx_dmap_tmp;
855 	cd->sk_rx_dmap_tmp = cd->sk_rx_dmap[idx];
856 	cd->sk_rx_dmap[idx] = map;
857 
858 	cd->sk_rx_mbuf[idx] = m_new;
859 
860 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
861 	r->sk_data_lo = htole32(SK_ADDR_LO(seg.ds_addr));
862 	r->sk_data_hi = htole32(SK_ADDR_HI(seg.ds_addr));
863 	r->sk_ctl = htole32(m_new->m_pkthdr.len | SK_RXSTAT);
864 
865 	return 0;
866 }
867 
868 /*
869  * Allocate a jumbo buffer.
870  */
871 struct sk_jpool_entry *
872 sk_jalloc(struct sk_if_softc *sc_if)
873 {
874 	struct sk_chain_data *cd = &sc_if->sk_cdata;
875 	struct sk_jpool_entry *entry;
876 
877 	lwkt_serialize_enter(&cd->sk_jpool_serializer);
878 
879 	entry = SLIST_FIRST(&cd->sk_jpool_free_ent);
880 	if (entry != NULL) {
881 		SLIST_REMOVE_HEAD(&cd->sk_jpool_free_ent, entry_next);
882 		entry->inuse = 1;
883 	} else {
884 		DPRINTF(("no free jumbo buffer\n"));
885 	}
886 
887 	lwkt_serialize_exit(&cd->sk_jpool_serializer);
888 	return entry;
889 }
890 
891 /*
892  * Release a jumbo buffer.
893  */
894 void
895 sk_jfree(void *arg)
896 {
897 	struct sk_jpool_entry *entry = arg;
898 	struct sk_chain_data *cd = &entry->sc_if->sk_cdata;
899 
900 	if (&cd->sk_jpool_ent[entry->slot] != entry)
901 		panic("%s: free wrong jumbo buffer\n", __func__);
902 	else if (entry->inuse == 0)
903 		panic("%s: jumbo buffer already freed\n", __func__);
904 
905 	lwkt_serialize_enter(&cd->sk_jpool_serializer);
906 
907 	atomic_subtract_int(&entry->inuse, 1);
908 	if (entry->inuse == 0)
909 		SLIST_INSERT_HEAD(&cd->sk_jpool_free_ent, entry, entry_next);
910 
911 	lwkt_serialize_exit(&cd->sk_jpool_serializer);
912 }
913 
914 static void
915 sk_jref(void *arg)
916 {
917 	struct sk_jpool_entry *entry = arg;
918 	struct sk_chain_data *cd = &entry->sc_if->sk_cdata;
919 
920 	if (&cd->sk_jpool_ent[entry->slot] != entry)
921 		panic("%s: free wrong jumbo buffer\n", __func__);
922 	else if (entry->inuse == 0)
923 		panic("%s: jumbo buffer already freed\n", __func__);
924 
925 	atomic_add_int(&entry->inuse, 1);
926 }
927 
928 /*
929  * Set media options.
930  */
931 static int
932 sk_ifmedia_upd(struct ifnet *ifp)
933 {
934 	struct sk_if_softc *sc_if = ifp->if_softc;
935 	struct mii_data *mii;
936 
937 	mii = device_get_softc(sc_if->sk_miibus);
938 	sk_init(sc_if);
939 	mii_mediachg(mii);
940 
941 	return(0);
942 }
943 
944 /*
945  * Report current media status.
946  */
947 static void
948 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
949 {
950 	struct sk_if_softc *sc_if;
951 	struct mii_data *mii;
952 
953 	sc_if = ifp->if_softc;
954 	mii = device_get_softc(sc_if->sk_miibus);
955 
956 	mii_pollstat(mii);
957 	ifmr->ifm_active = mii->mii_media_active;
958 	ifmr->ifm_status = mii->mii_media_status;
959 }
960 
961 static int
962 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
963 {
964 	struct sk_if_softc *sc_if = ifp->if_softc;
965 	struct ifreq *ifr = (struct ifreq *)data;
966 	struct mii_data *mii;
967 	int error = 0;
968 
969 	ASSERT_SERIALIZED(ifp->if_serializer);
970 
971 	switch(command) {
972 	case SIOCSIFMTU:
973 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
974 			error = EINVAL;
975 		else {
976 			ifp->if_mtu = ifr->ifr_mtu;
977 			ifp->if_flags &= ~IFF_RUNNING;
978 			sk_init(sc_if);
979 		}
980 		break;
981 	case SIOCSIFFLAGS:
982 		if (ifp->if_flags & IFF_UP) {
983 			if (ifp->if_flags & IFF_RUNNING) {
984 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
985 				    & IFF_PROMISC) {
986 					sk_setpromisc(sc_if);
987 					sk_setmulti(sc_if);
988 				}
989 			} else
990 				sk_init(sc_if);
991 		} else {
992 			if (ifp->if_flags & IFF_RUNNING)
993 				sk_stop(sc_if);
994 		}
995 		sc_if->sk_if_flags = ifp->if_flags;
996 		break;
997 	case SIOCADDMULTI:
998 	case SIOCDELMULTI:
999 		sk_setmulti(sc_if);
1000 		break;
1001 	case SIOCGIFMEDIA:
1002 	case SIOCSIFMEDIA:
1003 		mii = device_get_softc(sc_if->sk_miibus);
1004 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1005 		break;
1006 	default:
1007 		error = ether_ioctl(ifp, command, data);
1008 		break;
1009 	}
1010 
1011 	return(error);
1012 }
1013 
1014 /*
1015  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1016  * IDs against our list and return a device name if we find a match.
1017  */
1018 static int
1019 skc_probe(device_t dev)
1020 {
1021 	const struct skc_type *t;
1022 	uint16_t vid, did;
1023 
1024 	vid = pci_get_vendor(dev);
1025 	did = pci_get_device(dev);
1026 
1027 	/*
1028 	 * Only attach to rev.2 of the Linksys EG1032 adapter.
1029 	 * Rev.3 is supported by re(4).
1030 	 */
1031 	if (vid == PCI_VENDOR_LINKSYS &&
1032 	    did == PCI_PRODUCT_LINKSYS_EG1032 &&
1033 	    pci_get_subdevice(dev) != SUBDEVICEID_LINKSYS_EG1032_REV2)
1034 		return ENXIO;
1035 
1036 	for (t = skc_devs; t->skc_name != NULL; t++) {
1037 		if (vid == t->skc_vid && did == t->skc_did) {
1038 			device_set_desc(dev, t->skc_name);
1039 			return 0;
1040 		}
1041 	}
1042 	return ENXIO;
1043 }
1044 
1045 /*
1046  * Force the GEnesis into reset, then bring it out of reset.
1047  */
1048 static void
1049 sk_reset(struct sk_softc *sc)
1050 {
1051 	DPRINTFN(2, ("sk_reset\n"));
1052 
1053 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1054 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1055 	if (SK_IS_YUKON(sc))
1056 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1057 
1058 	DELAY(1000);
1059 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1060 	DELAY(2);
1061 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1062 	if (SK_IS_YUKON(sc))
1063 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1064 
1065 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1066 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1067 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1068 
1069 	if (SK_IS_GENESIS(sc)) {
1070 		/* Configure packet arbiter */
1071 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1072 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1073 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1074 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1075 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1076 	}
1077 
1078 	/* Enable RAM interface */
1079 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1080 
1081 	/*
1082 	 * Configure interrupt moderation. The moderation timer
1083 	 * defers interrupts specified in the interrupt moderation
1084 	 * timer mask based on the timeout specified in the interrupt
1085 	 * moderation timer init register. Each bit in the timer
1086 	 * register represents one tick, so to specify a timeout in
1087 	 * microseconds, we have to multiply by the correct number of
1088 	 * ticks-per-microsecond.
1089 	 */
1090 	KKASSERT(sc->sk_imtimer_ticks != 0 && sc->sk_imtime != 0);
1091 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc, sc->sk_imtime));
1092 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1093 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1094 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1095 }
1096 
1097 static int
1098 sk_probe(device_t dev)
1099 {
1100 	struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1101 	const char *revstr = "", *name = NULL;
1102 	char devname[80];
1103 
1104 	switch (sc->sk_type) {
1105 	case SK_GENESIS:
1106 		name = "SysKonnect GEnesis";
1107 		break;
1108 	case SK_YUKON:
1109 		name = "Marvell Yukon";
1110 		break;
1111 	case SK_YUKON_LITE:
1112 		name = "Marvell Yukon Lite";
1113 		switch (sc->sk_rev) {
1114 		case SK_YUKON_LITE_REV_A0:
1115 			revstr = " rev.A0";
1116 			break;
1117 		case SK_YUKON_LITE_REV_A1:
1118 			revstr = " rev.A1";
1119 			break;
1120 		case SK_YUKON_LITE_REV_A3:
1121 			revstr = " rev.A3";
1122 			break;
1123 		}
1124 		break;
1125 	case SK_YUKON_LP:
1126 		name = "Marvell Yukon LP";
1127 		break;
1128 	default:
1129 		return ENXIO;
1130 	}
1131 
1132 	ksnprintf(devname, sizeof(devname), "%s%s (0x%x)",
1133 		 name, revstr, sc->sk_rev);
1134 	device_set_desc_copy(dev, devname);
1135 	return 0;
1136 }
1137 
1138 /*
1139  * Each XMAC chip is attached as a separate logical IP interface.
1140  * Single port cards will have only one logical interface of course.
1141  */
1142 static int
1143 sk_attach(device_t dev)
1144 {
1145 	struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1146 	struct sk_if_softc *sc_if = device_get_softc(dev);
1147 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1148 	int i, error, if_attached = 0;
1149 
1150 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1151 
1152 	sc_if->sk_port = *(int *)device_get_ivars(dev);
1153 	KKASSERT(sc_if->sk_port == SK_PORT_A || sc_if->sk_port == SK_PORT_B);
1154 
1155 	sc_if->sk_softc = sc;
1156 	sc->sk_if[sc_if->sk_port] = sc_if;
1157 
1158 	kfree(device_get_ivars(dev), M_DEVBUF);
1159 	device_set_ivars(dev, NULL);
1160 
1161 	if (sc_if->sk_port == SK_PORT_A)
1162 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1163 	if (sc_if->sk_port == SK_PORT_B)
1164 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1165 
1166 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1167 
1168 	/*
1169 	 * Get station address for this interface. Note that
1170 	 * dual port cards actually come with three station
1171 	 * addresses: one for each port, plus an extra. The
1172 	 * extra one is used by the SysKonnect driver software
1173 	 * as a 'virtual' station address for when both ports
1174 	 * are operating in failover mode. Currently we don't
1175 	 * use this extra address.
1176 	 */
1177 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1178 		/* XXX */
1179 		sc_if->arpcom.ac_enaddr[i] =
1180 		    sk_win_read_1(sc, SK_MAC0_0 + (sc_if->sk_port * 8) + i);
1181 	}
1182 
1183 	/*
1184 	 * Set up RAM buffer addresses. The NIC will have a certain
1185 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1186 	 * need to divide this up a) between the transmitter and
1187  	 * receiver and b) between the two XMACs, if this is a
1188 	 * dual port NIC. Our algorithm is to divide up the memory
1189 	 * evenly so that everyone gets a fair share.
1190 	 */
1191 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1192 		uint32_t chunk, val;
1193 
1194 		chunk = sc->sk_ramsize / 2;
1195 		val = sc->sk_rboff / sizeof(uint64_t);
1196 		sc_if->sk_rx_ramstart = val;
1197 		val += (chunk / sizeof(uint64_t));
1198 		sc_if->sk_rx_ramend = val - 1;
1199 		sc_if->sk_tx_ramstart = val;
1200 		val += (chunk / sizeof(uint64_t));
1201 		sc_if->sk_tx_ramend = val - 1;
1202 	} else {
1203 		uint32_t chunk, val;
1204 
1205 		chunk = sc->sk_ramsize / 4;
1206 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1207 		    sizeof(uint64_t);
1208 		sc_if->sk_rx_ramstart = val;
1209 		val += (chunk / sizeof(uint64_t));
1210 		sc_if->sk_rx_ramend = val - 1;
1211 		sc_if->sk_tx_ramstart = val;
1212 		val += (chunk / sizeof(uint64_t));
1213 		sc_if->sk_tx_ramend = val - 1;
1214 	}
1215 
1216 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1217 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1218 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1219 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1220 
1221 	/* Read and save PHY type */
1222 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1223 
1224 	/* Set PHY address */
1225 	if (SK_IS_GENESIS(sc)) {
1226 		switch (sc_if->sk_phytype) {
1227 		case SK_PHYTYPE_XMAC:
1228 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1229 			break;
1230 		case SK_PHYTYPE_BCOM:
1231 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1232 			break;
1233 		default:
1234 			device_printf(dev, "unsupported PHY type: %d\n",
1235 			    sc_if->sk_phytype);
1236 			error = ENXIO;
1237 			goto fail;
1238 		}
1239 	}
1240 
1241 	if (SK_IS_YUKON(sc)) {
1242 		if ((sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1243 		    sc->sk_pmd != 'L' && sc->sk_pmd != 'S')) {
1244 			/* not initialized, punt */
1245 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1246 			sc->sk_coppertype = 1;
1247 		}
1248 
1249 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1250 
1251 		if (!(sc->sk_coppertype))
1252 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1253 	}
1254 
1255 	error = sk_dma_alloc(dev);
1256 	if (error)
1257 		goto fail;
1258 
1259 	ifp->if_softc = sc_if;
1260 	ifp->if_mtu = ETHERMTU;
1261 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1262 	ifp->if_ioctl = sk_ioctl;
1263 	ifp->if_start = sk_start;
1264 	ifp->if_watchdog = sk_watchdog;
1265 	ifp->if_init = sk_init;
1266 	ifp->if_baudrate = 1000000000;
1267 	ifq_set_maxlen(&ifp->if_snd, SK_TX_RING_CNT - 1);
1268 	ifq_set_ready(&ifp->if_snd);
1269 
1270 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1271 
1272 	/* Don't use jumbo buffers by default */
1273 	sc_if->sk_use_jumbo = 0;
1274 
1275 	/*
1276 	 * Call MI attach routines.
1277 	 *
1278 	 * NOTE:
1279 	 * This must be done before following sk_init_xxx(), in which
1280 	 * if_multiaddrs will be used.
1281 	 */
1282 	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr, &sc->sk_serializer);
1283 	if_attached = 1;
1284 
1285 	/*
1286 	 * Do miibus setup.
1287 	 */
1288 	switch (sc->sk_type) {
1289 	case SK_GENESIS:
1290 		sk_init_xmac(sc_if);
1291 		break;
1292 	case SK_YUKON:
1293 	case SK_YUKON_LITE:
1294 	case SK_YUKON_LP:
1295 		sk_init_yukon(sc_if);
1296 		break;
1297 	default:
1298 		device_printf(dev, "unknown device type %d\n", sc->sk_type);
1299 		error = ENXIO;
1300 		goto fail;
1301 	}
1302 
1303  	DPRINTFN(2, ("sk_attach: 1\n"));
1304 
1305 	error = mii_phy_probe(dev, &sc_if->sk_miibus,
1306 			      sk_ifmedia_upd, sk_ifmedia_sts);
1307 	if (error) {
1308 		device_printf(dev, "no PHY found!\n");
1309 		goto fail;
1310 	}
1311 
1312 	callout_init(&sc_if->sk_tick_timer);
1313 
1314 	DPRINTFN(2, ("sk_attach: end\n"));
1315 	return 0;
1316 fail:
1317 	if (if_attached)
1318 		ether_ifdetach(ifp);
1319 	sk_detach(dev);
1320 	sc->sk_if[sc_if->sk_port] = NULL;
1321 	return error;
1322 }
1323 
1324 /*
1325  * Attach the interface. Allocate softc structures, do ifmedia
1326  * setup and ethernet/BPF attach.
1327  */
1328 static int
1329 skc_attach(device_t dev)
1330 {
1331 	struct sk_softc *sc = device_get_softc(dev);
1332 	uint8_t skrs;
1333 	int *port;
1334 	int error, cpuid;
1335 
1336 	DPRINTFN(2, ("begin skc_attach\n"));
1337 
1338 	sc->sk_dev = dev;
1339 	lwkt_serialize_init(&sc->sk_serializer);
1340 
1341 #ifndef BURN_BRIDGES
1342 	/*
1343 	 * Handle power management nonsense.
1344 	 */
1345 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1346 		uint32_t iobase, membase, irq;
1347 
1348 		/* Save important PCI config data. */
1349 		iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1350 		membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1351 		irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1352 
1353 		/* Reset the power state. */
1354 		device_printf(dev, "chip is in D%d power mode "
1355 			      "-- setting to D0\n", pci_get_powerstate(dev));
1356 
1357 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1358 
1359 		/* Restore PCI config data. */
1360 		pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1361 		pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1362 		pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1363 	}
1364 #endif	/* BURN_BRIDGES */
1365 
1366 	/*
1367 	 * Map control/status registers.
1368 	 */
1369 	pci_enable_busmaster(dev);
1370 
1371 	sc->sk_res_rid = SK_PCI_LOMEM;
1372 	sc->sk_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1373 					    &sc->sk_res_rid, RF_ACTIVE);
1374 	if (sc->sk_res == NULL) {
1375 		device_printf(dev, "couldn't map memory\n");
1376 		error = ENXIO;
1377 		goto fail;
1378 	}
1379 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1380 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1381 
1382 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1383 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1384 
1385 	/* Bail out here if chip is not recognized */
1386 	if (!SK_IS_GENESIS(sc) && !SK_IS_YUKON(sc)) {
1387 		device_printf(dev, "unknown chip type: %d\n", sc->sk_type);
1388 		error = ENXIO;
1389 		goto fail;
1390 	}
1391 
1392 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1393 
1394 	/* Allocate interrupt */
1395 	sc->sk_irq_rid = 0;
1396 	sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sk_irq_rid,
1397 					    RF_SHAREABLE | RF_ACTIVE);
1398 	if (sc->sk_irq == NULL) {
1399 		device_printf(dev, "couldn't map interrupt\n");
1400 		error = ENXIO;
1401 		goto fail;
1402 	}
1403 
1404 	switch (sc->sk_type) {
1405 	case SK_GENESIS:
1406 		sc->sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1407 		break;
1408 	default:
1409 		sc->sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1410 		break;
1411 	}
1412 	sc->sk_imtime = skc_imtime;
1413 
1414 	/* Reset the adapter. */
1415 	sk_reset(sc);
1416 
1417 	skrs = sk_win_read_1(sc, SK_EPROM0);
1418 	if (SK_IS_GENESIS(sc)) {
1419 		/* Read and save RAM size and RAMbuffer offset */
1420 		switch(skrs) {
1421 		case SK_RAMSIZE_512K_64:
1422 			sc->sk_ramsize = 0x80000;
1423 			sc->sk_rboff = SK_RBOFF_0;
1424 			break;
1425 		case SK_RAMSIZE_1024K_64:
1426 			sc->sk_ramsize = 0x100000;
1427 			sc->sk_rboff = SK_RBOFF_80000;
1428 			break;
1429 		case SK_RAMSIZE_1024K_128:
1430 			sc->sk_ramsize = 0x100000;
1431 			sc->sk_rboff = SK_RBOFF_0;
1432 			break;
1433 		case SK_RAMSIZE_2048K_128:
1434 			sc->sk_ramsize = 0x200000;
1435 			sc->sk_rboff = SK_RBOFF_0;
1436 			break;
1437 		default:
1438 			device_printf(dev, "unknown ram size: %d\n", skrs);
1439 			error = ENXIO;
1440 			goto fail;
1441 		}
1442 	} else {
1443 		if (skrs == 0x00)
1444 			sc->sk_ramsize = 0x20000;
1445 		else
1446 			sc->sk_ramsize = skrs * (1<<12);
1447 		sc->sk_rboff = SK_RBOFF_0;
1448 	}
1449 
1450 	DPRINTFN(2, ("skc_attach: ramsize=%d (%dk), rboff=%d\n",
1451 		     sc->sk_ramsize, sc->sk_ramsize / 1024,
1452 		     sc->sk_rboff));
1453 
1454 	/* Read and save physical media type */
1455 	sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1456 
1457 	if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1458 		sc->sk_coppertype = 1;
1459 	else
1460 		sc->sk_coppertype = 0;
1461 
1462 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1463 	if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1464 		uint32_t flashaddr;
1465 		uint8_t testbyte;
1466 
1467 		flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
1468 
1469 		/* Test Flash-Address Register */
1470 		sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
1471 		testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1472 
1473 		if (testbyte != 0) {
1474 			/* This is a Yukon Lite Rev A0 */
1475 			sc->sk_type = SK_YUKON_LITE;
1476 			sc->sk_rev = SK_YUKON_LITE_REV_A0;
1477 			/* Restore Flash-Address Register */
1478 			sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
1479 		}
1480 	}
1481 
1482 	/*
1483 	 * Create sysctl nodes.
1484 	 */
1485 	sysctl_ctx_init(&sc->sk_sysctl_ctx);
1486 	sc->sk_sysctl_tree = SYSCTL_ADD_NODE(&sc->sk_sysctl_ctx,
1487 					     SYSCTL_STATIC_CHILDREN(_hw),
1488 					     OID_AUTO,
1489 					     device_get_nameunit(dev),
1490 					     CTLFLAG_RD, 0, "");
1491 	if (sc->sk_sysctl_tree == NULL) {
1492 		device_printf(dev, "can't add sysctl node\n");
1493 		error = ENXIO;
1494 		goto fail;
1495 	}
1496 	SYSCTL_ADD_PROC(&sc->sk_sysctl_ctx,
1497 			SYSCTL_CHILDREN(sc->sk_sysctl_tree),
1498 			OID_AUTO, "imtime", CTLTYPE_INT | CTLFLAG_RW,
1499 			sc, 0, skc_sysctl_imtime, "I",
1500 			"Interrupt moderation time (usec).");
1501 
1502 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1503 	port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1504 	*port = SK_PORT_A;
1505 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1506 
1507 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1508 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1509 		port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1510 		*port = SK_PORT_B;
1511 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1512 	}
1513 
1514 	/* Turn on the 'driver is loaded' LED. */
1515 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1516 
1517 	bus_generic_attach(dev);
1518 
1519 	error = bus_setup_intr(dev, sc->sk_irq, INTR_MPSAFE, sk_intr, sc,
1520 			       &sc->sk_intrhand, &sc->sk_serializer);
1521 	if (error) {
1522 		device_printf(dev, "couldn't set up irq\n");
1523 		goto fail;
1524 	}
1525 
1526 	cpuid = ithread_cpuid(rman_get_start(sc->sk_irq));
1527 	KKASSERT(cpuid >= 0 && cpuid < ncpus);
1528 
1529 	if (sc->sk_if[0] != NULL)
1530 		sc->sk_if[0]->arpcom.ac_if.if_cpuid = cpuid;
1531 	if (sc->sk_if[1] != NULL)
1532 		sc->sk_if[1]->arpcom.ac_if.if_cpuid = cpuid;
1533 
1534 	return 0;
1535 fail:
1536 	skc_detach(dev);
1537 	return error;
1538 }
1539 
1540 static int
1541 sk_detach(device_t dev)
1542 {
1543 	struct sk_if_softc *sc_if = device_get_softc(dev);
1544 
1545 	if (device_is_attached(dev)) {
1546 		struct sk_softc *sc = sc_if->sk_softc;
1547 		struct ifnet *ifp = &sc_if->arpcom.ac_if;
1548 
1549 		lwkt_serialize_enter(ifp->if_serializer);
1550 
1551 		if (sc->sk_intrhand != NULL) {
1552 			if (sc->sk_if[SK_PORT_A] != NULL)
1553 				sk_stop(sc->sk_if[SK_PORT_A]);
1554 			if (sc->sk_if[SK_PORT_B] != NULL)
1555 				sk_stop(sc->sk_if[SK_PORT_B]);
1556 
1557 			bus_teardown_intr(sc->sk_dev, sc->sk_irq,
1558 					  sc->sk_intrhand);
1559 			sc->sk_intrhand = NULL;
1560 		}
1561 
1562 		lwkt_serialize_exit(ifp->if_serializer);
1563 
1564 		ether_ifdetach(ifp);
1565 	}
1566 
1567 	if (sc_if->sk_miibus != NULL)
1568 		device_delete_child(dev, sc_if->sk_miibus);
1569 
1570 	sk_dma_free(dev);
1571 	return 0;
1572 }
1573 
1574 static int
1575 skc_detach(device_t dev)
1576 {
1577 	struct sk_softc *sc = device_get_softc(dev);
1578 	int *port;
1579 
1580 #ifdef INVARIANTS
1581 	if (device_is_attached(dev)) {
1582 		KASSERT(sc->sk_intrhand == NULL,
1583 			("intr has not been torn down yet"));
1584 	}
1585 #endif
1586 
1587 	if (sc->sk_devs[SK_PORT_A] != NULL) {
1588 		port = device_get_ivars(sc->sk_devs[SK_PORT_A]);
1589 		if (port != NULL) {
1590 			kfree(port, M_DEVBUF);
1591 			device_set_ivars(sc->sk_devs[SK_PORT_A], NULL);
1592 		}
1593 		device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1594 	}
1595 	if (sc->sk_devs[SK_PORT_B] != NULL) {
1596 		port = device_get_ivars(sc->sk_devs[SK_PORT_B]);
1597 		if (port != NULL) {
1598 			kfree(port, M_DEVBUF);
1599 			device_set_ivars(sc->sk_devs[SK_PORT_B], NULL);
1600 		}
1601 		device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1602 	}
1603 
1604 	if (sc->sk_irq != NULL) {
1605 		bus_release_resource(dev, SYS_RES_IRQ, sc->sk_irq_rid,
1606 				     sc->sk_irq);
1607 	}
1608 	if (sc->sk_res != NULL) {
1609 		bus_release_resource(dev, SYS_RES_MEMORY, sc->sk_res_rid,
1610 				     sc->sk_res);
1611 	}
1612 
1613 	if (sc->sk_sysctl_tree != NULL)
1614 		sysctl_ctx_free(&sc->sk_sysctl_ctx);
1615 
1616 	return 0;
1617 }
1618 
1619 static int
1620 sk_encap(struct sk_if_softc *sc_if, struct mbuf **m_head0, uint32_t *txidx)
1621 {
1622 	struct sk_chain_data *cd = &sc_if->sk_cdata;
1623 	struct sk_ring_data *rd = &sc_if->sk_rdata;
1624 	struct sk_tx_desc *f = NULL;
1625 	uint32_t frag, cur, sk_ctl;
1626 	bus_dma_segment_t segs[SK_NTXSEG];
1627 	bus_dmamap_t map;
1628 	int i, error, maxsegs, nsegs;
1629 
1630 	DPRINTFN(2, ("sk_encap\n"));
1631 
1632 	maxsegs = SK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - SK_NDESC_RESERVE;
1633 	KASSERT(maxsegs >= SK_NDESC_SPARE, ("not enough spare TX desc\n"));
1634 	if (maxsegs > SK_NTXSEG)
1635 		maxsegs = SK_NTXSEG;
1636 
1637 	cur = frag = *txidx;
1638 
1639 #ifdef SK_DEBUG
1640 	if (skdebug >= 2)
1641 		sk_dump_mbuf(*m_head0);
1642 #endif
1643 
1644 	map = cd->sk_tx_dmap[*txidx];
1645 
1646 	error = bus_dmamap_load_mbuf_defrag(cd->sk_tx_dtag, map, m_head0,
1647 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1648 	if (error) {
1649 		m_freem(*m_head0);
1650 		*m_head0 = NULL;
1651 		return error;
1652 	}
1653 
1654 	DPRINTFN(2, ("sk_encap: nsegs=%d\n", nsegs));
1655 
1656 	/* Sync the DMA map. */
1657 	bus_dmamap_sync(cd->sk_tx_dtag, map, BUS_DMASYNC_PREWRITE);
1658 
1659 	for (i = 0; i < nsegs; i++) {
1660 		f = &rd->sk_tx_ring[frag];
1661 		f->sk_data_lo = htole32(SK_ADDR_LO(segs[i].ds_addr));
1662 		f->sk_data_hi = htole32(SK_ADDR_HI(segs[i].ds_addr));
1663 		sk_ctl = segs[i].ds_len | SK_OPCODE_DEFAULT;
1664 		if (i == 0)
1665 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1666 		else
1667 			sk_ctl |= SK_TXCTL_OWN;
1668 		f->sk_ctl = htole32(sk_ctl);
1669 		cur = frag;
1670 		SK_INC(frag, SK_TX_RING_CNT);
1671 	}
1672 
1673 	cd->sk_tx_mbuf[cur] = *m_head0;
1674 	/* Switch DMA map */
1675 	cd->sk_tx_dmap[*txidx] = cd->sk_tx_dmap[cur];
1676 	cd->sk_tx_dmap[cur] = map;
1677 
1678 	rd->sk_tx_ring[cur].sk_ctl |=
1679 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1680 	rd->sk_tx_ring[*txidx].sk_ctl |= htole32(SK_TXCTL_OWN);
1681 
1682 	sc_if->sk_cdata.sk_tx_cnt += nsegs;
1683 
1684 #ifdef SK_DEBUG
1685 	if (skdebug >= 2) {
1686 		struct sk_tx_desc *desc;
1687 		uint32_t idx;
1688 
1689 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1690 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1691 			sk_dump_txdesc(desc, idx);
1692 		}
1693 	}
1694 #endif
1695 
1696 	*txidx = frag;
1697 
1698 	DPRINTFN(2, ("sk_encap: completed successfully\n"));
1699 
1700 	return (0);
1701 }
1702 
1703 static void
1704 sk_start(struct ifnet *ifp)
1705 {
1706 	struct sk_if_softc *sc_if = ifp->if_softc;
1707 	struct sk_softc *sc = sc_if->sk_softc;
1708 	uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1709 	int trans = 0;
1710 
1711 	DPRINTFN(2, ("sk_start\n"));
1712 
1713 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1714 		return;
1715 
1716 	while (sc_if->sk_cdata.sk_tx_mbuf[idx] == NULL) {
1717 		struct mbuf *m_head;
1718 
1719 		if (SK_IS_OACTIVE(sc_if)) {
1720 			ifp->if_flags |= IFF_OACTIVE;
1721 			break;
1722 		}
1723 
1724 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1725 		if (m_head == NULL)
1726 			break;
1727 
1728 		/*
1729 		 * Pack the data into the transmit ring. If we
1730 		 * don't have room, set the OACTIVE flag and wait
1731 		 * for the NIC to drain the ring.
1732 		 */
1733 		if (sk_encap(sc_if, &m_head, &idx)) {
1734 			if (sc_if->sk_cdata.sk_tx_cnt == 0) {
1735 				continue;
1736 			} else {
1737 				ifp->if_flags |= IFF_OACTIVE;
1738 				break;
1739 			}
1740 		}
1741 
1742 		trans = 1;
1743 		BPF_MTAP(ifp, m_head);
1744 	}
1745 	if (!trans)
1746 		return;
1747 
1748 	/* Transmit */
1749 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1750 		sc_if->sk_cdata.sk_tx_prod = idx;
1751 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1752 
1753 		/* Set a timeout in case the chip goes out to lunch. */
1754 		ifp->if_timer = 5;
1755 	}
1756 }
1757 
1758 static void
1759 sk_watchdog(struct ifnet *ifp)
1760 {
1761 	struct sk_if_softc *sc_if = ifp->if_softc;
1762 
1763 	ASSERT_SERIALIZED(ifp->if_serializer);
1764 	/*
1765 	 * Reclaim first as there is a possibility of losing Tx completion
1766 	 * interrupts.
1767 	 */
1768 	sk_txeof(sc_if);
1769 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1770 		if_printf(&sc_if->arpcom.ac_if, "watchdog timeout\n");
1771 		ifp->if_oerrors++;
1772 		ifp->if_flags &= ~IFF_RUNNING;
1773 		sk_init(sc_if);
1774 	}
1775 }
1776 
1777 static void
1778 skc_shutdown(device_t dev)
1779 {
1780 	struct sk_softc *sc = device_get_softc(dev);
1781 
1782 	DPRINTFN(2, ("sk_shutdown\n"));
1783 
1784 	lwkt_serialize_enter(&sc->sk_serializer);
1785 
1786 	/* Turn off the 'driver is loaded' LED. */
1787 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1788 
1789 	/*
1790 	 * Reset the GEnesis controller. Doing this should also
1791 	 * assert the resets on the attached XMAC(s).
1792 	 */
1793 	sk_reset(sc);
1794 
1795 	lwkt_serialize_exit(&sc->sk_serializer);
1796 }
1797 
1798 static __inline int
1799 sk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
1800 {
1801 	if (sc->sk_type == SK_GENESIS) {
1802 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
1803 		    XM_RXSTAT_BYTES(stat) != len)
1804 			return (0);
1805 	} else {
1806 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1807 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1808 		    YU_RXSTAT_JABBER)) != 0 ||
1809 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1810 		    YU_RXSTAT_BYTES(stat) != len)
1811 			return (0);
1812 	}
1813 
1814 	return (1);
1815 }
1816 
1817 static void
1818 sk_rxeof(struct sk_if_softc *sc_if)
1819 {
1820 	struct sk_softc *sc = sc_if->sk_softc;
1821 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1822 	struct sk_chain_data *cd = &sc_if->sk_cdata;
1823 	struct sk_ring_data *rd = &sc_if->sk_rdata;
1824 	int i, reap, max_frmlen;
1825 
1826 	DPRINTFN(2, ("sk_rxeof\n"));
1827 
1828 	i = cd->sk_rx_prod;
1829 
1830 	if (sc_if->sk_use_jumbo)
1831 		max_frmlen = SK_JUMBO_FRAMELEN;
1832 	else
1833 		max_frmlen = ETHER_MAX_LEN;
1834 
1835 	reap = 0;
1836 	for (;;) {
1837 		struct sk_rx_desc *cur_desc;
1838 		uint32_t rxstat, sk_ctl;
1839 #ifdef SK_RXCSUM
1840 		uint16_t csum1, csum2;
1841 #endif
1842 		int cur, total_len;
1843 		struct mbuf *m;
1844 
1845 		cur = i;
1846 		cur_desc = &rd->sk_rx_ring[cur];
1847 
1848 		sk_ctl = le32toh(cur_desc->sk_ctl);
1849 		if (sk_ctl & SK_RXCTL_OWN) {
1850 			/* Invalidate the descriptor -- it's not ready yet */
1851 			cd->sk_rx_prod = cur;
1852 			break;
1853 		}
1854 
1855 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
1856 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
1857 
1858 #ifdef SK_RXCSUM
1859 		csum1 = le16toh(cur_desc->sk_csum1);
1860 		csum2 = le16toh(cur_desc->sk_csum2);
1861 #endif
1862 
1863 		m = cd->sk_rx_mbuf[cur];
1864 
1865 		/*
1866 		 * Bump 'i' here, so we can keep going, even if the current
1867 		 * RX descriptor reaping fails later.  'i' shoult NOT be used
1868 		 * in the following processing any more.
1869 		 */
1870 		SK_INC(i, SK_RX_RING_CNT);
1871 		reap = 1;
1872 
1873 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
1874 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
1875 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
1876 		    total_len < SK_MIN_FRAMELEN || total_len > max_frmlen ||
1877 		    sk_rxvalid(sc, rxstat, total_len) == 0) {
1878 			ifp->if_ierrors++;
1879 			cur_desc->sk_ctl = htole32(m->m_pkthdr.len | SK_RXSTAT);
1880 			continue;
1881 		}
1882 
1883 		/*
1884 		 * Try to allocate a new RX buffer. If that fails,
1885 		 * copy the packet to mbufs and put the RX buffer
1886 		 * back in the ring so it can be re-used. If
1887 		 * allocating mbufs fails, then we have to drop
1888 		 * the packet.
1889 		 */
1890 		if (sk_newbuf(sc_if, cur, 0)) {
1891 			ifp->if_ierrors++;
1892 			cur_desc->sk_ctl = htole32(m->m_pkthdr.len | SK_RXSTAT);
1893 			continue;
1894 		} else {
1895 			m->m_pkthdr.rcvif = ifp;
1896 			m->m_pkthdr.len = m->m_len = total_len;
1897 		}
1898 
1899 #ifdef SK_RXCSUM
1900 		sk_rxcsum(ifp, m, csum1, csum2);
1901 #endif
1902 
1903 		ifp->if_ipackets++;
1904 		ifp->if_input(ifp, m);
1905 	}
1906 }
1907 
1908 #ifdef SK_RXCSUM
1909 static void
1910 sk_rxcsum(struct ifnet *ifp, struct mbuf *m,
1911 	  const uint16_t csum1, const uint16_t csum2)
1912 {
1913 	struct ether_header *eh;
1914 	struct ip *ip;
1915 	uint8_t *pp;
1916 	int hlen, len, plen;
1917 	uint16_t iph_csum, ipo_csum, ipd_csum, csum;
1918 
1919 	pp = mtod(m, uint8_t *);
1920 	plen = m->m_pkthdr.len;
1921 	if (plen < sizeof(*eh))
1922 		return;
1923 	eh = (struct ether_header *)pp;
1924 	iph_csum = in_addword(csum1, (~csum2 & 0xffff));
1925 
1926 	if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1927 		uint16_t *xp = (uint16_t *)pp;
1928 
1929 		xp = (uint16_t *)pp;
1930 		if (xp[1] != htons(ETHERTYPE_IP))
1931 			return;
1932 		iph_csum = in_addword(iph_csum, (~xp[0] & 0xffff));
1933 		iph_csum = in_addword(iph_csum, (~xp[1] & 0xffff));
1934 		xp = (uint16_t *)(pp + sizeof(struct ip));
1935 		iph_csum = in_addword(iph_csum, xp[0]);
1936 		iph_csum = in_addword(iph_csum, xp[1]);
1937 		pp += EVL_ENCAPLEN;
1938 	} else if (eh->ether_type != htons(ETHERTYPE_IP)) {
1939 		return;
1940 	}
1941 
1942 	pp += sizeof(*eh);
1943 	plen -= sizeof(*eh);
1944 
1945 	ip = (struct ip *)pp;
1946 
1947 	if (ip->ip_v != IPVERSION)
1948 		return;
1949 
1950 	hlen = ip->ip_hl << 2;
1951 	if (hlen < sizeof(struct ip))
1952 		return;
1953 	if (hlen > ntohs(ip->ip_len))
1954 		return;
1955 
1956 	/* Don't deal with truncated or padded packets. */
1957 	if (plen != ntohs(ip->ip_len))
1958 		return;
1959 
1960 	len = hlen - sizeof(struct ip);
1961 	if (len > 0) {
1962 		uint16_t *p;
1963 
1964 		p = (uint16_t *)(ip + 1);
1965 		ipo_csum = 0;
1966 		for (ipo_csum = 0; len > 0; len -= sizeof(*p), p++)
1967 			ipo_csum = in_addword(ipo_csum, *p);
1968 		iph_csum = in_addword(iph_csum, ipo_csum);
1969 		ipd_csum = in_addword(csum2, (~ipo_csum & 0xffff));
1970 	} else {
1971 		ipd_csum = csum2;
1972 	}
1973 
1974 	if (iph_csum != 0xffff)
1975 		return;
1976 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID;
1977 
1978 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1979 		return;                 /* ip frag, we're done for now */
1980 
1981 	pp += hlen;
1982 
1983 	/* Only know checksum protocol for udp/tcp */
1984 	if (ip->ip_p == IPPROTO_UDP) {
1985 		struct udphdr *uh = (struct udphdr *)pp;
1986 
1987 		if (uh->uh_sum == 0)    /* udp with no checksum */
1988 			return;
1989 	} else if (ip->ip_p != IPPROTO_TCP) {
1990 		return;
1991 	}
1992 
1993 	csum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1994 	    htonl(ntohs(ip->ip_len) - hlen + ip->ip_p) + ipd_csum);
1995 	if (csum == 0xffff) {
1996 		m->m_pkthdr.csum_data = csum;
1997 		m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1998 	}
1999 }
2000 #endif
2001 
2002 static void
2003 sk_txeof(struct sk_if_softc *sc_if)
2004 {
2005 	struct sk_chain_data *cd = &sc_if->sk_cdata;
2006 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2007 	uint32_t idx;
2008 	int reap = 0;
2009 
2010 	DPRINTFN(2, ("sk_txeof\n"));
2011 
2012 	/*
2013 	 * Go through our tx ring and free mbufs for those
2014 	 * frames that have been sent.
2015 	 */
2016 	idx = cd->sk_tx_cons;
2017 	while (idx != cd->sk_tx_prod) {
2018 		struct sk_tx_desc *cur_tx;
2019 		uint32_t sk_ctl;
2020 
2021 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2022 		sk_ctl = le32toh(cur_tx->sk_ctl);
2023 #ifdef SK_DEBUG
2024 		if (skdebug >= 2)
2025 			sk_dump_txdesc(cur_tx, idx);
2026 #endif
2027 		if (sk_ctl & SK_TXCTL_OWN)
2028 			break;
2029 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2030 			ifp->if_opackets++;
2031 		if (cd->sk_tx_mbuf[idx] != NULL) {
2032 			bus_dmamap_unload(cd->sk_tx_dtag, cd->sk_tx_dmap[idx]);
2033 			m_freem(cd->sk_tx_mbuf[idx]);
2034 			cd->sk_tx_mbuf[idx] = NULL;
2035 		}
2036 		sc_if->sk_cdata.sk_tx_cnt--;
2037 		reap = 1;
2038 		SK_INC(idx, SK_TX_RING_CNT);
2039 	}
2040 
2041 	if (!SK_IS_OACTIVE(sc_if))
2042 		ifp->if_flags &= ~IFF_OACTIVE;
2043 
2044 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2045 		ifp->if_timer = 0;
2046 
2047 	sc_if->sk_cdata.sk_tx_cons = idx;
2048 }
2049 
2050 static void
2051 sk_tick(void *xsc_if)
2052 {
2053 	struct sk_if_softc *sc_if = xsc_if;
2054 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2055 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2056 	int i;
2057 
2058 	DPRINTFN(2, ("sk_tick\n"));
2059 
2060 	lwkt_serialize_enter(ifp->if_serializer);
2061 
2062 	if ((ifp->if_flags & IFF_UP) == 0) {
2063 		lwkt_serialize_exit(ifp->if_serializer);
2064 		return;
2065 	}
2066 
2067 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2068 		sk_intr_bcom(sc_if);
2069 		lwkt_serialize_exit(ifp->if_serializer);
2070 		return;
2071 	}
2072 
2073 	/*
2074 	 * According to SysKonnect, the correct way to verify that
2075 	 * the link has come back up is to poll bit 0 of the GPIO
2076 	 * register three times. This pin has the signal from the
2077 	 * link sync pin connected to it; if we read the same link
2078 	 * state 3 times in a row, we know the link is up.
2079 	 */
2080 	for (i = 0; i < 3; i++) {
2081 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2082 			break;
2083 	}
2084 
2085 	if (i != 3) {
2086 		callout_reset(&sc_if->sk_tick_timer, hz, sk_tick, sc_if);
2087 		lwkt_serialize_exit(ifp->if_serializer);
2088 		return;
2089 	}
2090 
2091 	/* Turn the GP0 interrupt back on. */
2092 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2093 	SK_XM_READ_2(sc_if, XM_ISR);
2094 	mii_tick(mii);
2095 	callout_stop(&sc_if->sk_tick_timer);
2096 	lwkt_serialize_exit(ifp->if_serializer);
2097 }
2098 
2099 static void
2100 sk_yukon_tick(void *xsc_if)
2101 {
2102 	struct sk_if_softc *sc_if = xsc_if;
2103 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2104 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2105 
2106 	lwkt_serialize_enter(ifp->if_serializer);
2107 	mii_tick(mii);
2108 	callout_reset(&sc_if->sk_tick_timer, hz, sk_yukon_tick, sc_if);
2109 	lwkt_serialize_exit(ifp->if_serializer);
2110 }
2111 
2112 static void
2113 sk_intr_bcom(struct sk_if_softc *sc_if)
2114 {
2115 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2116 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2117 	int status;
2118 
2119 	DPRINTFN(2, ("sk_intr_bcom\n"));
2120 
2121 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2122 
2123 	/*
2124 	 * Read the PHY interrupt register to make sure
2125 	 * we clear any pending interrupts.
2126 	 */
2127 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2128 
2129 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2130 		sk_init_xmac(sc_if);
2131 		return;
2132 	}
2133 
2134 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2135 		int lstat;
2136 
2137 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2138 		    BRGPHY_MII_AUXSTS);
2139 
2140 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2141 			mii_mediachg(mii);
2142 			/* Turn off the link LED. */
2143 			SK_IF_WRITE_1(sc_if, 0,
2144 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2145 			sc_if->sk_link = 0;
2146 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2147 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2148 			    BRGPHY_MII_IMR, 0xFF00);
2149 			mii_tick(mii);
2150 			sc_if->sk_link = 1;
2151 			/* Turn on the link LED. */
2152 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2153 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2154 			    SK_LINKLED_BLINK_OFF);
2155 		} else {
2156 			mii_tick(mii);
2157 			callout_reset(&sc_if->sk_tick_timer, hz,
2158 				      sk_tick, sc_if);
2159 		}
2160 	}
2161 
2162 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2163 }
2164 
2165 static void
2166 sk_intr_xmac(struct sk_if_softc *sc_if)
2167 {
2168 	uint16_t status;
2169 
2170 	status = SK_XM_READ_2(sc_if, XM_ISR);
2171 	DPRINTFN(2, ("sk_intr_xmac\n"));
2172 
2173 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC &&
2174 	    (status & (XM_ISR_GP0_SET | XM_ISR_AUTONEG_DONE))) {
2175 		if (status & XM_ISR_GP0_SET)
2176 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2177 
2178 		callout_reset(&sc_if->sk_tick_timer, hz,
2179 			      sk_tick, sc_if);
2180 	}
2181 
2182 	if (status & XM_IMR_TX_UNDERRUN)
2183 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2184 
2185 	if (status & XM_IMR_RX_OVERRUN)
2186 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2187 }
2188 
2189 static void
2190 sk_intr_yukon(struct sk_if_softc *sc_if)
2191 {
2192 	uint8_t status;
2193 
2194 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2195 	/* RX overrun */
2196 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2197 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2198 		    SK_RFCTL_RX_FIFO_OVER);
2199 	}
2200 	/* TX underrun */
2201 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2202 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2203 		    SK_TFCTL_TX_FIFO_UNDER);
2204 	}
2205 
2206 	DPRINTFN(2, ("sk_intr_yukon status=%#x\n", status));
2207 }
2208 
2209 static void
2210 sk_intr(void *xsc)
2211 {
2212 	struct sk_softc *sc = xsc;
2213 	struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2214 	struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2215 	struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2216 	uint32_t status;
2217 
2218 	ASSERT_SERIALIZED(&sc->sk_serializer);
2219 
2220 	status = CSR_READ_4(sc, SK_ISSR);
2221 	if (status == 0 || status == 0xffffffff)
2222 		return;
2223 
2224 	if (sc_if0 != NULL)
2225 		ifp0 = &sc_if0->arpcom.ac_if;
2226 	if (sc_if1 != NULL)
2227 		ifp1 = &sc_if1->arpcom.ac_if;
2228 
2229 	for (; (status &= sc->sk_intrmask) != 0;) {
2230 		/* Handle receive interrupts first. */
2231 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2232 			sk_rxeof(sc_if0);
2233 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2234 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2235 		}
2236 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2237 			sk_rxeof(sc_if1);
2238 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2239 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2240 		}
2241 
2242 		/* Then transmit interrupts. */
2243 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2244 			sk_txeof(sc_if0);
2245 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2246 			    SK_TXBMU_CLR_IRQ_EOF);
2247 		}
2248 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2249 			sk_txeof(sc_if1);
2250 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2251 			    SK_TXBMU_CLR_IRQ_EOF);
2252 		}
2253 
2254 		/* Then MAC interrupts. */
2255 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2256 		    (ifp0->if_flags & IFF_RUNNING)) {
2257 			if (SK_IS_GENESIS(sc))
2258 				sk_intr_xmac(sc_if0);
2259 			else
2260 				sk_intr_yukon(sc_if0);
2261 		}
2262 
2263 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2264 		    (ifp1->if_flags & IFF_RUNNING)) {
2265 			if (SK_IS_GENESIS(sc))
2266 				sk_intr_xmac(sc_if1);
2267 			else
2268 				sk_intr_yukon(sc_if1);
2269 		}
2270 
2271 		if (status & SK_ISR_EXTERNAL_REG) {
2272 			if (sc_if0 != NULL &&
2273 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2274 				sk_intr_bcom(sc_if0);
2275 
2276 			if (sc_if1 != NULL &&
2277 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2278 				sk_intr_bcom(sc_if1);
2279 		}
2280 		status = CSR_READ_4(sc, SK_ISSR);
2281 	}
2282 
2283 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2284 
2285 	if (ifp0 != NULL && !ifq_is_empty(&ifp0->if_snd))
2286 		if_devstart(ifp0);
2287 	if (ifp1 != NULL && !ifq_is_empty(&ifp1->if_snd))
2288 		if_devstart(ifp1);
2289 }
2290 
2291 static void
2292 sk_init_xmac(struct sk_if_softc	*sc_if)
2293 {
2294 	struct sk_softc *sc = sc_if->sk_softc;
2295 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2296 	static const struct sk_bcom_hack bhack[] = {
2297 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2298 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2299 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2300 	{ 0, 0 } };
2301 
2302 	DPRINTFN(2, ("sk_init_xmac\n"));
2303 
2304 	/* Unreset the XMAC. */
2305 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2306 	DELAY(1000);
2307 
2308 	/* Reset the XMAC's internal state. */
2309 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2310 
2311 	/* Save the XMAC II revision */
2312 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2313 
2314 	/*
2315 	 * Perform additional initialization for external PHYs,
2316 	 * namely for the 1000baseT cards that use the XMAC's
2317 	 * GMII mode.
2318 	 */
2319 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2320 		int i = 0;
2321 		uint32_t val;
2322 
2323 		/* Take PHY out of reset. */
2324 		val = sk_win_read_4(sc, SK_GPIO);
2325 		if (sc_if->sk_port == SK_PORT_A)
2326 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2327 		else
2328 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2329 		sk_win_write_4(sc, SK_GPIO, val);
2330 
2331 		/* Enable GMII mode on the XMAC. */
2332 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2333 
2334 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2335 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2336 		DELAY(10000);
2337 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2338 		    BRGPHY_MII_IMR, 0xFFF0);
2339 
2340 		/*
2341 		 * Early versions of the BCM5400 apparently have
2342 		 * a bug that requires them to have their reserved
2343 		 * registers initialized to some magic values. I don't
2344 		 * know what the numbers do, I'm just the messenger.
2345 		 */
2346 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2347 		    == 0x6041) {
2348 			while(bhack[i].reg) {
2349 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2350 				    bhack[i].reg, bhack[i].val);
2351 				i++;
2352 			}
2353 		}
2354 	}
2355 
2356 	/* Set station address */
2357 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2358 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2359 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2360 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2361 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2362 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2363 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2364 
2365 	if (ifp->if_flags & IFF_BROADCAST)
2366 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2367 	else
2368 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2369 
2370 	/* We don't need the FCS appended to the packet. */
2371 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2372 
2373 	/* We want short frames padded to 60 bytes. */
2374 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2375 
2376 	/*
2377 	 * Enable the reception of all error frames. This is
2378 	 * a necessary evil due to the design of the XMAC. The
2379 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2380 	 * frames can be up to 9000 bytes in length. When bad
2381 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2382 	 * in 'store and forward' mode. For this to work, the
2383 	 * entire frame has to fit into the FIFO, but that means
2384 	 * that jumbo frames larger than 8192 bytes will be
2385 	 * truncated. Disabling all bad frame filtering causes
2386 	 * the RX FIFO to operate in streaming mode, in which
2387 	 * case the XMAC will start transfering frames out of the
2388 	 * RX FIFO as soon as the FIFO threshold is reached.
2389 	 */
2390 	if (sc_if->sk_use_jumbo) {
2391 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2392 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2393 		    XM_MODE_RX_INRANGELEN);
2394 	}
2395 
2396 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2397 
2398 	/*
2399 	 * Bump up the transmit threshold. This helps hold off transmit
2400 	 * underruns when we're blasting traffic from both ports at once.
2401 	 */
2402 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2403 
2404 	/* Set promiscuous mode */
2405 	sk_setpromisc(sc_if);
2406 
2407 	/* Set multicast filter */
2408 	sk_setmulti(sc_if);
2409 
2410 	/* Clear and enable interrupts */
2411 	SK_XM_READ_2(sc_if, XM_ISR);
2412 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2413 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2414 	else
2415 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2416 
2417 	/* Configure MAC arbiter */
2418 	switch(sc_if->sk_xmac_rev) {
2419 	case XM_XMAC_REV_B2:
2420 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2421 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2422 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2423 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2424 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2425 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2426 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2427 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2428 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2429 		break;
2430 	case XM_XMAC_REV_C1:
2431 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2432 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2433 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2434 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2435 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2436 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2437 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2438 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2439 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2440 		break;
2441 	default:
2442 		break;
2443 	}
2444 	sk_win_write_2(sc, SK_MACARB_CTL,
2445 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2446 
2447 	sc_if->sk_link = 1;
2448 }
2449 
2450 static void
2451 sk_init_yukon(struct sk_if_softc *sc_if)
2452 {
2453 	uint32_t phy, v;
2454 	uint16_t reg;
2455 	struct sk_softc *sc;
2456 	int i;
2457 
2458 	sc = sc_if->sk_softc;
2459 
2460 	DPRINTFN(2, ("sk_init_yukon: start: sk_csr=%#x\n",
2461 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2462 
2463 	if (sc->sk_type == SK_YUKON_LITE &&
2464 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2465 		/*
2466 		 * Workaround code for COMA mode, set PHY reset.
2467 		 * Otherwise it will not correctly take chip out of
2468 		 * powerdown (coma)
2469 		 */
2470 		v = sk_win_read_4(sc, SK_GPIO);
2471 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
2472 		sk_win_write_4(sc, SK_GPIO, v);
2473 	}
2474 
2475 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2476 
2477 	/* GMAC and GPHY Reset */
2478 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2479 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2480 	DELAY(1000);
2481 
2482 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2483 
2484 	if (sc->sk_type == SK_YUKON_LITE &&
2485 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2486 		/*
2487 		 * Workaround code for COMA mode, clear PHY reset
2488 		 */
2489 		v = sk_win_read_4(sc, SK_GPIO);
2490 		v |= SK_GPIO_DIR9;
2491 		v &= ~SK_GPIO_DAT9;
2492 		sk_win_write_4(sc, SK_GPIO, v);
2493 	}
2494 
2495 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2496 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2497 
2498 	if (sc->sk_coppertype)
2499 		phy |= SK_GPHY_COPPER;
2500 	else
2501 		phy |= SK_GPHY_FIBER;
2502 
2503 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2504 
2505 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2506 	DELAY(1000);
2507 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2508 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2509 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2510 
2511 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2512 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2513 
2514 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2515 
2516 	/* unused read of the interrupt source register */
2517 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2518 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2519 
2520 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2521 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2522 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2523 
2524 	/* MIB Counter Clear Mode set */
2525 	reg |= YU_PAR_MIB_CLR;
2526 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2527 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2528 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2529 
2530 	/* MIB Counter Clear Mode clear */
2531 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2532 	reg &= ~YU_PAR_MIB_CLR;
2533 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2534 
2535 	/* receive control reg */
2536 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2537 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2538 
2539 	/* transmit parameter register */
2540 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2541 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2542 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2543 
2544 	/* serial mode register */
2545 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2546 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2547 	if (sc_if->sk_use_jumbo)
2548 		reg |= YU_SMR_MFL_JUMBO;
2549 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2550 
2551 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2552 	/* Setup Yukon's address */
2553 	for (i = 0; i < 3; i++) {
2554 		/* Write Source Address 1 (unicast filter) */
2555 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2556 			      sc_if->arpcom.ac_enaddr[i * 2] |
2557 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2558 	}
2559 
2560 	for (i = 0; i < 3; i++) {
2561 		reg = sk_win_read_2(sc_if->sk_softc,
2562 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2563 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2564 	}
2565 
2566 	/* Set promiscuous mode */
2567 	sk_setpromisc(sc_if);
2568 
2569 	/* Set multicast filter */
2570 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2571 	sk_setmulti(sc_if);
2572 
2573 	/* enable interrupt mask for counter overflows */
2574 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2575 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2576 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2577 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2578 
2579 	/* Configure RX MAC FIFO Flush Mask */
2580 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2581 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2582 	    YU_RXSTAT_JABBER;
2583 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2584 
2585 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
2586 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
2587 		v = SK_TFCTL_OPERATION_ON;
2588 	else
2589 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2590 	/* Configure RX MAC FIFO */
2591 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2592 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2593 
2594 	/* Increase flush threshould to 64 bytes */
2595 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2596 	    SK_RFCTL_FIFO_THRESHOLD + 1);
2597 
2598 	/* Configure TX MAC FIFO */
2599 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2600 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2601 
2602 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2603 }
2604 
2605 /*
2606  * Note that to properly initialize any part of the GEnesis chip,
2607  * you first have to take it out of reset mode.
2608  */
2609 static void
2610 sk_init(void *xsc_if)
2611 {
2612 	struct sk_if_softc *sc_if = xsc_if;
2613 	struct sk_softc *sc = sc_if->sk_softc;
2614 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2615 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2616 
2617 	DPRINTFN(2, ("sk_init\n"));
2618 
2619 	ASSERT_SERIALIZED(ifp->if_serializer);
2620 
2621 	if (ifp->if_flags & IFF_RUNNING)
2622 		return;
2623 
2624 	/* Cancel pending I/O and free all RX/TX buffers. */
2625 	sk_stop(sc_if);
2626 
2627 	/*
2628 	 * NOTE: Change sk_use_jumbo after sk_stop(),
2629 	 *       but before real initialization.
2630 	 */
2631 	if (ifp->if_mtu > ETHER_MAX_LEN)
2632 		sc_if->sk_use_jumbo = 1;
2633 	else
2634 		sc_if->sk_use_jumbo = 0;
2635 	DPRINTF(("use jumbo buffer: %s\n", sc_if->sk_use_jumbo ? "YES" : "NO"));
2636 
2637 	if (SK_IS_GENESIS(sc)) {
2638 		/* Configure LINK_SYNC LED */
2639 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2640 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2641 			SK_LINKLED_LINKSYNC_ON);
2642 
2643 		/* Configure RX LED */
2644 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2645 			SK_RXLEDCTL_COUNTER_START);
2646 
2647 		/* Configure TX LED */
2648 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2649 			SK_TXLEDCTL_COUNTER_START);
2650 	}
2651 
2652 	/*
2653 	 * Configure descriptor poll timer
2654 	 *
2655 	 * SK-NET GENESIS data sheet says that possibility of losing Start
2656 	 * transmit command due to CPU/cache related interim storage problems
2657 	 * under certain conditions. The document recommends a polling
2658 	 * mechanism to send a Start transmit command to initiate transfer
2659 	 * of ready descriptors regulary. To cope with this issue sk(4) now
2660 	 * enables descriptor poll timer to initiate descriptor processing
2661 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
2662 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
2663 	 * command instead of waiting for next descriptor polling time.
2664 	 * The same rule may apply to Rx side too but it seems that is not
2665 	 * needed at the moment.
2666 	 * Since sk(4) uses descriptor polling as a last resort there is no
2667 	 * need to set smaller polling time than maximum allowable one.
2668 	 */
2669 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
2670 
2671 	/* Configure I2C registers */
2672 
2673 	/* Configure XMAC(s) */
2674 	switch (sc->sk_type) {
2675 	case SK_GENESIS:
2676 		sk_init_xmac(sc_if);
2677 		break;
2678 	case SK_YUKON:
2679 	case SK_YUKON_LITE:
2680 	case SK_YUKON_LP:
2681 		sk_init_yukon(sc_if);
2682 		break;
2683 	}
2684 	mii_mediachg(mii);
2685 
2686 	if (SK_IS_GENESIS(sc)) {
2687 		/* Configure MAC FIFOs */
2688 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2689 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2690 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2691 
2692 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2693 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2694 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2695 	}
2696 
2697 	/* Configure transmit arbiter(s) */
2698 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2699 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2700 
2701 	/* Configure RAMbuffers */
2702 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2703 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2704 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2705 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2706 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2707 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2708 
2709 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2710 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2711 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2712 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2713 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2714 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2715 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2716 
2717 	/* Configure BMUs */
2718 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2719 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2720 		      SK_ADDR_LO(sc_if->sk_rdata.sk_rx_ring_paddr));
2721 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
2722 		      SK_ADDR_HI(sc_if->sk_rdata.sk_rx_ring_paddr));
2723 
2724 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2725 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2726 		      SK_ADDR_LO(sc_if->sk_rdata.sk_tx_ring_paddr));
2727 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
2728 		      SK_ADDR_HI(sc_if->sk_rdata.sk_tx_ring_paddr));
2729 
2730 	/* Init descriptors */
2731 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2732 		if_printf(ifp, "initialization failed: "
2733 			  "no memory for rx buffers\n");
2734 		sk_stop(sc_if);
2735 		return;
2736 	}
2737 
2738 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2739 		if_printf(ifp, "initialization failed: "
2740 			  "no memory for tx buffers\n");
2741 		sk_stop(sc_if);
2742 		return;
2743 	}
2744 
2745 	/* Configure interrupt handling */
2746 	CSR_READ_4(sc, SK_ISSR);
2747 	if (sc_if->sk_port == SK_PORT_A)
2748 		sc->sk_intrmask |= SK_INTRS1;
2749 	else
2750 		sc->sk_intrmask |= SK_INTRS2;
2751 
2752 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2753 
2754 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2755 
2756 	/* Start BMUs. */
2757 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2758 
2759 	if (SK_IS_GENESIS(sc)) {
2760 		/* Enable XMACs TX and RX state machines */
2761 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2762 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2763 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2764 	}
2765 
2766 	if (SK_IS_YUKON(sc)) {
2767 		uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2768 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2769 #if 0
2770 		/* XXX disable 100Mbps and full duplex mode? */
2771 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
2772 #endif
2773 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2774 	}
2775 
2776 	/* Activate descriptor polling timer */
2777 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
2778 	/* Start transfer of Tx descriptors */
2779 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2780 
2781 	ifp->if_flags |= IFF_RUNNING;
2782 	ifp->if_flags &= ~IFF_OACTIVE;
2783 
2784 	if (SK_IS_YUKON(sc))
2785 		callout_reset(&sc_if->sk_tick_timer, hz, sk_yukon_tick, sc_if);
2786 }
2787 
2788 static void
2789 sk_stop(struct sk_if_softc *sc_if)
2790 {
2791 	struct sk_softc *sc = sc_if->sk_softc;
2792 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2793 	struct sk_chain_data *cd = &sc_if->sk_cdata;
2794 	uint32_t val;
2795 	int i;
2796 
2797 	ASSERT_SERIALIZED(ifp->if_serializer);
2798 
2799 	DPRINTFN(2, ("sk_stop\n"));
2800 
2801 	callout_stop(&sc_if->sk_tick_timer);
2802 
2803 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2804 
2805 	/* Stop Tx descriptor polling timer */
2806 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
2807 
2808 	/* Stop transfer of Tx descriptors */
2809 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
2810 	for (i = 0; i < SK_TIMEOUT; i++) {
2811 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
2812 		if (!(val & SK_TXBMU_TX_STOP))
2813 			break;
2814 		DELAY(1);
2815 	}
2816 	if (i == SK_TIMEOUT)
2817 		if_printf(ifp, "cannot stop transfer of Tx descriptors\n");
2818 
2819 	/* Stop transfer of Rx descriptors */
2820 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
2821 	for (i = 0; i < SK_TIMEOUT; i++) {
2822 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
2823 		if (!(val & SK_RXBMU_RX_STOP))
2824 			break;
2825 		DELAY(1);
2826 	}
2827 	if (i == SK_TIMEOUT)
2828 		if_printf(ifp, "cannot stop transfer of Rx descriptors\n");
2829 
2830 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2831 		/* Put PHY back into reset. */
2832 		val = sk_win_read_4(sc, SK_GPIO);
2833 		if (sc_if->sk_port == SK_PORT_A) {
2834 			val |= SK_GPIO_DIR0;
2835 			val &= ~SK_GPIO_DAT0;
2836 		} else {
2837 			val |= SK_GPIO_DIR2;
2838 			val &= ~SK_GPIO_DAT2;
2839 		}
2840 		sk_win_write_4(sc, SK_GPIO, val);
2841 	}
2842 
2843 	/* Turn off various components of this interface. */
2844 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2845 	switch (sc->sk_type) {
2846 	case SK_GENESIS:
2847 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2848 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2849 		break;
2850 	case SK_YUKON:
2851 	case SK_YUKON_LITE:
2852 	case SK_YUKON_LP:
2853 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2854 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2855 		break;
2856 	}
2857 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2858 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2859 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2860 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST,
2861 	    SK_RBCTL_RESET | SK_RBCTL_OFF);
2862 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2863 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2864 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2865 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2866 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2867 
2868 	/* Disable interrupts */
2869 	if (sc_if->sk_port == SK_PORT_A)
2870 		sc->sk_intrmask &= ~SK_INTRS1;
2871 	else
2872 		sc->sk_intrmask &= ~SK_INTRS2;
2873 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2874 
2875 	SK_XM_READ_2(sc_if, XM_ISR);
2876 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2877 
2878 	/* Free RX and TX mbufs still in the queues. */
2879 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2880 		if (cd->sk_rx_mbuf[i] != NULL) {
2881 			if (!sc_if->sk_use_jumbo) {
2882 				bus_dmamap_unload(cd->sk_rx_dtag,
2883 						  cd->sk_rx_dmap[i]);
2884 			}
2885 			m_freem(cd->sk_rx_mbuf[i]);
2886 			cd->sk_rx_mbuf[i] = NULL;
2887 		}
2888 	}
2889 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2890 		if (cd->sk_tx_mbuf[i] != NULL) {
2891 			bus_dmamap_unload(cd->sk_tx_dtag, cd->sk_tx_dmap[i]);
2892 			m_freem(cd->sk_tx_mbuf[i]);
2893 			cd->sk_tx_mbuf[i] = NULL;
2894 		}
2895 	}
2896 }
2897 
2898 #ifdef SK_DEBUG
2899 static void
2900 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2901 {
2902 #define DESC_PRINT(X)					\
2903 	if (X)					\
2904 		kprintf("txdesc[%d]." #X "=%#x\n",	\
2905 		       idx, X);
2906 
2907 	DESC_PRINT(le32toh(desc->sk_ctl));
2908 	DESC_PRINT(le32toh(desc->sk_next));
2909 	DESC_PRINT(le32toh(desc->sk_data_lo));
2910 	DESC_PRINT(le32toh(desc->sk_data_hi));
2911 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2912 	DESC_PRINT(le16toh(desc->sk_rsvd0));
2913 	DESC_PRINT(le16toh(desc->sk_csum_startval));
2914 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
2915 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
2916 	DESC_PRINT(le16toh(desc->sk_rsvd1));
2917 #undef PRINT
2918 }
2919 
2920 static void
2921 sk_dump_bytes(const char *data, int len)
2922 {
2923 	int c, i, j;
2924 
2925 	for (i = 0; i < len; i += 16) {
2926 		kprintf("%08x  ", i);
2927 		c = len - i;
2928 		if (c > 16) c = 16;
2929 
2930 		for (j = 0; j < c; j++) {
2931 			kprintf("%02x ", data[i + j] & 0xff);
2932 			if ((j & 0xf) == 7 && j > 0)
2933 				kprintf(" ");
2934 		}
2935 
2936 		for (; j < 16; j++)
2937 			kprintf("   ");
2938 		kprintf("  ");
2939 
2940 		for (j = 0; j < c; j++) {
2941 			int ch = data[i + j] & 0xff;
2942 			kprintf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2943 		}
2944 
2945 		kprintf("\n");
2946 
2947 		if (c < 16)
2948 			break;
2949 	}
2950 }
2951 
2952 static void
2953 sk_dump_mbuf(struct mbuf *m)
2954 {
2955 	int count = m->m_pkthdr.len;
2956 
2957 	kprintf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2958 
2959 	while (count > 0 && m) {
2960 		kprintf("m=%p, m->m_data=%p, m->m_len=%d\n",
2961 		       m, m->m_data, m->m_len);
2962 		sk_dump_bytes(mtod(m, char *), m->m_len);
2963 
2964 		count -= m->m_len;
2965 		m = m->m_next;
2966 	}
2967 }
2968 #endif
2969 
2970 /*
2971  * Allocate jumbo buffer storage. The SysKonnect adapters support
2972  * "jumbograms" (9K frames), although SysKonnect doesn't currently
2973  * use them in their drivers. In order for us to use them, we need
2974  * large 9K receive buffers, however standard mbuf clusters are only
2975  * 2048 bytes in size. Consequently, we need to allocate and manage
2976  * our own jumbo buffer pool. Fortunately, this does not require an
2977  * excessive amount of additional code.
2978  */
2979 static int
2980 sk_jpool_alloc(device_t dev)
2981 {
2982 	struct sk_if_softc *sc_if = device_get_softc(dev);
2983 	struct sk_chain_data *cd = &sc_if->sk_cdata;
2984 	bus_dmamem_t dmem;
2985 	bus_addr_t paddr;
2986 	caddr_t buf;
2987 	int error, i;
2988 
2989 	lwkt_serialize_init(&cd->sk_jpool_serializer);
2990 
2991 	error = bus_dmamem_coherent(cd->sk_buf_dtag, PAGE_SIZE /* XXX */, 0,
2992 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2993 				    SK_JMEM, BUS_DMA_WAITOK, &dmem);
2994 	if (error) {
2995 		device_printf(dev, "can't allocate jumbo frame pool\n");
2996 		return error;
2997 	}
2998 	cd->sk_jpool_dtag = dmem.dmem_tag;
2999 	cd->sk_jpool_dmap = dmem.dmem_map;
3000 	cd->sk_jpool = dmem.dmem_addr;
3001 	paddr = dmem.dmem_busaddr;
3002 
3003 	SLIST_INIT(&cd->sk_jpool_free_ent);
3004 	buf = cd->sk_jpool;
3005 
3006 	/*
3007 	 * Now divide it up into SK_JLEN pieces.
3008 	 */
3009 	for (i = 0; i < SK_JSLOTS; i++) {
3010 		struct sk_jpool_entry *entry = &cd->sk_jpool_ent[i];
3011 
3012 		entry->sc_if = sc_if;
3013 		entry->inuse = 0;
3014 		entry->slot = i;
3015 		entry->buf = buf;
3016 		entry->paddr = paddr;
3017 
3018 		SLIST_INSERT_HEAD(&cd->sk_jpool_free_ent, entry, entry_next);
3019 
3020 		buf += SK_JLEN;
3021 		paddr += SK_JLEN;
3022 	}
3023 	return 0;
3024 }
3025 
3026 static void
3027 sk_jpool_free(struct sk_if_softc *sc_if)
3028 {
3029 	struct sk_chain_data *cd = &sc_if->sk_cdata;
3030 
3031 	if (cd->sk_jpool_dtag != NULL) {
3032 		bus_dmamap_unload(cd->sk_jpool_dtag, cd->sk_jpool_dmap);
3033 		bus_dmamem_free(cd->sk_jpool_dtag, cd->sk_jpool,
3034 				cd->sk_jpool_dmap);
3035 		bus_dma_tag_destroy(cd->sk_jpool_dtag);
3036 		cd->sk_jpool_dtag = NULL;
3037 	}
3038 }
3039 
3040 static int
3041 sk_dma_alloc(device_t dev)
3042 {
3043 	struct sk_if_softc *sc_if = device_get_softc(dev);
3044 	struct sk_chain_data *cd = &sc_if->sk_cdata;
3045 	struct sk_ring_data *rd = &sc_if->sk_rdata;
3046 	bus_dmamem_t dmem;
3047 	int i, j, error;
3048 
3049 	/* Create parent DMA tag */
3050 	error = bus_dma_tag_create(NULL, 1, 0,
3051 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3052 				   NULL, NULL,
3053 				   BUS_SPACE_MAXSIZE_32BIT, 0,
3054 				   BUS_SPACE_MAXSIZE_32BIT,
3055 				   0, &sc_if->sk_parent_dtag);
3056 	if (error) {
3057 		device_printf(dev, "can't create parent DMA tag\n");
3058 		return error;
3059 	}
3060 
3061 	/* Create top level ring DMA tag */
3062 	error = bus_dma_tag_create(sc_if->sk_parent_dtag,
3063 				   1, SK_RING_BOUNDARY,
3064 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3065 				   NULL, NULL,
3066 				   BUS_SPACE_MAXSIZE_32BIT, 0,
3067 				   BUS_SPACE_MAXSIZE_32BIT,
3068 				   0, &rd->sk_ring_dtag);
3069 	if (error) {
3070 		device_printf(dev, "can't create ring DMA tag\n");
3071 		return error;
3072 	}
3073 
3074 	/* Create top level buffer DMA tag */
3075 	error = bus_dma_tag_create(sc_if->sk_parent_dtag, 1, 0,
3076 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3077 				   NULL, NULL,
3078 				   BUS_SPACE_MAXSIZE_32BIT, 0,
3079 				   BUS_SPACE_MAXSIZE_32BIT,
3080 				   0, &cd->sk_buf_dtag);
3081 	if (error) {
3082 		device_printf(dev, "can't create buf DMA tag\n");
3083 		return error;
3084 	}
3085 
3086 	/* Allocate the TX descriptor queue. */
3087 	error = bus_dmamem_coherent(rd->sk_ring_dtag, SK_RING_ALIGN, 0,
3088 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3089 				    SK_TX_RING_SIZE,
3090 				    BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3091 	if (error) {
3092 		device_printf(dev, "can't allocate TX ring\n");
3093 		return error;
3094 	}
3095 	rd->sk_tx_ring_dtag = dmem.dmem_tag;
3096 	rd->sk_tx_ring_dmap = dmem.dmem_map;
3097 	rd->sk_tx_ring = dmem.dmem_addr;
3098 	rd->sk_tx_ring_paddr = dmem.dmem_busaddr;
3099 
3100 	/* Allocate the RX descriptor queue. */
3101 	error = bus_dmamem_coherent(rd->sk_ring_dtag, SK_RING_ALIGN, 0,
3102 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3103 				    SK_RX_RING_SIZE,
3104 				    BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3105 	if (error) {
3106 		device_printf(dev, "can't allocate TX ring\n");
3107 		return error;
3108 	}
3109 	rd->sk_rx_ring_dtag = dmem.dmem_tag;
3110 	rd->sk_rx_ring_dmap = dmem.dmem_map;
3111 	rd->sk_rx_ring = dmem.dmem_addr;
3112 	rd->sk_rx_ring_paddr = dmem.dmem_busaddr;
3113 
3114 	/* Try to allocate memory for jumbo buffers. */
3115 	error = sk_jpool_alloc(dev);
3116 	if (error) {
3117 		device_printf(dev, "jumbo buffer allocation failed\n");
3118 		return error;
3119 	}
3120 
3121 	/* Create DMA tag for TX. */
3122 	error = bus_dma_tag_create(cd->sk_buf_dtag, 1, 0,
3123 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3124 				   NULL, NULL,
3125 				   SK_JLEN, SK_NTXSEG, SK_JLEN,
3126 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
3127 				   BUS_DMA_ONEBPAGE,
3128 				   &cd->sk_tx_dtag);
3129 	if (error) {
3130 		device_printf(dev, "can't create TX DMA tag\n");
3131 		return error;
3132 	}
3133 
3134 	/* Create DMA maps for TX. */
3135 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3136 		error = bus_dmamap_create(cd->sk_tx_dtag,
3137 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
3138 					  &cd->sk_tx_dmap[i]);
3139 		if (error) {
3140 			device_printf(dev, "can't create %dth TX DMA map\n", i);
3141 
3142 			for (j = 0; j < i; ++j) {
3143 				bus_dmamap_destroy(cd->sk_tx_dtag,
3144 						   cd->sk_tx_dmap[i]);
3145 			}
3146 			bus_dma_tag_destroy(cd->sk_tx_dtag);
3147 			cd->sk_tx_dtag = NULL;
3148 			return error;
3149 		}
3150 	}
3151 
3152 	/* Create DMA tag for RX. */
3153 	error = bus_dma_tag_create(cd->sk_buf_dtag, 1, 0,
3154 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3155 				   NULL, NULL,
3156 				   MCLBYTES, 1, MCLBYTES,
3157 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
3158 				   &cd->sk_rx_dtag);
3159 	if (error) {
3160 		device_printf(dev, "can't create RX DMA tag\n");
3161 		return error;
3162 	}
3163 
3164 	/* Create a spare RX DMA map. */
3165 	error = bus_dmamap_create(cd->sk_rx_dtag, BUS_DMA_WAITOK,
3166 				  &cd->sk_rx_dmap_tmp);
3167 	if (error) {
3168 		device_printf(dev, "can't create spare RX DMA map\n");
3169 		bus_dma_tag_destroy(cd->sk_rx_dtag);
3170 		cd->sk_rx_dtag = NULL;
3171 		return error;
3172 	}
3173 
3174 	/* Create DMA maps for RX. */
3175 	for (i = 0; i < SK_RX_RING_CNT; ++i) {
3176 		error = bus_dmamap_create(cd->sk_rx_dtag, BUS_DMA_WAITOK,
3177 					  &cd->sk_rx_dmap[i]);
3178 		if (error) {
3179 			device_printf(dev, "can't create %dth RX DMA map\n", i);
3180 
3181 			for (j = 0; j < i; ++j) {
3182 				bus_dmamap_destroy(cd->sk_rx_dtag,
3183 						   cd->sk_rx_dmap[i]);
3184 			}
3185 			bus_dmamap_destroy(cd->sk_rx_dtag, cd->sk_rx_dmap_tmp);
3186 			bus_dma_tag_destroy(cd->sk_rx_dtag);
3187 			cd->sk_rx_dtag = NULL;
3188 			return error;
3189 		}
3190 	}
3191 	return 0;
3192 }
3193 
3194 static void
3195 sk_dma_free(device_t dev)
3196 {
3197 	struct sk_if_softc *sc_if = device_get_softc(dev);
3198 	struct sk_chain_data *cd = &sc_if->sk_cdata;
3199 	struct sk_ring_data *rd = &sc_if->sk_rdata;
3200 	int i;
3201 
3202 	if (cd->sk_tx_dtag != NULL) {
3203 		for (i = 0; i < SK_TX_RING_CNT; ++i) {
3204 			KASSERT(cd->sk_tx_mbuf[i] == NULL,
3205 				("sk_stop() is not called before %s()",
3206 				 __func__));
3207 			bus_dmamap_destroy(cd->sk_tx_dtag, cd->sk_tx_dmap[i]);
3208 		}
3209 		bus_dma_tag_destroy(cd->sk_tx_dtag);
3210 	}
3211 
3212 	if (cd->sk_rx_dtag != NULL) {
3213 		for (i = 0; i < SK_RX_RING_CNT; ++i) {
3214 			KASSERT(cd->sk_rx_mbuf[i] == NULL,
3215 				("sk_stop() is not called before %s()",
3216 				 __func__));
3217 			bus_dmamap_destroy(cd->sk_rx_dtag, cd->sk_rx_dmap[i]);
3218 		}
3219 		bus_dmamap_destroy(cd->sk_rx_dtag, cd->sk_rx_dmap_tmp);
3220 		bus_dma_tag_destroy(cd->sk_rx_dtag);
3221 	}
3222 
3223 	sk_jpool_free(sc_if);
3224 
3225 	if (rd->sk_rx_ring_dtag != NULL) {
3226 		bus_dmamap_unload(rd->sk_rx_ring_dtag, rd->sk_rx_ring_dmap);
3227 		bus_dmamem_free(rd->sk_rx_ring_dtag, rd->sk_rx_ring,
3228 				rd->sk_rx_ring_dmap);
3229 		bus_dma_tag_destroy(rd->sk_rx_ring_dtag);
3230 	}
3231 
3232 	if (rd->sk_tx_ring_dtag != NULL) {
3233 		bus_dmamap_unload(rd->sk_tx_ring_dtag, rd->sk_tx_ring_dmap);
3234 		bus_dmamem_free(rd->sk_tx_ring_dtag, rd->sk_tx_ring,
3235 				rd->sk_tx_ring_dmap);
3236 		bus_dma_tag_destroy(rd->sk_tx_ring_dtag);
3237 	}
3238 
3239 	if (rd->sk_ring_dtag != NULL)
3240 		bus_dma_tag_destroy(rd->sk_ring_dtag);
3241 	if (cd->sk_buf_dtag != NULL)
3242 		bus_dma_tag_destroy(cd->sk_buf_dtag);
3243 	if (sc_if->sk_parent_dtag != NULL)
3244 		bus_dma_tag_destroy(sc_if->sk_parent_dtag);
3245 }
3246 
3247 static int
3248 skc_sysctl_imtime(SYSCTL_HANDLER_ARGS)
3249 {
3250 	struct sk_softc *sc = arg1;
3251 	struct lwkt_serialize *slize = &sc->sk_serializer;
3252 	int error = 0, v;
3253 
3254 	lwkt_serialize_enter(slize);
3255 
3256 	v = sc->sk_imtime;
3257 	error = sysctl_handle_int(oidp, &v, 0, req);
3258 	if (error || req->newptr == NULL)
3259 		goto back;
3260 	if (v <= 0) {
3261 		error = EINVAL;
3262 		goto back;
3263 	}
3264 
3265 	if (sc->sk_imtime != v) {
3266 		sc->sk_imtime = v;
3267 		sk_win_write_4(sc, SK_IMTIMERINIT,
3268 			       SK_IM_USECS(sc, sc->sk_imtime));
3269 
3270 		/*
3271 		 * Force interrupt moderation timer to
3272 		 * reload new value.
3273 		 */
3274 		sk_win_write_4(sc, SK_IMTIMER, 0);
3275 	}
3276 back:
3277 	lwkt_serialize_exit(slize);
3278 	return error;
3279 }
3280