xref: /dragonfly/sys/dev/netif/sk/if_sk.c (revision 49781055)
1 /*
2  * Copyright (c) 1997, 1998, 1999, 2000
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $
33  * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $
34  * $DragonFly: src/sys/dev/netif/sk/if_sk.c,v 1.42 2005/12/31 14:08:00 sephe Exp $
35  */
36 
37 /*
38  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
39  *
40  * Permission to use, copy, modify, and distribute this software for any
41  * purpose with or without fee is hereby granted, provided that the above
42  * copyright notice and this permission notice appear in all copies.
43  *
44  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
45  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
46  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
47  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
48  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
49  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
50  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
51  */
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 
72 /*
73  * The SysKonnect gigabit ethernet adapters consist of two main
74  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
75  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
76  * components and a PHY while the GEnesis controller provides a PCI
77  * interface with DMA support. Each card may have between 512K and
78  * 2MB of SRAM on board depending on the configuration.
79  *
80  * The SysKonnect GEnesis controller can have either one or two XMAC
81  * chips connected to it, allowing single or dual port NIC configurations.
82  * SysKonnect has the distinction of being the only vendor on the market
83  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
84  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
85  * XMAC registers. This driver takes advantage of these features to allow
86  * both XMACs to operate as independent interfaces.
87  */
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/queue.h>
97 #include <sys/serialize.h>
98 #include <sys/thread2.h>
99 
100 #include <net/if.h>
101 #include <net/ifq_var.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 
107 #include <net/bpf.h>
108 
109 #include <vm/vm.h>              /* for vtophys */
110 #include <vm/pmap.h>            /* for vtophys */
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #include <dev/netif/mii_layer/mii.h>
117 #include <dev/netif/mii_layer/miivar.h>
118 #include <dev/netif/mii_layer/brgphyreg.h>
119 
120 #include <bus/pci/pcireg.h>
121 #include <bus/pci/pcivar.h>
122 
123 #if 0
124 #define SK_USEIOSPACE
125 #endif
126 
127 #include "if_skreg.h"
128 #include "xmaciireg.h"
129 #include "yukonreg.h"
130 
131 /* "controller miibus0" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 static struct sk_type sk_devs[] = {
135 	{ VENDORID_SK, DEVICEID_SK_V1,
136 	  "SysKonnect Gigabit Ethernet (V1.0)" },
137 	{ VENDORID_SK, DEVICEID_SK_V2,
138 	  "SysKonnect Gigabit Ethernet (V2.0)" },
139 	{ VENDORID_MARVELL, DEVICEID_SK_V2,
140 	  "Marvell Gigabit Ethernet" },
141 	{ VENDORID_3COM, DEVICEID_3COM_3C940,
142 	  "3Com 3C940 Gigabit Ethernet" },
143 	{ VENDORID_LINKSYS, DEVICEID_LINKSYS_EG1032,
144 	  "Linksys EG1032 Gigabit Ethernet" },
145 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE530T,
146 	  "D-Link DGE-530T Gigabit Ethernet" },
147 	{ 0, 0, NULL }
148 };
149 
150 static int	skc_probe(device_t);
151 static int	skc_attach(device_t);
152 static int	skc_detach(device_t);
153 static void	skc_shutdown(device_t);
154 static int	sk_probe(device_t);
155 static int	sk_attach(device_t);
156 static int	sk_detach(device_t);
157 static void	sk_tick(void *);
158 static void	sk_intr(void *);
159 static void	sk_intr_bcom(struct sk_if_softc *);
160 static void	sk_intr_xmac(struct sk_if_softc *);
161 static void	sk_intr_yukon(struct sk_if_softc *);
162 static void	sk_rxeof(struct sk_if_softc *);
163 static void	sk_txeof(struct sk_if_softc *);
164 static int	sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
165 static void	sk_start(struct ifnet *);
166 static int	sk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
167 static void	sk_init(void *);
168 static void	sk_init_xmac(struct sk_if_softc *);
169 static void	sk_init_yukon(struct sk_if_softc *);
170 static void	sk_stop(struct sk_if_softc *);
171 static void	sk_watchdog(struct ifnet *);
172 static int	sk_ifmedia_upd(struct ifnet *);
173 static void	sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
174 static void	sk_reset(struct sk_softc *);
175 static int	sk_newbuf(struct sk_if_softc *, struct sk_chain *,
176 			  struct mbuf *);
177 static int	sk_alloc_jumbo_mem(struct sk_if_softc *);
178 static struct sk_jslot
179 		*sk_jalloc(struct sk_if_softc *);
180 static void	sk_jfree(void *);
181 static void	sk_jref(void *);
182 static int	sk_init_rx_ring(struct sk_if_softc *);
183 static void	sk_init_tx_ring(struct sk_if_softc *);
184 static uint32_t	sk_win_read_4(struct sk_softc *, int);
185 static uint16_t	sk_win_read_2(struct sk_softc *, int);
186 static uint8_t	sk_win_read_1(struct sk_softc *, int);
187 static void	sk_win_write_4(struct sk_softc *, int, uint32_t);
188 static void	sk_win_write_2(struct sk_softc *, int, uint32_t);
189 static void	sk_win_write_1(struct sk_softc *, int, uint32_t);
190 static uint8_t	sk_vpd_readbyte(struct sk_softc *, int);
191 static void	sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
192 static void	sk_vpd_read(struct sk_softc *);
193 
194 static int	sk_miibus_readreg(device_t, int, int);
195 static int	sk_miibus_writereg(device_t, int, int, int);
196 static void	sk_miibus_statchg(device_t);
197 
198 static int	sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
199 static int	sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, int);
200 static void	sk_xmac_miibus_statchg(struct sk_if_softc *);
201 
202 static int	sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
203 static int	sk_marv_miibus_writereg(struct sk_if_softc *, int, int, int);
204 static void	sk_marv_miibus_statchg(struct sk_if_softc *);
205 
206 static void	sk_setfilt(struct sk_if_softc *, caddr_t, int);
207 static void	sk_setmulti(struct sk_if_softc *);
208 static void	sk_setpromisc(struct sk_if_softc *);
209 
210 #ifdef SK_USEIOSPACE
211 #define SK_RES		SYS_RES_IOPORT
212 #define SK_RID		SK_PCI_LOIO
213 #else
214 #define SK_RES		SYS_RES_MEMORY
215 #define SK_RID		SK_PCI_LOMEM
216 #endif
217 
218 /*
219  * Note that we have newbus methods for both the GEnesis controller
220  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
221  * the miibus code is a child of the XMACs. We need to do it this way
222  * so that the miibus drivers can access the PHY registers on the
223  * right PHY. It's not quite what I had in mind, but it's the only
224  * design that achieves the desired effect.
225  */
226 static device_method_t skc_methods[] = {
227 	/* Device interface */
228 	DEVMETHOD(device_probe,		skc_probe),
229 	DEVMETHOD(device_attach,	skc_attach),
230 	DEVMETHOD(device_detach,	skc_detach),
231 	DEVMETHOD(device_shutdown,	skc_shutdown),
232 
233 	/* bus interface */
234 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
235 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
236 
237 	{ 0, 0 }
238 };
239 
240 static DEFINE_CLASS_0(skc, skc_driver, skc_methods, sizeof(struct sk_softc));
241 static devclass_t skc_devclass;
242 
243 static device_method_t sk_methods[] = {
244 	/* Device interface */
245 	DEVMETHOD(device_probe,		sk_probe),
246 	DEVMETHOD(device_attach,	sk_attach),
247 	DEVMETHOD(device_detach,	sk_detach),
248 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
249 
250 	/* bus interface */
251 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
252 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
253 
254 	/* MII interface */
255 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
256 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
257 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
258 
259 	{ 0, 0 }
260 };
261 
262 static DEFINE_CLASS_0(sk, sk_driver, sk_methods, sizeof(struct sk_if_softc));
263 static devclass_t sk_devclass;
264 static struct lwkt_serialize sk_serializer;
265 
266 DECLARE_DUMMY_MODULE(if_sk);
267 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
268 DRIVER_MODULE(if_sk, skc, sk_driver, sk_devclass, 0, 0);
269 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
270 
271 #define SK_SETBIT(sc, reg, x)		\
272 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
273 
274 #define SK_CLRBIT(sc, reg, x)		\
275 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
276 
277 #define SK_WIN_SETBIT_4(sc, reg, x)	\
278 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
279 
280 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
281 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
282 
283 #define SK_WIN_SETBIT_2(sc, reg, x)	\
284 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
285 
286 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
287 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
288 
289 static uint32_t
290 sk_win_read_4(struct sk_softc *sc, int reg)
291 {
292 #ifdef SK_USEIOSPACE
293 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
294 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
295 #else
296 	return(CSR_READ_4(sc, reg));
297 #endif
298 }
299 
300 static uint16_t
301 sk_win_read_2(struct sk_softc *sc, int reg)
302 {
303 #ifdef SK_USEIOSPACE
304 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
305 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
306 #else
307 	return(CSR_READ_2(sc, reg));
308 #endif
309 }
310 
311 static uint8_t
312 sk_win_read_1(struct sk_softc *sc, int reg)
313 {
314 #ifdef SK_USEIOSPACE
315 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
316 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
317 #else
318 	return(CSR_READ_1(sc, reg));
319 #endif
320 }
321 
322 static void
323 sk_win_write_4(struct sk_softc *sc, int reg, uint32_t val)
324 {
325 #ifdef SK_USEIOSPACE
326 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
327 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
328 #else
329 	CSR_WRITE_4(sc, reg, val);
330 #endif
331 }
332 
333 static void
334 sk_win_write_2(struct sk_softc *sc, int reg, uint32_t val)
335 {
336 #ifdef SK_USEIOSPACE
337 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
338 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
339 #else
340 	CSR_WRITE_2(sc, reg, val);
341 #endif
342 }
343 
344 static void
345 sk_win_write_1(struct sk_softc *sc, int reg, uint32_t val)
346 {
347 #ifdef SK_USEIOSPACE
348 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
349 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
350 #else
351 	CSR_WRITE_1(sc, reg, val);
352 #endif
353 }
354 
355 /*
356  * The VPD EEPROM contains Vital Product Data, as suggested in
357  * the PCI 2.1 specification. The VPD data is separared into areas
358  * denoted by resource IDs. The SysKonnect VPD contains an ID string
359  * resource (the name of the adapter), a read-only area resource
360  * containing various key/data fields and a read/write area which
361  * can be used to store asset management information or log messages.
362  * We read the ID string and read-only into buffers attached to
363  * the controller softc structure for later use. At the moment,
364  * we only use the ID string during sk_attach().
365  */
366 static uint8_t
367 sk_vpd_readbyte(struct sk_softc *sc, int addr)
368 {
369 	int i;
370 
371 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
372 	for (i = 0; i < SK_TIMEOUT; i++) {
373 		DELAY(1);
374 		if (sk_win_read_2(sc,
375 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
376 			break;
377 	}
378 
379 	if (i == SK_TIMEOUT)
380 		return(0);
381 
382 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
383 }
384 
385 static void
386 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
387 {
388 	int i;
389 	uint8_t *ptr;
390 
391 	ptr = (uint8_t *)res;
392 	for (i = 0; i < sizeof(struct vpd_res); i++)
393 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
394 }
395 
396 static void
397 sk_vpd_read(struct sk_softc *sc)
398 {
399 	struct vpd_res res;
400 	int i, pos = 0;
401 
402 	if (sc->sk_vpd_prodname != NULL)
403 		free(sc->sk_vpd_prodname, M_DEVBUF);
404 	if (sc->sk_vpd_readonly != NULL)
405 		free(sc->sk_vpd_readonly, M_DEVBUF);
406 	sc->sk_vpd_prodname = NULL;
407 	sc->sk_vpd_readonly = NULL;
408 
409 	sk_vpd_read_res(sc, &res, pos);
410 
411 	if (res.vr_id != VPD_RES_ID) {
412 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
413 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
414 		return;
415 	}
416 
417 	pos += sizeof(res);
418 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
419 	for (i = 0; i < res.vr_len; i++)
420 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
421 	sc->sk_vpd_prodname[i] = '\0';
422 	pos += i;
423 
424 	sk_vpd_read_res(sc, &res, pos);
425 
426 	if (res.vr_id != VPD_RES_READ) {
427 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
428 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
429 		return;
430 	}
431 
432 	pos += sizeof(res);
433 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
434 	for (i = 0; i < res.vr_len + 1; i++)
435 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
436 }
437 
438 static int
439 sk_miibus_readreg(device_t dev, int phy, int reg)
440 {
441 	struct sk_if_softc *sc_if = device_get_softc(dev);
442 
443 	switch(sc_if->sk_softc->sk_type) {
444 	case SK_GENESIS:
445 		return(sk_xmac_miibus_readreg(sc_if, phy, reg));
446 	case SK_YUKON:
447 		return(sk_marv_miibus_readreg(sc_if, phy, reg));
448 	}
449 
450 	return(0);
451 }
452 
453 static int
454 sk_miibus_writereg(device_t dev, int phy, int reg, int val)
455 {
456 	struct sk_if_softc *sc_if = device_get_softc(dev);
457 
458 	switch(sc_if->sk_softc->sk_type) {
459 	case SK_GENESIS:
460 		return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
461 	case SK_YUKON:
462 		return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
463 	}
464 
465 	return(0);
466 }
467 
468 static void
469 sk_miibus_statchg(device_t dev)
470 {
471 	struct sk_if_softc *sc_if = device_get_softc(dev);
472 
473 	switch(sc_if->sk_softc->sk_type) {
474 	case SK_GENESIS:
475 		sk_xmac_miibus_statchg(sc_if);
476 		break;
477 	case SK_YUKON:
478 		sk_marv_miibus_statchg(sc_if);
479 		break;
480 	}
481 }
482 
483 static int
484 sk_xmac_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
485 {
486 	int i;
487 
488 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
489 		return(0);
490 
491 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
492 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
493 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
494 		for (i = 0; i < SK_TIMEOUT; i++) {
495 			DELAY(1);
496 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
497 			    XM_MMUCMD_PHYDATARDY)
498 				break;
499 		}
500 
501 		if (i == SK_TIMEOUT) {
502 			printf("sk%d: phy failed to come ready\n",
503 			    sc_if->sk_unit);
504 			return(0);
505 		}
506 	}
507 	DELAY(1);
508 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
509 }
510 
511 static int
512 sk_xmac_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
513 {
514 	int i;
515 
516 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
517 	for (i = 0; i < SK_TIMEOUT; i++) {
518 		if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
519 			break;
520 	}
521 
522 	if (i == SK_TIMEOUT) {
523 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
524 		return(ETIMEDOUT);
525 	}
526 
527 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
528 	for (i = 0; i < SK_TIMEOUT; i++) {
529 		DELAY(1);
530 		if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
531 			break;
532 	}
533 
534 	if (i == SK_TIMEOUT)
535 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
536 
537 	return(0);
538 }
539 
540 static void
541 sk_xmac_miibus_statchg(struct sk_if_softc *sc_if)
542 {
543 	struct mii_data *mii;
544 
545 	mii = device_get_softc(sc_if->sk_miibus);
546 
547 	/*
548 	 * If this is a GMII PHY, manually set the XMAC's
549 	 * duplex mode accordingly.
550 	 */
551 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
552 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
553 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
554 		else
555 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
556 	}
557 }
558 
559 static int
560 sk_marv_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
561 {
562 	uint16_t val;
563 	int i;
564 
565 	if (phy != 0 ||
566 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
567 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
568 		return(0);
569 	}
570 
571         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
572 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
573 
574 	for (i = 0; i < SK_TIMEOUT; i++) {
575 		DELAY(1);
576 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
577 		if (val & YU_SMICR_READ_VALID)
578 			break;
579 	}
580 
581 	if (i == SK_TIMEOUT) {
582 		printf("sk%d: phy failed to come ready\n",
583 		    sc_if->sk_unit);
584 		return(0);
585 	}
586 
587 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
588 
589 	return(val);
590 }
591 
592 static int
593 sk_marv_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
594 {
595 	int i;
596 
597 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
598 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
599 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
600 
601 	for (i = 0; i < SK_TIMEOUT; i++) {
602 		DELAY(1);
603 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
604 			break;
605 	}
606 
607 	return(0);
608 }
609 
610 static void
611 sk_marv_miibus_statchg(struct sk_if_softc *sc_if)
612 {
613 }
614 
615 #define	HASH_BITS		6
616 
617 static void sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
618 {
619 	int base;
620 
621 	base = XM_RXFILT_ENTRY(slot);
622 
623 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
624 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
625 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
626 }
627 
628 static void
629 sk_setmulti(struct sk_if_softc *sc_if)
630 {
631 	struct sk_softc *sc = sc_if->sk_softc;
632 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
633 	uint32_t hashes[2] = { 0, 0 };
634 	int h, i;
635 	struct ifmultiaddr *ifma;
636 	uint8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
637 
638 	/* First, zot all the existing filters. */
639 	switch(sc->sk_type) {
640 	case SK_GENESIS:
641 		for (i = 1; i < XM_RXFILT_MAX; i++)
642 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
643 
644 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
645 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
646 		break;
647 	case SK_YUKON:
648 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
649 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
650 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
651 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
652 		break;
653 	}
654 
655 	/* Now program new ones. */
656 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
657 		hashes[0] = 0xFFFFFFFF;
658 		hashes[1] = 0xFFFFFFFF;
659 	} else {
660 		i = 1;
661 		/* First find the tail of the list. */
662 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
663 			if (ifma->ifma_link.le_next == NULL)
664 				break;
665 		}
666 		/* Now traverse the list backwards. */
667 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
668 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
669 			if (ifma->ifma_addr->sa_family != AF_LINK)
670 				continue;
671 			/*
672 			 * Program the first XM_RXFILT_MAX multicast groups
673 			 * into the perfect filter. For all others,
674 			 * use the hash table.
675 			 */
676 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
677 				sk_setfilt(sc_if,
678 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
679 				i++;
680 				continue;
681 			}
682 
683                         switch(sc->sk_type) {
684                         case SK_GENESIS:
685 			    h = ~ether_crc32_le(LLADDR((struct sockaddr_dl *)
686 				ifma->ifma_addr), ETHER_ADDR_LEN) &
687 				((1 << HASH_BITS) -1 );
688                             if (h < 32)
689                                 hashes[0] |= (1 << h);
690                             else
691                                 hashes[1] |= (1 << (h - 32));
692                             break;
693 
694                         case SK_YUKON:
695 			    h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
696 				ifma->ifma_addr), ETHER_ADDR_LEN) &
697 				((1 << HASH_BITS) -1 );
698                             if (h < 32)
699                                 hashes[0] |= (1 << h);
700                             else
701                                 hashes[1] |= (1 << (h - 32));
702                             break;
703                         }
704 		}
705 	}
706 
707 	switch(sc->sk_type) {
708 	case SK_GENESIS:
709 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
710 			       XM_MODE_RX_USE_PERFECT);
711 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
712 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
713 		break;
714 	case SK_YUKON:
715 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
716 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
717 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
718 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
719 		break;
720 	}
721 }
722 
723 static void
724 sk_setpromisc(struct sk_if_softc *sc_if)
725 {
726 	struct sk_softc *sc = sc_if->sk_softc;
727 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
728 
729 	switch(sc->sk_type) {
730 	case SK_GENESIS:
731 		if (ifp->if_flags & IFF_PROMISC) {
732 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
733 		} else {
734 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
735 		}
736 		break;
737 	case SK_YUKON:
738 		if (ifp->if_flags & IFF_PROMISC) {
739 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
740 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
741 		} else {
742 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
743 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
744 		}
745 		break;
746 	}
747 }
748 
749 static int
750 sk_init_rx_ring(struct sk_if_softc *sc_if)
751 {
752 	struct sk_chain_data *cd = &sc_if->sk_cdata;
753 	struct sk_ring_data *rd = sc_if->sk_rdata;
754 	int i;
755 
756 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
757 
758 	for (i = 0; i < SK_RX_RING_CNT; i++) {
759 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
760 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
761 			return(ENOBUFS);
762 		if (i == (SK_RX_RING_CNT - 1)) {
763 			cd->sk_rx_chain[i].sk_next =
764 			    &cd->sk_rx_chain[0];
765 			rd->sk_rx_ring[i].sk_next =
766 			    vtophys(&rd->sk_rx_ring[0]);
767 		} else {
768 			cd->sk_rx_chain[i].sk_next =
769 			    &cd->sk_rx_chain[i + 1];
770 			rd->sk_rx_ring[i].sk_next =
771 			    vtophys(&rd->sk_rx_ring[i + 1]);
772 		}
773 	}
774 
775 	sc_if->sk_cdata.sk_rx_prod = 0;
776 	sc_if->sk_cdata.sk_rx_cons = 0;
777 
778 	return(0);
779 }
780 
781 static void
782 sk_init_tx_ring(struct sk_if_softc *sc_if)
783 {
784 	struct sk_chain_data *cd = &sc_if->sk_cdata;
785 	struct sk_ring_data *rd = sc_if->sk_rdata;
786 	int i, nexti;
787 
788 	bzero(sc_if->sk_rdata->sk_tx_ring,
789 	      sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
790 
791 	for (i = 0; i < SK_TX_RING_CNT; i++) {
792 		nexti = (i == (SK_TX_RING_CNT - 1)) ? 0 : i + 1;
793 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
794 		cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
795 		rd->sk_tx_ring[i].sk_next = vtophys(&rd->sk_tx_ring[nexti]);
796 	}
797 
798 	sc_if->sk_cdata.sk_tx_prod = 0;
799 	sc_if->sk_cdata.sk_tx_cons = 0;
800 	sc_if->sk_cdata.sk_tx_cnt = 0;
801 }
802 
803 static int
804 sk_newbuf(struct sk_if_softc *sc_if, struct sk_chain *c, struct mbuf *m)
805 {
806 	struct mbuf *m_new = NULL;
807 	struct sk_rx_desc *r;
808 	struct sk_jslot *buf;
809 
810 	if (m == NULL) {
811 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
812 		if (m_new == NULL)
813 			return(ENOBUFS);
814 
815 		/* Allocate the jumbo buffer */
816 		buf = sk_jalloc(sc_if);
817 		if (buf == NULL) {
818 			m_freem(m_new);
819 #ifdef SK_VERBOSE
820 			printf("sk%d: jumbo allocation failed "
821 			    "-- packet dropped!\n", sc_if->sk_unit);
822 #endif
823 			return(ENOBUFS);
824 		}
825 
826 		/* Attach the buffer to the mbuf */
827 		m_new->m_ext.ext_arg = buf;
828 		m_new->m_ext.ext_buf = buf->sk_buf;
829 		m_new->m_ext.ext_free = sk_jfree;
830 		m_new->m_ext.ext_ref = sk_jref;
831 		m_new->m_ext.ext_size = SK_JUMBO_FRAMELEN;
832 
833 		m_new->m_data = m_new->m_ext.ext_buf;
834 		m_new->m_flags |= M_EXT;
835 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
836 	} else {
837 		/*
838 	 	 * We're re-using a previously allocated mbuf;
839 		 * be sure to re-init pointers and lengths to
840 		 * default values.
841 		 */
842 		m_new = m;
843 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
844 		m_new->m_data = m_new->m_ext.ext_buf;
845 	}
846 
847 	/*
848 	 * Adjust alignment so packet payload begins on a
849 	 * longword boundary. Mandatory for Alpha, useful on
850 	 * x86 too.
851 	 */
852 	m_adj(m_new, ETHER_ALIGN);
853 
854 	r = c->sk_desc;
855 	c->sk_mbuf = m_new;
856 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
857 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
858 
859 	return(0);
860 }
861 
862 /*
863  * Allocate jumbo buffer storage. The SysKonnect adapters support
864  * "jumbograms" (9K frames), although SysKonnect doesn't currently
865  * use them in their drivers. In order for us to use them, we need
866  * large 9K receive buffers, however standard mbuf clusters are only
867  * 2048 bytes in size. Consequently, we need to allocate and manage
868  * our own jumbo buffer pool. Fortunately, this does not require an
869  * excessive amount of additional code.
870  */
871 static int
872 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
873 {
874 	caddr_t ptr;
875 	int i;
876 	struct sk_jslot *entry;
877 
878 	/* Grab a big chunk o' storage. */
879 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
880 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
881 
882 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
883 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
884 		return(ENOBUFS);
885 	}
886 
887 	SLIST_INIT(&sc_if->sk_jfree_listhead);
888 
889 	/*
890 	 * Now divide it up into 9K pieces and save the addresses
891 	 * in an array. Note that we play an evil trick here by using
892 	 * the first few bytes in the buffer to hold the the address
893 	 * of the softc structure for this interface. This is because
894 	 * sk_jfree() needs it, but it is called by the mbuf management
895 	 * code which will not pass it to us explicitly.
896 	 */
897 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
898 	for (i = 0; i < SK_JSLOTS; i++) {
899 		entry = &sc_if->sk_cdata.sk_jslots[i];
900 		entry->sk_sc = sc_if;
901 		entry->sk_buf = ptr;
902 		entry->sk_inuse = 0;
903 		entry->sk_slot = i;
904 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jslot_link);
905 		ptr += SK_JLEN;
906 	}
907 
908 	return(0);
909 }
910 
911 /*
912  * Allocate a jumbo buffer.
913  */
914 static struct sk_jslot *
915 sk_jalloc(struct sk_if_softc *sc_if)
916 {
917 	struct sk_jslot *entry;
918 
919 	lwkt_serialize_enter(&sc_if->sk_jslot_serializer);
920 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
921 	if (entry) {
922 		SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jslot_link);
923 		entry->sk_inuse = 1;
924 	} else {
925 #ifdef SK_VERBOSE
926 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
927 #endif
928 	}
929 	lwkt_serialize_exit(&sc_if->sk_jslot_serializer);
930 	return(entry);
931 }
932 
933 /*
934  * Adjust usage count on a jumbo buffer. In general this doesn't
935  * get used much because our jumbo buffers don't get passed around
936  * a lot, but it's implemented for correctness.
937  */
938 static void
939 sk_jref(void *arg)
940 {
941 	struct sk_jslot *entry = (struct sk_jslot *)arg;
942 	struct sk_if_softc *sc = entry->sk_sc;
943 
944 	if (sc == NULL)
945 		panic("sk_jref: can't find softc pointer!");
946 
947 	if (&sc->sk_cdata.sk_jslots[entry->sk_slot] != entry)
948 		panic("sk_jref: asked to reference buffer "
949 		    "that we don't manage!");
950 	if (entry->sk_inuse == 0)
951 		panic("sk_jref: buffer already free!");
952 	atomic_add_int(&entry->sk_inuse, 1);
953 }
954 
955 /*
956  * Release a jumbo buffer.
957  */
958 static void
959 sk_jfree(void *arg)
960 {
961 	struct sk_jslot *entry = (struct sk_jslot *)arg;
962 	struct sk_if_softc *sc = entry->sk_sc;
963 
964 	if (sc == NULL)
965 		panic("sk_jref: can't find softc pointer!");
966 
967 	if (&sc->sk_cdata.sk_jslots[entry->sk_slot] != entry)
968 		panic("sk_jref: asked to reference buffer "
969 		    "that we don't manage!");
970 	if (entry->sk_inuse == 0)
971 		panic("sk_jref: buffer already free!");
972 	lwkt_serialize_enter(&sc->sk_jslot_serializer);
973 	atomic_subtract_int(&entry->sk_inuse, 1);
974 	if (entry->sk_inuse == 0)
975 		SLIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jslot_link);
976 	lwkt_serialize_exit(&sc->sk_jslot_serializer);
977 }
978 
979 /*
980  * Set media options.
981  */
982 static int
983 sk_ifmedia_upd(struct ifnet *ifp)
984 {
985 	struct sk_if_softc *sc_if = ifp->if_softc;
986 	struct mii_data *mii;
987 
988 	mii = device_get_softc(sc_if->sk_miibus);
989 	sk_init(sc_if);
990 	mii_mediachg(mii);
991 
992 	return(0);
993 }
994 
995 /*
996  * Report current media status.
997  */
998 static void
999 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1000 {
1001 	struct sk_if_softc *sc_if;
1002 	struct mii_data *mii;
1003 
1004 	sc_if = ifp->if_softc;
1005 	mii = device_get_softc(sc_if->sk_miibus);
1006 
1007 	mii_pollstat(mii);
1008 	ifmr->ifm_active = mii->mii_media_active;
1009 	ifmr->ifm_status = mii->mii_media_status;
1010 }
1011 
1012 static int
1013 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1014 {
1015 	struct sk_if_softc *sc_if = ifp->if_softc;
1016 	struct ifreq *ifr = (struct ifreq *)data;
1017 	struct mii_data *mii;
1018 	int error = 0;
1019 
1020 	crit_enter();
1021 
1022 	switch(command) {
1023 	case SIOCSIFMTU:
1024 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1025 			error = EINVAL;
1026 		else {
1027 			ifp->if_mtu = ifr->ifr_mtu;
1028 			sk_init(sc_if);
1029 		}
1030 		break;
1031 	case SIOCSIFFLAGS:
1032 		if (ifp->if_flags & IFF_UP) {
1033 			if (ifp->if_flags & IFF_RUNNING) {
1034 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1035 				    & IFF_PROMISC) {
1036 					sk_setpromisc(sc_if);
1037 					sk_setmulti(sc_if);
1038 				}
1039 			} else
1040 				sk_init(sc_if);
1041 		} else {
1042 			if (ifp->if_flags & IFF_RUNNING)
1043 				sk_stop(sc_if);
1044 		}
1045 		sc_if->sk_if_flags = ifp->if_flags;
1046 		error = 0;
1047 		break;
1048 	case SIOCADDMULTI:
1049 	case SIOCDELMULTI:
1050 		sk_setmulti(sc_if);
1051 		error = 0;
1052 		break;
1053 	case SIOCGIFMEDIA:
1054 	case SIOCSIFMEDIA:
1055 		mii = device_get_softc(sc_if->sk_miibus);
1056 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1057 		break;
1058 	default:
1059 		error = ether_ioctl(ifp, command, data);
1060 		break;
1061 	}
1062 
1063 	crit_exit();
1064 
1065 	return(error);
1066 }
1067 
1068 /*
1069  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1070  * IDs against our list and return a device name if we find a match.
1071  */
1072 static int
1073 skc_probe(device_t dev)
1074 {
1075 	struct sk_type *t;
1076 	uint16_t vendor, product;
1077 
1078 	lwkt_serialize_init(&sk_serializer);
1079 	vendor = pci_get_vendor(dev);
1080 	product = pci_get_device(dev);
1081 
1082 	for (t = sk_devs; t->sk_name != NULL; t++) {
1083 		if (vendor == t->sk_vid && product == t->sk_did) {
1084 			device_set_desc(dev, t->sk_name);
1085 			return(0);
1086 		}
1087 	}
1088 
1089 	return(ENXIO);
1090 }
1091 
1092 /*
1093  * Force the GEnesis into reset, then bring it out of reset.
1094  */
1095 static void
1096 sk_reset(struct sk_softc *sc)
1097 {
1098 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1099 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1100 	if (sc->sk_type == SK_YUKON)
1101 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1102 
1103 	DELAY(1000);
1104 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1105 	DELAY(2);
1106 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1107 	if (sc->sk_type == SK_YUKON)
1108 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1109 
1110 	if (sc->sk_type == SK_GENESIS) {
1111 		/* Configure packet arbiter */
1112 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1113 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1114 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1115 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1116 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1117 	}
1118 
1119 	/* Enable RAM interface */
1120 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1121 
1122 	/*
1123          * Configure interrupt moderation. The moderation timer
1124 	 * defers interrupts specified in the interrupt moderation
1125 	 * timer mask based on the timeout specified in the interrupt
1126 	 * moderation timer init register. Each bit in the timer
1127 	 * register represents 18.825ns, so to specify a timeout in
1128 	 * microseconds, we have to multiply by 54.
1129 	 */
1130         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1131         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1132 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1133         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1134 }
1135 
1136 static int
1137 sk_probe(device_t dev)
1138 {
1139 	struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1140 
1141 	/*
1142 	 * Not much to do here. We always know there will be
1143 	 * at least one XMAC present, and if there are two,
1144 	 * skc_attach() will create a second device instance
1145 	 * for us.
1146 	 */
1147 	switch (sc->sk_type) {
1148 	case SK_GENESIS:
1149 		device_set_desc(dev, "XaQti Corp. XMAC II");
1150 		break;
1151 	case SK_YUKON:
1152 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1153 		break;
1154 	}
1155 
1156 	return(0);
1157 }
1158 
1159 /*
1160  * Each XMAC chip is attached as a separate logical IP interface.
1161  * Single port cards will have only one logical interface of course.
1162  */
1163 static int
1164 sk_attach(device_t dev)
1165 {
1166 	struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1167 	struct sk_if_softc *sc_if = device_get_softc(dev);
1168 	struct ifnet *ifp;
1169 	int i, port;
1170 
1171 	port = *(int *)device_get_ivars(dev);
1172 	free(device_get_ivars(dev), M_DEVBUF);
1173 	device_set_ivars(dev, NULL);
1174 	sc_if->sk_dev = dev;
1175 	callout_init(&sc_if->sk_tick_timer);
1176 	lwkt_serialize_init(&sc_if->sk_jslot_serializer);
1177 
1178 	sc_if->sk_dev = dev;
1179 	sc_if->sk_unit = device_get_unit(dev);
1180 	sc_if->sk_port = port;
1181 	sc_if->sk_softc = sc;
1182 	sc->sk_if[port] = sc_if;
1183 	if (port == SK_PORT_A)
1184 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1185 	if (port == SK_PORT_B)
1186 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1187 
1188 	/*
1189 	 * Get station address for this interface. Note that
1190 	 * dual port cards actually come with three station
1191 	 * addresses: one for each port, plus an extra. The
1192 	 * extra one is used by the SysKonnect driver software
1193 	 * as a 'virtual' station address for when both ports
1194 	 * are operating in failover mode. Currently we don't
1195 	 * use this extra address.
1196 	 */
1197 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1198 		sc_if->arpcom.ac_enaddr[i] =
1199 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1200 
1201 	/*
1202 	 * Set up RAM buffer addresses. The NIC will have a certain
1203 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1204 	 * need to divide this up a) between the transmitter and
1205  	 * receiver and b) between the two XMACs, if this is a
1206 	 * dual port NIC. Our algotithm is to divide up the memory
1207 	 * evenly so that everyone gets a fair share.
1208 	 */
1209 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1210 		uint32_t chunk, val;
1211 
1212 		chunk = sc->sk_ramsize / 2;
1213 		val = sc->sk_rboff / sizeof(uint64_t);
1214 		sc_if->sk_rx_ramstart = val;
1215 		val += (chunk / sizeof(uint64_t));
1216 		sc_if->sk_rx_ramend = val - 1;
1217 		sc_if->sk_tx_ramstart = val;
1218 		val += (chunk / sizeof(uint64_t));
1219 		sc_if->sk_tx_ramend = val - 1;
1220 	} else {
1221 		uint32_t chunk, val;
1222 
1223 		chunk = sc->sk_ramsize / 4;
1224 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1225 		    sizeof(uint64_t);
1226 		sc_if->sk_rx_ramstart = val;
1227 		val += (chunk / sizeof(uint64_t));
1228 		sc_if->sk_rx_ramend = val - 1;
1229 		sc_if->sk_tx_ramstart = val;
1230 		val += (chunk / sizeof(uint64_t));
1231 		sc_if->sk_tx_ramend = val - 1;
1232 	}
1233 
1234 	/* Read and save PHY type and set PHY address */
1235 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1236 	switch(sc_if->sk_phytype) {
1237 	case SK_PHYTYPE_XMAC:
1238 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1239 		break;
1240 	case SK_PHYTYPE_BCOM:
1241 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1242 		break;
1243 	case SK_PHYTYPE_MARV_COPPER:
1244 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1245 		break;
1246 	default:
1247 		printf("skc%d: unsupported PHY type: %d\n",
1248 		    sc->sk_unit, sc_if->sk_phytype);
1249 		sc->sk_if[port] = NULL;
1250 		return(ENODEV);
1251 	}
1252 
1253 	/* Allocate the descriptor queues. */
1254 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1255 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1256 
1257 	if (sc_if->sk_rdata == NULL) {
1258 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1259 		sc->sk_if[port] = NULL;
1260 		return(ENOMEM);
1261 	}
1262 
1263 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1264 
1265 	/* Try to allocate memory for jumbo buffers. */
1266 	if (sk_alloc_jumbo_mem(sc_if)) {
1267 		printf("sk%d: jumbo buffer allocation failed\n",
1268 		    sc_if->sk_unit);
1269 		contigfree(sc_if->sk_rdata,
1270 		    sizeof(struct sk_ring_data), M_DEVBUF);
1271 		sc->sk_if[port] = NULL;
1272 		return(ENOMEM);
1273 	}
1274 
1275 	ifp = &sc_if->arpcom.ac_if;
1276 	ifp->if_softc = sc_if;
1277 	if_initname(ifp, "sk", sc_if->sk_unit);
1278 	ifp->if_mtu = ETHERMTU;
1279 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1280 	ifp->if_ioctl = sk_ioctl;
1281 	ifp->if_start = sk_start;
1282 	ifp->if_watchdog = sk_watchdog;
1283 	ifp->if_init = sk_init;
1284 	ifp->if_baudrate = 1000000000;
1285 	ifq_set_maxlen(&ifp->if_snd, SK_TX_RING_CNT - 1);
1286 	ifq_set_ready(&ifp->if_snd);
1287 
1288 	/*
1289 	 * Do miibus setup.
1290 	 */
1291 	switch (sc->sk_type) {
1292 	case SK_GENESIS:
1293 		sk_init_xmac(sc_if);
1294 		break;
1295 	case SK_YUKON:
1296 		sk_init_yukon(sc_if);
1297 		break;
1298 	}
1299 
1300 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1301 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1302 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1303 		contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM,
1304 		    M_DEVBUF);
1305 		contigfree(sc_if->sk_rdata,
1306 		    sizeof(struct sk_ring_data), M_DEVBUF);
1307 		sc->sk_if[port] = NULL;
1308 		return(ENXIO);
1309 	}
1310 
1311 	/*
1312 	 * Call MI attach routine.
1313 	 */
1314 	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr, &sk_serializer);
1315 	callout_init(&sc_if->sk_tick_timer);
1316 
1317 	return(0);
1318 }
1319 
1320 /*
1321  * Attach the interface. Allocate softc structures, do ifmedia
1322  * setup and ethernet/BPF attach.
1323  */
1324 static int
1325 skc_attach(device_t dev)
1326 {
1327 	struct sk_softc *sc;
1328 	int error = 0, *port, rid, unit;
1329 	uint32_t command;
1330 	uint8_t skrs;
1331 
1332 	crit_enter();
1333 
1334 	sc = device_get_softc(dev);
1335 	unit = device_get_unit(dev);
1336 	switch (pci_get_device(dev)) {
1337 	case DEVICEID_SK_V1:
1338 		sc->sk_type = SK_GENESIS;
1339 		break;
1340 	case DEVICEID_SK_V2:
1341 	case DEVICEID_3COM_3C940:
1342 	case DEVICEID_LINKSYS_EG1032:
1343 	case DEVICEID_DLINK_DGE530T:
1344 		sc->sk_type = SK_YUKON;
1345 		break;
1346 	}
1347 
1348 	/*
1349 	 * Handle power management nonsense.
1350 	 */
1351 	command = pci_read_config(dev, SK_PCI_CAPID, 4) & 0x000000FF;
1352 	if (command == 0x01) {
1353 		command = pci_read_config(dev, SK_PCI_PWRMGMTCTRL, 4);
1354 		if (command & SK_PSTATE_MASK) {
1355 			uint32_t iobase, membase, irq;
1356 
1357 			/* Save important PCI config data. */
1358 			iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1359 			membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1360 			irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1361 
1362 			/* Reset the power state. */
1363 			printf("skc%d: chip is in D%d power mode "
1364 			"-- setting to D0\n", unit, command & SK_PSTATE_MASK);
1365 			command &= 0xFFFFFFFC;
1366 			pci_write_config(dev, SK_PCI_PWRMGMTCTRL, command, 4);
1367 
1368 			/* Restore PCI config data. */
1369 			pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1370 			pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1371 			pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1372 		}
1373 	}
1374 
1375 	/*
1376 	 * Map control/status registers.
1377 	 */
1378 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1379 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1380 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1381 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1382 
1383 #ifdef SK_USEIOSPACE
1384 	if ((command & PCIM_CMD_PORTEN) == 0) {
1385 		printf("skc%d: failed to enable I/O ports!\n", unit);
1386 		error = ENXIO;
1387 		goto fail;
1388 	}
1389 #else
1390 	if ((command & PCIM_CMD_MEMEN) == 0) {
1391 		printf("skc%d: failed to enable memory mapping!\n", unit);
1392 		error = ENXIO;
1393 		goto fail;
1394 	}
1395 #endif
1396 
1397 	rid = SK_RID;
1398 	sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE);
1399 
1400 	if (sc->sk_res == NULL) {
1401 		printf("sk%d: couldn't map ports/memory\n", unit);
1402 		error = ENXIO;
1403 		goto fail;
1404 	}
1405 
1406 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1407 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1408 
1409 	/* Allocate interrupt */
1410 	rid = 0;
1411 	sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1412 	    RF_SHAREABLE | RF_ACTIVE);
1413 
1414 	if (sc->sk_irq == NULL) {
1415 		printf("skc%d: couldn't map interrupt\n", unit);
1416 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1417 		error = ENXIO;
1418 		goto fail;
1419 	}
1420 
1421 	error = bus_setup_intr(dev, sc->sk_irq, INTR_NETSAFE,
1422 			       sk_intr, sc,
1423 			       &sc->sk_intrhand, &sk_serializer);
1424 
1425 	if (error) {
1426 		printf("skc%d: couldn't set up irq\n", unit);
1427 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1428 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1429 		goto fail;
1430 	}
1431 
1432 	/* Reset the adapter. */
1433 	sk_reset(sc);
1434 
1435 	sc->sk_unit = unit;
1436 
1437 	/* Read and save vital product data from EEPROM. */
1438 	sk_vpd_read(sc);
1439 
1440 	skrs = sk_win_read_1(sc, SK_EPROM0);
1441 	if (sc->sk_type == SK_GENESIS) {
1442 		/* Read and save RAM size and RAMbuffer offset */
1443 		switch(skrs) {
1444 		case SK_RAMSIZE_512K_64:
1445 			sc->sk_ramsize = 0x80000;
1446 			sc->sk_rboff = SK_RBOFF_0;
1447 			break;
1448 		case SK_RAMSIZE_1024K_64:
1449 			sc->sk_ramsize = 0x100000;
1450 			sc->sk_rboff = SK_RBOFF_80000;
1451 			break;
1452 		case SK_RAMSIZE_1024K_128:
1453 			sc->sk_ramsize = 0x100000;
1454 			sc->sk_rboff = SK_RBOFF_0;
1455 			break;
1456 		case SK_RAMSIZE_2048K_128:
1457 			sc->sk_ramsize = 0x200000;
1458 			sc->sk_rboff = SK_RBOFF_0;
1459 			break;
1460 		default:
1461 			printf("skc%d: unknown ram size: %d\n",
1462 			    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1463 			bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1464 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1465 			bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1466 			error = ENXIO;
1467 			goto fail;
1468 			break;
1469 		}
1470 	} else { /* SK_YUKON */
1471 		if (skrs == 0x00) {
1472 			sc->sk_ramsize = 0x20000;
1473 		} else {
1474 			sc->sk_ramsize = skrs * (1<<12);
1475 		}
1476 		sc->sk_rboff = SK_RBOFF_0;
1477 	}
1478 
1479 	/* Read and save physical media type */
1480 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1481 	case SK_PMD_1000BASESX:
1482 		sc->sk_pmd = IFM_1000_SX;
1483 		break;
1484 	case SK_PMD_1000BASELX:
1485 		sc->sk_pmd = IFM_1000_LX;
1486 		break;
1487 	case SK_PMD_1000BASECX:
1488 		sc->sk_pmd = IFM_1000_CX;
1489 		break;
1490 	case SK_PMD_1000BASETX:
1491 		sc->sk_pmd = IFM_1000_T;
1492 		break;
1493 	default:
1494 		printf("skc%d: unknown media type: 0x%x\n",
1495 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1496 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1497 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1498 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1499 		error = ENXIO;
1500 		goto fail;
1501 	}
1502 
1503 	/* Announce the product name. */
1504 	printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1505 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1506 	port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1507 	*port = SK_PORT_A;
1508 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1509 
1510 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1511 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1512 		port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1513 		*port = SK_PORT_B;
1514 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1515 	}
1516 
1517 	/* Turn on the 'driver is loaded' LED. */
1518 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1519 
1520 	bus_generic_attach(dev);
1521 
1522 fail:
1523 	crit_exit();
1524 	return(error);
1525 }
1526 
1527 static int
1528 sk_detach(device_t dev)
1529 {
1530 	struct sk_if_softc *sc_if = device_get_softc(dev);
1531 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1532 
1533 	ether_ifdetach(ifp);
1534 	bus_generic_detach(dev);
1535 	if (sc_if->sk_miibus != NULL)
1536 		device_delete_child(dev, sc_if->sk_miibus);
1537 	contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1538 	contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), M_DEVBUF);
1539 
1540 	return(0);
1541 }
1542 
1543 static int
1544 skc_detach(device_t dev)
1545 {
1546 	struct sk_softc *sc;
1547 
1548 	sc = device_get_softc(dev);
1549 
1550 	lwkt_serialize_enter(&sk_serializer);
1551 
1552 	if (sc->sk_if[SK_PORT_A] != NULL)
1553 		sk_stop(sc->sk_if[SK_PORT_A]);
1554 	if (sc->sk_if[SK_PORT_B] != NULL)
1555 		sk_stop(sc->sk_if[SK_PORT_B]);
1556 
1557 	bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1558 
1559 	lwkt_serialize_exit(&sk_serializer);
1560 
1561 	/*
1562 	 * recursed from sk_detach ?  don't need serializer
1563 	 */
1564 	bus_generic_detach(dev);
1565 	if (sc->sk_devs[SK_PORT_A] != NULL)
1566 		device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1567 	if (sc->sk_devs[SK_PORT_B] != NULL)
1568 		device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1569 
1570 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1571 	bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1572 
1573 	return(0);
1574 }
1575 
1576 static int
1577 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1578 {
1579 	struct sk_tx_desc *f = NULL;
1580 	struct mbuf *m;
1581 	uint32_t cnt = 0, cur, frag;
1582 
1583 	m = m_head;
1584 	cur = frag = *txidx;
1585 
1586 	/*
1587 	 * Start packing the mbufs in this chain into
1588 	 * the fragment pointers. Stop when we run out
1589 	 * of fragments or hit the end of the mbuf chain.
1590 	 */
1591 	for (m = m_head; m != NULL; m = m->m_next) {
1592 		if (m->m_len != 0) {
1593 			if ((SK_TX_RING_CNT -
1594 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1595 				return(ENOBUFS);
1596 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1597 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1598 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1599 			if (cnt == 0)
1600 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1601 			else
1602 				f->sk_ctl |= SK_TXCTL_OWN;
1603 			cur = frag;
1604 			SK_INC(frag, SK_TX_RING_CNT);
1605 			cnt++;
1606 		}
1607 	}
1608 
1609 	if (m != NULL)
1610 		return(ENOBUFS);
1611 
1612 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1613 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1614 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1615 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1616 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1617 
1618 	*txidx = frag;
1619 
1620 	return(0);
1621 }
1622 
1623 static void
1624 sk_start(struct ifnet *ifp)
1625 {
1626         struct sk_if_softc *sc_if = ifp->if_softc;
1627         struct sk_softc *sc = sc_if->sk_softc;
1628         struct mbuf *m_head = NULL;
1629         uint32_t idx;
1630 	int need_trans;
1631 
1632 	idx = sc_if->sk_cdata.sk_tx_prod;
1633 
1634 	need_trans = 0;
1635 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1636 		m_head = ifq_poll(&ifp->if_snd);
1637 		if (m_head == NULL)
1638 			break;
1639 
1640 		/*
1641 		 * Pack the data into the transmit ring. If we
1642 		 * don't have room, set the OACTIVE flag and wait
1643 		 * for the NIC to drain the ring.
1644 		 */
1645 		if (sk_encap(sc_if, m_head, &idx)) {
1646 			ifp->if_flags |= IFF_OACTIVE;
1647 			break;
1648 		}
1649 		ifq_dequeue(&ifp->if_snd, m_head);
1650 		need_trans = 1;
1651 
1652 		BPF_MTAP(ifp, m_head);
1653 	}
1654 
1655 	if (!need_trans)
1656 		return;
1657 
1658 	/* Transmit */
1659 	sc_if->sk_cdata.sk_tx_prod = idx;
1660 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1661 
1662 	/* Set a timeout in case the chip goes out to lunch. */
1663 	ifp->if_timer = 5;
1664 }
1665 
1666 
1667 static void
1668 sk_watchdog(struct ifnet *ifp)
1669 {
1670 	struct sk_if_softc *sc_if;
1671 
1672 	sc_if = ifp->if_softc;
1673 
1674 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1675 	sk_init(sc_if);
1676 
1677 	if (!ifq_is_empty(&ifp->if_snd))
1678 		ifp->if_start(ifp);
1679 }
1680 
1681 static void
1682 skc_shutdown(device_t dev)
1683 {
1684 	struct sk_softc *sc = device_get_softc(dev);
1685 
1686 	lwkt_serialize_enter(&sk_serializer);
1687 
1688 	/* Turn off the 'driver is loaded' LED. */
1689 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1690 
1691 	/*
1692 	 * Reset the GEnesis controller. Doing this should also
1693 	 * assert the resets on the attached XMAC(s).
1694 	 */
1695 	sk_reset(sc);
1696 	lwkt_serialize_exit(&sk_serializer);
1697 }
1698 
1699 static void
1700 sk_rxeof(struct sk_if_softc *sc_if)
1701 {
1702 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1703 	struct mbuf *m;
1704 	struct sk_chain	*cur_rx;
1705 	int i, total_len = 0;
1706 	uint32_t rxstat;
1707 
1708 	i = sc_if->sk_cdata.sk_rx_prod;
1709 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1710 
1711 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1712 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1713 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1714 		m = cur_rx->sk_mbuf;
1715 		cur_rx->sk_mbuf = NULL;
1716 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1717 		SK_INC(i, SK_RX_RING_CNT);
1718 
1719 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1720 			ifp->if_ierrors++;
1721 			sk_newbuf(sc_if, cur_rx, m);
1722 			continue;
1723 		}
1724 
1725 		/*
1726 		 * Try to allocate a new jumbo buffer. If that
1727 		 * fails, copy the packet to mbufs and put the
1728 		 * jumbo buffer back in the ring so it can be
1729 		 * re-used. If allocating mbufs fails, then we
1730 		 * have to drop the packet.
1731 		 */
1732 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1733 			struct mbuf *m0;
1734 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1735 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1736 			sk_newbuf(sc_if, cur_rx, m);
1737 			if (m0 == NULL) {
1738 				printf("sk%d: no receive buffers "
1739 				    "available -- packet dropped!\n",
1740 				    sc_if->sk_unit);
1741 				ifp->if_ierrors++;
1742 				continue;
1743 			}
1744 			m_adj(m0, ETHER_ALIGN);
1745 			m = m0;
1746 		} else {
1747 			m->m_pkthdr.rcvif = ifp;
1748 			m->m_pkthdr.len = m->m_len = total_len;
1749 		}
1750 
1751 		ifp->if_ipackets++;
1752 		ifp->if_input(ifp, m);
1753 	}
1754 
1755 	sc_if->sk_cdata.sk_rx_prod = i;
1756 }
1757 
1758 static void
1759 sk_txeof(struct sk_if_softc *sc_if)
1760 {
1761 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1762 	struct sk_tx_desc *cur_tx = NULL;
1763 	uint32_t idx;
1764 
1765 	/*
1766 	 * Go through our tx ring and free mbufs for those
1767 	 * frames that have been sent.
1768 	 */
1769 	idx = sc_if->sk_cdata.sk_tx_cons;
1770 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1771 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1772 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1773 			break;
1774 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1775 			ifp->if_opackets++;
1776 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1777 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1778 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1779 		}
1780 		sc_if->sk_cdata.sk_tx_cnt--;
1781 		SK_INC(idx, SK_TX_RING_CNT);
1782 		ifp->if_timer = 0;
1783 	}
1784 
1785 	sc_if->sk_cdata.sk_tx_cons = idx;
1786 
1787 	if (cur_tx != NULL)
1788 		ifp->if_flags &= ~IFF_OACTIVE;
1789 }
1790 
1791 static void
1792 sk_tick(void *xsc_if)
1793 {
1794 	struct sk_if_softc *sc_if = xsc_if;
1795 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1796 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
1797 	int i;
1798 
1799 	lwkt_serialize_enter(&sk_serializer);
1800 
1801 	if ((ifp->if_flags & IFF_UP) == 0) {
1802 		lwkt_serialize_exit(&sk_serializer);
1803 		return;
1804 	}
1805 
1806 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1807 		sk_intr_bcom(sc_if);
1808 		lwkt_serialize_exit(&sk_serializer);
1809 		return;
1810 	}
1811 
1812 	/*
1813 	 * According to SysKonnect, the correct way to verify that
1814 	 * the link has come back up is to poll bit 0 of the GPIO
1815 	 * register three times. This pin has the signal from the
1816 	 * link_sync pin connected to it; if we read the same link
1817 	 * state 3 times in a row, we know the link is up.
1818 	 */
1819 	for (i = 0; i < 3; i++) {
1820 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1821 			break;
1822 	}
1823 
1824 	if (i != 3) {
1825 		callout_reset(&sc_if->sk_tick_timer, hz, sk_tick, sc_if);
1826 		lwkt_serialize_exit(&sk_serializer);
1827 		return;
1828 	}
1829 
1830 	/* Turn the GP0 interrupt back on. */
1831 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1832 	SK_XM_READ_2(sc_if, XM_ISR);
1833 	mii_tick(mii);
1834 	mii_pollstat(mii);
1835 	callout_stop(&sc_if->sk_tick_timer);
1836 	lwkt_serialize_exit(&sk_serializer);
1837 }
1838 
1839 static void
1840 sk_intr_bcom(struct sk_if_softc *sc_if)
1841 {
1842 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1843 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
1844 	int status;
1845 
1846 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1847 
1848 	/*
1849 	 * Read the PHY interrupt register to make sure
1850 	 * we clear any pending interrupts.
1851 	 */
1852 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1853 
1854 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1855 		sk_init_xmac(sc_if);
1856 		return;
1857 	}
1858 
1859 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1860 		int lstat;
1861 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
1862 		    BRGPHY_MII_AUXSTS);
1863 
1864 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1865 			mii_mediachg(mii);
1866 			/* Turn off the link LED. */
1867 			SK_IF_WRITE_1(sc_if, 0,
1868 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
1869 			sc_if->sk_link = 0;
1870 		} else if (status & BRGPHY_ISR_LNK_CHG) {
1871 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
1872 	    		    BRGPHY_MII_IMR, 0xFF00);
1873 			mii_tick(mii);
1874 			sc_if->sk_link = 1;
1875 			/* Turn on the link LED. */
1876 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1877 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1878 			    SK_LINKLED_BLINK_OFF);
1879 			mii_pollstat(mii);
1880 		} else {
1881 			mii_tick(mii);
1882 			callout_reset(&sc_if->sk_tick_timer, hz,
1883 				      sk_tick, sc_if);
1884 		}
1885 	}
1886 
1887 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1888 }
1889 
1890 static void
1891 sk_intr_xmac(struct sk_if_softc *sc_if)
1892 {
1893 	uint16_t status;
1894 
1895 	status = SK_XM_READ_2(sc_if, XM_ISR);
1896 
1897 	/*
1898 	 * Link has gone down. Start MII tick timeout to
1899 	 * watch for link resync.
1900 	 */
1901 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
1902 		if (status & XM_ISR_GP0_SET) {
1903 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1904 			callout_reset(&sc_if->sk_tick_timer, hz,
1905 				      sk_tick, sc_if);
1906 		}
1907 
1908 		if (status & XM_ISR_AUTONEG_DONE) {
1909 			callout_reset(&sc_if->sk_tick_timer, hz,
1910 				      sk_tick, sc_if);
1911 		}
1912 	}
1913 
1914 	if (status & XM_IMR_TX_UNDERRUN)
1915 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1916 
1917 	if (status & XM_IMR_RX_OVERRUN)
1918 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1919 
1920 	status = SK_XM_READ_2(sc_if, XM_ISR);
1921 }
1922 
1923 static void
1924 sk_intr_yukon(struct sk_if_softc *sc_if)
1925 {
1926 	int status;
1927 
1928 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1929 }
1930 
1931 static void
1932 sk_intr(void *xsc)
1933 {
1934 	struct sk_softc *sc = xsc;
1935 	struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1936 	struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_A];
1937 	struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1938 	uint32_t status;
1939 
1940 	if (sc_if0 != NULL)
1941 		ifp0 = &sc_if0->arpcom.ac_if;
1942 	if (sc_if1 != NULL)
1943 		ifp1 = &sc_if1->arpcom.ac_if;
1944 
1945 	for (;;) {
1946 		status = CSR_READ_4(sc, SK_ISSR);
1947 		if ((status & sc->sk_intrmask) == 0)
1948 			break;
1949 
1950 		/* Handle receive interrupts first. */
1951 		if (status & SK_ISR_RX1_EOF) {
1952 			sk_rxeof(sc_if0);
1953 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1954 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1955 		}
1956 		if (status & SK_ISR_RX2_EOF) {
1957 			sk_rxeof(sc_if1);
1958 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1959 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1960 		}
1961 
1962 		/* Then transmit interrupts. */
1963 		if (status & SK_ISR_TX1_S_EOF) {
1964 			sk_txeof(sc_if0);
1965 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
1966 			    SK_TXBMU_CLR_IRQ_EOF);
1967 		}
1968 		if (status & SK_ISR_TX2_S_EOF) {
1969 			sk_txeof(sc_if1);
1970 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
1971 			    SK_TXBMU_CLR_IRQ_EOF);
1972 		}
1973 
1974 		/* Then MAC interrupts. */
1975 		if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
1976 			if (sc->sk_type == SK_GENESIS)
1977 				sk_intr_xmac(sc_if0);
1978 			else
1979 				sk_intr_yukon(sc_if0);
1980 		}
1981 
1982 		if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
1983 			if (sc->sk_type == SK_GENESIS)
1984 				sk_intr_xmac(sc_if1);
1985 			else
1986 				sk_intr_yukon(sc_if0);
1987 		}
1988 
1989 		if (status & SK_ISR_EXTERNAL_REG) {
1990 			if (ifp0 != NULL &&
1991 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
1992 				sk_intr_bcom(sc_if0);
1993 			if (ifp1 != NULL &&
1994 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
1995 				sk_intr_bcom(sc_if1);
1996 		}
1997 	}
1998 
1999 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2000 
2001 	if (ifp0 != NULL && !ifq_is_empty(&ifp0->if_snd))
2002 		sk_start(ifp0);
2003 	if (ifp1 != NULL && !ifq_is_empty(&ifp0->if_snd))
2004 		sk_start(ifp1);
2005 }
2006 
2007 static void
2008 sk_init_xmac(struct sk_if_softc *sc_if)
2009 {
2010 	struct sk_softc *sc = sc_if->sk_softc;
2011 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2012 	struct sk_bcom_hack bhack[] = {
2013 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2014 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2015 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2016 	{ 0, 0 } };
2017 
2018 	/* Unreset the XMAC. */
2019 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2020 	DELAY(1000);
2021 
2022 	/* Reset the XMAC's internal state. */
2023 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2024 
2025 	/* Save the XMAC II revision */
2026 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2027 
2028 	/*
2029 	 * Perform additional initialization for external PHYs,
2030 	 * namely for the 1000baseTX cards that use the XMAC's
2031 	 * GMII mode.
2032 	 */
2033 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2034 		int i = 0;
2035 		uint32_t val;
2036 
2037 		/* Take PHY out of reset. */
2038 		val = sk_win_read_4(sc, SK_GPIO);
2039 		if (sc_if->sk_port == SK_PORT_A)
2040 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2041 		else
2042 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2043 		sk_win_write_4(sc, SK_GPIO, val);
2044 
2045 		/* Enable GMII mode on the XMAC. */
2046 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2047 
2048 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2049 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2050 		DELAY(10000);
2051 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2052 		    BRGPHY_MII_IMR, 0xFFF0);
2053 
2054 		/*
2055 		 * Early versions of the BCM5400 apparently have
2056 		 * a bug that requires them to have their reserved
2057 		 * registers initialized to some magic values. I don't
2058 		 * know what the numbers do, I'm just the messenger.
2059 		 */
2060 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2061 		    == 0x6041) {
2062 			while(bhack[i].reg) {
2063 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2064 				    bhack[i].reg, bhack[i].val);
2065 				i++;
2066 			}
2067 		}
2068 	}
2069 
2070 	/* Set station address */
2071 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2072 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2073 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2074 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2075 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2076 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2077 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2078 
2079 	if (ifp->if_flags & IFF_BROADCAST)
2080 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2081 	else
2082 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2083 
2084 	/* We don't need the FCS appended to the packet. */
2085 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2086 
2087 	/* We want short frames padded to 60 bytes. */
2088 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2089 
2090 	/*
2091 	 * Enable the reception of all error frames. This is is
2092 	 * a necessary evil due to the design of the XMAC. The
2093 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2094 	 * frames can be up to 9000 bytes in length. When bad
2095 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2096 	 * in 'store and forward' mode. For this to work, the
2097 	 * entire frame has to fit into the FIFO, but that means
2098 	 * that jumbo frames larger than 8192 bytes will be
2099 	 * truncated. Disabling all bad frame filtering causes
2100 	 * the RX FIFO to operate in streaming mode, in which
2101 	 * case the XMAC will start transfering frames out of the
2102 	 * RX FIFO as soon as the FIFO threshold is reached.
2103 	 */
2104 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2105 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2106 	    XM_MODE_RX_INRANGELEN);
2107 
2108 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2109 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2110 	else
2111 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2112 
2113 	/*
2114 	 * Bump up the transmit threshold. This helps hold off transmit
2115 	 * underruns when we're blasting traffic from both ports at once.
2116 	 */
2117 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2118 
2119 	/* Set promiscuous mode */
2120 	sk_setpromisc(sc_if);
2121 
2122 	/* Set multicast filter */
2123 	sk_setmulti(sc_if);
2124 
2125 	/* Clear and enable interrupts */
2126 	SK_XM_READ_2(sc_if, XM_ISR);
2127 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2128 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2129 	else
2130 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2131 
2132 	/* Configure MAC arbiter */
2133 	switch(sc_if->sk_xmac_rev) {
2134 	case XM_XMAC_REV_B2:
2135 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2136 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2137 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2138 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2139 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2140 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2141 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2142 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2143 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2144 		break;
2145 	case XM_XMAC_REV_C1:
2146 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2147 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2148 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2149 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2150 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2151 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2152 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2153 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2154 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2155 		break;
2156 	default:
2157 		break;
2158 	}
2159 	sk_win_write_2(sc, SK_MACARB_CTL,
2160 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2161 
2162 	sc_if->sk_link = 1;
2163 }
2164 
2165 static void
2166 sk_init_yukon(struct sk_if_softc *sc_if)
2167 {
2168 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2169 	uint32_t phy;
2170 	uint16_t reg;
2171 	int i;
2172 
2173 	/* GMAC and GPHY Reset */
2174 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2175 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2176 	DELAY(1000);
2177 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2178 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2179 	DELAY(1000);
2180 
2181 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2182 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2183 
2184 	switch(sc_if->sk_softc->sk_pmd) {
2185 	case IFM_1000_SX:
2186 	case IFM_1000_LX:
2187 		phy |= SK_GPHY_FIBER;
2188 		break;
2189 
2190 	case IFM_1000_CX:
2191 	case IFM_1000_T:
2192 		phy |= SK_GPHY_COPPER;
2193 		break;
2194 	}
2195 
2196 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2197 	DELAY(1000);
2198 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2199 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2200 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2201 
2202 	/* unused read of the interrupt source register */
2203 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2204 
2205 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2206 
2207 	/* MIB Counter Clear Mode set */
2208 	reg |= YU_PAR_MIB_CLR;
2209 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2210 
2211 	/* MIB Counter Clear Mode clear */
2212 	reg &= ~YU_PAR_MIB_CLR;
2213 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2214 
2215 	/* receive control reg */
2216 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2217 
2218 	/* transmit parameter register */
2219 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2220 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2221 
2222 	/* serial mode register */
2223 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2224 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2225 		reg |= YU_SMR_MFL_JUMBO;
2226 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2227 
2228 	/* Setup Yukon's address */
2229 	for (i = 0; i < 3; i++) {
2230 		/* Write Source Address 1 (unicast filter) */
2231 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2232 			      sc_if->arpcom.ac_enaddr[i * 2] |
2233 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2234 	}
2235 
2236 	for (i = 0; i < 3; i++) {
2237 		reg = sk_win_read_2(sc_if->sk_softc,
2238 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2239 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2240 	}
2241 
2242 	/* Set promiscuous mode */
2243 	sk_setpromisc(sc_if);
2244 
2245 	/* Set multicast filter */
2246 	sk_setmulti(sc_if);
2247 
2248 	/* enable interrupt mask for counter overflows */
2249 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2250 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2251 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2252 
2253 	/* Configure RX MAC FIFO */
2254 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2255 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2256 
2257 	/* Configure TX MAC FIFO */
2258 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2259 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2260 }
2261 
2262 /*
2263  * Note that to properly initialize any part of the GEnesis chip,
2264  * you first have to take it out of reset mode.
2265  */
2266 static void
2267 sk_init(void *xsc)
2268 {
2269 	struct sk_if_softc *sc_if = xsc;
2270 	struct sk_softc *sc = sc_if->sk_softc;
2271 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2272 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2273 	uint16_t reg;
2274 
2275 	crit_enter();
2276 
2277 	/* Cancel pending I/O and free all RX/TX buffers. */
2278 	sk_stop(sc_if);
2279 
2280 	if (sc->sk_type == SK_GENESIS) {
2281 		/* Configure LINK_SYNC LED */
2282 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2283 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2284 			SK_LINKLED_LINKSYNC_ON);
2285 
2286 		/* Configure RX LED */
2287 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2288 			SK_RXLEDCTL_COUNTER_START);
2289 
2290 		/* Configure TX LED */
2291 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2292 			SK_TXLEDCTL_COUNTER_START);
2293 	}
2294 
2295 	/* Configure I2C registers */
2296 
2297 	/* Configure XMAC(s) */
2298 	switch (sc->sk_type) {
2299 	case SK_GENESIS:
2300 		sk_init_xmac(sc_if);
2301 		break;
2302 	case SK_YUKON:
2303 		sk_init_yukon(sc_if);
2304 		break;
2305 	}
2306 	mii_mediachg(mii);
2307 
2308 	if (sc->sk_type == SK_GENESIS) {
2309 		/* Configure MAC FIFOs */
2310 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2311 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2312 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2313 
2314 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2315 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2316 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2317 	}
2318 
2319 	/* Configure transmit arbiter(s) */
2320 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2321 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2322 
2323 	/* Configure RAMbuffers */
2324 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2325 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2326 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2327 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2328 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2329 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2330 
2331 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2332 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2333 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2334 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2335 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2336 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2337 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2338 
2339 	/* Configure BMUs */
2340 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2341 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2342 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2343 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2344 
2345 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2346 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2347 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2348 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2349 
2350 	/* Init descriptors */
2351 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2352 		printf("sk%d: initialization failed: no "
2353 		    "memory for rx buffers\n", sc_if->sk_unit);
2354 		sk_stop(sc_if);
2355 		crit_exit();
2356 		return;
2357 	}
2358 	sk_init_tx_ring(sc_if);
2359 
2360 	/* Configure interrupt handling */
2361 	CSR_READ_4(sc, SK_ISSR);
2362 	if (sc_if->sk_port == SK_PORT_A)
2363 		sc->sk_intrmask |= SK_INTRS1;
2364 	else
2365 		sc->sk_intrmask |= SK_INTRS2;
2366 
2367 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2368 
2369 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2370 
2371 	/* Start BMUs. */
2372 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2373 
2374 	switch(sc->sk_type) {
2375 	case SK_GENESIS:
2376 		/* Enable XMACs TX and RX state machines */
2377 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2378 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2379 		    XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2380 		break;
2381 	case SK_YUKON:
2382 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2383 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2384 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2385 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2386 	}
2387 
2388 	ifp->if_flags |= IFF_RUNNING;
2389 	ifp->if_flags &= ~IFF_OACTIVE;
2390 
2391 	crit_exit();
2392 }
2393 
2394 static void
2395 sk_stop(struct sk_if_softc *sc_if)
2396 {
2397 	int i;
2398 	struct sk_softc *sc = sc_if->sk_softc;
2399 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2400 
2401 	callout_stop(&sc_if->sk_tick_timer);
2402 
2403 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2404 		uint32_t val;
2405 
2406 		/* Put PHY back into reset. */
2407 		val = sk_win_read_4(sc, SK_GPIO);
2408 		if (sc_if->sk_port == SK_PORT_A) {
2409 			val |= SK_GPIO_DIR0;
2410 			val &= ~SK_GPIO_DAT0;
2411 		} else {
2412 			val |= SK_GPIO_DIR2;
2413 			val &= ~SK_GPIO_DAT2;
2414 		}
2415 		sk_win_write_4(sc, SK_GPIO, val);
2416 	}
2417 
2418 	/* Turn off various components of this interface. */
2419 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2420 	switch (sc->sk_type) {
2421 	case SK_GENESIS:
2422 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2423 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2424 		break;
2425 	case SK_YUKON:
2426 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2427 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2428 		break;
2429 	}
2430 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2431 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2432 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2433 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST,
2434 	    SK_RBCTL_RESET | SK_RBCTL_OFF);
2435 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2436 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2437 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2438 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2439 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2440 
2441 	/* Disable interrupts */
2442 	if (sc_if->sk_port == SK_PORT_A)
2443 		sc->sk_intrmask &= ~SK_INTRS1;
2444 	else
2445 		sc->sk_intrmask &= ~SK_INTRS2;
2446 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2447 
2448 	SK_XM_READ_2(sc_if, XM_ISR);
2449 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2450 
2451 	/* Free RX and TX mbufs still in the queues. */
2452 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2453 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2454 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2455 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2456 		}
2457 	}
2458 
2459 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2460 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2461 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2462 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2463 		}
2464 	}
2465 
2466 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2467 }
2468