xref: /dragonfly/sys/dev/netif/sk/if_sk.c (revision 9bb2a92d)
1 /*	$OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $
35  * $DragonFly: src/sys/dev/netif/sk/if_sk.c,v 1.11 2004/01/06 01:40:49 dillon Exp $
36  *
37  * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $
38  */
39 
40 /*
41  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
42  *
43  * Permission to use, copy, modify, and distribute this software for any
44  * purpose with or without fee is hereby granted, provided that the above
45  * copyright notice and this permission notice appear in all copies.
46  *
47  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
48  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
49  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
50  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
51  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
52  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
53  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
54  */
55 
56 /*
57  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
58  * the SK-984x series adapters, both single port and dual port.
59  * References:
60  * 	The XaQti XMAC II datasheet,
61  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
62  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
63  *
64  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
65  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
66  * convenience to others until Vitesse corrects this problem:
67  *
68  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
69  *
70  * Written by Bill Paul <wpaul@ee.columbia.edu>
71  * Department of Electrical Engineering
72  * Columbia University, New York City
73  */
74 
75 /*
76  * The SysKonnect gigabit ethernet adapters consist of two main
77  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
78  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
79  * components and a PHY while the GEnesis controller provides a PCI
80  * interface with DMA support. Each card may have between 512K and
81  * 2MB of SRAM on board depending on the configuration.
82  *
83  * The SysKonnect GEnesis controller can have either one or two XMAC
84  * chips connected to it, allowing single or dual port NIC configurations.
85  * SysKonnect has the distinction of being the only vendor on the market
86  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
87  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
88  * XMAC registers. This driver takes advantage of these features to allow
89  * both XMACs to operate as independent interfaces.
90  */
91 
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/sockio.h>
95 #include <sys/mbuf.h>
96 #include <sys/malloc.h>
97 #include <sys/kernel.h>
98 #include <sys/socket.h>
99 #include <sys/queue.h>
100 
101 #include <net/if.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 
107 #include <net/bpf.h>
108 
109 #include <vm/vm.h>              /* for vtophys */
110 #include <vm/pmap.h>            /* for vtophys */
111 #include <machine/clock.h>      /* for DELAY */
112 #include <machine/bus_pio.h>
113 #include <machine/bus_memio.h>
114 #include <machine/bus.h>
115 #include <machine/resource.h>
116 #include <sys/bus.h>
117 #include <sys/rman.h>
118 
119 #include "../mii_layer/mii.h"
120 #include "../mii_layer/miivar.h"
121 #include "../mii_layer/brgphyreg.h"
122 
123 #include <bus/pci/pcireg.h>
124 #include <bus/pci/pcivar.h>
125 
126 #if 0
127 #define SK_USEIOSPACE
128 #endif
129 
130 #include "if_skreg.h"
131 #include "xmaciireg.h"
132 #include "yukonreg.h"
133 
134 /* "controller miibus0" required.  See GENERIC if you get errors here. */
135 #include "miibus_if.h"
136 
137 static struct sk_type sk_devs[] = {
138 	{
139 		VENDORID_SK,
140 		DEVICEID_SK_V1,
141 		"SysKonnect Gigabit Ethernet (V1.0)"
142 	},
143 	{
144 		VENDORID_SK,
145 		DEVICEID_SK_V2,
146 		"SysKonnect Gigabit Ethernet (V2.0)"
147 	},
148 	{
149 		VENDORID_MARVELL,
150 		DEVICEID_SK_V2,
151 		"Marvell Gigabit Ethernet"
152 	},
153 	{
154 		VENDORID_3COM,
155 		DEVICEID_3COM_3C940,
156 		"3Com 3C940 Gigabit Ethernet"
157 	},
158 	{ 0, 0, NULL }
159 };
160 
161 static int skc_probe		(device_t);
162 static int skc_attach		(device_t);
163 static int skc_detach		(device_t);
164 static void skc_shutdown	(device_t);
165 static int sk_probe		(device_t);
166 static int sk_attach		(device_t);
167 static int sk_detach		(device_t);
168 static void sk_tick		(void *);
169 static void sk_intr		(void *);
170 static void sk_intr_bcom	(struct sk_if_softc *);
171 static void sk_intr_xmac	(struct sk_if_softc *);
172 static void sk_intr_yukon	(struct sk_if_softc *);
173 static void sk_rxeof		(struct sk_if_softc *);
174 static void sk_txeof		(struct sk_if_softc *);
175 static int sk_encap		(struct sk_if_softc *, struct mbuf *,
176 					u_int32_t *);
177 static void sk_start		(struct ifnet *);
178 static int sk_ioctl		(struct ifnet *, u_long, caddr_t);
179 static void sk_init		(void *);
180 static void sk_init_xmac	(struct sk_if_softc *);
181 static void sk_init_yukon	(struct sk_if_softc *);
182 static void sk_stop		(struct sk_if_softc *);
183 static void sk_watchdog		(struct ifnet *);
184 static int sk_ifmedia_upd	(struct ifnet *);
185 static void sk_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
186 static void sk_reset		(struct sk_softc *);
187 static int sk_newbuf		(struct sk_if_softc *,
188 					struct sk_chain *, struct mbuf *);
189 static int sk_alloc_jumbo_mem	(struct sk_if_softc *);
190 static void *sk_jalloc		(struct sk_if_softc *);
191 static void sk_jfree		(caddr_t, u_int);
192 static void sk_jref		(caddr_t, u_int);
193 static int sk_init_rx_ring	(struct sk_if_softc *);
194 static void sk_init_tx_ring	(struct sk_if_softc *);
195 static u_int32_t sk_win_read_4	(struct sk_softc *, int);
196 static u_int16_t sk_win_read_2	(struct sk_softc *, int);
197 static u_int8_t sk_win_read_1	(struct sk_softc *, int);
198 static void sk_win_write_4	(struct sk_softc *, int, u_int32_t);
199 static void sk_win_write_2	(struct sk_softc *, int, u_int32_t);
200 static void sk_win_write_1	(struct sk_softc *, int, u_int32_t);
201 static u_int8_t sk_vpd_readbyte	(struct sk_softc *, int);
202 static void sk_vpd_read_res	(struct sk_softc *,
203 					struct vpd_res *, int);
204 static void sk_vpd_read		(struct sk_softc *);
205 
206 static int sk_miibus_readreg	(device_t, int, int);
207 static int sk_miibus_writereg	(device_t, int, int, int);
208 static void sk_miibus_statchg	(device_t);
209 
210 static int sk_xmac_miibus_readreg     (struct sk_if_softc *, int, int);
211 static int sk_xmac_miibus_writereg    (struct sk_if_softc *, int, int, int);
212 static void sk_xmac_miibus_statchg    (struct sk_if_softc *);
213 
214 static int sk_marv_miibus_readreg     (struct sk_if_softc *, int, int);
215 static int sk_marv_miibus_writereg    (struct sk_if_softc *, int, int, int);
216 static void sk_marv_miibus_statchg    (struct sk_if_softc *);
217 
218 static u_int32_t xmac_calchash	(caddr_t);
219 static u_int32_t gmac_calchash	(caddr_t);
220 static void sk_setfilt		(struct sk_if_softc *, caddr_t, int);
221 static void sk_setmulti		(struct sk_if_softc *);
222 static void sk_setpromisc	(struct sk_if_softc *);
223 
224 #ifdef SK_USEIOSPACE
225 #define SK_RES		SYS_RES_IOPORT
226 #define SK_RID		SK_PCI_LOIO
227 #else
228 #define SK_RES		SYS_RES_MEMORY
229 #define SK_RID		SK_PCI_LOMEM
230 #endif
231 
232 /*
233  * Note that we have newbus methods for both the GEnesis controller
234  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
235  * the miibus code is a child of the XMACs. We need to do it this way
236  * so that the miibus drivers can access the PHY registers on the
237  * right PHY. It's not quite what I had in mind, but it's the only
238  * design that achieves the desired effect.
239  */
240 static device_method_t skc_methods[] = {
241 	/* Device interface */
242 	DEVMETHOD(device_probe,		skc_probe),
243 	DEVMETHOD(device_attach,	skc_attach),
244 	DEVMETHOD(device_detach,	skc_detach),
245 	DEVMETHOD(device_shutdown,	skc_shutdown),
246 
247 	/* bus interface */
248 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
249 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
250 
251 	{ 0, 0 }
252 };
253 
254 static driver_t skc_driver = {
255 	"skc",
256 	skc_methods,
257 	sizeof(struct sk_softc)
258 };
259 
260 static devclass_t skc_devclass;
261 
262 static device_method_t sk_methods[] = {
263 	/* Device interface */
264 	DEVMETHOD(device_probe,		sk_probe),
265 	DEVMETHOD(device_attach,	sk_attach),
266 	DEVMETHOD(device_detach,	sk_detach),
267 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
268 
269 	/* bus interface */
270 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
271 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
272 
273 	/* MII interface */
274 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
275 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
276 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
277 
278 	{ 0, 0 }
279 };
280 
281 static driver_t sk_driver = {
282 	"sk",
283 	sk_methods,
284 	sizeof(struct sk_if_softc)
285 };
286 
287 static devclass_t sk_devclass;
288 
289 DECLARE_DUMMY_MODULE(if_sk);
290 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
291 DRIVER_MODULE(if_sk, skc, sk_driver, sk_devclass, 0, 0);
292 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
293 
294 #define SK_SETBIT(sc, reg, x)		\
295 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
296 
297 #define SK_CLRBIT(sc, reg, x)		\
298 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
299 
300 #define SK_WIN_SETBIT_4(sc, reg, x)	\
301 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
302 
303 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
304 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
305 
306 #define SK_WIN_SETBIT_2(sc, reg, x)	\
307 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
308 
309 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
310 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
311 
312 static u_int32_t sk_win_read_4(sc, reg)
313 	struct sk_softc		*sc;
314 	int			reg;
315 {
316 #ifdef SK_USEIOSPACE
317 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
318 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
319 #else
320 	return(CSR_READ_4(sc, reg));
321 #endif
322 }
323 
324 static u_int16_t sk_win_read_2(sc, reg)
325 	struct sk_softc		*sc;
326 	int			reg;
327 {
328 #ifdef SK_USEIOSPACE
329 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
330 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
331 #else
332 	return(CSR_READ_2(sc, reg));
333 #endif
334 }
335 
336 static u_int8_t sk_win_read_1(sc, reg)
337 	struct sk_softc		*sc;
338 	int			reg;
339 {
340 #ifdef SK_USEIOSPACE
341 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
342 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
343 #else
344 	return(CSR_READ_1(sc, reg));
345 #endif
346 }
347 
348 static void sk_win_write_4(sc, reg, val)
349 	struct sk_softc		*sc;
350 	int			reg;
351 	u_int32_t		val;
352 {
353 #ifdef SK_USEIOSPACE
354 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
355 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
356 #else
357 	CSR_WRITE_4(sc, reg, val);
358 #endif
359 	return;
360 }
361 
362 static void sk_win_write_2(sc, reg, val)
363 	struct sk_softc		*sc;
364 	int			reg;
365 	u_int32_t		val;
366 {
367 #ifdef SK_USEIOSPACE
368 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
369 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
370 #else
371 	CSR_WRITE_2(sc, reg, val);
372 #endif
373 	return;
374 }
375 
376 static void sk_win_write_1(sc, reg, val)
377 	struct sk_softc		*sc;
378 	int			reg;
379 	u_int32_t		val;
380 {
381 #ifdef SK_USEIOSPACE
382 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
383 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
384 #else
385 	CSR_WRITE_1(sc, reg, val);
386 #endif
387 	return;
388 }
389 
390 /*
391  * The VPD EEPROM contains Vital Product Data, as suggested in
392  * the PCI 2.1 specification. The VPD data is separared into areas
393  * denoted by resource IDs. The SysKonnect VPD contains an ID string
394  * resource (the name of the adapter), a read-only area resource
395  * containing various key/data fields and a read/write area which
396  * can be used to store asset management information or log messages.
397  * We read the ID string and read-only into buffers attached to
398  * the controller softc structure for later use. At the moment,
399  * we only use the ID string during sk_attach().
400  */
401 static u_int8_t sk_vpd_readbyte(sc, addr)
402 	struct sk_softc		*sc;
403 	int			addr;
404 {
405 	int			i;
406 
407 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
408 	for (i = 0; i < SK_TIMEOUT; i++) {
409 		DELAY(1);
410 		if (sk_win_read_2(sc,
411 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
412 			break;
413 	}
414 
415 	if (i == SK_TIMEOUT)
416 		return(0);
417 
418 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
419 }
420 
421 static void sk_vpd_read_res(sc, res, addr)
422 	struct sk_softc		*sc;
423 	struct vpd_res		*res;
424 	int			addr;
425 {
426 	int			i;
427 	u_int8_t		*ptr;
428 
429 	ptr = (u_int8_t *)res;
430 	for (i = 0; i < sizeof(struct vpd_res); i++)
431 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
432 
433 	return;
434 }
435 
436 static void sk_vpd_read(sc)
437 	struct sk_softc		*sc;
438 {
439 	int			pos = 0, i;
440 	struct vpd_res		res;
441 
442 	if (sc->sk_vpd_prodname != NULL)
443 		free(sc->sk_vpd_prodname, M_DEVBUF);
444 	if (sc->sk_vpd_readonly != NULL)
445 		free(sc->sk_vpd_readonly, M_DEVBUF);
446 	sc->sk_vpd_prodname = NULL;
447 	sc->sk_vpd_readonly = NULL;
448 
449 	sk_vpd_read_res(sc, &res, pos);
450 
451 	if (res.vr_id != VPD_RES_ID) {
452 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
453 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
454 		return;
455 	}
456 
457 	pos += sizeof(res);
458 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
459 	for (i = 0; i < res.vr_len; i++)
460 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
461 	sc->sk_vpd_prodname[i] = '\0';
462 	pos += i;
463 
464 	sk_vpd_read_res(sc, &res, pos);
465 
466 	if (res.vr_id != VPD_RES_READ) {
467 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
468 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
469 		return;
470 	}
471 
472 	pos += sizeof(res);
473 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
474 	for (i = 0; i < res.vr_len + 1; i++)
475 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
476 
477 	return;
478 }
479 
480 static int sk_miibus_readreg(dev, phy, reg)
481 	device_t		dev;
482 	int			phy, reg;
483 {
484 	struct sk_if_softc	*sc_if;
485 
486 	sc_if = device_get_softc(dev);
487 
488 	switch(sc_if->sk_softc->sk_type) {
489 	case SK_GENESIS:
490 		return(sk_xmac_miibus_readreg(sc_if, phy, reg));
491 	case SK_YUKON:
492 		return(sk_marv_miibus_readreg(sc_if, phy, reg));
493 	}
494 
495 	return(0);
496 }
497 
498 static int sk_miibus_writereg(dev, phy, reg, val)
499 	device_t		dev;
500 	int			phy, reg, val;
501 {
502 	struct sk_if_softc	*sc_if;
503 
504 	sc_if = device_get_softc(dev);
505 
506 	switch(sc_if->sk_softc->sk_type) {
507 	case SK_GENESIS:
508 		return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
509 	case SK_YUKON:
510 		return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
511 	}
512 
513 	return(0);
514 }
515 
516 static void sk_miibus_statchg(dev)
517 	device_t		dev;
518 {
519 	struct sk_if_softc	*sc_if;
520 
521 	sc_if = device_get_softc(dev);
522 
523 	switch(sc_if->sk_softc->sk_type) {
524 	case SK_GENESIS:
525 		sk_xmac_miibus_statchg(sc_if);
526 		break;
527 	case SK_YUKON:
528 		sk_marv_miibus_statchg(sc_if);
529 		break;
530 	}
531 
532 	return;
533 }
534 
535 static int sk_xmac_miibus_readreg(sc_if, phy, reg)
536 	struct sk_if_softc	*sc_if;
537 	int			phy, reg;
538 {
539 	int			i;
540 
541 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
542 		return(0);
543 
544 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
545 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
546 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
547 		for (i = 0; i < SK_TIMEOUT; i++) {
548 			DELAY(1);
549 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
550 			    XM_MMUCMD_PHYDATARDY)
551 				break;
552 		}
553 
554 		if (i == SK_TIMEOUT) {
555 			printf("sk%d: phy failed to come ready\n",
556 			    sc_if->sk_unit);
557 			return(0);
558 		}
559 	}
560 	DELAY(1);
561 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
562 }
563 
564 static int sk_xmac_miibus_writereg(sc_if, phy, reg, val)
565 	struct sk_if_softc	*sc_if;
566 	int			phy, reg, val;
567 {
568 	int			i;
569 
570 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
571 	for (i = 0; i < SK_TIMEOUT; i++) {
572 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
573 			break;
574 	}
575 
576 	if (i == SK_TIMEOUT) {
577 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
578 		return(ETIMEDOUT);
579 	}
580 
581 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
582 	for (i = 0; i < SK_TIMEOUT; i++) {
583 		DELAY(1);
584 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
585 			break;
586 	}
587 
588 	if (i == SK_TIMEOUT)
589 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
590 
591 	return(0);
592 }
593 
594 static void sk_xmac_miibus_statchg(sc_if)
595 	struct sk_if_softc	*sc_if;
596 {
597 	struct mii_data		*mii;
598 
599 	mii = device_get_softc(sc_if->sk_miibus);
600 
601 	/*
602 	 * If this is a GMII PHY, manually set the XMAC's
603 	 * duplex mode accordingly.
604 	 */
605 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
606 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
607 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
608 		} else {
609 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
610 		}
611 	}
612 
613 	return;
614 }
615 
616 static int sk_marv_miibus_readreg(sc_if, phy, reg)
617 	struct sk_if_softc	*sc_if;
618 	int			phy, reg;
619 {
620 	u_int16_t		val;
621 	int			i;
622 
623 	if (phy != 0 ||
624 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
625 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
626 		return(0);
627 	}
628 
629         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
630 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
631 
632 	for (i = 0; i < SK_TIMEOUT; i++) {
633 		DELAY(1);
634 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
635 		if (val & YU_SMICR_READ_VALID)
636 			break;
637 	}
638 
639 	if (i == SK_TIMEOUT) {
640 		printf("sk%d: phy failed to come ready\n",
641 		    sc_if->sk_unit);
642 		return(0);
643 	}
644 
645 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
646 
647 	return(val);
648 }
649 
650 static int sk_marv_miibus_writereg(sc_if, phy, reg, val)
651 	struct sk_if_softc	*sc_if;
652 	int			phy, reg, val;
653 {
654 	int			i;
655 
656 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
657 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
658 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
659 
660 	for (i = 0; i < SK_TIMEOUT; i++) {
661 		DELAY(1);
662 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
663 			break;
664 	}
665 
666 	return(0);
667 }
668 
669 static void sk_marv_miibus_statchg(sc_if)
670 	struct sk_if_softc	*sc_if;
671 {
672 	return;
673 }
674 
675 #define XMAC_POLY		0xEDB88320
676 #define GMAC_POLY               0x04C11DB7L
677 #define HASH_BITS		6
678 
679 static u_int32_t xmac_calchash(addr)
680 	caddr_t			addr;
681 {
682 	u_int32_t		idx, bit, data, crc;
683 
684 	/* Compute CRC for the address value. */
685 	crc = 0xFFFFFFFF; /* initial value */
686 
687 	for (idx = 0; idx < 6; idx++) {
688 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
689 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? XMAC_POLY : 0);
690 	}
691 
692 	return (~crc & ((1 << HASH_BITS) - 1));
693 }
694 
695 static u_int32_t gmac_calchash(addr)
696     caddr_t			addr;
697 {
698     u_int32_t               idx, bit, crc, tmpData, data;
699 
700     /* Compute CRC for the address value. */
701     crc = 0xFFFFFFFF; /* initial value */
702 
703     for (idx = 0; idx < 6; idx++) {
704         data = *addr++;
705 
706         /* Change bit order in byte. */
707         tmpData = data;
708         for (bit = 0; bit < 8; bit++) {
709             if (tmpData & 1) {
710                 data |=  1 << (7 - bit);
711             }
712             else {
713                 data &= ~(1 << (7 - bit));
714             }
715 
716             tmpData >>= 1;
717         }
718 
719         crc ^= (data << 24);
720         for (bit = 0; bit < 8; bit++) {
721             if (crc & 0x80000000) {
722                 crc = (crc << 1) ^ GMAC_POLY;
723             } else {
724                 crc <<= 1;
725             }
726         }
727     }
728 
729     return (crc & ((1 << HASH_BITS) - 1));
730 }
731 
732 static void sk_setfilt(sc_if, addr, slot)
733 	struct sk_if_softc	*sc_if;
734 	caddr_t			addr;
735 	int			slot;
736 {
737 	int			base;
738 
739 	base = XM_RXFILT_ENTRY(slot);
740 
741 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
742 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
743 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
744 
745 	return;
746 }
747 
748 static void sk_setmulti(sc_if)
749 	struct sk_if_softc	*sc_if;
750 {
751 	struct sk_softc		*sc = sc_if->sk_softc;
752 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
753 	u_int32_t		hashes[2] = { 0, 0 };
754 	int			h, i;
755 	struct ifmultiaddr	*ifma;
756 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
757 
758 
759 	/* First, zot all the existing filters. */
760 	switch(sc->sk_type) {
761 	case SK_GENESIS:
762 		for (i = 1; i < XM_RXFILT_MAX; i++)
763 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
764 
765 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
766 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
767 		break;
768 	case SK_YUKON:
769 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
770 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
771 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
772 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
773 		break;
774 	}
775 
776 	/* Now program new ones. */
777 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
778 		hashes[0] = 0xFFFFFFFF;
779 		hashes[1] = 0xFFFFFFFF;
780 	} else {
781 		i = 1;
782 		/* First find the tail of the list. */
783 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
784 					ifma = ifma->ifma_link.le_next) {
785 			if (ifma->ifma_link.le_next == NULL)
786 				break;
787 		}
788 		/* Now traverse the list backwards. */
789 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
790 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
791 			if (ifma->ifma_addr->sa_family != AF_LINK)
792 				continue;
793 			/*
794 			 * Program the first XM_RXFILT_MAX multicast groups
795 			 * into the perfect filter. For all others,
796 			 * use the hash table.
797 			 */
798 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
799 				sk_setfilt(sc_if,
800 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
801 				i++;
802 				continue;
803 			}
804 
805                         switch(sc->sk_type) {
806                         case SK_GENESIS:
807                             h = xmac_calchash(
808                                 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
809                             if (h < 32)
810                                 hashes[0] |= (1 << h);
811                             else
812                                 hashes[1] |= (1 << (h - 32));
813                             break;
814 
815                         case SK_YUKON:
816                             h = gmac_calchash(
817                                 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
818                             if (h < 32)
819                                 hashes[0] |= (1 << h);
820                             else
821                                 hashes[1] |= (1 << (h - 32));
822                             break;
823                         }
824 		}
825 	}
826 
827 	switch(sc->sk_type) {
828 	case SK_GENESIS:
829 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
830 			       XM_MODE_RX_USE_PERFECT);
831 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
832 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
833 		break;
834 	case SK_YUKON:
835 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
836 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
837 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
838 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
839 		break;
840 	}
841 
842 	return;
843 }
844 
845 static void sk_setpromisc(sc_if)
846 	struct sk_if_softc	*sc_if;
847 {
848 	struct sk_softc		*sc = sc_if->sk_softc;
849 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
850 
851 	switch(sc->sk_type) {
852 	case SK_GENESIS:
853 		if (ifp->if_flags & IFF_PROMISC) {
854 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
855 		} else {
856 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
857 		}
858 		break;
859 	case SK_YUKON:
860 		if (ifp->if_flags & IFF_PROMISC) {
861 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
862 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
863 		} else {
864 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
865 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
866 		}
867 		break;
868 	}
869 
870 	return;
871 }
872 
873 static int sk_init_rx_ring(sc_if)
874 	struct sk_if_softc	*sc_if;
875 {
876 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
877 	struct sk_ring_data	*rd = sc_if->sk_rdata;
878 	int			i;
879 
880 	bzero((char *)rd->sk_rx_ring,
881 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
882 
883 	for (i = 0; i < SK_RX_RING_CNT; i++) {
884 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
885 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
886 			return(ENOBUFS);
887 		if (i == (SK_RX_RING_CNT - 1)) {
888 			cd->sk_rx_chain[i].sk_next =
889 			    &cd->sk_rx_chain[0];
890 			rd->sk_rx_ring[i].sk_next =
891 			    vtophys(&rd->sk_rx_ring[0]);
892 		} else {
893 			cd->sk_rx_chain[i].sk_next =
894 			    &cd->sk_rx_chain[i + 1];
895 			rd->sk_rx_ring[i].sk_next =
896 			    vtophys(&rd->sk_rx_ring[i + 1]);
897 		}
898 	}
899 
900 	sc_if->sk_cdata.sk_rx_prod = 0;
901 	sc_if->sk_cdata.sk_rx_cons = 0;
902 
903 	return(0);
904 }
905 
906 static void sk_init_tx_ring(sc_if)
907 	struct sk_if_softc	*sc_if;
908 {
909 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
910 	struct sk_ring_data	*rd = sc_if->sk_rdata;
911 	int			i;
912 
913 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
914 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
915 
916 	for (i = 0; i < SK_TX_RING_CNT; i++) {
917 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
918 		if (i == (SK_TX_RING_CNT - 1)) {
919 			cd->sk_tx_chain[i].sk_next =
920 			    &cd->sk_tx_chain[0];
921 			rd->sk_tx_ring[i].sk_next =
922 			    vtophys(&rd->sk_tx_ring[0]);
923 		} else {
924 			cd->sk_tx_chain[i].sk_next =
925 			    &cd->sk_tx_chain[i + 1];
926 			rd->sk_tx_ring[i].sk_next =
927 			    vtophys(&rd->sk_tx_ring[i + 1]);
928 		}
929 	}
930 
931 	sc_if->sk_cdata.sk_tx_prod = 0;
932 	sc_if->sk_cdata.sk_tx_cons = 0;
933 	sc_if->sk_cdata.sk_tx_cnt = 0;
934 
935 	return;
936 }
937 
938 static int sk_newbuf(sc_if, c, m)
939 	struct sk_if_softc	*sc_if;
940 	struct sk_chain		*c;
941 	struct mbuf		*m;
942 {
943 	struct mbuf		*m_new = NULL;
944 	struct sk_rx_desc	*r;
945 
946 	if (m == NULL) {
947 		caddr_t			*buf = NULL;
948 
949 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
950 		if (m_new == NULL)
951 			return(ENOBUFS);
952 
953 		/* Allocate the jumbo buffer */
954 		buf = sk_jalloc(sc_if);
955 		if (buf == NULL) {
956 			m_freem(m_new);
957 #ifdef SK_VERBOSE
958 			printf("sk%d: jumbo allocation failed "
959 			    "-- packet dropped!\n", sc_if->sk_unit);
960 #endif
961 			return(ENOBUFS);
962 		}
963 
964 		/* Attach the buffer to the mbuf */
965 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
966 		m_new->m_flags |= M_EXT;
967 		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
968 		    m_new->m_len = SK_MCLBYTES;
969 		m_new->m_ext.ext_free = sk_jfree;
970 		m_new->m_ext.ext_ref = sk_jref;
971 	} else {
972 		/*
973 	 	 * We're re-using a previously allocated mbuf;
974 		 * be sure to re-init pointers and lengths to
975 		 * default values.
976 		 */
977 		m_new = m;
978 		m_new->m_len = m_new->m_pkthdr.len = SK_MCLBYTES;
979 		m_new->m_data = m_new->m_ext.ext_buf;
980 	}
981 
982 	/*
983 	 * Adjust alignment so packet payload begins on a
984 	 * longword boundary. Mandatory for Alpha, useful on
985 	 * x86 too.
986 	 */
987 	m_adj(m_new, ETHER_ALIGN);
988 
989 	r = c->sk_desc;
990 	c->sk_mbuf = m_new;
991 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
992 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
993 
994 	return(0);
995 }
996 
997 /*
998  * Allocate jumbo buffer storage. The SysKonnect adapters support
999  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1000  * use them in their drivers. In order for us to use them, we need
1001  * large 9K receive buffers, however standard mbuf clusters are only
1002  * 2048 bytes in size. Consequently, we need to allocate and manage
1003  * our own jumbo buffer pool. Fortunately, this does not require an
1004  * excessive amount of additional code.
1005  */
1006 static int sk_alloc_jumbo_mem(sc_if)
1007 	struct sk_if_softc	*sc_if;
1008 {
1009 	caddr_t			ptr;
1010 	int		i;
1011 	struct sk_jpool_entry   *entry;
1012 
1013 	/* Grab a big chunk o' storage. */
1014 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
1015 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1016 
1017 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
1018 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
1019 		return(ENOBUFS);
1020 	}
1021 
1022 	SLIST_INIT(&sc_if->sk_jfree_listhead);
1023 	SLIST_INIT(&sc_if->sk_jinuse_listhead);
1024 
1025 	/*
1026 	 * Now divide it up into 9K pieces and save the addresses
1027 	 * in an array. Note that we play an evil trick here by using
1028 	 * the first few bytes in the buffer to hold the the address
1029 	 * of the softc structure for this interface. This is because
1030 	 * sk_jfree() needs it, but it is called by the mbuf management
1031 	 * code which will not pass it to us explicitly.
1032 	 */
1033 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
1034 	for (i = 0; i < SK_JSLOTS; i++) {
1035 		u_int64_t		**aptr;
1036 		aptr = (u_int64_t **)ptr;
1037 		aptr[0] = (u_int64_t *)sc_if;
1038 		ptr += sizeof(u_int64_t);
1039 		sc_if->sk_cdata.sk_jslots[i].sk_buf = ptr;
1040 		sc_if->sk_cdata.sk_jslots[i].sk_inuse = 0;
1041 		ptr += SK_MCLBYTES;
1042 		entry = malloc(sizeof(struct sk_jpool_entry),
1043 		    M_DEVBUF, M_NOWAIT);
1044 		if (entry == NULL) {
1045 			free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
1046 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
1047 			printf("sk%d: no memory for jumbo "
1048 			    "buffer queue!\n", sc_if->sk_unit);
1049 			return(ENOBUFS);
1050 		}
1051 		entry->slot = i;
1052 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
1053 		    entry, jpool_entries);
1054 	}
1055 
1056 	return(0);
1057 }
1058 
1059 /*
1060  * Allocate a jumbo buffer.
1061  */
1062 static void *sk_jalloc(sc_if)
1063 	struct sk_if_softc	*sc_if;
1064 {
1065 	struct sk_jpool_entry   *entry;
1066 
1067 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1068 
1069 	if (entry == NULL) {
1070 #ifdef SK_VERBOSE
1071 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
1072 #endif
1073 		return(NULL);
1074 	}
1075 
1076 	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1077 	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
1078 	sc_if->sk_cdata.sk_jslots[entry->slot].sk_inuse = 1;
1079 	return(sc_if->sk_cdata.sk_jslots[entry->slot].sk_buf);
1080 }
1081 
1082 /*
1083  * Adjust usage count on a jumbo buffer. In general this doesn't
1084  * get used much because our jumbo buffers don't get passed around
1085  * a lot, but it's implemented for correctness.
1086  */
1087 static void sk_jref(buf, size)
1088 	caddr_t			buf;
1089 	u_int			size;
1090 {
1091 	struct sk_if_softc	*sc_if;
1092 	u_int64_t		**aptr;
1093 	int		i;
1094 
1095 	/* Extract the softc struct pointer. */
1096 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
1097 	sc_if = (struct sk_if_softc *)(aptr[0]);
1098 
1099 	if (sc_if == NULL)
1100 		panic("sk_jref: can't find softc pointer!");
1101 
1102 	if (size != SK_MCLBYTES)
1103 		panic("sk_jref: adjusting refcount of buf of wrong size!");
1104 
1105 	/* calculate the slot this buffer belongs to */
1106 
1107 	i = ((vm_offset_t)aptr
1108 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1109 
1110 	if ((i < 0) || (i >= SK_JSLOTS))
1111 		panic("sk_jref: asked to reference buffer "
1112 		    "that we don't manage!");
1113 	else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
1114 		panic("sk_jref: buffer already free!");
1115 	else
1116 		sc_if->sk_cdata.sk_jslots[i].sk_inuse++;
1117 
1118 	return;
1119 }
1120 
1121 /*
1122  * Release a jumbo buffer.
1123  */
1124 static void sk_jfree(buf, size)
1125 	caddr_t			buf;
1126 	u_int			size;
1127 {
1128 	struct sk_if_softc	*sc_if;
1129 	u_int64_t		**aptr;
1130 	int		        i;
1131 	struct sk_jpool_entry   *entry;
1132 
1133 	/* Extract the softc struct pointer. */
1134 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
1135 	sc_if = (struct sk_if_softc *)(aptr[0]);
1136 
1137 	if (sc_if == NULL)
1138 		panic("sk_jfree: can't find softc pointer!");
1139 
1140 	if (size != SK_MCLBYTES)
1141 		panic("sk_jfree: freeing buffer of wrong size!");
1142 
1143 	/* calculate the slot this buffer belongs to */
1144 
1145 	i = ((vm_offset_t)aptr
1146 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1147 
1148 	if ((i < 0) || (i >= SK_JSLOTS))
1149 		panic("sk_jfree: asked to free buffer that we don't manage!");
1150 	else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
1151 		panic("sk_jfree: buffer already free!");
1152 	else {
1153 		sc_if->sk_cdata.sk_jslots[i].sk_inuse--;
1154 		if(sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0) {
1155 			entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
1156 			if (entry == NULL)
1157 				panic("sk_jfree: buffer not in use!");
1158 			entry->slot = i;
1159 			SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead,
1160 					  jpool_entries);
1161 			SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
1162 					  entry, jpool_entries);
1163 		}
1164 	}
1165 
1166 	return;
1167 }
1168 
1169 /*
1170  * Set media options.
1171  */
1172 static int sk_ifmedia_upd(ifp)
1173 	struct ifnet		*ifp;
1174 {
1175 	struct sk_if_softc	*sc_if = ifp->if_softc;
1176 	struct mii_data		*mii;
1177 
1178 	mii = device_get_softc(sc_if->sk_miibus);
1179 	sk_init(sc_if);
1180 	mii_mediachg(mii);
1181 
1182 	return(0);
1183 }
1184 
1185 /*
1186  * Report current media status.
1187  */
1188 static void sk_ifmedia_sts(ifp, ifmr)
1189 	struct ifnet		*ifp;
1190 	struct ifmediareq	*ifmr;
1191 {
1192 	struct sk_if_softc	*sc_if;
1193 	struct mii_data		*mii;
1194 
1195 	sc_if = ifp->if_softc;
1196 	mii = device_get_softc(sc_if->sk_miibus);
1197 
1198 	mii_pollstat(mii);
1199 	ifmr->ifm_active = mii->mii_media_active;
1200 	ifmr->ifm_status = mii->mii_media_status;
1201 
1202 	return;
1203 }
1204 
1205 static int sk_ioctl(ifp, command, data)
1206 	struct ifnet		*ifp;
1207 	u_long			command;
1208 	caddr_t			data;
1209 {
1210 	struct sk_if_softc	*sc_if = ifp->if_softc;
1211 	struct ifreq		*ifr = (struct ifreq *) data;
1212 	int			s, error = 0;
1213 	struct mii_data		*mii;
1214 
1215 	s = splimp();
1216 
1217 	switch(command) {
1218 	case SIOCSIFADDR:
1219 	case SIOCGIFADDR:
1220 		error = ether_ioctl(ifp, command, data);
1221 		break;
1222 	case SIOCSIFMTU:
1223 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1224 			error = EINVAL;
1225 		else {
1226 			ifp->if_mtu = ifr->ifr_mtu;
1227 			sk_init(sc_if);
1228 		}
1229 		break;
1230 	case SIOCSIFFLAGS:
1231 		if (ifp->if_flags & IFF_UP) {
1232 			if (ifp->if_flags & IFF_RUNNING) {
1233 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1234 				    & IFF_PROMISC) {
1235 					sk_setpromisc(sc_if);
1236 					sk_setmulti(sc_if);
1237 				}
1238 			} else
1239 				sk_init(sc_if);
1240 		} else {
1241 			if (ifp->if_flags & IFF_RUNNING)
1242 				sk_stop(sc_if);
1243 		}
1244 		sc_if->sk_if_flags = ifp->if_flags;
1245 		error = 0;
1246 		break;
1247 	case SIOCADDMULTI:
1248 	case SIOCDELMULTI:
1249 		sk_setmulti(sc_if);
1250 		error = 0;
1251 		break;
1252 	case SIOCGIFMEDIA:
1253 	case SIOCSIFMEDIA:
1254 		mii = device_get_softc(sc_if->sk_miibus);
1255 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1256 		break;
1257 	default:
1258 		error = EINVAL;
1259 		break;
1260 	}
1261 
1262 	(void)splx(s);
1263 
1264 	return(error);
1265 }
1266 
1267 /*
1268  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1269  * IDs against our list and return a device name if we find a match.
1270  */
1271 static int skc_probe(dev)
1272 	device_t		dev;
1273 {
1274 	struct sk_softc		*sc;
1275 	struct sk_type		*t = sk_devs;
1276 
1277 	sc = device_get_softc(dev);
1278 
1279 	while(t->sk_name != NULL) {
1280 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1281 		    (pci_get_device(dev) == t->sk_did)) {
1282 			device_set_desc(dev, t->sk_name);
1283 			return(0);
1284 		}
1285 		t++;
1286 	}
1287 
1288 	return(ENXIO);
1289 }
1290 
1291 /*
1292  * Force the GEnesis into reset, then bring it out of reset.
1293  */
1294 static void sk_reset(sc)
1295 	struct sk_softc		*sc;
1296 {
1297 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1298 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1299 	if (sc->sk_type == SK_YUKON)
1300 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1301 
1302 	DELAY(1000);
1303 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1304 	DELAY(2);
1305 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1306 	if (sc->sk_type == SK_YUKON)
1307 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1308 
1309 	if (sc->sk_type == SK_GENESIS) {
1310 		/* Configure packet arbiter */
1311 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1312 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1313 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1314 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1315 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1316 	}
1317 
1318 	/* Enable RAM interface */
1319 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1320 
1321 	/*
1322          * Configure interrupt moderation. The moderation timer
1323 	 * defers interrupts specified in the interrupt moderation
1324 	 * timer mask based on the timeout specified in the interrupt
1325 	 * moderation timer init register. Each bit in the timer
1326 	 * register represents 18.825ns, so to specify a timeout in
1327 	 * microseconds, we have to multiply by 54.
1328 	 */
1329         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1330         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1331 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1332         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1333 
1334 	return;
1335 }
1336 
1337 static int sk_probe(dev)
1338 	device_t		dev;
1339 {
1340 	struct sk_softc		*sc;
1341 
1342 	sc = device_get_softc(device_get_parent(dev));
1343 
1344 	/*
1345 	 * Not much to do here. We always know there will be
1346 	 * at least one XMAC present, and if there are two,
1347 	 * skc_attach() will create a second device instance
1348 	 * for us.
1349 	 */
1350 	switch (sc->sk_type) {
1351 	case SK_GENESIS:
1352 		device_set_desc(dev, "XaQti Corp. XMAC II");
1353 		break;
1354 	case SK_YUKON:
1355 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1356 		break;
1357 	}
1358 
1359 	return(0);
1360 }
1361 
1362 /*
1363  * Each XMAC chip is attached as a separate logical IP interface.
1364  * Single port cards will have only one logical interface of course.
1365  */
1366 static int sk_attach(dev)
1367 	device_t		dev;
1368 {
1369 	struct sk_softc		*sc;
1370 	struct sk_if_softc	*sc_if;
1371 	struct ifnet		*ifp;
1372 	int			i, port;
1373 
1374 	if (dev == NULL)
1375 		return(EINVAL);
1376 
1377 	sc_if = device_get_softc(dev);
1378 	sc = device_get_softc(device_get_parent(dev));
1379 	port = *(int *)device_get_ivars(dev);
1380 	free(device_get_ivars(dev), M_DEVBUF);
1381 	device_set_ivars(dev, NULL);
1382 	sc_if->sk_dev = dev;
1383 
1384 	bzero((char *)sc_if, sizeof(struct sk_if_softc));
1385 
1386 	sc_if->sk_dev = dev;
1387 	sc_if->sk_unit = device_get_unit(dev);
1388 	sc_if->sk_port = port;
1389 	sc_if->sk_softc = sc;
1390 	sc->sk_if[port] = sc_if;
1391 	if (port == SK_PORT_A)
1392 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1393 	if (port == SK_PORT_B)
1394 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1395 
1396 	/*
1397 	 * Get station address for this interface. Note that
1398 	 * dual port cards actually come with three station
1399 	 * addresses: one for each port, plus an extra. The
1400 	 * extra one is used by the SysKonnect driver software
1401 	 * as a 'virtual' station address for when both ports
1402 	 * are operating in failover mode. Currently we don't
1403 	 * use this extra address.
1404 	 */
1405 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1406 		sc_if->arpcom.ac_enaddr[i] =
1407 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1408 
1409 	printf("sk%d: Ethernet address: %6D\n",
1410 	    sc_if->sk_unit, sc_if->arpcom.ac_enaddr, ":");
1411 
1412 	/*
1413 	 * Set up RAM buffer addresses. The NIC will have a certain
1414 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1415 	 * need to divide this up a) between the transmitter and
1416  	 * receiver and b) between the two XMACs, if this is a
1417 	 * dual port NIC. Our algotithm is to divide up the memory
1418 	 * evenly so that everyone gets a fair share.
1419 	 */
1420 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1421 		u_int32_t		chunk, val;
1422 
1423 		chunk = sc->sk_ramsize / 2;
1424 		val = sc->sk_rboff / sizeof(u_int64_t);
1425 		sc_if->sk_rx_ramstart = val;
1426 		val += (chunk / sizeof(u_int64_t));
1427 		sc_if->sk_rx_ramend = val - 1;
1428 		sc_if->sk_tx_ramstart = val;
1429 		val += (chunk / sizeof(u_int64_t));
1430 		sc_if->sk_tx_ramend = val - 1;
1431 	} else {
1432 		u_int32_t		chunk, val;
1433 
1434 		chunk = sc->sk_ramsize / 4;
1435 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1436 		    sizeof(u_int64_t);
1437 		sc_if->sk_rx_ramstart = val;
1438 		val += (chunk / sizeof(u_int64_t));
1439 		sc_if->sk_rx_ramend = val - 1;
1440 		sc_if->sk_tx_ramstart = val;
1441 		val += (chunk / sizeof(u_int64_t));
1442 		sc_if->sk_tx_ramend = val - 1;
1443 	}
1444 
1445 	/* Read and save PHY type and set PHY address */
1446 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1447 	switch(sc_if->sk_phytype) {
1448 	case SK_PHYTYPE_XMAC:
1449 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1450 		break;
1451 	case SK_PHYTYPE_BCOM:
1452 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1453 		break;
1454 	case SK_PHYTYPE_MARV_COPPER:
1455 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1456 		break;
1457 	default:
1458 		printf("skc%d: unsupported PHY type: %d\n",
1459 		    sc->sk_unit, sc_if->sk_phytype);
1460 		return(ENODEV);
1461 	}
1462 
1463 	/* Allocate the descriptor queues. */
1464 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1465 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1466 
1467 	if (sc_if->sk_rdata == NULL) {
1468 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1469 		sc->sk_if[port] = NULL;
1470 		return(ENOMEM);
1471 	}
1472 
1473 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1474 
1475 	/* Try to allocate memory for jumbo buffers. */
1476 	if (sk_alloc_jumbo_mem(sc_if)) {
1477 		printf("sk%d: jumbo buffer allocation failed\n",
1478 		    sc_if->sk_unit);
1479 		contigfree(sc_if->sk_rdata,
1480 		    sizeof(struct sk_ring_data), M_DEVBUF);
1481 		sc->sk_if[port] = NULL;
1482 		return(ENOMEM);
1483 	}
1484 
1485 	ifp = &sc_if->arpcom.ac_if;
1486 	ifp->if_softc = sc_if;
1487 	if_initname(ifp, "sk", sc_if->sk_unit);
1488 	ifp->if_mtu = ETHERMTU;
1489 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1490 	ifp->if_ioctl = sk_ioctl;
1491 	ifp->if_output = ether_output;
1492 	ifp->if_start = sk_start;
1493 	ifp->if_watchdog = sk_watchdog;
1494 	ifp->if_init = sk_init;
1495 	ifp->if_baudrate = 1000000000;
1496 	ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
1497 
1498 	/*
1499 	 * Do miibus setup.
1500 	 */
1501 	switch (sc->sk_type) {
1502 	case SK_GENESIS:
1503 		sk_init_xmac(sc_if);
1504 		break;
1505 	case SK_YUKON:
1506 		sk_init_yukon(sc_if);
1507 		break;
1508 	}
1509 
1510 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1511 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1512 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1513 		contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM,
1514 		    M_DEVBUF);
1515 		contigfree(sc_if->sk_rdata,
1516 		    sizeof(struct sk_ring_data), M_DEVBUF);
1517 		return(ENXIO);
1518 	}
1519 
1520 	/*
1521 	 * Call MI attach routine.
1522 	 */
1523 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1524 	callout_handle_init(&sc_if->sk_tick_ch);
1525 
1526 	return(0);
1527 }
1528 
1529 /*
1530  * Attach the interface. Allocate softc structures, do ifmedia
1531  * setup and ethernet/BPF attach.
1532  */
1533 static int skc_attach(dev)
1534 	device_t		dev;
1535 {
1536 	int			s;
1537 	u_int32_t		command;
1538 	struct sk_softc		*sc;
1539 	int			unit, error = 0, rid, *port;
1540 
1541 	s = splimp();
1542 
1543 	sc = device_get_softc(dev);
1544 	unit = device_get_unit(dev);
1545 	bzero(sc, sizeof(struct sk_softc));
1546 	switch (pci_get_device(dev)) {
1547 	case DEVICEID_SK_V1:
1548 		sc->sk_type = SK_GENESIS;
1549 		break;
1550 	case DEVICEID_SK_V2:
1551 	case DEVICEID_3COM_3C940:
1552 		sc->sk_type = SK_YUKON;
1553 		break;
1554 	}
1555 
1556 	/*
1557 	 * Handle power management nonsense.
1558 	 */
1559 	command = pci_read_config(dev, SK_PCI_CAPID, 4) & 0x000000FF;
1560 	if (command == 0x01) {
1561 		command = pci_read_config(dev, SK_PCI_PWRMGMTCTRL, 4);
1562 		if (command & SK_PSTATE_MASK) {
1563 			u_int32_t		iobase, membase, irq;
1564 
1565 			/* Save important PCI config data. */
1566 			iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1567 			membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1568 			irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1569 
1570 			/* Reset the power state. */
1571 			printf("skc%d: chip is in D%d power mode "
1572 			"-- setting to D0\n", unit, command & SK_PSTATE_MASK);
1573 			command &= 0xFFFFFFFC;
1574 			pci_write_config(dev, SK_PCI_PWRMGMTCTRL, command, 4);
1575 
1576 			/* Restore PCI config data. */
1577 			pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1578 			pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1579 			pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * Map control/status registers.
1585 	 */
1586 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1587 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1588 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1589 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1590 
1591 #ifdef SK_USEIOSPACE
1592 	if (!(command & PCIM_CMD_PORTEN)) {
1593 		printf("skc%d: failed to enable I/O ports!\n", unit);
1594 		error = ENXIO;
1595 		goto fail;
1596 	}
1597 #else
1598 	if (!(command & PCIM_CMD_MEMEN)) {
1599 		printf("skc%d: failed to enable memory mapping!\n", unit);
1600 		error = ENXIO;
1601 		goto fail;
1602 	}
1603 #endif
1604 
1605 	rid = SK_RID;
1606 	sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid,
1607 	    0, ~0, 1, RF_ACTIVE);
1608 
1609 	if (sc->sk_res == NULL) {
1610 		printf("sk%d: couldn't map ports/memory\n", unit);
1611 		error = ENXIO;
1612 		goto fail;
1613 	}
1614 
1615 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1616 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1617 
1618 	/* Allocate interrupt */
1619 	rid = 0;
1620 	sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1621 	    RF_SHAREABLE | RF_ACTIVE);
1622 
1623 	if (sc->sk_irq == NULL) {
1624 		printf("skc%d: couldn't map interrupt\n", unit);
1625 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1626 		error = ENXIO;
1627 		goto fail;
1628 	}
1629 
1630 	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
1631 	    sk_intr, sc, &sc->sk_intrhand);
1632 
1633 	if (error) {
1634 		printf("skc%d: couldn't set up irq\n", unit);
1635 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1636 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1637 		goto fail;
1638 	}
1639 
1640 	/* Reset the adapter. */
1641 	sk_reset(sc);
1642 
1643 	sc->sk_unit = unit;
1644 
1645 	/* Read and save vital product data from EEPROM. */
1646 	sk_vpd_read(sc);
1647 
1648 	if (sc->sk_type == SK_GENESIS) {
1649 		/* Read and save RAM size and RAMbuffer offset */
1650 		switch(sk_win_read_1(sc, SK_EPROM0)) {
1651 		case SK_RAMSIZE_512K_64:
1652 			sc->sk_ramsize = 0x80000;
1653 			sc->sk_rboff = SK_RBOFF_0;
1654 			break;
1655 		case SK_RAMSIZE_1024K_64:
1656 			sc->sk_ramsize = 0x100000;
1657 			sc->sk_rboff = SK_RBOFF_80000;
1658 			break;
1659 		case SK_RAMSIZE_1024K_128:
1660 			sc->sk_ramsize = 0x100000;
1661 			sc->sk_rboff = SK_RBOFF_0;
1662 			break;
1663 		case SK_RAMSIZE_2048K_128:
1664 			sc->sk_ramsize = 0x200000;
1665 			sc->sk_rboff = SK_RBOFF_0;
1666 			break;
1667 		default:
1668 			printf("skc%d: unknown ram size: %d\n",
1669 			    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1670 			bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1671 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1672 			bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1673 			error = ENXIO;
1674 			goto fail;
1675 			break;
1676 		}
1677 	} else {
1678 		sc->sk_ramsize = 0x20000;
1679 		sc->sk_rboff = SK_RBOFF_0;
1680 	}
1681 
1682 	/* Read and save physical media type */
1683 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1684 	case SK_PMD_1000BASESX:
1685 		sc->sk_pmd = IFM_1000_SX;
1686 		break;
1687 	case SK_PMD_1000BASELX:
1688 		sc->sk_pmd = IFM_1000_LX;
1689 		break;
1690 	case SK_PMD_1000BASECX:
1691 		sc->sk_pmd = IFM_1000_CX;
1692 		break;
1693 	case SK_PMD_1000BASETX:
1694 		sc->sk_pmd = IFM_1000_TX;
1695 		break;
1696 	default:
1697 		printf("skc%d: unknown media type: 0x%x\n",
1698 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1699 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1700 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1701 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1702 		error = ENXIO;
1703 		goto fail;
1704 	}
1705 
1706 	/* Announce the product name. */
1707 	printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1708 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1709 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1710 	*port = SK_PORT_A;
1711 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1712 
1713 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1714 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1715 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1716 		*port = SK_PORT_B;
1717 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1718 	}
1719 
1720 	/* Turn on the 'driver is loaded' LED. */
1721 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1722 
1723 	bus_generic_attach(dev);
1724 
1725 fail:
1726 	splx(s);
1727 	return(error);
1728 }
1729 
1730 static int sk_detach(dev)
1731 	device_t		dev;
1732 {
1733 	struct sk_softc		*sc;
1734 	struct sk_if_softc	*sc_if;
1735 	struct ifnet		*ifp;
1736 	int			s;
1737 
1738 	s = splimp();
1739 
1740 	sc = device_get_softc(device_get_parent(dev));
1741 	sc_if = device_get_softc(dev);
1742 	ifp = &sc_if->arpcom.ac_if;
1743 	sk_stop(sc_if);
1744 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1745 	bus_generic_detach(dev);
1746 	if (sc_if->sk_miibus != NULL)
1747 		device_delete_child(dev, sc_if->sk_miibus);
1748 	contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1749 	contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), M_DEVBUF);
1750 
1751 	return(0);
1752 }
1753 
1754 static int skc_detach(dev)
1755 	device_t		dev;
1756 {
1757 	struct sk_softc		*sc;
1758 	int			s;
1759 
1760 	s = splimp();
1761 
1762 	sc = device_get_softc(dev);
1763 
1764 	bus_generic_detach(dev);
1765 	if (sc->sk_devs[SK_PORT_A] != NULL)
1766 		device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1767 	if (sc->sk_devs[SK_PORT_B] != NULL)
1768 		device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1769 
1770 	bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1771 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1772 	bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1773 
1774 	splx(s);
1775 
1776 	return(0);
1777 }
1778 
1779 static int sk_encap(sc_if, m_head, txidx)
1780         struct sk_if_softc	*sc_if;
1781         struct mbuf		*m_head;
1782         u_int32_t		*txidx;
1783 {
1784 	struct sk_tx_desc	*f = NULL;
1785 	struct mbuf		*m;
1786 	u_int32_t		frag, cur, cnt = 0;
1787 
1788 	m = m_head;
1789 	cur = frag = *txidx;
1790 
1791 	/*
1792 	 * Start packing the mbufs in this chain into
1793 	 * the fragment pointers. Stop when we run out
1794 	 * of fragments or hit the end of the mbuf chain.
1795 	 */
1796 	for (m = m_head; m != NULL; m = m->m_next) {
1797 		if (m->m_len != 0) {
1798 			if ((SK_TX_RING_CNT -
1799 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1800 				return(ENOBUFS);
1801 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1802 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1803 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1804 			if (cnt == 0)
1805 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1806 			else
1807 				f->sk_ctl |= SK_TXCTL_OWN;
1808 			cur = frag;
1809 			SK_INC(frag, SK_TX_RING_CNT);
1810 			cnt++;
1811 		}
1812 	}
1813 
1814 	if (m != NULL)
1815 		return(ENOBUFS);
1816 
1817 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1818 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1819 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1820 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1821 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1822 
1823 	*txidx = frag;
1824 
1825 	return(0);
1826 }
1827 
1828 static void sk_start(ifp)
1829 	struct ifnet		*ifp;
1830 {
1831         struct sk_softc		*sc;
1832         struct sk_if_softc	*sc_if;
1833         struct mbuf		*m_head = NULL;
1834         u_int32_t		idx;
1835 
1836 	sc_if = ifp->if_softc;
1837 	sc = sc_if->sk_softc;
1838 
1839 	idx = sc_if->sk_cdata.sk_tx_prod;
1840 
1841 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1842 		IF_DEQUEUE(&ifp->if_snd, m_head);
1843 		if (m_head == NULL)
1844 			break;
1845 
1846 		/*
1847 		 * Pack the data into the transmit ring. If we
1848 		 * don't have room, set the OACTIVE flag and wait
1849 		 * for the NIC to drain the ring.
1850 		 */
1851 		if (sk_encap(sc_if, m_head, &idx)) {
1852 			IF_PREPEND(&ifp->if_snd, m_head);
1853 			ifp->if_flags |= IFF_OACTIVE;
1854 			break;
1855 		}
1856 
1857 		/*
1858 		 * If there's a BPF listener, bounce a copy of this frame
1859 		 * to him.
1860 		 */
1861 		if (ifp->if_bpf)
1862 			bpf_mtap(ifp, m_head);
1863 	}
1864 
1865 	/* Transmit */
1866 	sc_if->sk_cdata.sk_tx_prod = idx;
1867 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1868 
1869 	/* Set a timeout in case the chip goes out to lunch. */
1870 	ifp->if_timer = 5;
1871 
1872 	return;
1873 }
1874 
1875 
1876 static void sk_watchdog(ifp)
1877 	struct ifnet		*ifp;
1878 {
1879 	struct sk_if_softc	*sc_if;
1880 
1881 	sc_if = ifp->if_softc;
1882 
1883 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1884 	sk_init(sc_if);
1885 
1886 	return;
1887 }
1888 
1889 static void skc_shutdown(dev)
1890 	device_t		dev;
1891 {
1892 	struct sk_softc		*sc;
1893 
1894 	sc = device_get_softc(dev);
1895 
1896 	/* Turn off the 'driver is loaded' LED. */
1897 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1898 
1899 	/*
1900 	 * Reset the GEnesis controller. Doing this should also
1901 	 * assert the resets on the attached XMAC(s).
1902 	 */
1903 	sk_reset(sc);
1904 
1905 	return;
1906 }
1907 
1908 static void sk_rxeof(sc_if)
1909 	struct sk_if_softc	*sc_if;
1910 {
1911 	struct ether_header	*eh;
1912 	struct mbuf		*m;
1913 	struct ifnet		*ifp;
1914 	struct sk_chain		*cur_rx;
1915 	int			total_len = 0;
1916 	int			i;
1917 	u_int32_t		rxstat;
1918 
1919 	ifp = &sc_if->arpcom.ac_if;
1920 	i = sc_if->sk_cdata.sk_rx_prod;
1921 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1922 
1923 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1924 
1925 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1926 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1927 		m = cur_rx->sk_mbuf;
1928 		cur_rx->sk_mbuf = NULL;
1929 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1930 		SK_INC(i, SK_RX_RING_CNT);
1931 
1932 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1933 			ifp->if_ierrors++;
1934 			sk_newbuf(sc_if, cur_rx, m);
1935 			continue;
1936 		}
1937 
1938 		/*
1939 		 * Try to allocate a new jumbo buffer. If that
1940 		 * fails, copy the packet to mbufs and put the
1941 		 * jumbo buffer back in the ring so it can be
1942 		 * re-used. If allocating mbufs fails, then we
1943 		 * have to drop the packet.
1944 		 */
1945 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1946 			struct mbuf		*m0;
1947 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1948 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1949 			sk_newbuf(sc_if, cur_rx, m);
1950 			if (m0 == NULL) {
1951 				printf("sk%d: no receive buffers "
1952 				    "available -- packet dropped!\n",
1953 				    sc_if->sk_unit);
1954 				ifp->if_ierrors++;
1955 				continue;
1956 			}
1957 			m_adj(m0, ETHER_ALIGN);
1958 			m = m0;
1959 		} else {
1960 			m->m_pkthdr.rcvif = ifp;
1961 			m->m_pkthdr.len = m->m_len = total_len;
1962 		}
1963 
1964 		ifp->if_ipackets++;
1965 		eh = mtod(m, struct ether_header *);
1966 
1967 		/* Remove header from mbuf and pass it on. */
1968 		m_adj(m, sizeof(struct ether_header));
1969 		ether_input(ifp, eh, m);
1970 	}
1971 
1972 	sc_if->sk_cdata.sk_rx_prod = i;
1973 
1974 	return;
1975 }
1976 
1977 static void sk_txeof(sc_if)
1978 	struct sk_if_softc	*sc_if;
1979 {
1980 	struct sk_tx_desc	*cur_tx = NULL;
1981 	struct ifnet		*ifp;
1982 	u_int32_t		idx;
1983 
1984 	ifp = &sc_if->arpcom.ac_if;
1985 
1986 	/*
1987 	 * Go through our tx ring and free mbufs for those
1988 	 * frames that have been sent.
1989 	 */
1990 	idx = sc_if->sk_cdata.sk_tx_cons;
1991 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1992 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1993 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1994 			break;
1995 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1996 			ifp->if_opackets++;
1997 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1998 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1999 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2000 		}
2001 		sc_if->sk_cdata.sk_tx_cnt--;
2002 		SK_INC(idx, SK_TX_RING_CNT);
2003 		ifp->if_timer = 0;
2004 	}
2005 
2006 	sc_if->sk_cdata.sk_tx_cons = idx;
2007 
2008 	if (cur_tx != NULL)
2009 		ifp->if_flags &= ~IFF_OACTIVE;
2010 
2011 	return;
2012 }
2013 
2014 static void sk_tick(xsc_if)
2015 	void			*xsc_if;
2016 {
2017 	struct sk_if_softc	*sc_if;
2018 	struct mii_data		*mii;
2019 	struct ifnet		*ifp;
2020 	int			i;
2021 
2022 	sc_if = xsc_if;
2023 	ifp = &sc_if->arpcom.ac_if;
2024 	mii = device_get_softc(sc_if->sk_miibus);
2025 
2026 	if (!(ifp->if_flags & IFF_UP))
2027 		return;
2028 
2029 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2030 		sk_intr_bcom(sc_if);
2031 		return;
2032 	}
2033 
2034 	/*
2035 	 * According to SysKonnect, the correct way to verify that
2036 	 * the link has come back up is to poll bit 0 of the GPIO
2037 	 * register three times. This pin has the signal from the
2038 	 * link_sync pin connected to it; if we read the same link
2039 	 * state 3 times in a row, we know the link is up.
2040 	 */
2041 	for (i = 0; i < 3; i++) {
2042 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2043 			break;
2044 	}
2045 
2046 	if (i != 3) {
2047 		sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2048 		return;
2049 	}
2050 
2051 	/* Turn the GP0 interrupt back on. */
2052 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2053 	SK_XM_READ_2(sc_if, XM_ISR);
2054 	mii_tick(mii);
2055 	mii_pollstat(mii);
2056 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2057 
2058 	return;
2059 }
2060 
2061 static void sk_intr_bcom(sc_if)
2062 	struct sk_if_softc	*sc_if;
2063 {
2064 	struct sk_softc		*sc;
2065 	struct mii_data		*mii;
2066 	struct ifnet		*ifp;
2067 	int			status;
2068 
2069 	sc = sc_if->sk_softc;
2070 	mii = device_get_softc(sc_if->sk_miibus);
2071 	ifp = &sc_if->arpcom.ac_if;
2072 
2073 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2074 
2075 	/*
2076 	 * Read the PHY interrupt register to make sure
2077 	 * we clear any pending interrupts.
2078 	 */
2079 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2080 
2081 	if (!(ifp->if_flags & IFF_RUNNING)) {
2082 		sk_init_xmac(sc_if);
2083 		return;
2084 	}
2085 
2086 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2087 		int			lstat;
2088 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2089 		    BRGPHY_MII_AUXSTS);
2090 
2091 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2092 			mii_mediachg(mii);
2093 			/* Turn off the link LED. */
2094 			SK_IF_WRITE_1(sc_if, 0,
2095 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2096 			sc_if->sk_link = 0;
2097 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2098 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2099 	    		    BRGPHY_MII_IMR, 0xFF00);
2100 			mii_tick(mii);
2101 			sc_if->sk_link = 1;
2102 			/* Turn on the link LED. */
2103 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2104 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2105 			    SK_LINKLED_BLINK_OFF);
2106 			mii_pollstat(mii);
2107 		} else {
2108 			mii_tick(mii);
2109 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2110 		}
2111 	}
2112 
2113 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2114 
2115 	return;
2116 }
2117 
2118 static void sk_intr_xmac(sc_if)
2119 	struct sk_if_softc	*sc_if;
2120 {
2121 	struct sk_softc		*sc;
2122 	u_int16_t		status;
2123 	struct mii_data		*mii;
2124 
2125 	sc = sc_if->sk_softc;
2126 	mii = device_get_softc(sc_if->sk_miibus);
2127 	status = SK_XM_READ_2(sc_if, XM_ISR);
2128 
2129 	/*
2130 	 * Link has gone down. Start MII tick timeout to
2131 	 * watch for link resync.
2132 	 */
2133 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2134 		if (status & XM_ISR_GP0_SET) {
2135 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2136 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2137 		}
2138 
2139 		if (status & XM_ISR_AUTONEG_DONE) {
2140 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2141 		}
2142 	}
2143 
2144 	if (status & XM_IMR_TX_UNDERRUN)
2145 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2146 
2147 	if (status & XM_IMR_RX_OVERRUN)
2148 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2149 
2150 	status = SK_XM_READ_2(sc_if, XM_ISR);
2151 
2152 	return;
2153 }
2154 
2155 static void sk_intr_yukon(sc_if)
2156 	struct sk_if_softc	*sc_if;
2157 {
2158 	int status;
2159 
2160 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2161 
2162 	return;
2163 }
2164 
2165 static void sk_intr(xsc)
2166 	void			*xsc;
2167 {
2168 	struct sk_softc		*sc = xsc;
2169 	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
2170 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2171 	u_int32_t		status;
2172 
2173 	sc_if0 = sc->sk_if[SK_PORT_A];
2174 	sc_if1 = sc->sk_if[SK_PORT_B];
2175 
2176 	if (sc_if0 != NULL)
2177 		ifp0 = &sc_if0->arpcom.ac_if;
2178 	if (sc_if1 != NULL)
2179 		ifp1 = &sc_if1->arpcom.ac_if;
2180 
2181 	for (;;) {
2182 		status = CSR_READ_4(sc, SK_ISSR);
2183 		if (!(status & sc->sk_intrmask))
2184 			break;
2185 
2186 		/* Handle receive interrupts first. */
2187 		if (status & SK_ISR_RX1_EOF) {
2188 			sk_rxeof(sc_if0);
2189 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2190 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2191 		}
2192 		if (status & SK_ISR_RX2_EOF) {
2193 			sk_rxeof(sc_if1);
2194 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2195 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2196 		}
2197 
2198 		/* Then transmit interrupts. */
2199 		if (status & SK_ISR_TX1_S_EOF) {
2200 			sk_txeof(sc_if0);
2201 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2202 			    SK_TXBMU_CLR_IRQ_EOF);
2203 		}
2204 		if (status & SK_ISR_TX2_S_EOF) {
2205 			sk_txeof(sc_if1);
2206 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2207 			    SK_TXBMU_CLR_IRQ_EOF);
2208 		}
2209 
2210 		/* Then MAC interrupts. */
2211 		if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
2212 			if (sc->sk_type == SK_GENESIS)
2213 				sk_intr_xmac(sc_if0);
2214 			else
2215 				sk_intr_yukon(sc_if0);
2216 		}
2217 
2218 		if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
2219 			if (sc->sk_type == SK_GENESIS)
2220 				sk_intr_xmac(sc_if1);
2221 			else
2222 				sk_intr_yukon(sc_if0);
2223 		}
2224 
2225 		if (status & SK_ISR_EXTERNAL_REG) {
2226 			if (ifp0 != NULL &&
2227 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2228 				sk_intr_bcom(sc_if0);
2229 			if (ifp1 != NULL &&
2230 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2231 				sk_intr_bcom(sc_if1);
2232 		}
2233 	}
2234 
2235 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2236 
2237 	if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
2238 		sk_start(ifp0);
2239 	if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
2240 		sk_start(ifp1);
2241 
2242 	return;
2243 }
2244 
2245 static void sk_init_xmac(sc_if)
2246 	struct sk_if_softc	*sc_if;
2247 {
2248 	struct sk_softc		*sc;
2249 	struct ifnet		*ifp;
2250 	struct sk_bcom_hack	bhack[] = {
2251 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2252 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2253 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2254 	{ 0, 0 } };
2255 
2256 	sc = sc_if->sk_softc;
2257 	ifp = &sc_if->arpcom.ac_if;
2258 
2259 	/* Unreset the XMAC. */
2260 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2261 	DELAY(1000);
2262 
2263 	/* Reset the XMAC's internal state. */
2264 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2265 
2266 	/* Save the XMAC II revision */
2267 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2268 
2269 	/*
2270 	 * Perform additional initialization for external PHYs,
2271 	 * namely for the 1000baseTX cards that use the XMAC's
2272 	 * GMII mode.
2273 	 */
2274 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2275 		int			i = 0;
2276 		u_int32_t		val;
2277 
2278 		/* Take PHY out of reset. */
2279 		val = sk_win_read_4(sc, SK_GPIO);
2280 		if (sc_if->sk_port == SK_PORT_A)
2281 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2282 		else
2283 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2284 		sk_win_write_4(sc, SK_GPIO, val);
2285 
2286 		/* Enable GMII mode on the XMAC. */
2287 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2288 
2289 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2290 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2291 		DELAY(10000);
2292 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2293 		    BRGPHY_MII_IMR, 0xFFF0);
2294 
2295 		/*
2296 		 * Early versions of the BCM5400 apparently have
2297 		 * a bug that requires them to have their reserved
2298 		 * registers initialized to some magic values. I don't
2299 		 * know what the numbers do, I'm just the messenger.
2300 		 */
2301 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2302 		    == 0x6041) {
2303 			while(bhack[i].reg) {
2304 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2305 				    bhack[i].reg, bhack[i].val);
2306 				i++;
2307 			}
2308 		}
2309 	}
2310 
2311 	/* Set station address */
2312 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2313 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2314 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2315 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2316 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2317 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2318 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2319 
2320 	if (ifp->if_flags & IFF_BROADCAST) {
2321 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2322 	} else {
2323 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2324 	}
2325 
2326 	/* We don't need the FCS appended to the packet. */
2327 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2328 
2329 	/* We want short frames padded to 60 bytes. */
2330 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2331 
2332 	/*
2333 	 * Enable the reception of all error frames. This is is
2334 	 * a necessary evil due to the design of the XMAC. The
2335 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2336 	 * frames can be up to 9000 bytes in length. When bad
2337 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2338 	 * in 'store and forward' mode. For this to work, the
2339 	 * entire frame has to fit into the FIFO, but that means
2340 	 * that jumbo frames larger than 8192 bytes will be
2341 	 * truncated. Disabling all bad frame filtering causes
2342 	 * the RX FIFO to operate in streaming mode, in which
2343 	 * case the XMAC will start transfering frames out of the
2344 	 * RX FIFO as soon as the FIFO threshold is reached.
2345 	 */
2346 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2347 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2348 	    XM_MODE_RX_INRANGELEN);
2349 
2350 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2351 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2352 	else
2353 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2354 
2355 	/*
2356 	 * Bump up the transmit threshold. This helps hold off transmit
2357 	 * underruns when we're blasting traffic from both ports at once.
2358 	 */
2359 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2360 
2361 	/* Set promiscuous mode */
2362 	sk_setpromisc(sc_if);
2363 
2364 	/* Set multicast filter */
2365 	sk_setmulti(sc_if);
2366 
2367 	/* Clear and enable interrupts */
2368 	SK_XM_READ_2(sc_if, XM_ISR);
2369 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2370 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2371 	else
2372 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2373 
2374 	/* Configure MAC arbiter */
2375 	switch(sc_if->sk_xmac_rev) {
2376 	case XM_XMAC_REV_B2:
2377 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2378 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2379 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2380 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2381 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2382 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2383 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2384 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2385 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2386 		break;
2387 	case XM_XMAC_REV_C1:
2388 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2389 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2390 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2391 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2392 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2393 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2394 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2395 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2396 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2397 		break;
2398 	default:
2399 		break;
2400 	}
2401 	sk_win_write_2(sc, SK_MACARB_CTL,
2402 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2403 
2404 	sc_if->sk_link = 1;
2405 
2406 	return;
2407 }
2408 
2409 static void sk_init_yukon(sc_if)
2410 	struct sk_if_softc	*sc_if;
2411 {
2412 	u_int32_t		phy;
2413 	u_int16_t		reg;
2414 	int			i;
2415 
2416 	/* GMAC and GPHY Reset */
2417 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2418 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2419 	DELAY(1000);
2420 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2421 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2422 	DELAY(1000);
2423 
2424 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2425 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2426 
2427 	switch(sc_if->sk_softc->sk_pmd) {
2428 	case IFM_1000_SX:
2429 	case IFM_1000_LX:
2430 		phy |= SK_GPHY_FIBER;
2431 		break;
2432 
2433 	case IFM_1000_CX:
2434 	case IFM_1000_TX:
2435 		phy |= SK_GPHY_COPPER;
2436 		break;
2437 	}
2438 
2439 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2440 	DELAY(1000);
2441 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2442 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2443 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2444 
2445 	/* unused read of the interrupt source register */
2446 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2447 
2448 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2449 
2450 	/* MIB Counter Clear Mode set */
2451 	reg |= YU_PAR_MIB_CLR;
2452 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2453 
2454 	/* MIB Counter Clear Mode clear */
2455 	reg &= ~YU_PAR_MIB_CLR;
2456 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2457 
2458 	/* receive control reg */
2459 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2460 
2461 	/* transmit parameter register */
2462 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2463 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2464 
2465 	/* serial mode register */
2466 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2467 		      YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2468 
2469 	/* Setup Yukon's address */
2470 	for (i = 0; i < 3; i++) {
2471 		/* Write Source Address 1 (unicast filter) */
2472 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2473 			      sc_if->arpcom.ac_enaddr[i * 2] |
2474 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2475 	}
2476 
2477 	for (i = 0; i < 3; i++) {
2478 		reg = sk_win_read_2(sc_if->sk_softc,
2479 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2480 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2481 	}
2482 
2483 	/* Set promiscuous mode */
2484 	sk_setpromisc(sc_if);
2485 
2486 	/* Set multicast filter */
2487 	sk_setmulti(sc_if);
2488 
2489 	/* enable interrupt mask for counter overflows */
2490 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2491 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2492 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2493 
2494 	/* Configure RX MAC FIFO */
2495 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2496 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2497 
2498 	/* Configure TX MAC FIFO */
2499 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2500 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2501 }
2502 
2503 /*
2504  * Note that to properly initialize any part of the GEnesis chip,
2505  * you first have to take it out of reset mode.
2506  */
2507 static void sk_init(xsc)
2508 	void			*xsc;
2509 {
2510 	struct sk_if_softc	*sc_if = xsc;
2511 	struct sk_softc		*sc;
2512 	struct ifnet		*ifp;
2513 	struct mii_data		*mii;
2514 	int			s;
2515 	u_int16_t		reg;
2516 
2517 	s = splimp();
2518 
2519 	ifp = &sc_if->arpcom.ac_if;
2520 	sc = sc_if->sk_softc;
2521 	mii = device_get_softc(sc_if->sk_miibus);
2522 
2523 	/* Cancel pending I/O and free all RX/TX buffers. */
2524 	sk_stop(sc_if);
2525 
2526 	if (sc->sk_type == SK_GENESIS) {
2527 		/* Configure LINK_SYNC LED */
2528 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2529 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2530 			SK_LINKLED_LINKSYNC_ON);
2531 
2532 		/* Configure RX LED */
2533 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2534 			SK_RXLEDCTL_COUNTER_START);
2535 
2536 		/* Configure TX LED */
2537 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2538 			SK_TXLEDCTL_COUNTER_START);
2539 	}
2540 
2541 	/* Configure I2C registers */
2542 
2543 	/* Configure XMAC(s) */
2544 	switch (sc->sk_type) {
2545 	case SK_GENESIS:
2546 		sk_init_xmac(sc_if);
2547 		break;
2548 	case SK_YUKON:
2549 		sk_init_yukon(sc_if);
2550 		break;
2551 	}
2552 	mii_mediachg(mii);
2553 
2554 	if (sc->sk_type == SK_GENESIS) {
2555 		/* Configure MAC FIFOs */
2556 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2557 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2558 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2559 
2560 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2561 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2562 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2563 	}
2564 
2565 	/* Configure transmit arbiter(s) */
2566 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2567 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2568 
2569 	/* Configure RAMbuffers */
2570 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2571 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2572 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2573 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2574 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2575 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2576 
2577 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2578 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2579 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2580 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2581 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2582 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2583 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2584 
2585 	/* Configure BMUs */
2586 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2587 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2588 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2589 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2590 
2591 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2592 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2593 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2594 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2595 
2596 	/* Init descriptors */
2597 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2598 		printf("sk%d: initialization failed: no "
2599 		    "memory for rx buffers\n", sc_if->sk_unit);
2600 		sk_stop(sc_if);
2601 		(void)splx(s);
2602 		return;
2603 	}
2604 	sk_init_tx_ring(sc_if);
2605 
2606 	/* Configure interrupt handling */
2607 	CSR_READ_4(sc, SK_ISSR);
2608 	if (sc_if->sk_port == SK_PORT_A)
2609 		sc->sk_intrmask |= SK_INTRS1;
2610 	else
2611 		sc->sk_intrmask |= SK_INTRS2;
2612 
2613 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2614 
2615 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2616 
2617 	/* Start BMUs. */
2618 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2619 
2620 	switch(sc->sk_type) {
2621 	case SK_GENESIS:
2622 		/* Enable XMACs TX and RX state machines */
2623 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2624 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2625 		break;
2626 	case SK_YUKON:
2627 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2628 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2629 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2630 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2631 	}
2632 
2633 	ifp->if_flags |= IFF_RUNNING;
2634 	ifp->if_flags &= ~IFF_OACTIVE;
2635 
2636 	splx(s);
2637 
2638 	return;
2639 }
2640 
2641 static void sk_stop(sc_if)
2642 	struct sk_if_softc	*sc_if;
2643 {
2644 	int			i;
2645 	struct sk_softc		*sc;
2646 	struct ifnet		*ifp;
2647 
2648 	sc = sc_if->sk_softc;
2649 	ifp = &sc_if->arpcom.ac_if;
2650 
2651 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2652 
2653 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2654 		u_int32_t		val;
2655 
2656 		/* Put PHY back into reset. */
2657 		val = sk_win_read_4(sc, SK_GPIO);
2658 		if (sc_if->sk_port == SK_PORT_A) {
2659 			val |= SK_GPIO_DIR0;
2660 			val &= ~SK_GPIO_DAT0;
2661 		} else {
2662 			val |= SK_GPIO_DIR2;
2663 			val &= ~SK_GPIO_DAT2;
2664 		}
2665 		sk_win_write_4(sc, SK_GPIO, val);
2666 	}
2667 
2668 	/* Turn off various components of this interface. */
2669 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2670 	switch (sc->sk_type) {
2671 	case SK_GENESIS:
2672 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2673 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2674 		break;
2675 	case SK_YUKON:
2676 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2677 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2678 		break;
2679 	}
2680 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2681 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2682 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2683 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2684 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2685 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2686 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2687 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2688 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2689 
2690 	/* Disable interrupts */
2691 	if (sc_if->sk_port == SK_PORT_A)
2692 		sc->sk_intrmask &= ~SK_INTRS1;
2693 	else
2694 		sc->sk_intrmask &= ~SK_INTRS2;
2695 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2696 
2697 	SK_XM_READ_2(sc_if, XM_ISR);
2698 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2699 
2700 	/* Free RX and TX mbufs still in the queues. */
2701 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2702 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2703 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2704 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2705 		}
2706 	}
2707 
2708 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2709 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2710 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2711 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2712 		}
2713 	}
2714 
2715 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2716 
2717 	return;
2718 }
2719