xref: /dragonfly/sys/dev/netif/sk/if_sk.c (revision fe76c4fb)
1 /*
2  * Copyright (c) 1997, 1998, 1999, 2000
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $
33  * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $
34  * $DragonFly: src/sys/dev/netif/sk/if_sk.c,v 1.43 2006/03/19 18:03:37 dillon Exp $
35  */
36 
37 /*
38  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
39  *
40  * Permission to use, copy, modify, and distribute this software for any
41  * purpose with or without fee is hereby granted, provided that the above
42  * copyright notice and this permission notice appear in all copies.
43  *
44  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
45  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
46  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
47  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
48  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
49  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
50  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
51  */
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 
72 /*
73  * The SysKonnect gigabit ethernet adapters consist of two main
74  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
75  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
76  * components and a PHY while the GEnesis controller provides a PCI
77  * interface with DMA support. Each card may have between 512K and
78  * 2MB of SRAM on board depending on the configuration.
79  *
80  * The SysKonnect GEnesis controller can have either one or two XMAC
81  * chips connected to it, allowing single or dual port NIC configurations.
82  * SysKonnect has the distinction of being the only vendor on the market
83  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
84  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
85  * XMAC registers. This driver takes advantage of these features to allow
86  * both XMACs to operate as independent interfaces.
87  */
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/queue.h>
97 #include <sys/serialize.h>
98 #include <sys/thread2.h>
99 
100 #include <net/if.h>
101 #include <net/ifq_var.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 
107 #include <net/bpf.h>
108 
109 #include <vm/vm.h>              /* for vtophys */
110 #include <vm/pmap.h>            /* for vtophys */
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #include <dev/netif/mii_layer/mii.h>
117 #include <dev/netif/mii_layer/miivar.h>
118 #include <dev/netif/mii_layer/brgphyreg.h>
119 
120 #include <bus/pci/pcireg.h>
121 #include <bus/pci/pcivar.h>
122 
123 #if 0
124 #define SK_USEIOSPACE
125 #endif
126 
127 #include "if_skreg.h"
128 #include "xmaciireg.h"
129 #include "yukonreg.h"
130 
131 /* "controller miibus0" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 static struct sk_type sk_devs[] = {
135 	{ VENDORID_SK, DEVICEID_SK_V1,
136 	  "SysKonnect Gigabit Ethernet (V1.0)" },
137 	{ VENDORID_SK, DEVICEID_SK_V2,
138 	  "SysKonnect Gigabit Ethernet (V2.0)" },
139 	{ VENDORID_MARVELL, DEVICEID_SK_V2,
140 	  "Marvell Gigabit Ethernet" },
141 	{ VENDORID_3COM, DEVICEID_3COM_3C940,
142 	  "3Com 3C940 Gigabit Ethernet" },
143 	{ VENDORID_LINKSYS, DEVICEID_LINKSYS_EG1032,
144 	  "Linksys EG1032 Gigabit Ethernet" },
145 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE530T,
146 	  "D-Link DGE-530T Gigabit Ethernet" },
147 	{ 0, 0, NULL }
148 };
149 
150 static int	skc_probe(device_t);
151 static int	skc_attach(device_t);
152 static int	skc_detach(device_t);
153 static void	skc_shutdown(device_t);
154 static int	sk_probe(device_t);
155 static int	sk_attach(device_t);
156 static int	sk_detach(device_t);
157 static void	sk_tick(void *);
158 static void	sk_intr(void *);
159 static void	sk_intr_bcom(struct sk_if_softc *);
160 static void	sk_intr_xmac(struct sk_if_softc *);
161 static void	sk_intr_yukon(struct sk_if_softc *);
162 static void	sk_rxeof(struct sk_if_softc *);
163 static void	sk_txeof(struct sk_if_softc *);
164 static int	sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
165 static void	sk_start(struct ifnet *);
166 static int	sk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
167 static void	sk_init(void *);
168 static void	sk_init_xmac(struct sk_if_softc *);
169 static void	sk_init_yukon(struct sk_if_softc *);
170 static void	sk_stop(struct sk_if_softc *);
171 static void	sk_watchdog(struct ifnet *);
172 static int	sk_ifmedia_upd(struct ifnet *);
173 static void	sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
174 static void	sk_reset(struct sk_softc *);
175 static int	sk_newbuf(struct sk_if_softc *, struct sk_chain *,
176 			  struct mbuf *);
177 static int	sk_alloc_jumbo_mem(struct sk_if_softc *);
178 static struct sk_jslot
179 		*sk_jalloc(struct sk_if_softc *);
180 static void	sk_jfree(void *);
181 static void	sk_jref(void *);
182 static int	sk_init_rx_ring(struct sk_if_softc *);
183 static void	sk_init_tx_ring(struct sk_if_softc *);
184 static uint32_t	sk_win_read_4(struct sk_softc *, int);
185 static uint16_t	sk_win_read_2(struct sk_softc *, int);
186 static uint8_t	sk_win_read_1(struct sk_softc *, int);
187 static void	sk_win_write_4(struct sk_softc *, int, uint32_t);
188 static void	sk_win_write_2(struct sk_softc *, int, uint32_t);
189 static void	sk_win_write_1(struct sk_softc *, int, uint32_t);
190 static uint8_t	sk_vpd_readbyte(struct sk_softc *, int);
191 static void	sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
192 static void	sk_vpd_read(struct sk_softc *);
193 
194 static int	sk_miibus_readreg(device_t, int, int);
195 static int	sk_miibus_writereg(device_t, int, int, int);
196 static void	sk_miibus_statchg(device_t);
197 
198 static int	sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
199 static int	sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, int);
200 static void	sk_xmac_miibus_statchg(struct sk_if_softc *);
201 
202 static int	sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
203 static int	sk_marv_miibus_writereg(struct sk_if_softc *, int, int, int);
204 static void	sk_marv_miibus_statchg(struct sk_if_softc *);
205 
206 static void	sk_setfilt(struct sk_if_softc *, caddr_t, int);
207 static void	sk_setmulti(struct sk_if_softc *);
208 static void	sk_setpromisc(struct sk_if_softc *);
209 
210 #ifdef SK_USEIOSPACE
211 #define SK_RES		SYS_RES_IOPORT
212 #define SK_RID		SK_PCI_LOIO
213 #else
214 #define SK_RES		SYS_RES_MEMORY
215 #define SK_RID		SK_PCI_LOMEM
216 #endif
217 
218 /*
219  * Note that we have newbus methods for both the GEnesis controller
220  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
221  * the miibus code is a child of the XMACs. We need to do it this way
222  * so that the miibus drivers can access the PHY registers on the
223  * right PHY. It's not quite what I had in mind, but it's the only
224  * design that achieves the desired effect.
225  */
226 static device_method_t skc_methods[] = {
227 	/* Device interface */
228 	DEVMETHOD(device_probe,		skc_probe),
229 	DEVMETHOD(device_attach,	skc_attach),
230 	DEVMETHOD(device_detach,	skc_detach),
231 	DEVMETHOD(device_shutdown,	skc_shutdown),
232 
233 	/* bus interface */
234 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
235 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
236 
237 	{ 0, 0 }
238 };
239 
240 static DEFINE_CLASS_0(skc, skc_driver, skc_methods, sizeof(struct sk_softc));
241 static devclass_t skc_devclass;
242 
243 static device_method_t sk_methods[] = {
244 	/* Device interface */
245 	DEVMETHOD(device_probe,		sk_probe),
246 	DEVMETHOD(device_attach,	sk_attach),
247 	DEVMETHOD(device_detach,	sk_detach),
248 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
249 
250 	/* bus interface */
251 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
252 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
253 
254 	/* MII interface */
255 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
256 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
257 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
258 
259 	{ 0, 0 }
260 };
261 
262 static DEFINE_CLASS_0(sk, sk_driver, sk_methods, sizeof(struct sk_if_softc));
263 static devclass_t sk_devclass;
264 static struct lwkt_serialize sk_serializer;
265 
266 DECLARE_DUMMY_MODULE(if_sk);
267 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
268 DRIVER_MODULE(if_sk, skc, sk_driver, sk_devclass, 0, 0);
269 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
270 
271 #define SK_SETBIT(sc, reg, x)		\
272 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
273 
274 #define SK_CLRBIT(sc, reg, x)		\
275 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
276 
277 #define SK_WIN_SETBIT_4(sc, reg, x)	\
278 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
279 
280 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
281 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
282 
283 #define SK_WIN_SETBIT_2(sc, reg, x)	\
284 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
285 
286 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
287 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
288 
289 static uint32_t
290 sk_win_read_4(struct sk_softc *sc, int reg)
291 {
292 #ifdef SK_USEIOSPACE
293 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
294 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
295 #else
296 	return(CSR_READ_4(sc, reg));
297 #endif
298 }
299 
300 static uint16_t
301 sk_win_read_2(struct sk_softc *sc, int reg)
302 {
303 #ifdef SK_USEIOSPACE
304 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
305 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
306 #else
307 	return(CSR_READ_2(sc, reg));
308 #endif
309 }
310 
311 static uint8_t
312 sk_win_read_1(struct sk_softc *sc, int reg)
313 {
314 #ifdef SK_USEIOSPACE
315 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
316 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
317 #else
318 	return(CSR_READ_1(sc, reg));
319 #endif
320 }
321 
322 static void
323 sk_win_write_4(struct sk_softc *sc, int reg, uint32_t val)
324 {
325 #ifdef SK_USEIOSPACE
326 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
327 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
328 #else
329 	CSR_WRITE_4(sc, reg, val);
330 #endif
331 }
332 
333 static void
334 sk_win_write_2(struct sk_softc *sc, int reg, uint32_t val)
335 {
336 #ifdef SK_USEIOSPACE
337 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
338 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
339 #else
340 	CSR_WRITE_2(sc, reg, val);
341 #endif
342 }
343 
344 static void
345 sk_win_write_1(struct sk_softc *sc, int reg, uint32_t val)
346 {
347 #ifdef SK_USEIOSPACE
348 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
349 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
350 #else
351 	CSR_WRITE_1(sc, reg, val);
352 #endif
353 }
354 
355 /*
356  * The VPD EEPROM contains Vital Product Data, as suggested in
357  * the PCI 2.1 specification. The VPD data is separared into areas
358  * denoted by resource IDs. The SysKonnect VPD contains an ID string
359  * resource (the name of the adapter), a read-only area resource
360  * containing various key/data fields and a read/write area which
361  * can be used to store asset management information or log messages.
362  * We read the ID string and read-only into buffers attached to
363  * the controller softc structure for later use. At the moment,
364  * we only use the ID string during sk_attach().
365  */
366 static uint8_t
367 sk_vpd_readbyte(struct sk_softc *sc, int addr)
368 {
369 	int i;
370 
371 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
372 	for (i = 0; i < SK_TIMEOUT; i++) {
373 		DELAY(1);
374 		if (sk_win_read_2(sc,
375 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
376 			break;
377 	}
378 
379 	if (i == SK_TIMEOUT)
380 		return(0);
381 
382 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
383 }
384 
385 static void
386 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
387 {
388 	int i;
389 	uint8_t *ptr;
390 
391 	ptr = (uint8_t *)res;
392 	for (i = 0; i < sizeof(struct vpd_res); i++)
393 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
394 }
395 
396 static void
397 sk_vpd_read(struct sk_softc *sc)
398 {
399 	struct vpd_res res;
400 	int i, pos = 0;
401 
402 	if (sc->sk_vpd_prodname != NULL)
403 		free(sc->sk_vpd_prodname, M_DEVBUF);
404 	if (sc->sk_vpd_readonly != NULL)
405 		free(sc->sk_vpd_readonly, M_DEVBUF);
406 	sc->sk_vpd_prodname = NULL;
407 	sc->sk_vpd_readonly = NULL;
408 
409 	sk_vpd_read_res(sc, &res, pos);
410 
411 	if (res.vr_id != VPD_RES_ID) {
412 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
413 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
414 		return;
415 	}
416 
417 	pos += sizeof(res);
418 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
419 	for (i = 0; i < res.vr_len; i++)
420 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
421 	sc->sk_vpd_prodname[i] = '\0';
422 	pos += i;
423 
424 	sk_vpd_read_res(sc, &res, pos);
425 
426 	if (res.vr_id != VPD_RES_READ) {
427 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
428 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
429 		return;
430 	}
431 
432 	pos += sizeof(res);
433 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
434 	for (i = 0; i < res.vr_len + 1; i++)
435 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
436 }
437 
438 static int
439 sk_miibus_readreg(device_t dev, int phy, int reg)
440 {
441 	struct sk_if_softc *sc_if = device_get_softc(dev);
442 
443 	switch(sc_if->sk_softc->sk_type) {
444 	case SK_GENESIS:
445 		return(sk_xmac_miibus_readreg(sc_if, phy, reg));
446 	case SK_YUKON:
447 		return(sk_marv_miibus_readreg(sc_if, phy, reg));
448 	}
449 
450 	return(0);
451 }
452 
453 static int
454 sk_miibus_writereg(device_t dev, int phy, int reg, int val)
455 {
456 	struct sk_if_softc *sc_if = device_get_softc(dev);
457 
458 	switch(sc_if->sk_softc->sk_type) {
459 	case SK_GENESIS:
460 		return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
461 	case SK_YUKON:
462 		return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
463 	}
464 
465 	return(0);
466 }
467 
468 static void
469 sk_miibus_statchg(device_t dev)
470 {
471 	struct sk_if_softc *sc_if = device_get_softc(dev);
472 
473 	switch(sc_if->sk_softc->sk_type) {
474 	case SK_GENESIS:
475 		sk_xmac_miibus_statchg(sc_if);
476 		break;
477 	case SK_YUKON:
478 		sk_marv_miibus_statchg(sc_if);
479 		break;
480 	}
481 }
482 
483 static int
484 sk_xmac_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
485 {
486 	int i;
487 
488 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
489 		return(0);
490 
491 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
492 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
493 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
494 		for (i = 0; i < SK_TIMEOUT; i++) {
495 			DELAY(1);
496 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
497 			    XM_MMUCMD_PHYDATARDY)
498 				break;
499 		}
500 
501 		if (i == SK_TIMEOUT) {
502 			printf("sk%d: phy failed to come ready\n",
503 			    sc_if->sk_unit);
504 			return(0);
505 		}
506 	}
507 	DELAY(1);
508 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
509 }
510 
511 static int
512 sk_xmac_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
513 {
514 	int i;
515 
516 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
517 	for (i = 0; i < SK_TIMEOUT; i++) {
518 		if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
519 			break;
520 	}
521 
522 	if (i == SK_TIMEOUT) {
523 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
524 		return(ETIMEDOUT);
525 	}
526 
527 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
528 	for (i = 0; i < SK_TIMEOUT; i++) {
529 		DELAY(1);
530 		if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
531 			break;
532 	}
533 
534 	if (i == SK_TIMEOUT)
535 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
536 
537 	return(0);
538 }
539 
540 static void
541 sk_xmac_miibus_statchg(struct sk_if_softc *sc_if)
542 {
543 	struct mii_data *mii;
544 
545 	mii = device_get_softc(sc_if->sk_miibus);
546 
547 	/*
548 	 * If this is a GMII PHY, manually set the XMAC's
549 	 * duplex mode accordingly.
550 	 */
551 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
552 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
553 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
554 		else
555 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
556 	}
557 }
558 
559 static int
560 sk_marv_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
561 {
562 	uint16_t val;
563 	int i;
564 
565 	if (phy != 0 ||
566 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
567 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
568 		return(0);
569 	}
570 
571         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
572 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
573 
574 	for (i = 0; i < SK_TIMEOUT; i++) {
575 		DELAY(1);
576 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
577 		if (val & YU_SMICR_READ_VALID)
578 			break;
579 	}
580 
581 	if (i == SK_TIMEOUT) {
582 		printf("sk%d: phy failed to come ready\n",
583 		    sc_if->sk_unit);
584 		return(0);
585 	}
586 
587 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
588 
589 	return(val);
590 }
591 
592 static int
593 sk_marv_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
594 {
595 	int i;
596 
597 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
598 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
599 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
600 
601 	for (i = 0; i < SK_TIMEOUT; i++) {
602 		DELAY(1);
603 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
604 			break;
605 	}
606 
607 	return(0);
608 }
609 
610 static void
611 sk_marv_miibus_statchg(struct sk_if_softc *sc_if)
612 {
613 }
614 
615 #define	HASH_BITS		6
616 
617 static void sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
618 {
619 	int base;
620 
621 	base = XM_RXFILT_ENTRY(slot);
622 
623 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
624 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
625 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
626 }
627 
628 static void
629 sk_setmulti(struct sk_if_softc *sc_if)
630 {
631 	struct sk_softc *sc = sc_if->sk_softc;
632 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
633 	uint32_t hashes[2] = { 0, 0 };
634 	int h, i;
635 	struct ifmultiaddr *ifma;
636 	uint8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
637 
638 	/* First, zot all the existing filters. */
639 	switch(sc->sk_type) {
640 	case SK_GENESIS:
641 		for (i = 1; i < XM_RXFILT_MAX; i++)
642 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
643 
644 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
645 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
646 		break;
647 	case SK_YUKON:
648 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
649 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
650 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
651 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
652 		break;
653 	}
654 
655 	/* Now program new ones. */
656 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
657 		hashes[0] = 0xFFFFFFFF;
658 		hashes[1] = 0xFFFFFFFF;
659 	} else {
660 		i = 1;
661 		/* First find the tail of the list. */
662 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
663 			if (ifma->ifma_link.le_next == NULL)
664 				break;
665 		}
666 		/* Now traverse the list backwards. */
667 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
668 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
669 			if (ifma->ifma_addr->sa_family != AF_LINK)
670 				continue;
671 			/*
672 			 * Program the first XM_RXFILT_MAX multicast groups
673 			 * into the perfect filter. For all others,
674 			 * use the hash table.
675 			 */
676 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
677 				sk_setfilt(sc_if,
678 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
679 				i++;
680 				continue;
681 			}
682 
683                         switch(sc->sk_type) {
684                         case SK_GENESIS:
685 			    h = ~ether_crc32_le(LLADDR((struct sockaddr_dl *)
686 				ifma->ifma_addr), ETHER_ADDR_LEN) &
687 				((1 << HASH_BITS) -1 );
688                             if (h < 32)
689                                 hashes[0] |= (1 << h);
690                             else
691                                 hashes[1] |= (1 << (h - 32));
692                             break;
693 
694                         case SK_YUKON:
695 			    h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
696 				ifma->ifma_addr), ETHER_ADDR_LEN) &
697 				((1 << HASH_BITS) -1 );
698                             if (h < 32)
699                                 hashes[0] |= (1 << h);
700                             else
701                                 hashes[1] |= (1 << (h - 32));
702                             break;
703                         }
704 		}
705 	}
706 
707 	switch(sc->sk_type) {
708 	case SK_GENESIS:
709 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
710 			       XM_MODE_RX_USE_PERFECT);
711 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
712 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
713 		break;
714 	case SK_YUKON:
715 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
716 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
717 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
718 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
719 		break;
720 	}
721 }
722 
723 static void
724 sk_setpromisc(struct sk_if_softc *sc_if)
725 {
726 	struct sk_softc *sc = sc_if->sk_softc;
727 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
728 
729 	switch(sc->sk_type) {
730 	case SK_GENESIS:
731 		if (ifp->if_flags & IFF_PROMISC) {
732 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
733 		} else {
734 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
735 		}
736 		break;
737 	case SK_YUKON:
738 		if (ifp->if_flags & IFF_PROMISC) {
739 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
740 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
741 		} else {
742 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
743 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
744 		}
745 		break;
746 	}
747 }
748 
749 static int
750 sk_init_rx_ring(struct sk_if_softc *sc_if)
751 {
752 	struct sk_chain_data *cd = &sc_if->sk_cdata;
753 	struct sk_ring_data *rd = sc_if->sk_rdata;
754 	int i;
755 
756 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
757 
758 	for (i = 0; i < SK_RX_RING_CNT; i++) {
759 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
760 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
761 			return(ENOBUFS);
762 		if (i == (SK_RX_RING_CNT - 1)) {
763 			cd->sk_rx_chain[i].sk_next =
764 			    &cd->sk_rx_chain[0];
765 			rd->sk_rx_ring[i].sk_next =
766 			    vtophys(&rd->sk_rx_ring[0]);
767 		} else {
768 			cd->sk_rx_chain[i].sk_next =
769 			    &cd->sk_rx_chain[i + 1];
770 			rd->sk_rx_ring[i].sk_next =
771 			    vtophys(&rd->sk_rx_ring[i + 1]);
772 		}
773 	}
774 
775 	sc_if->sk_cdata.sk_rx_prod = 0;
776 	sc_if->sk_cdata.sk_rx_cons = 0;
777 
778 	return(0);
779 }
780 
781 static void
782 sk_init_tx_ring(struct sk_if_softc *sc_if)
783 {
784 	struct sk_chain_data *cd = &sc_if->sk_cdata;
785 	struct sk_ring_data *rd = sc_if->sk_rdata;
786 	int i, nexti;
787 
788 	bzero(sc_if->sk_rdata->sk_tx_ring,
789 	      sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
790 
791 	for (i = 0; i < SK_TX_RING_CNT; i++) {
792 		nexti = (i == (SK_TX_RING_CNT - 1)) ? 0 : i + 1;
793 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
794 		cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
795 		rd->sk_tx_ring[i].sk_next = vtophys(&rd->sk_tx_ring[nexti]);
796 	}
797 
798 	sc_if->sk_cdata.sk_tx_prod = 0;
799 	sc_if->sk_cdata.sk_tx_cons = 0;
800 	sc_if->sk_cdata.sk_tx_cnt = 0;
801 }
802 
803 static int
804 sk_newbuf(struct sk_if_softc *sc_if, struct sk_chain *c, struct mbuf *m)
805 {
806 	struct mbuf *m_new = NULL;
807 	struct sk_rx_desc *r;
808 	struct sk_jslot *buf;
809 
810 	if (m == NULL) {
811 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
812 		if (m_new == NULL)
813 			return(ENOBUFS);
814 
815 		/* Allocate the jumbo buffer */
816 		buf = sk_jalloc(sc_if);
817 		if (buf == NULL) {
818 			m_freem(m_new);
819 #ifdef SK_VERBOSE
820 			printf("sk%d: jumbo allocation failed "
821 			    "-- packet dropped!\n", sc_if->sk_unit);
822 #endif
823 			return(ENOBUFS);
824 		}
825 
826 		/* Attach the buffer to the mbuf */
827 		m_new->m_ext.ext_arg = buf;
828 		m_new->m_ext.ext_buf = buf->sk_buf;
829 		m_new->m_ext.ext_free = sk_jfree;
830 		m_new->m_ext.ext_ref = sk_jref;
831 		m_new->m_ext.ext_size = SK_JUMBO_FRAMELEN;
832 
833 		m_new->m_data = m_new->m_ext.ext_buf;
834 		m_new->m_flags |= M_EXT;
835 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
836 	} else {
837 		/*
838 	 	 * We're re-using a previously allocated mbuf;
839 		 * be sure to re-init pointers and lengths to
840 		 * default values.
841 		 */
842 		m_new = m;
843 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
844 		m_new->m_data = m_new->m_ext.ext_buf;
845 	}
846 
847 	/*
848 	 * Adjust alignment so packet payload begins on a
849 	 * longword boundary. Mandatory for Alpha, useful on
850 	 * x86 too.
851 	 */
852 	m_adj(m_new, ETHER_ALIGN);
853 
854 	r = c->sk_desc;
855 	c->sk_mbuf = m_new;
856 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
857 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
858 
859 	return(0);
860 }
861 
862 /*
863  * Allocate jumbo buffer storage. The SysKonnect adapters support
864  * "jumbograms" (9K frames), although SysKonnect doesn't currently
865  * use them in their drivers. In order for us to use them, we need
866  * large 9K receive buffers, however standard mbuf clusters are only
867  * 2048 bytes in size. Consequently, we need to allocate and manage
868  * our own jumbo buffer pool. Fortunately, this does not require an
869  * excessive amount of additional code.
870  */
871 static int
872 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
873 {
874 	caddr_t ptr;
875 	int i;
876 	struct sk_jslot *entry;
877 
878 	/* Grab a big chunk o' storage. */
879 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
880 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
881 
882 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
883 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
884 		return(ENOBUFS);
885 	}
886 
887 	SLIST_INIT(&sc_if->sk_jfree_listhead);
888 
889 	/*
890 	 * Now divide it up into 9K pieces and save the addresses
891 	 * in an array. Note that we play an evil trick here by using
892 	 * the first few bytes in the buffer to hold the the address
893 	 * of the softc structure for this interface. This is because
894 	 * sk_jfree() needs it, but it is called by the mbuf management
895 	 * code which will not pass it to us explicitly.
896 	 */
897 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
898 	for (i = 0; i < SK_JSLOTS; i++) {
899 		entry = &sc_if->sk_cdata.sk_jslots[i];
900 		entry->sk_sc = sc_if;
901 		entry->sk_buf = ptr;
902 		entry->sk_inuse = 0;
903 		entry->sk_slot = i;
904 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jslot_link);
905 		ptr += SK_JLEN;
906 	}
907 
908 	return(0);
909 }
910 
911 /*
912  * Allocate a jumbo buffer.
913  */
914 static struct sk_jslot *
915 sk_jalloc(struct sk_if_softc *sc_if)
916 {
917 	struct sk_jslot *entry;
918 
919 	lwkt_serialize_enter(&sc_if->sk_jslot_serializer);
920 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
921 	if (entry) {
922 		SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jslot_link);
923 		entry->sk_inuse = 1;
924 	} else {
925 #ifdef SK_VERBOSE
926 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
927 #endif
928 	}
929 	lwkt_serialize_exit(&sc_if->sk_jslot_serializer);
930 	return(entry);
931 }
932 
933 /*
934  * Adjust usage count on a jumbo buffer. In general this doesn't
935  * get used much because our jumbo buffers don't get passed around
936  * a lot, but it's implemented for correctness.
937  */
938 static void
939 sk_jref(void *arg)
940 {
941 	struct sk_jslot *entry = (struct sk_jslot *)arg;
942 	struct sk_if_softc *sc = entry->sk_sc;
943 
944 	if (sc == NULL)
945 		panic("sk_jref: can't find softc pointer!");
946 
947 	if (&sc->sk_cdata.sk_jslots[entry->sk_slot] != entry)
948 		panic("sk_jref: asked to reference buffer "
949 		    "that we don't manage!");
950 	if (entry->sk_inuse == 0)
951 		panic("sk_jref: buffer already free!");
952 	atomic_add_int(&entry->sk_inuse, 1);
953 }
954 
955 /*
956  * Release a jumbo buffer.
957  */
958 static void
959 sk_jfree(void *arg)
960 {
961 	struct sk_jslot *entry = (struct sk_jslot *)arg;
962 	struct sk_if_softc *sc = entry->sk_sc;
963 
964 	if (sc == NULL)
965 		panic("sk_jref: can't find softc pointer!");
966 
967 	if (&sc->sk_cdata.sk_jslots[entry->sk_slot] != entry)
968 		panic("sk_jref: asked to reference buffer "
969 		    "that we don't manage!");
970 	if (entry->sk_inuse == 0)
971 		panic("sk_jref: buffer already free!");
972 	lwkt_serialize_enter(&sc->sk_jslot_serializer);
973 	atomic_subtract_int(&entry->sk_inuse, 1);
974 	if (entry->sk_inuse == 0)
975 		SLIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jslot_link);
976 	lwkt_serialize_exit(&sc->sk_jslot_serializer);
977 }
978 
979 /*
980  * Set media options.
981  */
982 static int
983 sk_ifmedia_upd(struct ifnet *ifp)
984 {
985 	struct sk_if_softc *sc_if = ifp->if_softc;
986 	struct mii_data *mii;
987 
988 	mii = device_get_softc(sc_if->sk_miibus);
989 	sk_init(sc_if);
990 	mii_mediachg(mii);
991 
992 	return(0);
993 }
994 
995 /*
996  * Report current media status.
997  */
998 static void
999 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1000 {
1001 	struct sk_if_softc *sc_if;
1002 	struct mii_data *mii;
1003 
1004 	sc_if = ifp->if_softc;
1005 	mii = device_get_softc(sc_if->sk_miibus);
1006 
1007 	mii_pollstat(mii);
1008 	ifmr->ifm_active = mii->mii_media_active;
1009 	ifmr->ifm_status = mii->mii_media_status;
1010 }
1011 
1012 static int
1013 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1014 {
1015 	struct sk_if_softc *sc_if = ifp->if_softc;
1016 	struct ifreq *ifr = (struct ifreq *)data;
1017 	struct mii_data *mii;
1018 	int error = 0;
1019 
1020 	crit_enter();
1021 
1022 	switch(command) {
1023 	case SIOCSIFMTU:
1024 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1025 			error = EINVAL;
1026 		else {
1027 			ifp->if_mtu = ifr->ifr_mtu;
1028 			ifp->if_flags &= ~IFF_RUNNING;
1029 			sk_init(sc_if);
1030 		}
1031 		break;
1032 	case SIOCSIFFLAGS:
1033 		if (ifp->if_flags & IFF_UP) {
1034 			if (ifp->if_flags & IFF_RUNNING) {
1035 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1036 				    & IFF_PROMISC) {
1037 					sk_setpromisc(sc_if);
1038 					sk_setmulti(sc_if);
1039 				}
1040 			} else
1041 				sk_init(sc_if);
1042 		} else {
1043 			if (ifp->if_flags & IFF_RUNNING)
1044 				sk_stop(sc_if);
1045 		}
1046 		sc_if->sk_if_flags = ifp->if_flags;
1047 		error = 0;
1048 		break;
1049 	case SIOCADDMULTI:
1050 	case SIOCDELMULTI:
1051 		sk_setmulti(sc_if);
1052 		error = 0;
1053 		break;
1054 	case SIOCGIFMEDIA:
1055 	case SIOCSIFMEDIA:
1056 		mii = device_get_softc(sc_if->sk_miibus);
1057 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1058 		break;
1059 	default:
1060 		error = ether_ioctl(ifp, command, data);
1061 		break;
1062 	}
1063 
1064 	crit_exit();
1065 
1066 	return(error);
1067 }
1068 
1069 /*
1070  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1071  * IDs against our list and return a device name if we find a match.
1072  */
1073 static int
1074 skc_probe(device_t dev)
1075 {
1076 	struct sk_type *t;
1077 	uint16_t vendor, product;
1078 
1079 	lwkt_serialize_init(&sk_serializer);
1080 	vendor = pci_get_vendor(dev);
1081 	product = pci_get_device(dev);
1082 
1083 	for (t = sk_devs; t->sk_name != NULL; t++) {
1084 		if (vendor == t->sk_vid && product == t->sk_did) {
1085 			device_set_desc(dev, t->sk_name);
1086 			return(0);
1087 		}
1088 	}
1089 
1090 	return(ENXIO);
1091 }
1092 
1093 /*
1094  * Force the GEnesis into reset, then bring it out of reset.
1095  */
1096 static void
1097 sk_reset(struct sk_softc *sc)
1098 {
1099 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1100 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1101 	if (sc->sk_type == SK_YUKON)
1102 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1103 
1104 	DELAY(1000);
1105 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1106 	DELAY(2);
1107 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1108 	if (sc->sk_type == SK_YUKON)
1109 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1110 
1111 	if (sc->sk_type == SK_GENESIS) {
1112 		/* Configure packet arbiter */
1113 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1114 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1115 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1116 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1117 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1118 	}
1119 
1120 	/* Enable RAM interface */
1121 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1122 
1123 	/*
1124          * Configure interrupt moderation. The moderation timer
1125 	 * defers interrupts specified in the interrupt moderation
1126 	 * timer mask based on the timeout specified in the interrupt
1127 	 * moderation timer init register. Each bit in the timer
1128 	 * register represents 18.825ns, so to specify a timeout in
1129 	 * microseconds, we have to multiply by 54.
1130 	 */
1131         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1132         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1133 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1134         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1135 }
1136 
1137 static int
1138 sk_probe(device_t dev)
1139 {
1140 	struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1141 
1142 	/*
1143 	 * Not much to do here. We always know there will be
1144 	 * at least one XMAC present, and if there are two,
1145 	 * skc_attach() will create a second device instance
1146 	 * for us.
1147 	 */
1148 	switch (sc->sk_type) {
1149 	case SK_GENESIS:
1150 		device_set_desc(dev, "XaQti Corp. XMAC II");
1151 		break;
1152 	case SK_YUKON:
1153 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1154 		break;
1155 	}
1156 
1157 	return(0);
1158 }
1159 
1160 /*
1161  * Each XMAC chip is attached as a separate logical IP interface.
1162  * Single port cards will have only one logical interface of course.
1163  */
1164 static int
1165 sk_attach(device_t dev)
1166 {
1167 	struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1168 	struct sk_if_softc *sc_if = device_get_softc(dev);
1169 	struct ifnet *ifp;
1170 	int i, port;
1171 
1172 	port = *(int *)device_get_ivars(dev);
1173 	free(device_get_ivars(dev), M_DEVBUF);
1174 	device_set_ivars(dev, NULL);
1175 	sc_if->sk_dev = dev;
1176 	callout_init(&sc_if->sk_tick_timer);
1177 	lwkt_serialize_init(&sc_if->sk_jslot_serializer);
1178 
1179 	sc_if->sk_dev = dev;
1180 	sc_if->sk_unit = device_get_unit(dev);
1181 	sc_if->sk_port = port;
1182 	sc_if->sk_softc = sc;
1183 	sc->sk_if[port] = sc_if;
1184 	if (port == SK_PORT_A)
1185 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1186 	if (port == SK_PORT_B)
1187 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1188 
1189 	/*
1190 	 * Get station address for this interface. Note that
1191 	 * dual port cards actually come with three station
1192 	 * addresses: one for each port, plus an extra. The
1193 	 * extra one is used by the SysKonnect driver software
1194 	 * as a 'virtual' station address for when both ports
1195 	 * are operating in failover mode. Currently we don't
1196 	 * use this extra address.
1197 	 */
1198 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1199 		sc_if->arpcom.ac_enaddr[i] =
1200 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1201 
1202 	/*
1203 	 * Set up RAM buffer addresses. The NIC will have a certain
1204 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1205 	 * need to divide this up a) between the transmitter and
1206  	 * receiver and b) between the two XMACs, if this is a
1207 	 * dual port NIC. Our algotithm is to divide up the memory
1208 	 * evenly so that everyone gets a fair share.
1209 	 */
1210 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1211 		uint32_t chunk, val;
1212 
1213 		chunk = sc->sk_ramsize / 2;
1214 		val = sc->sk_rboff / sizeof(uint64_t);
1215 		sc_if->sk_rx_ramstart = val;
1216 		val += (chunk / sizeof(uint64_t));
1217 		sc_if->sk_rx_ramend = val - 1;
1218 		sc_if->sk_tx_ramstart = val;
1219 		val += (chunk / sizeof(uint64_t));
1220 		sc_if->sk_tx_ramend = val - 1;
1221 	} else {
1222 		uint32_t chunk, val;
1223 
1224 		chunk = sc->sk_ramsize / 4;
1225 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1226 		    sizeof(uint64_t);
1227 		sc_if->sk_rx_ramstart = val;
1228 		val += (chunk / sizeof(uint64_t));
1229 		sc_if->sk_rx_ramend = val - 1;
1230 		sc_if->sk_tx_ramstart = val;
1231 		val += (chunk / sizeof(uint64_t));
1232 		sc_if->sk_tx_ramend = val - 1;
1233 	}
1234 
1235 	/* Read and save PHY type and set PHY address */
1236 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1237 	switch(sc_if->sk_phytype) {
1238 	case SK_PHYTYPE_XMAC:
1239 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1240 		break;
1241 	case SK_PHYTYPE_BCOM:
1242 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1243 		break;
1244 	case SK_PHYTYPE_MARV_COPPER:
1245 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1246 		break;
1247 	default:
1248 		printf("skc%d: unsupported PHY type: %d\n",
1249 		    sc->sk_unit, sc_if->sk_phytype);
1250 		sc->sk_if[port] = NULL;
1251 		return(ENODEV);
1252 	}
1253 
1254 	/* Allocate the descriptor queues. */
1255 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1256 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1257 
1258 	if (sc_if->sk_rdata == NULL) {
1259 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1260 		sc->sk_if[port] = NULL;
1261 		return(ENOMEM);
1262 	}
1263 
1264 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1265 
1266 	/* Try to allocate memory for jumbo buffers. */
1267 	if (sk_alloc_jumbo_mem(sc_if)) {
1268 		printf("sk%d: jumbo buffer allocation failed\n",
1269 		    sc_if->sk_unit);
1270 		contigfree(sc_if->sk_rdata,
1271 		    sizeof(struct sk_ring_data), M_DEVBUF);
1272 		sc->sk_if[port] = NULL;
1273 		return(ENOMEM);
1274 	}
1275 
1276 	ifp = &sc_if->arpcom.ac_if;
1277 	ifp->if_softc = sc_if;
1278 	if_initname(ifp, "sk", sc_if->sk_unit);
1279 	ifp->if_mtu = ETHERMTU;
1280 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1281 	ifp->if_ioctl = sk_ioctl;
1282 	ifp->if_start = sk_start;
1283 	ifp->if_watchdog = sk_watchdog;
1284 	ifp->if_init = sk_init;
1285 	ifp->if_baudrate = 1000000000;
1286 	ifq_set_maxlen(&ifp->if_snd, SK_TX_RING_CNT - 1);
1287 	ifq_set_ready(&ifp->if_snd);
1288 
1289 	/*
1290 	 * Do miibus setup.
1291 	 */
1292 	switch (sc->sk_type) {
1293 	case SK_GENESIS:
1294 		sk_init_xmac(sc_if);
1295 		break;
1296 	case SK_YUKON:
1297 		sk_init_yukon(sc_if);
1298 		break;
1299 	}
1300 
1301 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1302 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1303 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1304 		contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM,
1305 		    M_DEVBUF);
1306 		contigfree(sc_if->sk_rdata,
1307 		    sizeof(struct sk_ring_data), M_DEVBUF);
1308 		sc->sk_if[port] = NULL;
1309 		return(ENXIO);
1310 	}
1311 
1312 	/*
1313 	 * Call MI attach routine.
1314 	 */
1315 	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr, &sk_serializer);
1316 	callout_init(&sc_if->sk_tick_timer);
1317 
1318 	return(0);
1319 }
1320 
1321 /*
1322  * Attach the interface. Allocate softc structures, do ifmedia
1323  * setup and ethernet/BPF attach.
1324  */
1325 static int
1326 skc_attach(device_t dev)
1327 {
1328 	struct sk_softc *sc;
1329 	int error = 0, *port, rid, unit;
1330 	uint32_t command;
1331 	uint8_t skrs;
1332 
1333 	crit_enter();
1334 
1335 	sc = device_get_softc(dev);
1336 	unit = device_get_unit(dev);
1337 	switch (pci_get_device(dev)) {
1338 	case DEVICEID_SK_V1:
1339 		sc->sk_type = SK_GENESIS;
1340 		break;
1341 	case DEVICEID_SK_V2:
1342 	case DEVICEID_3COM_3C940:
1343 	case DEVICEID_LINKSYS_EG1032:
1344 	case DEVICEID_DLINK_DGE530T:
1345 		sc->sk_type = SK_YUKON;
1346 		break;
1347 	}
1348 
1349 	/*
1350 	 * Handle power management nonsense.
1351 	 */
1352 	command = pci_read_config(dev, SK_PCI_CAPID, 4) & 0x000000FF;
1353 	if (command == 0x01) {
1354 		command = pci_read_config(dev, SK_PCI_PWRMGMTCTRL, 4);
1355 		if (command & SK_PSTATE_MASK) {
1356 			uint32_t iobase, membase, irq;
1357 
1358 			/* Save important PCI config data. */
1359 			iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1360 			membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1361 			irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1362 
1363 			/* Reset the power state. */
1364 			printf("skc%d: chip is in D%d power mode "
1365 			"-- setting to D0\n", unit, command & SK_PSTATE_MASK);
1366 			command &= 0xFFFFFFFC;
1367 			pci_write_config(dev, SK_PCI_PWRMGMTCTRL, command, 4);
1368 
1369 			/* Restore PCI config data. */
1370 			pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1371 			pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1372 			pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1373 		}
1374 	}
1375 
1376 	/*
1377 	 * Map control/status registers.
1378 	 */
1379 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1380 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1381 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1382 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1383 
1384 #ifdef SK_USEIOSPACE
1385 	if ((command & PCIM_CMD_PORTEN) == 0) {
1386 		printf("skc%d: failed to enable I/O ports!\n", unit);
1387 		error = ENXIO;
1388 		goto fail;
1389 	}
1390 #else
1391 	if ((command & PCIM_CMD_MEMEN) == 0) {
1392 		printf("skc%d: failed to enable memory mapping!\n", unit);
1393 		error = ENXIO;
1394 		goto fail;
1395 	}
1396 #endif
1397 
1398 	rid = SK_RID;
1399 	sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE);
1400 
1401 	if (sc->sk_res == NULL) {
1402 		printf("sk%d: couldn't map ports/memory\n", unit);
1403 		error = ENXIO;
1404 		goto fail;
1405 	}
1406 
1407 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1408 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1409 
1410 	/* Allocate interrupt */
1411 	rid = 0;
1412 	sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1413 	    RF_SHAREABLE | RF_ACTIVE);
1414 
1415 	if (sc->sk_irq == NULL) {
1416 		printf("skc%d: couldn't map interrupt\n", unit);
1417 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1418 		error = ENXIO;
1419 		goto fail;
1420 	}
1421 
1422 	error = bus_setup_intr(dev, sc->sk_irq, INTR_NETSAFE,
1423 			       sk_intr, sc,
1424 			       &sc->sk_intrhand, &sk_serializer);
1425 
1426 	if (error) {
1427 		printf("skc%d: couldn't set up irq\n", unit);
1428 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1429 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1430 		goto fail;
1431 	}
1432 
1433 	/* Reset the adapter. */
1434 	sk_reset(sc);
1435 
1436 	sc->sk_unit = unit;
1437 
1438 	/* Read and save vital product data from EEPROM. */
1439 	sk_vpd_read(sc);
1440 
1441 	skrs = sk_win_read_1(sc, SK_EPROM0);
1442 	if (sc->sk_type == SK_GENESIS) {
1443 		/* Read and save RAM size and RAMbuffer offset */
1444 		switch(skrs) {
1445 		case SK_RAMSIZE_512K_64:
1446 			sc->sk_ramsize = 0x80000;
1447 			sc->sk_rboff = SK_RBOFF_0;
1448 			break;
1449 		case SK_RAMSIZE_1024K_64:
1450 			sc->sk_ramsize = 0x100000;
1451 			sc->sk_rboff = SK_RBOFF_80000;
1452 			break;
1453 		case SK_RAMSIZE_1024K_128:
1454 			sc->sk_ramsize = 0x100000;
1455 			sc->sk_rboff = SK_RBOFF_0;
1456 			break;
1457 		case SK_RAMSIZE_2048K_128:
1458 			sc->sk_ramsize = 0x200000;
1459 			sc->sk_rboff = SK_RBOFF_0;
1460 			break;
1461 		default:
1462 			printf("skc%d: unknown ram size: %d\n",
1463 			    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1464 			bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1465 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1466 			bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1467 			error = ENXIO;
1468 			goto fail;
1469 			break;
1470 		}
1471 	} else { /* SK_YUKON */
1472 		if (skrs == 0x00) {
1473 			sc->sk_ramsize = 0x20000;
1474 		} else {
1475 			sc->sk_ramsize = skrs * (1<<12);
1476 		}
1477 		sc->sk_rboff = SK_RBOFF_0;
1478 	}
1479 
1480 	/* Read and save physical media type */
1481 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1482 	case SK_PMD_1000BASESX:
1483 		sc->sk_pmd = IFM_1000_SX;
1484 		break;
1485 	case SK_PMD_1000BASELX:
1486 		sc->sk_pmd = IFM_1000_LX;
1487 		break;
1488 	case SK_PMD_1000BASECX:
1489 		sc->sk_pmd = IFM_1000_CX;
1490 		break;
1491 	case SK_PMD_1000BASETX:
1492 		sc->sk_pmd = IFM_1000_T;
1493 		break;
1494 	default:
1495 		printf("skc%d: unknown media type: 0x%x\n",
1496 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1497 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1498 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1499 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1500 		error = ENXIO;
1501 		goto fail;
1502 	}
1503 
1504 	/* Announce the product name. */
1505 	printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1506 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1507 	port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1508 	*port = SK_PORT_A;
1509 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1510 
1511 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1512 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1513 		port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1514 		*port = SK_PORT_B;
1515 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1516 	}
1517 
1518 	/* Turn on the 'driver is loaded' LED. */
1519 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1520 
1521 	bus_generic_attach(dev);
1522 
1523 fail:
1524 	crit_exit();
1525 	return(error);
1526 }
1527 
1528 static int
1529 sk_detach(device_t dev)
1530 {
1531 	struct sk_if_softc *sc_if = device_get_softc(dev);
1532 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1533 
1534 	ether_ifdetach(ifp);
1535 	bus_generic_detach(dev);
1536 	if (sc_if->sk_miibus != NULL)
1537 		device_delete_child(dev, sc_if->sk_miibus);
1538 	contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1539 	contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), M_DEVBUF);
1540 
1541 	return(0);
1542 }
1543 
1544 static int
1545 skc_detach(device_t dev)
1546 {
1547 	struct sk_softc *sc;
1548 
1549 	sc = device_get_softc(dev);
1550 
1551 	lwkt_serialize_enter(&sk_serializer);
1552 
1553 	if (sc->sk_if[SK_PORT_A] != NULL)
1554 		sk_stop(sc->sk_if[SK_PORT_A]);
1555 	if (sc->sk_if[SK_PORT_B] != NULL)
1556 		sk_stop(sc->sk_if[SK_PORT_B]);
1557 
1558 	bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1559 
1560 	lwkt_serialize_exit(&sk_serializer);
1561 
1562 	/*
1563 	 * recursed from sk_detach ?  don't need serializer
1564 	 */
1565 	bus_generic_detach(dev);
1566 	if (sc->sk_devs[SK_PORT_A] != NULL)
1567 		device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1568 	if (sc->sk_devs[SK_PORT_B] != NULL)
1569 		device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1570 
1571 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1572 	bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1573 
1574 	return(0);
1575 }
1576 
1577 static int
1578 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1579 {
1580 	struct sk_tx_desc *f = NULL;
1581 	struct mbuf *m;
1582 	uint32_t cnt = 0, cur, frag;
1583 
1584 	m = m_head;
1585 	cur = frag = *txidx;
1586 
1587 	/*
1588 	 * Start packing the mbufs in this chain into
1589 	 * the fragment pointers. Stop when we run out
1590 	 * of fragments or hit the end of the mbuf chain.
1591 	 */
1592 	for (m = m_head; m != NULL; m = m->m_next) {
1593 		if (m->m_len != 0) {
1594 			if ((SK_TX_RING_CNT -
1595 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1596 				return(ENOBUFS);
1597 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1598 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1599 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1600 			if (cnt == 0)
1601 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1602 			else
1603 				f->sk_ctl |= SK_TXCTL_OWN;
1604 			cur = frag;
1605 			SK_INC(frag, SK_TX_RING_CNT);
1606 			cnt++;
1607 		}
1608 	}
1609 
1610 	if (m != NULL)
1611 		return(ENOBUFS);
1612 
1613 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1614 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1615 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1616 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1617 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1618 
1619 	*txidx = frag;
1620 
1621 	return(0);
1622 }
1623 
1624 static void
1625 sk_start(struct ifnet *ifp)
1626 {
1627         struct sk_if_softc *sc_if = ifp->if_softc;
1628         struct sk_softc *sc = sc_if->sk_softc;
1629         struct mbuf *m_head = NULL;
1630         uint32_t idx;
1631 	int need_trans;
1632 
1633 	idx = sc_if->sk_cdata.sk_tx_prod;
1634 
1635 	need_trans = 0;
1636 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1637 		m_head = ifq_poll(&ifp->if_snd);
1638 		if (m_head == NULL)
1639 			break;
1640 
1641 		/*
1642 		 * Pack the data into the transmit ring. If we
1643 		 * don't have room, set the OACTIVE flag and wait
1644 		 * for the NIC to drain the ring.
1645 		 */
1646 		if (sk_encap(sc_if, m_head, &idx)) {
1647 			ifp->if_flags |= IFF_OACTIVE;
1648 			break;
1649 		}
1650 		ifq_dequeue(&ifp->if_snd, m_head);
1651 		need_trans = 1;
1652 
1653 		BPF_MTAP(ifp, m_head);
1654 	}
1655 
1656 	if (!need_trans)
1657 		return;
1658 
1659 	/* Transmit */
1660 	sc_if->sk_cdata.sk_tx_prod = idx;
1661 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1662 
1663 	/* Set a timeout in case the chip goes out to lunch. */
1664 	ifp->if_timer = 5;
1665 }
1666 
1667 
1668 static void
1669 sk_watchdog(struct ifnet *ifp)
1670 {
1671 	struct sk_if_softc *sc_if;
1672 
1673 	sc_if = ifp->if_softc;
1674 
1675 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1676 	ifp->if_flags &= ~IFF_RUNNING;
1677 	sk_init(sc_if);
1678 
1679 	if (!ifq_is_empty(&ifp->if_snd))
1680 		ifp->if_start(ifp);
1681 }
1682 
1683 static void
1684 skc_shutdown(device_t dev)
1685 {
1686 	struct sk_softc *sc = device_get_softc(dev);
1687 
1688 	lwkt_serialize_enter(&sk_serializer);
1689 
1690 	/* Turn off the 'driver is loaded' LED. */
1691 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1692 
1693 	/*
1694 	 * Reset the GEnesis controller. Doing this should also
1695 	 * assert the resets on the attached XMAC(s).
1696 	 */
1697 	sk_reset(sc);
1698 	lwkt_serialize_exit(&sk_serializer);
1699 }
1700 
1701 static void
1702 sk_rxeof(struct sk_if_softc *sc_if)
1703 {
1704 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1705 	struct mbuf *m;
1706 	struct sk_chain	*cur_rx;
1707 	int i, total_len = 0;
1708 	uint32_t rxstat;
1709 
1710 	i = sc_if->sk_cdata.sk_rx_prod;
1711 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1712 
1713 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1714 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1715 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1716 		m = cur_rx->sk_mbuf;
1717 		cur_rx->sk_mbuf = NULL;
1718 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1719 		SK_INC(i, SK_RX_RING_CNT);
1720 
1721 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1722 			ifp->if_ierrors++;
1723 			sk_newbuf(sc_if, cur_rx, m);
1724 			continue;
1725 		}
1726 
1727 		/*
1728 		 * Try to allocate a new jumbo buffer. If that
1729 		 * fails, copy the packet to mbufs and put the
1730 		 * jumbo buffer back in the ring so it can be
1731 		 * re-used. If allocating mbufs fails, then we
1732 		 * have to drop the packet.
1733 		 */
1734 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1735 			struct mbuf *m0;
1736 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1737 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1738 			sk_newbuf(sc_if, cur_rx, m);
1739 			if (m0 == NULL) {
1740 				printf("sk%d: no receive buffers "
1741 				    "available -- packet dropped!\n",
1742 				    sc_if->sk_unit);
1743 				ifp->if_ierrors++;
1744 				continue;
1745 			}
1746 			m_adj(m0, ETHER_ALIGN);
1747 			m = m0;
1748 		} else {
1749 			m->m_pkthdr.rcvif = ifp;
1750 			m->m_pkthdr.len = m->m_len = total_len;
1751 		}
1752 
1753 		ifp->if_ipackets++;
1754 		ifp->if_input(ifp, m);
1755 	}
1756 
1757 	sc_if->sk_cdata.sk_rx_prod = i;
1758 }
1759 
1760 static void
1761 sk_txeof(struct sk_if_softc *sc_if)
1762 {
1763 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1764 	struct sk_tx_desc *cur_tx = NULL;
1765 	uint32_t idx;
1766 
1767 	/*
1768 	 * Go through our tx ring and free mbufs for those
1769 	 * frames that have been sent.
1770 	 */
1771 	idx = sc_if->sk_cdata.sk_tx_cons;
1772 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1773 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1774 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1775 			break;
1776 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1777 			ifp->if_opackets++;
1778 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1779 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1780 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1781 		}
1782 		sc_if->sk_cdata.sk_tx_cnt--;
1783 		SK_INC(idx, SK_TX_RING_CNT);
1784 		ifp->if_timer = 0;
1785 	}
1786 
1787 	sc_if->sk_cdata.sk_tx_cons = idx;
1788 
1789 	if (cur_tx != NULL)
1790 		ifp->if_flags &= ~IFF_OACTIVE;
1791 }
1792 
1793 static void
1794 sk_tick(void *xsc_if)
1795 {
1796 	struct sk_if_softc *sc_if = xsc_if;
1797 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1798 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
1799 	int i;
1800 
1801 	lwkt_serialize_enter(&sk_serializer);
1802 
1803 	if ((ifp->if_flags & IFF_UP) == 0) {
1804 		lwkt_serialize_exit(&sk_serializer);
1805 		return;
1806 	}
1807 
1808 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1809 		sk_intr_bcom(sc_if);
1810 		lwkt_serialize_exit(&sk_serializer);
1811 		return;
1812 	}
1813 
1814 	/*
1815 	 * According to SysKonnect, the correct way to verify that
1816 	 * the link has come back up is to poll bit 0 of the GPIO
1817 	 * register three times. This pin has the signal from the
1818 	 * link_sync pin connected to it; if we read the same link
1819 	 * state 3 times in a row, we know the link is up.
1820 	 */
1821 	for (i = 0; i < 3; i++) {
1822 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1823 			break;
1824 	}
1825 
1826 	if (i != 3) {
1827 		callout_reset(&sc_if->sk_tick_timer, hz, sk_tick, sc_if);
1828 		lwkt_serialize_exit(&sk_serializer);
1829 		return;
1830 	}
1831 
1832 	/* Turn the GP0 interrupt back on. */
1833 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1834 	SK_XM_READ_2(sc_if, XM_ISR);
1835 	mii_tick(mii);
1836 	mii_pollstat(mii);
1837 	callout_stop(&sc_if->sk_tick_timer);
1838 	lwkt_serialize_exit(&sk_serializer);
1839 }
1840 
1841 static void
1842 sk_intr_bcom(struct sk_if_softc *sc_if)
1843 {
1844 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1845 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
1846 	int status;
1847 
1848 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1849 
1850 	/*
1851 	 * Read the PHY interrupt register to make sure
1852 	 * we clear any pending interrupts.
1853 	 */
1854 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1855 
1856 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1857 		sk_init_xmac(sc_if);
1858 		return;
1859 	}
1860 
1861 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1862 		int lstat;
1863 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
1864 		    BRGPHY_MII_AUXSTS);
1865 
1866 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1867 			mii_mediachg(mii);
1868 			/* Turn off the link LED. */
1869 			SK_IF_WRITE_1(sc_if, 0,
1870 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
1871 			sc_if->sk_link = 0;
1872 		} else if (status & BRGPHY_ISR_LNK_CHG) {
1873 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
1874 	    		    BRGPHY_MII_IMR, 0xFF00);
1875 			mii_tick(mii);
1876 			sc_if->sk_link = 1;
1877 			/* Turn on the link LED. */
1878 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1879 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1880 			    SK_LINKLED_BLINK_OFF);
1881 			mii_pollstat(mii);
1882 		} else {
1883 			mii_tick(mii);
1884 			callout_reset(&sc_if->sk_tick_timer, hz,
1885 				      sk_tick, sc_if);
1886 		}
1887 	}
1888 
1889 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1890 }
1891 
1892 static void
1893 sk_intr_xmac(struct sk_if_softc *sc_if)
1894 {
1895 	uint16_t status;
1896 
1897 	status = SK_XM_READ_2(sc_if, XM_ISR);
1898 
1899 	/*
1900 	 * Link has gone down. Start MII tick timeout to
1901 	 * watch for link resync.
1902 	 */
1903 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
1904 		if (status & XM_ISR_GP0_SET) {
1905 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1906 			callout_reset(&sc_if->sk_tick_timer, hz,
1907 				      sk_tick, sc_if);
1908 		}
1909 
1910 		if (status & XM_ISR_AUTONEG_DONE) {
1911 			callout_reset(&sc_if->sk_tick_timer, hz,
1912 				      sk_tick, sc_if);
1913 		}
1914 	}
1915 
1916 	if (status & XM_IMR_TX_UNDERRUN)
1917 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1918 
1919 	if (status & XM_IMR_RX_OVERRUN)
1920 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1921 
1922 	status = SK_XM_READ_2(sc_if, XM_ISR);
1923 }
1924 
1925 static void
1926 sk_intr_yukon(struct sk_if_softc *sc_if)
1927 {
1928 	int status;
1929 
1930 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1931 }
1932 
1933 static void
1934 sk_intr(void *xsc)
1935 {
1936 	struct sk_softc *sc = xsc;
1937 	struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1938 	struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_A];
1939 	struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1940 	uint32_t status;
1941 
1942 	if (sc_if0 != NULL)
1943 		ifp0 = &sc_if0->arpcom.ac_if;
1944 	if (sc_if1 != NULL)
1945 		ifp1 = &sc_if1->arpcom.ac_if;
1946 
1947 	for (;;) {
1948 		status = CSR_READ_4(sc, SK_ISSR);
1949 		if ((status & sc->sk_intrmask) == 0)
1950 			break;
1951 
1952 		/* Handle receive interrupts first. */
1953 		if (status & SK_ISR_RX1_EOF) {
1954 			sk_rxeof(sc_if0);
1955 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1956 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1957 		}
1958 		if (status & SK_ISR_RX2_EOF) {
1959 			sk_rxeof(sc_if1);
1960 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1961 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1962 		}
1963 
1964 		/* Then transmit interrupts. */
1965 		if (status & SK_ISR_TX1_S_EOF) {
1966 			sk_txeof(sc_if0);
1967 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
1968 			    SK_TXBMU_CLR_IRQ_EOF);
1969 		}
1970 		if (status & SK_ISR_TX2_S_EOF) {
1971 			sk_txeof(sc_if1);
1972 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
1973 			    SK_TXBMU_CLR_IRQ_EOF);
1974 		}
1975 
1976 		/* Then MAC interrupts. */
1977 		if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
1978 			if (sc->sk_type == SK_GENESIS)
1979 				sk_intr_xmac(sc_if0);
1980 			else
1981 				sk_intr_yukon(sc_if0);
1982 		}
1983 
1984 		if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
1985 			if (sc->sk_type == SK_GENESIS)
1986 				sk_intr_xmac(sc_if1);
1987 			else
1988 				sk_intr_yukon(sc_if0);
1989 		}
1990 
1991 		if (status & SK_ISR_EXTERNAL_REG) {
1992 			if (ifp0 != NULL &&
1993 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
1994 				sk_intr_bcom(sc_if0);
1995 			if (ifp1 != NULL &&
1996 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
1997 				sk_intr_bcom(sc_if1);
1998 		}
1999 	}
2000 
2001 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2002 
2003 	if (ifp0 != NULL && !ifq_is_empty(&ifp0->if_snd))
2004 		sk_start(ifp0);
2005 	if (ifp1 != NULL && !ifq_is_empty(&ifp0->if_snd))
2006 		sk_start(ifp1);
2007 }
2008 
2009 static void
2010 sk_init_xmac(struct sk_if_softc *sc_if)
2011 {
2012 	struct sk_softc *sc = sc_if->sk_softc;
2013 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2014 	struct sk_bcom_hack bhack[] = {
2015 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2016 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2017 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2018 	{ 0, 0 } };
2019 
2020 	/* Unreset the XMAC. */
2021 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2022 	DELAY(1000);
2023 
2024 	/* Reset the XMAC's internal state. */
2025 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2026 
2027 	/* Save the XMAC II revision */
2028 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2029 
2030 	/*
2031 	 * Perform additional initialization for external PHYs,
2032 	 * namely for the 1000baseTX cards that use the XMAC's
2033 	 * GMII mode.
2034 	 */
2035 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2036 		int i = 0;
2037 		uint32_t val;
2038 
2039 		/* Take PHY out of reset. */
2040 		val = sk_win_read_4(sc, SK_GPIO);
2041 		if (sc_if->sk_port == SK_PORT_A)
2042 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2043 		else
2044 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2045 		sk_win_write_4(sc, SK_GPIO, val);
2046 
2047 		/* Enable GMII mode on the XMAC. */
2048 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2049 
2050 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2051 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2052 		DELAY(10000);
2053 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2054 		    BRGPHY_MII_IMR, 0xFFF0);
2055 
2056 		/*
2057 		 * Early versions of the BCM5400 apparently have
2058 		 * a bug that requires them to have their reserved
2059 		 * registers initialized to some magic values. I don't
2060 		 * know what the numbers do, I'm just the messenger.
2061 		 */
2062 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2063 		    == 0x6041) {
2064 			while(bhack[i].reg) {
2065 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2066 				    bhack[i].reg, bhack[i].val);
2067 				i++;
2068 			}
2069 		}
2070 	}
2071 
2072 	/* Set station address */
2073 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2074 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2075 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2076 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2077 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2078 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2079 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2080 
2081 	if (ifp->if_flags & IFF_BROADCAST)
2082 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2083 	else
2084 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2085 
2086 	/* We don't need the FCS appended to the packet. */
2087 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2088 
2089 	/* We want short frames padded to 60 bytes. */
2090 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2091 
2092 	/*
2093 	 * Enable the reception of all error frames. This is is
2094 	 * a necessary evil due to the design of the XMAC. The
2095 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2096 	 * frames can be up to 9000 bytes in length. When bad
2097 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2098 	 * in 'store and forward' mode. For this to work, the
2099 	 * entire frame has to fit into the FIFO, but that means
2100 	 * that jumbo frames larger than 8192 bytes will be
2101 	 * truncated. Disabling all bad frame filtering causes
2102 	 * the RX FIFO to operate in streaming mode, in which
2103 	 * case the XMAC will start transfering frames out of the
2104 	 * RX FIFO as soon as the FIFO threshold is reached.
2105 	 */
2106 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2107 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2108 	    XM_MODE_RX_INRANGELEN);
2109 
2110 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2111 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2112 	else
2113 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2114 
2115 	/*
2116 	 * Bump up the transmit threshold. This helps hold off transmit
2117 	 * underruns when we're blasting traffic from both ports at once.
2118 	 */
2119 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2120 
2121 	/* Set promiscuous mode */
2122 	sk_setpromisc(sc_if);
2123 
2124 	/* Set multicast filter */
2125 	sk_setmulti(sc_if);
2126 
2127 	/* Clear and enable interrupts */
2128 	SK_XM_READ_2(sc_if, XM_ISR);
2129 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2130 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2131 	else
2132 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2133 
2134 	/* Configure MAC arbiter */
2135 	switch(sc_if->sk_xmac_rev) {
2136 	case XM_XMAC_REV_B2:
2137 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2138 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2139 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2140 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2141 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2142 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2143 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2144 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2145 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2146 		break;
2147 	case XM_XMAC_REV_C1:
2148 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2149 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2150 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2151 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2152 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2153 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2154 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2155 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2156 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2157 		break;
2158 	default:
2159 		break;
2160 	}
2161 	sk_win_write_2(sc, SK_MACARB_CTL,
2162 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2163 
2164 	sc_if->sk_link = 1;
2165 }
2166 
2167 static void
2168 sk_init_yukon(struct sk_if_softc *sc_if)
2169 {
2170 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2171 	uint32_t phy;
2172 	uint16_t reg;
2173 	int i;
2174 
2175 	/* GMAC and GPHY Reset */
2176 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2177 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2178 	DELAY(1000);
2179 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2180 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2181 	DELAY(1000);
2182 
2183 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2184 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2185 
2186 	switch(sc_if->sk_softc->sk_pmd) {
2187 	case IFM_1000_SX:
2188 	case IFM_1000_LX:
2189 		phy |= SK_GPHY_FIBER;
2190 		break;
2191 
2192 	case IFM_1000_CX:
2193 	case IFM_1000_T:
2194 		phy |= SK_GPHY_COPPER;
2195 		break;
2196 	}
2197 
2198 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2199 	DELAY(1000);
2200 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2201 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2202 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2203 
2204 	/* unused read of the interrupt source register */
2205 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2206 
2207 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2208 
2209 	/* MIB Counter Clear Mode set */
2210 	reg |= YU_PAR_MIB_CLR;
2211 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2212 
2213 	/* MIB Counter Clear Mode clear */
2214 	reg &= ~YU_PAR_MIB_CLR;
2215 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2216 
2217 	/* receive control reg */
2218 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2219 
2220 	/* transmit parameter register */
2221 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2222 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2223 
2224 	/* serial mode register */
2225 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2226 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2227 		reg |= YU_SMR_MFL_JUMBO;
2228 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2229 
2230 	/* Setup Yukon's address */
2231 	for (i = 0; i < 3; i++) {
2232 		/* Write Source Address 1 (unicast filter) */
2233 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2234 			      sc_if->arpcom.ac_enaddr[i * 2] |
2235 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2236 	}
2237 
2238 	for (i = 0; i < 3; i++) {
2239 		reg = sk_win_read_2(sc_if->sk_softc,
2240 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2241 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2242 	}
2243 
2244 	/* Set promiscuous mode */
2245 	sk_setpromisc(sc_if);
2246 
2247 	/* Set multicast filter */
2248 	sk_setmulti(sc_if);
2249 
2250 	/* enable interrupt mask for counter overflows */
2251 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2252 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2253 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2254 
2255 	/* Configure RX MAC FIFO */
2256 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2257 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2258 
2259 	/* Configure TX MAC FIFO */
2260 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2261 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2262 }
2263 
2264 /*
2265  * Note that to properly initialize any part of the GEnesis chip,
2266  * you first have to take it out of reset mode.
2267  */
2268 static void
2269 sk_init(void *xsc)
2270 {
2271 	struct sk_if_softc *sc_if = xsc;
2272 	struct sk_softc *sc = sc_if->sk_softc;
2273 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2274 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2275 	uint16_t reg;
2276 
2277 	crit_enter();
2278 
2279 	if (ifp->if_flags & IFF_RUNNING) {
2280 		crit_exit();
2281 		return;
2282 	}
2283 
2284 	/* Cancel pending I/O and free all RX/TX buffers. */
2285 	sk_stop(sc_if);
2286 
2287 	if (sc->sk_type == SK_GENESIS) {
2288 		/* Configure LINK_SYNC LED */
2289 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2290 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2291 			SK_LINKLED_LINKSYNC_ON);
2292 
2293 		/* Configure RX LED */
2294 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2295 			SK_RXLEDCTL_COUNTER_START);
2296 
2297 		/* Configure TX LED */
2298 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2299 			SK_TXLEDCTL_COUNTER_START);
2300 	}
2301 
2302 	/* Configure I2C registers */
2303 
2304 	/* Configure XMAC(s) */
2305 	switch (sc->sk_type) {
2306 	case SK_GENESIS:
2307 		sk_init_xmac(sc_if);
2308 		break;
2309 	case SK_YUKON:
2310 		sk_init_yukon(sc_if);
2311 		break;
2312 	}
2313 	mii_mediachg(mii);
2314 
2315 	if (sc->sk_type == SK_GENESIS) {
2316 		/* Configure MAC FIFOs */
2317 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2318 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2319 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2320 
2321 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2322 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2323 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2324 	}
2325 
2326 	/* Configure transmit arbiter(s) */
2327 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2328 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2329 
2330 	/* Configure RAMbuffers */
2331 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2332 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2333 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2334 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2335 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2336 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2337 
2338 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2339 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2340 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2341 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2342 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2343 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2344 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2345 
2346 	/* Configure BMUs */
2347 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2348 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2349 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2350 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2351 
2352 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2353 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2354 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2355 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2356 
2357 	/* Init descriptors */
2358 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2359 		printf("sk%d: initialization failed: no "
2360 		    "memory for rx buffers\n", sc_if->sk_unit);
2361 		sk_stop(sc_if);
2362 		crit_exit();
2363 		return;
2364 	}
2365 	sk_init_tx_ring(sc_if);
2366 
2367 	/* Configure interrupt handling */
2368 	CSR_READ_4(sc, SK_ISSR);
2369 	if (sc_if->sk_port == SK_PORT_A)
2370 		sc->sk_intrmask |= SK_INTRS1;
2371 	else
2372 		sc->sk_intrmask |= SK_INTRS2;
2373 
2374 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2375 
2376 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2377 
2378 	/* Start BMUs. */
2379 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2380 
2381 	switch(sc->sk_type) {
2382 	case SK_GENESIS:
2383 		/* Enable XMACs TX and RX state machines */
2384 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2385 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2386 		    XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2387 		break;
2388 	case SK_YUKON:
2389 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2390 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2391 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2392 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2393 	}
2394 
2395 	ifp->if_flags |= IFF_RUNNING;
2396 	ifp->if_flags &= ~IFF_OACTIVE;
2397 
2398 	crit_exit();
2399 }
2400 
2401 static void
2402 sk_stop(struct sk_if_softc *sc_if)
2403 {
2404 	int i;
2405 	struct sk_softc *sc = sc_if->sk_softc;
2406 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2407 
2408 	callout_stop(&sc_if->sk_tick_timer);
2409 
2410 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2411 		uint32_t val;
2412 
2413 		/* Put PHY back into reset. */
2414 		val = sk_win_read_4(sc, SK_GPIO);
2415 		if (sc_if->sk_port == SK_PORT_A) {
2416 			val |= SK_GPIO_DIR0;
2417 			val &= ~SK_GPIO_DAT0;
2418 		} else {
2419 			val |= SK_GPIO_DIR2;
2420 			val &= ~SK_GPIO_DAT2;
2421 		}
2422 		sk_win_write_4(sc, SK_GPIO, val);
2423 	}
2424 
2425 	/* Turn off various components of this interface. */
2426 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2427 	switch (sc->sk_type) {
2428 	case SK_GENESIS:
2429 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2430 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2431 		break;
2432 	case SK_YUKON:
2433 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2434 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2435 		break;
2436 	}
2437 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2438 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2439 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2440 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST,
2441 	    SK_RBCTL_RESET | SK_RBCTL_OFF);
2442 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2443 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2444 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2445 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2446 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2447 
2448 	/* Disable interrupts */
2449 	if (sc_if->sk_port == SK_PORT_A)
2450 		sc->sk_intrmask &= ~SK_INTRS1;
2451 	else
2452 		sc->sk_intrmask &= ~SK_INTRS2;
2453 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2454 
2455 	SK_XM_READ_2(sc_if, XM_ISR);
2456 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2457 
2458 	/* Free RX and TX mbufs still in the queues. */
2459 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2460 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2461 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2462 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2463 		}
2464 	}
2465 
2466 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2467 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2468 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2469 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2470 		}
2471 	}
2472 
2473 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2474 }
2475