xref: /dragonfly/sys/dev/netif/ste/if_ste.c (revision 03517d4e)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ste.c,v 1.14.2.9 2003/02/05 22:03:57 mbr Exp $
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/sockio.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/serialize.h>
43 #include <sys/bus.h>
44 #include <sys/rman.h>
45 #include <sys/interrupt.h>
46 
47 #include <net/if.h>
48 #include <net/ifq_var.h>
49 #include <net/if_arp.h>
50 #include <net/ethernet.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/vlan/if_vlan_var.h>
54 
55 #include <net/bpf.h>
56 
57 #include <vm/vm.h>              /* for vtophys */
58 #include <vm/pmap.h>            /* for vtophys */
59 
60 #include "../mii_layer/mii.h"
61 #include "../mii_layer/miivar.h"
62 
63 #include "pcidevs.h"
64 #include <bus/pci/pcireg.h>
65 #include <bus/pci/pcivar.h>
66 
67 /* "controller miibus0" required.  See GENERIC if you get errors here. */
68 #include "miibus_if.h"
69 
70 #define STE_USEIOSPACE
71 
72 #include "if_stereg.h"
73 
74 /*
75  * Various supported device vendors/types and their names.
76  */
77 static struct ste_type ste_devs[] = {
78 	{ PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
79 		"Sundance ST201 10/100BaseTX" },
80 	{ PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201_0,
81 		"Sundance ST201 10/100BaseTX" },
82 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
83 		"D-Link DFE-550TX 10/100BaseTX" },
84 	{ 0, 0, NULL }
85 };
86 
87 static int ste_probe		(device_t);
88 static int ste_attach		(device_t);
89 static int ste_detach		(device_t);
90 static void ste_init		(void *);
91 static void ste_intr		(void *);
92 static void ste_rxeof		(struct ste_softc *);
93 static void ste_txeoc		(struct ste_softc *);
94 static void ste_txeof		(struct ste_softc *);
95 static void ste_stats_update	(void *);
96 static void ste_stop		(struct ste_softc *);
97 static void ste_reset		(struct ste_softc *);
98 static int ste_ioctl		(struct ifnet *, u_long, caddr_t,
99 					struct ucred *);
100 static int ste_encap		(struct ste_softc *, struct ste_chain *,
101 					struct mbuf *);
102 static void ste_start		(struct ifnet *, struct ifaltq_subque *);
103 static void ste_watchdog	(struct ifnet *);
104 static void ste_shutdown	(device_t);
105 static int ste_newbuf		(struct ste_softc *,
106 					struct ste_chain_onefrag *,
107 					struct mbuf *);
108 static int ste_ifmedia_upd	(struct ifnet *);
109 static void ste_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
110 
111 static void ste_mii_sync	(struct ste_softc *);
112 static void ste_mii_send	(struct ste_softc *, u_int32_t, int);
113 static int ste_mii_readreg	(struct ste_softc *,
114 					struct ste_mii_frame *);
115 static int ste_mii_writereg	(struct ste_softc *,
116 					struct ste_mii_frame *);
117 static int ste_miibus_readreg	(device_t, int, int);
118 static int ste_miibus_writereg	(device_t, int, int, int);
119 static void ste_miibus_statchg	(device_t);
120 
121 static int ste_eeprom_wait	(struct ste_softc *);
122 static int ste_read_eeprom	(struct ste_softc *, caddr_t, int,
123 							int, int);
124 static void ste_wait		(struct ste_softc *);
125 static void ste_setmulti	(struct ste_softc *);
126 static int ste_init_rx_list	(struct ste_softc *);
127 static void ste_init_tx_list	(struct ste_softc *);
128 
129 #ifdef STE_USEIOSPACE
130 #define STE_RES			SYS_RES_IOPORT
131 #define STE_RID			STE_PCI_LOIO
132 #else
133 #define STE_RES			SYS_RES_MEMORY
134 #define STE_RID			STE_PCI_LOMEM
135 #endif
136 
137 static device_method_t ste_methods[] = {
138 	/* Device interface */
139 	DEVMETHOD(device_probe,		ste_probe),
140 	DEVMETHOD(device_attach,	ste_attach),
141 	DEVMETHOD(device_detach,	ste_detach),
142 	DEVMETHOD(device_shutdown,	ste_shutdown),
143 
144 	/* bus interface */
145 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
146 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
147 
148 	/* MII interface */
149 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
150 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
151 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
152 
153 	DEVMETHOD_END
154 };
155 
156 static driver_t ste_driver = {
157 	"ste",
158 	ste_methods,
159 	sizeof(struct ste_softc)
160 };
161 
162 static devclass_t ste_devclass;
163 
164 DECLARE_DUMMY_MODULE(if_ste);
165 DRIVER_MODULE(if_ste, pci, ste_driver, ste_devclass, NULL, NULL);
166 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, NULL, NULL);
167 
168 #define STE_SETBIT4(sc, reg, x)				\
169 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
170 
171 #define STE_CLRBIT4(sc, reg, x)				\
172 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
173 
174 #define STE_SETBIT2(sc, reg, x)				\
175 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
176 
177 #define STE_CLRBIT2(sc, reg, x)				\
178 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
179 
180 #define STE_SETBIT1(sc, reg, x)				\
181 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
182 
183 #define STE_CLRBIT1(sc, reg, x)				\
184 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
185 
186 
187 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
188 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
189 
190 /*
191  * Sync the PHYs by setting data bit and strobing the clock 32 times.
192  */
193 static void
194 ste_mii_sync(struct ste_softc *sc)
195 {
196 	int		i;
197 
198 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
199 
200 	for (i = 0; i < 32; i++) {
201 		MII_SET(STE_PHYCTL_MCLK);
202 		DELAY(1);
203 		MII_CLR(STE_PHYCTL_MCLK);
204 		DELAY(1);
205 	}
206 
207 	return;
208 }
209 
210 /*
211  * Clock a series of bits through the MII.
212  */
213 static void
214 ste_mii_send(struct ste_softc *sc, u_int32_t bits, int cnt)
215 {
216 	int			i;
217 
218 	MII_CLR(STE_PHYCTL_MCLK);
219 
220 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
221                 if (bits & i) {
222 			MII_SET(STE_PHYCTL_MDATA);
223                 } else {
224 			MII_CLR(STE_PHYCTL_MDATA);
225                 }
226 		DELAY(1);
227 		MII_CLR(STE_PHYCTL_MCLK);
228 		DELAY(1);
229 		MII_SET(STE_PHYCTL_MCLK);
230 	}
231 }
232 
233 /*
234  * Read an PHY register through the MII.
235  */
236 static int
237 ste_mii_readreg(struct ste_softc *sc, struct ste_mii_frame *frame)
238 {
239 	int			i, ack;
240 
241 	/*
242 	 * Set up frame for RX.
243 	 */
244 	frame->mii_stdelim = STE_MII_STARTDELIM;
245 	frame->mii_opcode = STE_MII_READOP;
246 	frame->mii_turnaround = 0;
247 	frame->mii_data = 0;
248 
249 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
250 	/*
251  	 * Turn on data xmit.
252 	 */
253 	MII_SET(STE_PHYCTL_MDIR);
254 
255 	ste_mii_sync(sc);
256 
257 	/*
258 	 * Send command/address info.
259 	 */
260 	ste_mii_send(sc, frame->mii_stdelim, 2);
261 	ste_mii_send(sc, frame->mii_opcode, 2);
262 	ste_mii_send(sc, frame->mii_phyaddr, 5);
263 	ste_mii_send(sc, frame->mii_regaddr, 5);
264 
265 	/* Turn off xmit. */
266 	MII_CLR(STE_PHYCTL_MDIR);
267 
268 	/* Idle bit */
269 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
270 	DELAY(1);
271 	MII_SET(STE_PHYCTL_MCLK);
272 	DELAY(1);
273 
274 	/* Check for ack */
275 	MII_CLR(STE_PHYCTL_MCLK);
276 	DELAY(1);
277 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
278 	MII_SET(STE_PHYCTL_MCLK);
279 	DELAY(1);
280 
281 	/*
282 	 * Now try reading data bits. If the ack failed, we still
283 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
284 	 */
285 	if (ack) {
286 		for(i = 0; i < 16; i++) {
287 			MII_CLR(STE_PHYCTL_MCLK);
288 			DELAY(1);
289 			MII_SET(STE_PHYCTL_MCLK);
290 			DELAY(1);
291 		}
292 		goto fail;
293 	}
294 
295 	for (i = 0x8000; i; i >>= 1) {
296 		MII_CLR(STE_PHYCTL_MCLK);
297 		DELAY(1);
298 		if (!ack) {
299 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
300 				frame->mii_data |= i;
301 			DELAY(1);
302 		}
303 		MII_SET(STE_PHYCTL_MCLK);
304 		DELAY(1);
305 	}
306 
307 fail:
308 
309 	MII_CLR(STE_PHYCTL_MCLK);
310 	DELAY(1);
311 	MII_SET(STE_PHYCTL_MCLK);
312 	DELAY(1);
313 
314 	if (ack)
315 		return(1);
316 	return(0);
317 }
318 
319 /*
320  * Write to a PHY register through the MII.
321  */
322 static int
323 ste_mii_writereg(struct ste_softc *sc, struct ste_mii_frame *frame)
324 {
325 	/*
326 	 * Set up frame for TX.
327 	 */
328 
329 	frame->mii_stdelim = STE_MII_STARTDELIM;
330 	frame->mii_opcode = STE_MII_WRITEOP;
331 	frame->mii_turnaround = STE_MII_TURNAROUND;
332 
333 	/*
334  	 * Turn on data output.
335 	 */
336 	MII_SET(STE_PHYCTL_MDIR);
337 
338 	ste_mii_sync(sc);
339 
340 	ste_mii_send(sc, frame->mii_stdelim, 2);
341 	ste_mii_send(sc, frame->mii_opcode, 2);
342 	ste_mii_send(sc, frame->mii_phyaddr, 5);
343 	ste_mii_send(sc, frame->mii_regaddr, 5);
344 	ste_mii_send(sc, frame->mii_turnaround, 2);
345 	ste_mii_send(sc, frame->mii_data, 16);
346 
347 	/* Idle bit. */
348 	MII_SET(STE_PHYCTL_MCLK);
349 	DELAY(1);
350 	MII_CLR(STE_PHYCTL_MCLK);
351 	DELAY(1);
352 
353 	/*
354 	 * Turn off xmit.
355 	 */
356 	MII_CLR(STE_PHYCTL_MDIR);
357 
358 	return(0);
359 }
360 
361 static int
362 ste_miibus_readreg(device_t dev, int phy, int reg)
363 {
364 	struct ste_softc	*sc;
365 	struct ste_mii_frame	frame;
366 
367 	sc = device_get_softc(dev);
368 
369 	if ( sc->ste_one_phy && phy != 0 )
370 		return (0);
371 
372 	bzero((char *)&frame, sizeof(frame));
373 
374 	frame.mii_phyaddr = phy;
375 	frame.mii_regaddr = reg;
376 	ste_mii_readreg(sc, &frame);
377 
378 	return(frame.mii_data);
379 }
380 
381 static int
382 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
383 {
384 	struct ste_softc	*sc;
385 	struct ste_mii_frame	frame;
386 
387 	sc = device_get_softc(dev);
388 	bzero((char *)&frame, sizeof(frame));
389 
390 	frame.mii_phyaddr = phy;
391 	frame.mii_regaddr = reg;
392 	frame.mii_data = data;
393 
394 	ste_mii_writereg(sc, &frame);
395 
396 	return(0);
397 }
398 
399 static void
400 ste_miibus_statchg(device_t dev)
401 {
402 	struct ste_softc	*sc;
403 	struct mii_data		*mii;
404 	int			i;
405 
406 	sc = device_get_softc(dev);
407 	mii = device_get_softc(sc->ste_miibus);
408 
409 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
410 		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
411 	} else {
412 		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
413 	}
414 
415 	STE_SETBIT4(sc, STE_ASICCTL,STE_ASICCTL_RX_RESET |
416 		    STE_ASICCTL_TX_RESET);
417 	for (i = 0; i < STE_TIMEOUT; i++) {
418 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
419 			break;
420 	}
421 	if (i == STE_TIMEOUT)
422 		if_printf(&sc->arpcom.ac_if, "rx reset never completed\n");
423 
424 	return;
425 }
426 
427 static int
428 ste_ifmedia_upd(struct ifnet *ifp)
429 {
430 	struct ste_softc	*sc;
431 	struct mii_data		*mii;
432 
433 	sc = ifp->if_softc;
434 	mii = device_get_softc(sc->ste_miibus);
435 	sc->ste_link = 0;
436 	if (mii->mii_instance) {
437 		struct mii_softc	*miisc;
438 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
439 		    miisc = LIST_NEXT(miisc, mii_list))
440 			mii_phy_reset(miisc);
441 	}
442 	mii_mediachg(mii);
443 
444 	return(0);
445 }
446 
447 static void
448 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
449 {
450 	struct ste_softc	*sc;
451 	struct mii_data		*mii;
452 
453 	sc = ifp->if_softc;
454 	mii = device_get_softc(sc->ste_miibus);
455 
456 	mii_pollstat(mii);
457 	ifmr->ifm_active = mii->mii_media_active;
458 	ifmr->ifm_status = mii->mii_media_status;
459 
460 	return;
461 }
462 
463 static void
464 ste_wait(struct ste_softc *sc)
465 {
466 	int		i;
467 
468 	for (i = 0; i < STE_TIMEOUT; i++) {
469 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
470 			break;
471 	}
472 
473 	if (i == STE_TIMEOUT)
474 		if_printf(&sc->arpcom.ac_if, "command never completed!\n");
475 
476 	return;
477 }
478 
479 /*
480  * The EEPROM is slow: give it time to come ready after issuing
481  * it a command.
482  */
483 static int
484 ste_eeprom_wait(struct ste_softc *sc)
485 {
486 	int			i;
487 
488 	DELAY(1000);
489 
490 	for (i = 0; i < 100; i++) {
491 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
492 			DELAY(1000);
493 		else
494 			break;
495 	}
496 
497 	if (i == 100) {
498 		if_printf(&sc->arpcom.ac_if, "eeprom failed to come ready\n");
499 		return(1);
500 	}
501 
502 	return(0);
503 }
504 
505 /*
506  * Read a sequence of words from the EEPROM. Note that ethernet address
507  * data is stored in the EEPROM in network byte order.
508  */
509 static int
510 ste_read_eeprom(struct ste_softc *sc, caddr_t dest, int off, int cnt, int swap)
511 {
512 	int			err = 0, i;
513 	u_int16_t		word = 0, *ptr;
514 
515 	if (ste_eeprom_wait(sc))
516 		return(1);
517 
518 	for (i = 0; i < cnt; i++) {
519 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
520 		err = ste_eeprom_wait(sc);
521 		if (err)
522 			break;
523 		word = CSR_READ_2(sc, STE_EEPROM_DATA);
524 		ptr = (u_int16_t *)(dest + (i * 2));
525 		if (swap)
526 			*ptr = ntohs(word);
527 		else
528 			*ptr = word;
529 	}
530 
531 	return(err ? 1 : 0);
532 }
533 
534 static void
535 ste_setmulti(struct ste_softc *sc)
536 {
537 	struct ifnet		*ifp;
538 	int			h = 0;
539 	u_int32_t		hashes[2] = { 0, 0 };
540 	struct ifmultiaddr	*ifma;
541 
542 	ifp = &sc->arpcom.ac_if;
543 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
544 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
545 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
546 		return;
547 	}
548 
549 	/* first, zot all the existing hash bits */
550 	CSR_WRITE_2(sc, STE_MAR0, 0);
551 	CSR_WRITE_2(sc, STE_MAR1, 0);
552 	CSR_WRITE_2(sc, STE_MAR2, 0);
553 	CSR_WRITE_2(sc, STE_MAR3, 0);
554 
555 	/* now program new ones */
556 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
557 		if (ifma->ifma_addr->sa_family != AF_LINK)
558 			continue;
559 		h = ether_crc32_be(
560 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
561 			ETHER_ADDR_LEN) & 0x3f;
562 		if (h < 32)
563 			hashes[0] |= (1 << h);
564 		else
565 			hashes[1] |= (1 << (h - 32));
566 	}
567 
568 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
569 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
570 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
571 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
572 	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
573 	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
574 
575 	return;
576 }
577 
578 static void
579 ste_intr(void *xsc)
580 {
581 	struct ste_softc	*sc;
582 	struct ifnet		*ifp;
583 	u_int16_t		status;
584 
585 	sc = xsc;
586 	ifp = &sc->arpcom.ac_if;
587 
588 	/* See if this is really our interrupt. */
589 	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH))
590 		return;
591 
592 	for (;;) {
593 		status = CSR_READ_2(sc, STE_ISR_ACK);
594 
595 		if (!(status & STE_INTRS))
596 			break;
597 
598 		if (status & STE_ISR_RX_DMADONE)
599 			ste_rxeof(sc);
600 
601 		if (status & STE_ISR_TX_DMADONE)
602 			ste_txeof(sc);
603 
604 		if (status & STE_ISR_TX_DONE)
605 			ste_txeoc(sc);
606 
607 		if (status & STE_ISR_STATS_OFLOW) {
608 			callout_stop(&sc->ste_stat_timer);
609 			ste_stats_update(sc);
610 		}
611 
612 		if (status & STE_ISR_LINKEVENT)
613 			mii_pollstat(device_get_softc(sc->ste_miibus));
614 
615 		if (status & STE_ISR_HOSTERR) {
616 			ste_reset(sc);
617 			ste_init(sc);
618 		}
619 	}
620 
621 	/* Re-enable interrupts */
622 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
623 
624 	if (!ifq_is_empty(&ifp->if_snd))
625 		if_devstart(ifp);
626 }
627 
628 /*
629  * A frame has been uploaded: pass the resulting mbuf chain up to
630  * the higher level protocols.
631  */
632 static void
633 ste_rxeof(struct ste_softc *sc)
634 {
635         struct mbuf		*m;
636         struct ifnet		*ifp;
637 	struct ste_chain_onefrag	*cur_rx;
638 	int			total_len = 0, count=0;
639 	u_int32_t		rxstat;
640 
641 	ifp = &sc->arpcom.ac_if;
642 
643 	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
644 	      & STE_RXSTAT_DMADONE) {
645 		if ((STE_RX_LIST_CNT - count) < 3) {
646 			break;
647 		}
648 
649 		cur_rx = sc->ste_cdata.ste_rx_head;
650 		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
651 
652 		/*
653 		 * If an error occurs, update stats, clear the
654 		 * status word and leave the mbuf cluster in place:
655 		 * it should simply get re-used next time this descriptor
656 	 	 * comes up in the ring.
657 		 */
658 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
659 			IFNET_STAT_INC(ifp, ierrors, 1);
660 			cur_rx->ste_ptr->ste_status = 0;
661 			continue;
662 		}
663 
664 		/*
665 		 * If there error bit was not set, the upload complete
666 		 * bit should be set which means we have a valid packet.
667 		 * If not, something truly strange has happened.
668 		 */
669 		if (!(rxstat & STE_RXSTAT_DMADONE)) {
670 			if_printf(ifp, "bad receive status -- packet dropped");
671 			IFNET_STAT_INC(ifp, ierrors, 1);
672 			cur_rx->ste_ptr->ste_status = 0;
673 			continue;
674 		}
675 
676 		/* No errors; receive the packet. */
677 		m = cur_rx->ste_mbuf;
678 		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
679 
680 		/*
681 		 * Try to conjure up a new mbuf cluster. If that
682 		 * fails, it means we have an out of memory condition and
683 		 * should leave the buffer in place and continue. This will
684 		 * result in a lost packet, but there's little else we
685 		 * can do in this situation.
686 		 */
687 		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
688 			IFNET_STAT_INC(ifp, ierrors, 1);
689 			cur_rx->ste_ptr->ste_status = 0;
690 			continue;
691 		}
692 
693 		IFNET_STAT_INC(ifp, ipackets, 1);
694 		m->m_pkthdr.rcvif = ifp;
695 		m->m_pkthdr.len = m->m_len = total_len;
696 
697 		ifp->if_input(ifp, m, NULL, -1);
698 
699 		cur_rx->ste_ptr->ste_status = 0;
700 		count++;
701 	}
702 
703 	return;
704 }
705 
706 static void
707 ste_txeoc(struct ste_softc *sc)
708 {
709 	u_int8_t		txstat;
710 	struct ifnet		*ifp;
711 
712 	ifp = &sc->arpcom.ac_if;
713 
714 	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
715 	    STE_TXSTATUS_TXDONE) {
716 		if (txstat & STE_TXSTATUS_UNDERRUN ||
717 		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
718 		    txstat & STE_TXSTATUS_RECLAIMERR) {
719 			IFNET_STAT_INC(ifp, oerrors, 1);
720 			if_printf(ifp, "transmission error: %x\n", txstat);
721 
722 			ste_reset(sc);
723 			ste_init(sc);
724 
725 			if (txstat & STE_TXSTATUS_UNDERRUN &&
726 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
727 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
728 				if_printf(ifp, "tx underrun, increasing tx"
729 				    " start threshold to %d bytes\n",
730 				    sc->ste_tx_thresh);
731 			}
732 			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
733 			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
734 			    (STE_PACKET_SIZE >> 4));
735 		}
736 		ste_init(sc);
737 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
738 	}
739 
740 	return;
741 }
742 
743 static void
744 ste_txeof(struct ste_softc *sc)
745 {
746 	struct ste_chain	*cur_tx = NULL;
747 	struct ifnet		*ifp;
748 	int			idx;
749 
750 	ifp = &sc->arpcom.ac_if;
751 
752 	idx = sc->ste_cdata.ste_tx_cons;
753 	while(idx != sc->ste_cdata.ste_tx_prod) {
754 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
755 
756 		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
757 			break;
758 
759 		if (cur_tx->ste_mbuf != NULL) {
760 			m_freem(cur_tx->ste_mbuf);
761 			cur_tx->ste_mbuf = NULL;
762 		}
763 
764 		IFNET_STAT_INC(ifp, opackets, 1);
765 
766 		sc->ste_cdata.ste_tx_cnt--;
767 		STE_INC(idx, STE_TX_LIST_CNT);
768 		ifp->if_timer = 0;
769 	}
770 
771 	sc->ste_cdata.ste_tx_cons = idx;
772 
773 	if (cur_tx != NULL)
774 		ifq_clr_oactive(&ifp->if_snd);
775 
776 	return;
777 }
778 
779 static void
780 ste_stats_update(void *xsc)
781 {
782 	struct ste_softc	*sc;
783 	struct ifnet		*ifp;
784 	struct mii_data		*mii;
785 
786 	sc = xsc;
787 	ifp = &sc->arpcom.ac_if;
788 	mii = device_get_softc(sc->ste_miibus);
789 
790 	lwkt_serialize_enter(ifp->if_serializer);
791 
792         IFNET_STAT_INC(ifp, collisions, CSR_READ_1(sc, STE_LATE_COLLS)
793             + CSR_READ_1(sc, STE_MULTI_COLLS)
794             + CSR_READ_1(sc, STE_SINGLE_COLLS));
795 
796 	if (!sc->ste_link) {
797 		mii_pollstat(mii);
798 		if (mii->mii_media_status & IFM_ACTIVE &&
799 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
800 			sc->ste_link++;
801 			/*
802 			 * we don't get a call-back on re-init so do it
803 			 * otherwise we get stuck in the wrong link state
804 			 */
805 			ste_miibus_statchg(sc->ste_dev);
806 			if (!ifq_is_empty(&ifp->if_snd))
807 				if_devstart(ifp);
808 		}
809 	}
810 
811 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
812 	lwkt_serialize_exit(ifp->if_serializer);
813 }
814 
815 
816 /*
817  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
818  * IDs against our list and return a device name if we find a match.
819  */
820 static int
821 ste_probe(device_t dev)
822 {
823 	struct ste_type		*t;
824 
825 	t = ste_devs;
826 
827 	while(t->ste_name != NULL) {
828 		if ((pci_get_vendor(dev) == t->ste_vid) &&
829 		    (pci_get_device(dev) == t->ste_did)) {
830 			device_set_desc(dev, t->ste_name);
831 			return(0);
832 		}
833 		t++;
834 	}
835 
836 	return(ENXIO);
837 }
838 
839 /*
840  * Attach the interface. Allocate softc structures, do ifmedia
841  * setup and ethernet/BPF attach.
842  */
843 static int
844 ste_attach(device_t dev)
845 {
846 	struct ste_softc	*sc;
847 	struct ifnet		*ifp;
848 	int			error = 0, rid;
849 	uint8_t			eaddr[ETHER_ADDR_LEN];
850 
851 	sc = device_get_softc(dev);
852 	sc->ste_dev = dev;
853 
854 	/*
855 	 * Only use one PHY since this chip reports multiple
856 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
857 	 * it is at 0 & 1.  It is rev 0x12.
858 	 */
859 	if (pci_get_vendor(dev) == PCI_VENDOR_DLINK &&
860 	    pci_get_device(dev) == PCI_PRODUCT_DLINK_DL1002 &&
861 	    pci_get_revid(dev) == 0x12 )
862 		sc->ste_one_phy = 1;
863 
864 	/*
865 	 * Handle power management nonsense.
866 	 */
867 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
868 		u_int32_t		iobase, membase, irq;
869 
870 		/* Save important PCI config data. */
871 		iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
872 		membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
873 		irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
874 
875 		/* Reset the power state. */
876 		device_printf(dev, "chip is in D%d power mode "
877 		"-- setting to D0\n", pci_get_powerstate(dev));
878 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
879 
880 		/* Restore PCI config data. */
881 		pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
882 		pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
883 		pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
884 	}
885 
886 	/*
887 	 * Map control/status registers.
888 	 */
889 	pci_enable_busmaster(dev);
890 
891 	rid = STE_RID;
892 	sc->ste_res = bus_alloc_resource_any(dev, STE_RES, &rid, RF_ACTIVE);
893 
894 	if (sc->ste_res == NULL) {
895 		device_printf(dev, "couldn't map ports/memory\n");
896 		error = ENXIO;
897 		goto fail;
898 	}
899 
900 	sc->ste_btag = rman_get_bustag(sc->ste_res);
901 	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
902 
903 	rid = 0;
904 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
905 	    RF_SHAREABLE | RF_ACTIVE);
906 
907 	if (sc->ste_irq == NULL) {
908 		device_printf(dev, "couldn't map interrupt\n");
909 		error = ENXIO;
910 		goto fail;
911 	}
912 
913 	callout_init(&sc->ste_stat_timer);
914 
915 	ifp = &sc->arpcom.ac_if;
916 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
917 
918 	/* Reset the adapter. */
919 	ste_reset(sc);
920 
921 	/*
922 	 * Get station address from the EEPROM.
923 	 */
924 	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, 3, 0)) {
925 		device_printf(dev, "failed to read station address\n");
926 		error = ENXIO;
927 		goto fail;
928 	}
929 
930 	/* Allocate the descriptor queues. */
931 	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
932 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
933 
934 	if (sc->ste_ldata == NULL) {
935 		device_printf(dev, "no memory for list buffers!\n");
936 		error = ENXIO;
937 		goto fail;
938 	}
939 
940 	/* Do MII setup. */
941 	if (mii_phy_probe(dev, &sc->ste_miibus,
942 		ste_ifmedia_upd, ste_ifmedia_sts)) {
943 		device_printf(dev, "MII without any phy!\n");
944 		error = ENXIO;
945 		goto fail;
946 	}
947 
948 	ifp->if_softc = sc;
949 	ifp->if_mtu = ETHERMTU;
950 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
951 	ifp->if_ioctl = ste_ioctl;
952 	ifp->if_start = ste_start;
953 	ifp->if_watchdog = ste_watchdog;
954 	ifp->if_init = ste_init;
955 	ifp->if_baudrate = 10000000;
956 	ifq_set_maxlen(&ifp->if_snd, STE_TX_LIST_CNT - 1);
957 	ifq_set_ready(&ifp->if_snd);
958 
959 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
960 
961 	/*
962 	 * Call MI attach routine.
963 	 */
964 	ether_ifattach(ifp, eaddr, NULL);
965 
966         /*
967          * Tell the upper layer(s) we support long frames.
968          */
969         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
970 
971 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->ste_irq));
972 
973 	error = bus_setup_intr(dev, sc->ste_irq, INTR_MPSAFE,
974 			       ste_intr, sc, &sc->ste_intrhand,
975 			       ifp->if_serializer);
976 	if (error) {
977 		device_printf(dev, "couldn't set up irq\n");
978 		ether_ifdetach(ifp);
979 		goto fail;
980 	}
981 
982 	return 0;
983 
984 fail:
985 	ste_detach(dev);
986 	return(error);
987 }
988 
989 static int
990 ste_detach(device_t dev)
991 {
992 	struct ste_softc	*sc = device_get_softc(dev);
993 	struct ifnet		*ifp = &sc->arpcom.ac_if;
994 
995 	if (device_is_attached(dev)) {
996 		lwkt_serialize_enter(ifp->if_serializer);
997 		ste_stop(sc);
998 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
999 		lwkt_serialize_exit(ifp->if_serializer);
1000 
1001 		ether_ifdetach(ifp);
1002 	}
1003 	if (sc->ste_miibus != NULL)
1004 		device_delete_child(dev, sc->ste_miibus);
1005 	bus_generic_detach(dev);
1006 
1007 	if (sc->ste_irq != NULL)
1008 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1009 	if (sc->ste_res != NULL)
1010 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1011 	if (sc->ste_ldata != NULL) {
1012 		contigfree(sc->ste_ldata, sizeof(struct ste_list_data),
1013 			   M_DEVBUF);
1014 	}
1015 
1016 	return(0);
1017 }
1018 
1019 static int
1020 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *c,
1021 	   struct mbuf *m)
1022 {
1023 	struct mbuf		*m_new = NULL;
1024 
1025 	if (m == NULL) {
1026 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
1027 		if (m_new == NULL)
1028 			return(ENOBUFS);
1029 		MCLGET(m_new, M_NOWAIT);
1030 		if (!(m_new->m_flags & M_EXT)) {
1031 			m_freem(m_new);
1032 			return(ENOBUFS);
1033 		}
1034 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1035 	} else {
1036 		m_new = m;
1037 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1038 		m_new->m_data = m_new->m_ext.ext_buf;
1039 	}
1040 
1041 	m_adj(m_new, ETHER_ALIGN);
1042 
1043 	c->ste_mbuf = m_new;
1044 	c->ste_ptr->ste_status = 0;
1045 	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1046 	c->ste_ptr->ste_frag.ste_len = (1536 + EVL_ENCAPLEN) | STE_FRAG_LAST;
1047 
1048 	return(0);
1049 }
1050 
1051 static int
1052 ste_init_rx_list(struct ste_softc *sc)
1053 {
1054 	struct ste_chain_data	*cd;
1055 	struct ste_list_data	*ld;
1056 	int			i;
1057 
1058 	cd = &sc->ste_cdata;
1059 	ld = sc->ste_ldata;
1060 
1061 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1062 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1063 		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1064 			return(ENOBUFS);
1065 		if (i == (STE_RX_LIST_CNT - 1)) {
1066 			cd->ste_rx_chain[i].ste_next =
1067 			    &cd->ste_rx_chain[0];
1068 			ld->ste_rx_list[i].ste_next =
1069 			    vtophys(&ld->ste_rx_list[0]);
1070 		} else {
1071 			cd->ste_rx_chain[i].ste_next =
1072 			    &cd->ste_rx_chain[i + 1];
1073 			ld->ste_rx_list[i].ste_next =
1074 			    vtophys(&ld->ste_rx_list[i + 1]);
1075 		}
1076 		ld->ste_rx_list[i].ste_status = 0;
1077 	}
1078 
1079 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1080 
1081 	return(0);
1082 }
1083 
1084 static void
1085 ste_init_tx_list(struct ste_softc *sc)
1086 {
1087 	struct ste_chain_data	*cd;
1088 	struct ste_list_data	*ld;
1089 	int			i;
1090 
1091 	cd = &sc->ste_cdata;
1092 	ld = sc->ste_ldata;
1093 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1094 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1095 		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1096 		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1097 		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1098 		if (i == (STE_TX_LIST_CNT - 1))
1099 			cd->ste_tx_chain[i].ste_next =
1100 			    &cd->ste_tx_chain[0];
1101 		else
1102 			cd->ste_tx_chain[i].ste_next =
1103 			    &cd->ste_tx_chain[i + 1];
1104 		if (i == 0)
1105 			cd->ste_tx_chain[i].ste_prev =
1106 			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1107 		else
1108 			cd->ste_tx_chain[i].ste_prev =
1109 			     &cd->ste_tx_chain[i - 1];
1110 	}
1111 
1112 	cd->ste_tx_prod = 0;
1113 	cd->ste_tx_cons = 0;
1114 	cd->ste_tx_cnt = 0;
1115 
1116 	return;
1117 }
1118 
1119 static void
1120 ste_init(void *xsc)
1121 {
1122 	struct ste_softc	*sc;
1123 	int			i;
1124 	struct ifnet		*ifp;
1125 
1126 	sc = xsc;
1127 	ifp = &sc->arpcom.ac_if;
1128 
1129 	ste_stop(sc);
1130 
1131 	/* Init our MAC address */
1132 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1133 		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1134 	}
1135 
1136 	/* Init RX list */
1137 	if (ste_init_rx_list(sc) == ENOBUFS) {
1138 		if_printf(ifp, "initialization failed: no "
1139 		    "memory for RX buffers\n");
1140 		ste_stop(sc);
1141 		return;
1142 	}
1143 
1144 	/* Set RX polling interval */
1145 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 1);
1146 
1147 	/* Init TX descriptors */
1148 	ste_init_tx_list(sc);
1149 
1150 	/* Set the TX freethresh value */
1151 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1152 
1153 	/* Set the TX start threshold for best performance. */
1154 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1155 
1156 	/* Set the TX reclaim threshold. */
1157 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1158 
1159 	/* Set up the RX filter. */
1160 	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1161 
1162 	/* If we want promiscuous mode, set the allframes bit. */
1163 	if (ifp->if_flags & IFF_PROMISC) {
1164 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1165 	} else {
1166 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1167 	}
1168 
1169 	/* Set capture broadcast bit to accept broadcast frames. */
1170 	if (ifp->if_flags & IFF_BROADCAST) {
1171 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1172 	} else {
1173 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1174 	}
1175 
1176 	ste_setmulti(sc);
1177 
1178 	/* Load the address of the RX list. */
1179 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1180 	ste_wait(sc);
1181 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1182 	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1183 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1184 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1185 
1186 	/* Set TX polling interval (defer until we TX first packet */
1187 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1188 
1189 	/* Load address of the TX list */
1190 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1191 	ste_wait(sc);
1192 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1193 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1194 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1195 	ste_wait(sc);
1196 	sc->ste_tx_prev_idx=-1;
1197 
1198 	/* Enable receiver and transmitter */
1199 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1200 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1201 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1202 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1203 
1204 	/* Enable stats counters. */
1205 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1206 
1207 	/* Enable interrupts. */
1208 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1209 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1210 
1211 	/* Accept VLAN length packets */
1212 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + EVL_ENCAPLEN);
1213 
1214 	ste_ifmedia_upd(ifp);
1215 
1216 	ifp->if_flags |= IFF_RUNNING;
1217 	ifq_clr_oactive(&ifp->if_snd);
1218 
1219 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
1220 }
1221 
1222 static void
1223 ste_stop(struct ste_softc *sc)
1224 {
1225 	int			i;
1226 	struct ifnet		*ifp;
1227 
1228 	ifp = &sc->arpcom.ac_if;
1229 
1230 	callout_stop(&sc->ste_stat_timer);
1231 
1232 	CSR_WRITE_2(sc, STE_IMR, 0);
1233 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1234 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1235 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1236 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1237 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1238 	ste_wait(sc);
1239 	/*
1240 	 * Try really hard to stop the RX engine or under heavy RX
1241 	 * data chip will write into de-allocated memory.
1242 	 */
1243 	ste_reset(sc);
1244 
1245 	sc->ste_link = 0;
1246 
1247 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1248 		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1249 			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1250 			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1251 		}
1252 	}
1253 
1254 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1255 		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1256 			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1257 			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1258 		}
1259 	}
1260 
1261 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1262 
1263 	ifp->if_flags &= ~IFF_RUNNING;
1264 	ifq_clr_oactive(&ifp->if_snd);
1265 
1266 	return;
1267 }
1268 
1269 static void
1270 ste_reset(struct ste_softc *sc)
1271 {
1272 	int			i;
1273 
1274 	STE_SETBIT4(sc, STE_ASICCTL,
1275 	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1276 	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1277 	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1278 	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1279 	    STE_ASICCTL_EXTRESET_RESET);
1280 
1281 	DELAY(100000);
1282 
1283 	for (i = 0; i < STE_TIMEOUT; i++) {
1284 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1285 			break;
1286 	}
1287 
1288 	if (i == STE_TIMEOUT)
1289 		if_printf(&sc->arpcom.ac_if, "global reset never completed\n");
1290 
1291 	return;
1292 }
1293 
1294 static int
1295 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1296 {
1297 	struct ste_softc	*sc;
1298 	struct ifreq		*ifr;
1299 	struct mii_data		*mii;
1300 	int			error = 0;
1301 
1302 	sc = ifp->if_softc;
1303 	ifr = (struct ifreq *)data;
1304 
1305 	switch(command) {
1306 	case SIOCSIFFLAGS:
1307 		if (ifp->if_flags & IFF_UP) {
1308 			if (ifp->if_flags & IFF_RUNNING &&
1309 			    ifp->if_flags & IFF_PROMISC &&
1310 			    !(sc->ste_if_flags & IFF_PROMISC)) {
1311 				STE_SETBIT1(sc, STE_RX_MODE,
1312 				    STE_RXMODE_PROMISC);
1313 			} else if (ifp->if_flags & IFF_RUNNING &&
1314 			    !(ifp->if_flags & IFF_PROMISC) &&
1315 			    sc->ste_if_flags & IFF_PROMISC) {
1316 				STE_CLRBIT1(sc, STE_RX_MODE,
1317 				    STE_RXMODE_PROMISC);
1318 			}
1319 			if (!(ifp->if_flags & IFF_RUNNING)) {
1320 				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1321 				ste_init(sc);
1322 			}
1323 		} else {
1324 			if (ifp->if_flags & IFF_RUNNING)
1325 				ste_stop(sc);
1326 		}
1327 		sc->ste_if_flags = ifp->if_flags;
1328 		error = 0;
1329 		break;
1330 	case SIOCADDMULTI:
1331 	case SIOCDELMULTI:
1332 		ste_setmulti(sc);
1333 		error = 0;
1334 		break;
1335 	case SIOCGIFMEDIA:
1336 	case SIOCSIFMEDIA:
1337 		mii = device_get_softc(sc->ste_miibus);
1338 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1339 		break;
1340 	default:
1341 		error = ether_ioctl(ifp, command, data);
1342 		break;
1343 	}
1344 	return(error);
1345 }
1346 
1347 static int
1348 ste_encap(struct ste_softc *sc, struct ste_chain *c, struct mbuf *m_head)
1349 {
1350 	int			frag = 0;
1351 	struct ste_frag		*f = NULL;
1352 	struct mbuf		*m;
1353 	struct ste_desc		*d;
1354 	int			total_len = 0;
1355 
1356 	d = c->ste_ptr;
1357 	d->ste_ctl = 0;
1358 
1359 encap_retry:
1360 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1361 		if (m->m_len != 0) {
1362 			if (frag == STE_MAXFRAGS)
1363 				break;
1364 			total_len += m->m_len;
1365 			f = &d->ste_frags[frag];
1366 			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1367 			f->ste_len = m->m_len;
1368 			frag++;
1369 		}
1370 	}
1371 
1372 	if (m != NULL) {
1373 		struct mbuf *mn;
1374 
1375 		/*
1376 		 * We ran out of segments. We have to recopy this
1377 		 * mbuf chain first. Bail out if we can't get the
1378 		 * new buffers.  Code borrowed from if_fxp.c.
1379 		 */
1380 		MGETHDR(mn, M_NOWAIT, MT_DATA);
1381 		if (mn == NULL) {
1382 			m_freem(m_head);
1383 			return ENOMEM;
1384 		}
1385 		if (m_head->m_pkthdr.len > MHLEN) {
1386 			MCLGET(mn, M_NOWAIT);
1387 			if ((mn->m_flags & M_EXT) == 0) {
1388 				m_freem(mn);
1389 				m_freem(m_head);
1390 				return ENOMEM;
1391 			}
1392 		}
1393 		m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(mn, void *));
1394 		mn->m_pkthdr.len = mn->m_len = m_head->m_pkthdr.len;
1395 		m_freem(m_head);
1396 		m_head = mn;
1397 		goto encap_retry;
1398 	}
1399 
1400 	c->ste_mbuf = m_head;
1401 	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1402 	d->ste_ctl = 1;
1403 
1404 	return(0);
1405 }
1406 
1407 static void
1408 ste_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1409 {
1410 	struct ste_softc	*sc;
1411 	struct mbuf		*m_head = NULL;
1412 	struct ste_chain	*cur_tx = NULL;
1413 	int			idx;
1414 
1415 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1416 
1417 	sc = ifp->if_softc;
1418 
1419 	if (!sc->ste_link) {
1420 		ifq_purge(&ifp->if_snd);
1421 		return;
1422 	}
1423 
1424 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1425 		return;
1426 
1427 	idx = sc->ste_cdata.ste_tx_prod;
1428 
1429 	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1430 
1431 		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1432 			ifq_set_oactive(&ifp->if_snd);
1433 			break;
1434 		}
1435 
1436 		m_head = ifq_dequeue(&ifp->if_snd);
1437 		if (m_head == NULL)
1438 			break;
1439 
1440 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1441 
1442 		if (ste_encap(sc, cur_tx, m_head) != 0)
1443 			break;
1444 
1445 		cur_tx->ste_ptr->ste_next = 0;
1446 
1447 		if(sc->ste_tx_prev_idx < 0){
1448 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1449 			/* Load address of the TX list */
1450 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1451 			ste_wait(sc);
1452 
1453 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1454 			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1455 
1456 			/* Set TX polling interval to start TX engine */
1457 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1458 
1459 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1460 			ste_wait(sc);
1461 		}else{
1462 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1463 			sc->ste_cdata.ste_tx_chain[
1464 			    sc->ste_tx_prev_idx].ste_ptr->ste_next
1465 				= cur_tx->ste_phys;
1466 		}
1467 
1468 		sc->ste_tx_prev_idx=idx;
1469 
1470 		BPF_MTAP(ifp, cur_tx->ste_mbuf);
1471 
1472 		STE_INC(idx, STE_TX_LIST_CNT);
1473 		sc->ste_cdata.ste_tx_cnt++;
1474 		ifp->if_timer = 5;
1475 		sc->ste_cdata.ste_tx_prod = idx;
1476 	}
1477 }
1478 
1479 static void
1480 ste_watchdog(struct ifnet *ifp)
1481 {
1482 	struct ste_softc	*sc;
1483 
1484 	sc = ifp->if_softc;
1485 
1486 	IFNET_STAT_INC(ifp, oerrors, 1);
1487 	if_printf(ifp, "watchdog timeout\n");
1488 
1489 	ste_txeoc(sc);
1490 	ste_txeof(sc);
1491 	ste_rxeof(sc);
1492 	ste_reset(sc);
1493 	ste_init(sc);
1494 
1495 	if (!ifq_is_empty(&ifp->if_snd))
1496 		if_devstart(ifp);
1497 }
1498 
1499 static void
1500 ste_shutdown(device_t dev)
1501 {
1502 	struct ste_softc	*sc;
1503 
1504 	sc = device_get_softc(dev);
1505 
1506 	ste_stop(sc);
1507 
1508 	return;
1509 }
1510