xref: /dragonfly/sys/dev/netif/ste/if_ste.c (revision 509221ae)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ste.c,v 1.14.2.9 2003/02/05 22:03:57 mbr Exp $
33  * $DragonFly: src/sys/dev/netif/ste/if_ste.c,v 1.28 2005/06/20 15:10:41 joerg Exp $
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/sockio.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/thread2.h>
44 
45 #include <net/if.h>
46 #include <net/ifq_var.h>
47 #include <net/if_arp.h>
48 #include <net/ethernet.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/vlan/if_vlan_var.h>
52 
53 #include <net/bpf.h>
54 
55 #include <vm/vm.h>              /* for vtophys */
56 #include <vm/pmap.h>            /* for vtophys */
57 #include <machine/bus_memio.h>
58 #include <machine/bus_pio.h>
59 #include <machine/bus.h>
60 #include <machine/resource.h>
61 #include <sys/bus.h>
62 #include <sys/rman.h>
63 
64 #include "../mii_layer/mii.h"
65 #include "../mii_layer/miivar.h"
66 
67 #include <bus/pci/pcireg.h>
68 #include <bus/pci/pcivar.h>
69 
70 /* "controller miibus0" required.  See GENERIC if you get errors here. */
71 #include "miibus_if.h"
72 
73 #define STE_USEIOSPACE
74 
75 #include "if_stereg.h"
76 
77 /*
78  * Various supported device vendors/types and their names.
79  */
80 static struct ste_type ste_devs[] = {
81 	{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
82 	{ DL_VENDORID, DL_DEVICEID_550TX, "D-Link DFE-550TX 10/100BaseTX" },
83 	{ 0, 0, NULL }
84 };
85 
86 static int ste_probe		(device_t);
87 static int ste_attach		(device_t);
88 static int ste_detach		(device_t);
89 static void ste_init		(void *);
90 static void ste_intr		(void *);
91 static void ste_rxeof		(struct ste_softc *);
92 static void ste_txeoc		(struct ste_softc *);
93 static void ste_txeof		(struct ste_softc *);
94 static void ste_stats_update	(void *);
95 static void ste_stop		(struct ste_softc *);
96 static void ste_reset		(struct ste_softc *);
97 static int ste_ioctl		(struct ifnet *, u_long, caddr_t,
98 					struct ucred *);
99 static int ste_encap		(struct ste_softc *, struct ste_chain *,
100 					struct mbuf *);
101 static void ste_start		(struct ifnet *);
102 static void ste_watchdog	(struct ifnet *);
103 static void ste_shutdown	(device_t);
104 static int ste_newbuf		(struct ste_softc *,
105 					struct ste_chain_onefrag *,
106 					struct mbuf *);
107 static int ste_ifmedia_upd	(struct ifnet *);
108 static void ste_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
109 
110 static void ste_mii_sync	(struct ste_softc *);
111 static void ste_mii_send	(struct ste_softc *, u_int32_t, int);
112 static int ste_mii_readreg	(struct ste_softc *,
113 					struct ste_mii_frame *);
114 static int ste_mii_writereg	(struct ste_softc *,
115 					struct ste_mii_frame *);
116 static int ste_miibus_readreg	(device_t, int, int);
117 static int ste_miibus_writereg	(device_t, int, int, int);
118 static void ste_miibus_statchg	(device_t);
119 
120 static int ste_eeprom_wait	(struct ste_softc *);
121 static int ste_read_eeprom	(struct ste_softc *, caddr_t, int,
122 							int, int);
123 static void ste_wait		(struct ste_softc *);
124 static void ste_setmulti	(struct ste_softc *);
125 static int ste_init_rx_list	(struct ste_softc *);
126 static void ste_init_tx_list	(struct ste_softc *);
127 
128 #ifdef STE_USEIOSPACE
129 #define STE_RES			SYS_RES_IOPORT
130 #define STE_RID			STE_PCI_LOIO
131 #else
132 #define STE_RES			SYS_RES_MEMORY
133 #define STE_RID			STE_PCI_LOMEM
134 #endif
135 
136 static device_method_t ste_methods[] = {
137 	/* Device interface */
138 	DEVMETHOD(device_probe,		ste_probe),
139 	DEVMETHOD(device_attach,	ste_attach),
140 	DEVMETHOD(device_detach,	ste_detach),
141 	DEVMETHOD(device_shutdown,	ste_shutdown),
142 
143 	/* bus interface */
144 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
145 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
146 
147 	/* MII interface */
148 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
149 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
150 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
151 
152 	{ 0, 0 }
153 };
154 
155 static driver_t ste_driver = {
156 	"ste",
157 	ste_methods,
158 	sizeof(struct ste_softc)
159 };
160 
161 static devclass_t ste_devclass;
162 
163 DECLARE_DUMMY_MODULE(if_ste);
164 DRIVER_MODULE(if_ste, pci, ste_driver, ste_devclass, 0, 0);
165 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
166 
167 #define STE_SETBIT4(sc, reg, x)				\
168 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
169 
170 #define STE_CLRBIT4(sc, reg, x)				\
171 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
172 
173 #define STE_SETBIT2(sc, reg, x)				\
174 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
175 
176 #define STE_CLRBIT2(sc, reg, x)				\
177 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
178 
179 #define STE_SETBIT1(sc, reg, x)				\
180 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
181 
182 #define STE_CLRBIT1(sc, reg, x)				\
183 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
184 
185 
186 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
187 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
188 
189 /*
190  * Sync the PHYs by setting data bit and strobing the clock 32 times.
191  */
192 static void ste_mii_sync(sc)
193 	struct ste_softc		*sc;
194 {
195 	int		i;
196 
197 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
198 
199 	for (i = 0; i < 32; i++) {
200 		MII_SET(STE_PHYCTL_MCLK);
201 		DELAY(1);
202 		MII_CLR(STE_PHYCTL_MCLK);
203 		DELAY(1);
204 	}
205 
206 	return;
207 }
208 
209 /*
210  * Clock a series of bits through the MII.
211  */
212 static void ste_mii_send(sc, bits, cnt)
213 	struct ste_softc		*sc;
214 	u_int32_t		bits;
215 	int			cnt;
216 {
217 	int			i;
218 
219 	MII_CLR(STE_PHYCTL_MCLK);
220 
221 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
222                 if (bits & i) {
223 			MII_SET(STE_PHYCTL_MDATA);
224                 } else {
225 			MII_CLR(STE_PHYCTL_MDATA);
226                 }
227 		DELAY(1);
228 		MII_CLR(STE_PHYCTL_MCLK);
229 		DELAY(1);
230 		MII_SET(STE_PHYCTL_MCLK);
231 	}
232 }
233 
234 /*
235  * Read an PHY register through the MII.
236  */
237 static int ste_mii_readreg(sc, frame)
238 	struct ste_softc		*sc;
239 	struct ste_mii_frame	*frame;
240 
241 {
242 	int			i, ack;
243 
244 	crit_enter();
245 
246 	/*
247 	 * Set up frame for RX.
248 	 */
249 	frame->mii_stdelim = STE_MII_STARTDELIM;
250 	frame->mii_opcode = STE_MII_READOP;
251 	frame->mii_turnaround = 0;
252 	frame->mii_data = 0;
253 
254 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
255 	/*
256  	 * Turn on data xmit.
257 	 */
258 	MII_SET(STE_PHYCTL_MDIR);
259 
260 	ste_mii_sync(sc);
261 
262 	/*
263 	 * Send command/address info.
264 	 */
265 	ste_mii_send(sc, frame->mii_stdelim, 2);
266 	ste_mii_send(sc, frame->mii_opcode, 2);
267 	ste_mii_send(sc, frame->mii_phyaddr, 5);
268 	ste_mii_send(sc, frame->mii_regaddr, 5);
269 
270 	/* Turn off xmit. */
271 	MII_CLR(STE_PHYCTL_MDIR);
272 
273 	/* Idle bit */
274 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
275 	DELAY(1);
276 	MII_SET(STE_PHYCTL_MCLK);
277 	DELAY(1);
278 
279 	/* Check for ack */
280 	MII_CLR(STE_PHYCTL_MCLK);
281 	DELAY(1);
282 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
283 	MII_SET(STE_PHYCTL_MCLK);
284 	DELAY(1);
285 
286 	/*
287 	 * Now try reading data bits. If the ack failed, we still
288 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
289 	 */
290 	if (ack) {
291 		for(i = 0; i < 16; i++) {
292 			MII_CLR(STE_PHYCTL_MCLK);
293 			DELAY(1);
294 			MII_SET(STE_PHYCTL_MCLK);
295 			DELAY(1);
296 		}
297 		goto fail;
298 	}
299 
300 	for (i = 0x8000; i; i >>= 1) {
301 		MII_CLR(STE_PHYCTL_MCLK);
302 		DELAY(1);
303 		if (!ack) {
304 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
305 				frame->mii_data |= i;
306 			DELAY(1);
307 		}
308 		MII_SET(STE_PHYCTL_MCLK);
309 		DELAY(1);
310 	}
311 
312 fail:
313 
314 	MII_CLR(STE_PHYCTL_MCLK);
315 	DELAY(1);
316 	MII_SET(STE_PHYCTL_MCLK);
317 	DELAY(1);
318 
319 	crit_exit();
320 
321 	if (ack)
322 		return(1);
323 	return(0);
324 }
325 
326 /*
327  * Write to a PHY register through the MII.
328  */
329 static int ste_mii_writereg(sc, frame)
330 	struct ste_softc		*sc;
331 	struct ste_mii_frame	*frame;
332 
333 {
334 
335 	crit_enter();
336 	/*
337 	 * Set up frame for TX.
338 	 */
339 
340 	frame->mii_stdelim = STE_MII_STARTDELIM;
341 	frame->mii_opcode = STE_MII_WRITEOP;
342 	frame->mii_turnaround = STE_MII_TURNAROUND;
343 
344 	/*
345  	 * Turn on data output.
346 	 */
347 	MII_SET(STE_PHYCTL_MDIR);
348 
349 	ste_mii_sync(sc);
350 
351 	ste_mii_send(sc, frame->mii_stdelim, 2);
352 	ste_mii_send(sc, frame->mii_opcode, 2);
353 	ste_mii_send(sc, frame->mii_phyaddr, 5);
354 	ste_mii_send(sc, frame->mii_regaddr, 5);
355 	ste_mii_send(sc, frame->mii_turnaround, 2);
356 	ste_mii_send(sc, frame->mii_data, 16);
357 
358 	/* Idle bit. */
359 	MII_SET(STE_PHYCTL_MCLK);
360 	DELAY(1);
361 	MII_CLR(STE_PHYCTL_MCLK);
362 	DELAY(1);
363 
364 	/*
365 	 * Turn off xmit.
366 	 */
367 	MII_CLR(STE_PHYCTL_MDIR);
368 
369 	crit_exit();
370 
371 	return(0);
372 }
373 
374 static int ste_miibus_readreg(dev, phy, reg)
375 	device_t		dev;
376 	int			phy, reg;
377 {
378 	struct ste_softc	*sc;
379 	struct ste_mii_frame	frame;
380 
381 	sc = device_get_softc(dev);
382 
383 	if ( sc->ste_one_phy && phy != 0 )
384 		return (0);
385 
386 	bzero((char *)&frame, sizeof(frame));
387 
388 	frame.mii_phyaddr = phy;
389 	frame.mii_regaddr = reg;
390 	ste_mii_readreg(sc, &frame);
391 
392 	return(frame.mii_data);
393 }
394 
395 static int ste_miibus_writereg(dev, phy, reg, data)
396 	device_t		dev;
397 	int			phy, reg, data;
398 {
399 	struct ste_softc	*sc;
400 	struct ste_mii_frame	frame;
401 
402 	sc = device_get_softc(dev);
403 	bzero((char *)&frame, sizeof(frame));
404 
405 	frame.mii_phyaddr = phy;
406 	frame.mii_regaddr = reg;
407 	frame.mii_data = data;
408 
409 	ste_mii_writereg(sc, &frame);
410 
411 	return(0);
412 }
413 
414 static void ste_miibus_statchg(dev)
415 	device_t		dev;
416 {
417 	struct ste_softc	*sc;
418 	struct mii_data		*mii;
419 	int			i;
420 
421 	sc = device_get_softc(dev);
422 	mii = device_get_softc(sc->ste_miibus);
423 
424 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
425 		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
426 	} else {
427 		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
428 	}
429 
430 	STE_SETBIT4(sc, STE_ASICCTL,STE_ASICCTL_RX_RESET |
431 		    STE_ASICCTL_TX_RESET);
432 	for (i = 0; i < STE_TIMEOUT; i++) {
433 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
434 			break;
435 	}
436 	if (i == STE_TIMEOUT)
437 		if_printf(&sc->arpcom.ac_if, "rx reset never completed\n");
438 
439 	return;
440 }
441 
442 static int ste_ifmedia_upd(ifp)
443 	struct ifnet		*ifp;
444 {
445 	struct ste_softc	*sc;
446 	struct mii_data		*mii;
447 
448 	sc = ifp->if_softc;
449 	mii = device_get_softc(sc->ste_miibus);
450 	sc->ste_link = 0;
451 	if (mii->mii_instance) {
452 		struct mii_softc	*miisc;
453 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
454 		    miisc = LIST_NEXT(miisc, mii_list))
455 			mii_phy_reset(miisc);
456 	}
457 	mii_mediachg(mii);
458 
459 	return(0);
460 }
461 
462 static void ste_ifmedia_sts(ifp, ifmr)
463 	struct ifnet		*ifp;
464 	struct ifmediareq	*ifmr;
465 {
466 	struct ste_softc	*sc;
467 	struct mii_data		*mii;
468 
469 	sc = ifp->if_softc;
470 	mii = device_get_softc(sc->ste_miibus);
471 
472 	mii_pollstat(mii);
473 	ifmr->ifm_active = mii->mii_media_active;
474 	ifmr->ifm_status = mii->mii_media_status;
475 
476 	return;
477 }
478 
479 static void ste_wait(sc)
480 	struct ste_softc		*sc;
481 {
482 	int		i;
483 
484 	for (i = 0; i < STE_TIMEOUT; i++) {
485 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
486 			break;
487 	}
488 
489 	if (i == STE_TIMEOUT)
490 		if_printf(&sc->arpcom.ac_if, "command never completed!\n");
491 
492 	return;
493 }
494 
495 /*
496  * The EEPROM is slow: give it time to come ready after issuing
497  * it a command.
498  */
499 static int ste_eeprom_wait(sc)
500 	struct ste_softc		*sc;
501 {
502 	int			i;
503 
504 	DELAY(1000);
505 
506 	for (i = 0; i < 100; i++) {
507 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
508 			DELAY(1000);
509 		else
510 			break;
511 	}
512 
513 	if (i == 100) {
514 		if_printf(&sc->arpcom.ac_if, "eeprom failed to come ready\n");
515 		return(1);
516 	}
517 
518 	return(0);
519 }
520 
521 /*
522  * Read a sequence of words from the EEPROM. Note that ethernet address
523  * data is stored in the EEPROM in network byte order.
524  */
525 static int ste_read_eeprom(sc, dest, off, cnt, swap)
526 	struct ste_softc		*sc;
527 	caddr_t			dest;
528 	int			off;
529 	int			cnt;
530 	int			swap;
531 {
532 	int			err = 0, i;
533 	u_int16_t		word = 0, *ptr;
534 
535 	if (ste_eeprom_wait(sc))
536 		return(1);
537 
538 	for (i = 0; i < cnt; i++) {
539 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
540 		err = ste_eeprom_wait(sc);
541 		if (err)
542 			break;
543 		word = CSR_READ_2(sc, STE_EEPROM_DATA);
544 		ptr = (u_int16_t *)(dest + (i * 2));
545 		if (swap)
546 			*ptr = ntohs(word);
547 		else
548 			*ptr = word;
549 	}
550 
551 	return(err ? 1 : 0);
552 }
553 
554 static void ste_setmulti(sc)
555 	struct ste_softc	*sc;
556 {
557 	struct ifnet		*ifp;
558 	int			h = 0;
559 	u_int32_t		hashes[2] = { 0, 0 };
560 	struct ifmultiaddr	*ifma;
561 
562 	ifp = &sc->arpcom.ac_if;
563 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
564 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
565 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
566 		return;
567 	}
568 
569 	/* first, zot all the existing hash bits */
570 	CSR_WRITE_2(sc, STE_MAR0, 0);
571 	CSR_WRITE_2(sc, STE_MAR1, 0);
572 	CSR_WRITE_2(sc, STE_MAR2, 0);
573 	CSR_WRITE_2(sc, STE_MAR3, 0);
574 
575 	/* now program new ones */
576 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
577 		if (ifma->ifma_addr->sa_family != AF_LINK)
578 			continue;
579 		h = ether_crc32_be(
580 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
581 			ETHER_ADDR_LEN) & 0x3f;
582 		if (h < 32)
583 			hashes[0] |= (1 << h);
584 		else
585 			hashes[1] |= (1 << (h - 32));
586 	}
587 
588 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
589 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
590 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
591 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
592 	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
593 	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
594 
595 	return;
596 }
597 
598 static void ste_intr(xsc)
599 	void			*xsc;
600 {
601 	struct ste_softc	*sc;
602 	struct ifnet		*ifp;
603 	u_int16_t		status;
604 
605 	sc = xsc;
606 	ifp = &sc->arpcom.ac_if;
607 
608 	/* See if this is really our interrupt. */
609 	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH))
610 		return;
611 
612 	for (;;) {
613 		status = CSR_READ_2(sc, STE_ISR_ACK);
614 
615 		if (!(status & STE_INTRS))
616 			break;
617 
618 		if (status & STE_ISR_RX_DMADONE)
619 			ste_rxeof(sc);
620 
621 		if (status & STE_ISR_TX_DMADONE)
622 			ste_txeof(sc);
623 
624 		if (status & STE_ISR_TX_DONE)
625 			ste_txeoc(sc);
626 
627 		if (status & STE_ISR_STATS_OFLOW) {
628 			callout_stop(&sc->ste_stat_timer);
629 			ste_stats_update(sc);
630 		}
631 
632 		if (status & STE_ISR_LINKEVENT)
633 			mii_pollstat(device_get_softc(sc->ste_miibus));
634 
635 		if (status & STE_ISR_HOSTERR) {
636 			ste_reset(sc);
637 			ste_init(sc);
638 		}
639 	}
640 
641 	/* Re-enable interrupts */
642 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
643 
644 	if (!ifq_is_empty(&ifp->if_snd))
645 		ste_start(ifp);
646 
647 	return;
648 }
649 
650 /*
651  * A frame has been uploaded: pass the resulting mbuf chain up to
652  * the higher level protocols.
653  */
654 static void ste_rxeof(sc)
655 	struct ste_softc		*sc;
656 {
657         struct mbuf		*m;
658         struct ifnet		*ifp;
659 	struct ste_chain_onefrag	*cur_rx;
660 	int			total_len = 0, count=0;
661 	u_int32_t		rxstat;
662 
663 	ifp = &sc->arpcom.ac_if;
664 
665 	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
666 	      & STE_RXSTAT_DMADONE) {
667 		if ((STE_RX_LIST_CNT - count) < 3) {
668 			break;
669 		}
670 
671 		cur_rx = sc->ste_cdata.ste_rx_head;
672 		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
673 
674 		/*
675 		 * If an error occurs, update stats, clear the
676 		 * status word and leave the mbuf cluster in place:
677 		 * it should simply get re-used next time this descriptor
678 	 	 * comes up in the ring.
679 		 */
680 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
681 			ifp->if_ierrors++;
682 			cur_rx->ste_ptr->ste_status = 0;
683 			continue;
684 		}
685 
686 		/*
687 		 * If there error bit was not set, the upload complete
688 		 * bit should be set which means we have a valid packet.
689 		 * If not, something truly strange has happened.
690 		 */
691 		if (!(rxstat & STE_RXSTAT_DMADONE)) {
692 			if_printf(ifp, "bad receive status -- packet dropped");
693 			ifp->if_ierrors++;
694 			cur_rx->ste_ptr->ste_status = 0;
695 			continue;
696 		}
697 
698 		/* No errors; receive the packet. */
699 		m = cur_rx->ste_mbuf;
700 		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
701 
702 		/*
703 		 * Try to conjure up a new mbuf cluster. If that
704 		 * fails, it means we have an out of memory condition and
705 		 * should leave the buffer in place and continue. This will
706 		 * result in a lost packet, but there's little else we
707 		 * can do in this situation.
708 		 */
709 		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
710 			ifp->if_ierrors++;
711 			cur_rx->ste_ptr->ste_status = 0;
712 			continue;
713 		}
714 
715 		ifp->if_ipackets++;
716 		m->m_pkthdr.rcvif = ifp;
717 		m->m_pkthdr.len = m->m_len = total_len;
718 
719 		(*ifp->if_input)(ifp, m);
720 
721 		cur_rx->ste_ptr->ste_status = 0;
722 		count++;
723 	}
724 
725 	return;
726 }
727 
728 static void ste_txeoc(sc)
729 	struct ste_softc	*sc;
730 {
731 	u_int8_t		txstat;
732 	struct ifnet		*ifp;
733 
734 	ifp = &sc->arpcom.ac_if;
735 
736 	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
737 	    STE_TXSTATUS_TXDONE) {
738 		if (txstat & STE_TXSTATUS_UNDERRUN ||
739 		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
740 		    txstat & STE_TXSTATUS_RECLAIMERR) {
741 			ifp->if_oerrors++;
742 			if_printf(ifp, "transmission error: %x\n", txstat);
743 
744 			ste_reset(sc);
745 			ste_init(sc);
746 
747 			if (txstat & STE_TXSTATUS_UNDERRUN &&
748 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
749 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
750 				if_printf(ifp, "tx underrun, increasing tx"
751 				    " start threshold to %d bytes\n",
752 				    sc->ste_tx_thresh);
753 			}
754 			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
755 			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
756 			    (STE_PACKET_SIZE >> 4));
757 		}
758 		ste_init(sc);
759 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
760 	}
761 
762 	return;
763 }
764 
765 static void ste_txeof(sc)
766 	struct ste_softc	*sc;
767 {
768 	struct ste_chain	*cur_tx = NULL;
769 	struct ifnet		*ifp;
770 	int			idx;
771 
772 	ifp = &sc->arpcom.ac_if;
773 
774 	idx = sc->ste_cdata.ste_tx_cons;
775 	while(idx != sc->ste_cdata.ste_tx_prod) {
776 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
777 
778 		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
779 			break;
780 
781 		if (cur_tx->ste_mbuf != NULL) {
782 			m_freem(cur_tx->ste_mbuf);
783 			cur_tx->ste_mbuf = NULL;
784 		}
785 
786 		ifp->if_opackets++;
787 
788 		sc->ste_cdata.ste_tx_cnt--;
789 		STE_INC(idx, STE_TX_LIST_CNT);
790 		ifp->if_timer = 0;
791 	}
792 
793 	sc->ste_cdata.ste_tx_cons = idx;
794 
795 	if (cur_tx != NULL)
796 		ifp->if_flags &= ~IFF_OACTIVE;
797 
798 	return;
799 }
800 
801 static void ste_stats_update(xsc)
802 	void			*xsc;
803 {
804 	struct ste_softc	*sc;
805 	struct ifnet		*ifp;
806 	struct mii_data		*mii;
807 
808 	crit_enter();
809 
810 	sc = xsc;
811 	ifp = &sc->arpcom.ac_if;
812 	mii = device_get_softc(sc->ste_miibus);
813 
814         ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
815             + CSR_READ_1(sc, STE_MULTI_COLLS)
816             + CSR_READ_1(sc, STE_SINGLE_COLLS);
817 
818 	if (!sc->ste_link) {
819 		mii_pollstat(mii);
820 		if (mii->mii_media_status & IFM_ACTIVE &&
821 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
822 			sc->ste_link++;
823 			/*
824 			 * we don't get a call-back on re-init so do it
825 			 * otherwise we get stuck in the wrong link state
826 			 */
827 			ste_miibus_statchg(sc->ste_dev);
828 			if (!ifq_is_empty(&ifp->if_snd))
829 				ste_start(ifp);
830 		}
831 	}
832 
833 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
834 	crit_exit();
835 
836 	return;
837 }
838 
839 
840 /*
841  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
842  * IDs against our list and return a device name if we find a match.
843  */
844 static int ste_probe(dev)
845 	device_t		dev;
846 {
847 	struct ste_type		*t;
848 
849 	t = ste_devs;
850 
851 	while(t->ste_name != NULL) {
852 		if ((pci_get_vendor(dev) == t->ste_vid) &&
853 		    (pci_get_device(dev) == t->ste_did)) {
854 			device_set_desc(dev, t->ste_name);
855 			return(0);
856 		}
857 		t++;
858 	}
859 
860 	return(ENXIO);
861 }
862 
863 /*
864  * Attach the interface. Allocate softc structures, do ifmedia
865  * setup and ethernet/BPF attach.
866  */
867 static int ste_attach(dev)
868 	device_t		dev;
869 {
870 	struct ste_softc	*sc;
871 	struct ifnet		*ifp;
872 	int			error = 0, rid;
873 	uint8_t			eaddr[ETHER_ADDR_LEN];
874 
875 	sc = device_get_softc(dev);
876 	sc->ste_dev = dev;
877 
878 	/*
879 	 * Only use one PHY since this chip reports multiple
880 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
881 	 * it is at 0 & 1.  It is rev 0x12.
882 	 */
883 	if (pci_get_vendor(dev) == DL_VENDORID &&
884 	    pci_get_device(dev) == DL_DEVICEID_550TX &&
885 	    pci_get_revid(dev) == 0x12 )
886 		sc->ste_one_phy = 1;
887 
888 	/*
889 	 * Handle power management nonsense.
890 	 */
891 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
892 		u_int32_t		iobase, membase, irq;
893 
894 		/* Save important PCI config data. */
895 		iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
896 		membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
897 		irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
898 
899 		/* Reset the power state. */
900 		device_printf(dev, "chip is in D%d power mode "
901 		"-- setting to D0\n", pci_get_powerstate(dev));
902 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
903 
904 		/* Restore PCI config data. */
905 		pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
906 		pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
907 		pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
908 	}
909 
910 	/*
911 	 * Map control/status registers.
912 	 */
913 	pci_enable_busmaster(dev);
914 
915 	rid = STE_RID;
916 	sc->ste_res = bus_alloc_resource_any(dev, STE_RES, &rid, RF_ACTIVE);
917 
918 	if (sc->ste_res == NULL) {
919 		device_printf(dev, "couldn't map ports/memory\n");
920 		error = ENXIO;
921 		goto fail;
922 	}
923 
924 	sc->ste_btag = rman_get_bustag(sc->ste_res);
925 	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
926 
927 	rid = 0;
928 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
929 	    RF_SHAREABLE | RF_ACTIVE);
930 
931 	if (sc->ste_irq == NULL) {
932 		device_printf(dev, "couldn't map interrupt\n");
933 		error = ENXIO;
934 		goto fail;
935 	}
936 
937 	callout_init(&sc->ste_stat_timer);
938 
939 	ifp = &sc->arpcom.ac_if;
940 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
941 
942 	/* Reset the adapter. */
943 	ste_reset(sc);
944 
945 	/*
946 	 * Get station address from the EEPROM.
947 	 */
948 	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, 3, 0)) {
949 		device_printf(dev, "failed to read station address\n");
950 		error = ENXIO;
951 		goto fail;
952 	}
953 
954 	/* Allocate the descriptor queues. */
955 	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
956 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
957 
958 	if (sc->ste_ldata == NULL) {
959 		device_printf(dev, "no memory for list buffers!\n");
960 		error = ENXIO;
961 		goto fail;
962 	}
963 
964 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
965 
966 	/* Do MII setup. */
967 	if (mii_phy_probe(dev, &sc->ste_miibus,
968 		ste_ifmedia_upd, ste_ifmedia_sts)) {
969 		device_printf(dev, "MII without any phy!\n");
970 		error = ENXIO;
971 		goto fail;
972 	}
973 
974 	ifp->if_softc = sc;
975 	ifp->if_mtu = ETHERMTU;
976 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
977 	ifp->if_ioctl = ste_ioctl;
978 	ifp->if_start = ste_start;
979 	ifp->if_watchdog = ste_watchdog;
980 	ifp->if_init = ste_init;
981 	ifp->if_baudrate = 10000000;
982 	ifq_set_maxlen(&ifp->if_snd, STE_TX_LIST_CNT - 1);
983 	ifq_set_ready(&ifp->if_snd);
984 
985 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
986 
987 	/*
988 	 * Call MI attach routine.
989 	 */
990 	ether_ifattach(ifp, eaddr);
991 
992         /*
993          * Tell the upper layer(s) we support long frames.
994          */
995         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
996 
997 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET,
998 			       ste_intr, sc, &sc->ste_intrhand, NULL);
999 	if (error) {
1000 		device_printf(dev, "couldn't set up irq\n");
1001 		ether_ifdetach(ifp);
1002 		goto fail;
1003 	}
1004 
1005 	return 0;
1006 
1007 fail:
1008 	ste_detach(dev);
1009 	return(error);
1010 }
1011 
1012 static int ste_detach(dev)
1013 	device_t		dev;
1014 {
1015 	struct ste_softc	*sc;
1016 	struct ifnet		*ifp;
1017 
1018 	crit_enter();
1019 
1020 	sc = device_get_softc(dev);
1021 	ifp = &sc->arpcom.ac_if;
1022 
1023 	if (device_is_attached(dev)) {
1024 		if (bus_child_present(dev))
1025 			ste_stop(sc);
1026 		ether_ifdetach(ifp);
1027 	}
1028 	if (sc->ste_miibus != NULL)
1029 		device_delete_child(dev, sc->ste_miibus);
1030 	bus_generic_detach(dev);
1031 
1032 	if (sc->ste_intrhand != NULL)
1033 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1034 
1035 	crit_exit();
1036 
1037 	if (sc->ste_irq != NULL)
1038 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1039 	if (sc->ste_res != NULL)
1040 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1041 	if (sc->ste_ldata != NULL) {
1042 		contigfree(sc->ste_ldata, sizeof(struct ste_list_data),
1043 			   M_DEVBUF);
1044 	}
1045 
1046 	return(0);
1047 }
1048 
1049 static int ste_newbuf(sc, c, m)
1050 	struct ste_softc	*sc;
1051 	struct ste_chain_onefrag	*c;
1052 	struct mbuf		*m;
1053 {
1054 	struct mbuf		*m_new = NULL;
1055 
1056 	if (m == NULL) {
1057 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1058 		if (m_new == NULL)
1059 			return(ENOBUFS);
1060 		MCLGET(m_new, MB_DONTWAIT);
1061 		if (!(m_new->m_flags & M_EXT)) {
1062 			m_freem(m_new);
1063 			return(ENOBUFS);
1064 		}
1065 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1066 	} else {
1067 		m_new = m;
1068 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1069 		m_new->m_data = m_new->m_ext.ext_buf;
1070 	}
1071 
1072 	m_adj(m_new, ETHER_ALIGN);
1073 
1074 	c->ste_mbuf = m_new;
1075 	c->ste_ptr->ste_status = 0;
1076 	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1077 	c->ste_ptr->ste_frag.ste_len = (1536 + EVL_ENCAPLEN) | STE_FRAG_LAST;
1078 
1079 	return(0);
1080 }
1081 
1082 static int ste_init_rx_list(sc)
1083 	struct ste_softc	*sc;
1084 {
1085 	struct ste_chain_data	*cd;
1086 	struct ste_list_data	*ld;
1087 	int			i;
1088 
1089 	cd = &sc->ste_cdata;
1090 	ld = sc->ste_ldata;
1091 
1092 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1093 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1094 		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1095 			return(ENOBUFS);
1096 		if (i == (STE_RX_LIST_CNT - 1)) {
1097 			cd->ste_rx_chain[i].ste_next =
1098 			    &cd->ste_rx_chain[0];
1099 			ld->ste_rx_list[i].ste_next =
1100 			    vtophys(&ld->ste_rx_list[0]);
1101 		} else {
1102 			cd->ste_rx_chain[i].ste_next =
1103 			    &cd->ste_rx_chain[i + 1];
1104 			ld->ste_rx_list[i].ste_next =
1105 			    vtophys(&ld->ste_rx_list[i + 1]);
1106 		}
1107 		ld->ste_rx_list[i].ste_status = 0;
1108 	}
1109 
1110 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1111 
1112 	return(0);
1113 }
1114 
1115 static void ste_init_tx_list(sc)
1116 	struct ste_softc	*sc;
1117 {
1118 	struct ste_chain_data	*cd;
1119 	struct ste_list_data	*ld;
1120 	int			i;
1121 
1122 	cd = &sc->ste_cdata;
1123 	ld = sc->ste_ldata;
1124 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1125 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1126 		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1127 		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1128 		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1129 		if (i == (STE_TX_LIST_CNT - 1))
1130 			cd->ste_tx_chain[i].ste_next =
1131 			    &cd->ste_tx_chain[0];
1132 		else
1133 			cd->ste_tx_chain[i].ste_next =
1134 			    &cd->ste_tx_chain[i + 1];
1135 		if (i == 0)
1136 			cd->ste_tx_chain[i].ste_prev =
1137 			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1138 		else
1139 			cd->ste_tx_chain[i].ste_prev =
1140 			     &cd->ste_tx_chain[i - 1];
1141 	}
1142 
1143 	cd->ste_tx_prod = 0;
1144 	cd->ste_tx_cons = 0;
1145 	cd->ste_tx_cnt = 0;
1146 
1147 	return;
1148 }
1149 
1150 static void ste_init(xsc)
1151 	void			*xsc;
1152 {
1153 	struct ste_softc	*sc;
1154 	int			i;
1155 	struct ifnet		*ifp;
1156 	struct mii_data		*mii;
1157 
1158 	crit_enter();
1159 
1160 	sc = xsc;
1161 	ifp = &sc->arpcom.ac_if;
1162 	mii = device_get_softc(sc->ste_miibus);
1163 
1164 	ste_stop(sc);
1165 
1166 	/* Init our MAC address */
1167 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1168 		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1169 	}
1170 
1171 	/* Init RX list */
1172 	if (ste_init_rx_list(sc) == ENOBUFS) {
1173 		if_printf(ifp, "initialization failed: no "
1174 		    "memory for RX buffers\n");
1175 		ste_stop(sc);
1176 		crit_exit();
1177 		return;
1178 	}
1179 
1180 	/* Set RX polling interval */
1181 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 1);
1182 
1183 	/* Init TX descriptors */
1184 	ste_init_tx_list(sc);
1185 
1186 	/* Set the TX freethresh value */
1187 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1188 
1189 	/* Set the TX start threshold for best performance. */
1190 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1191 
1192 	/* Set the TX reclaim threshold. */
1193 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1194 
1195 	/* Set up the RX filter. */
1196 	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1197 
1198 	/* If we want promiscuous mode, set the allframes bit. */
1199 	if (ifp->if_flags & IFF_PROMISC) {
1200 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1201 	} else {
1202 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1203 	}
1204 
1205 	/* Set capture broadcast bit to accept broadcast frames. */
1206 	if (ifp->if_flags & IFF_BROADCAST) {
1207 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1208 	} else {
1209 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1210 	}
1211 
1212 	ste_setmulti(sc);
1213 
1214 	/* Load the address of the RX list. */
1215 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1216 	ste_wait(sc);
1217 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1218 	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1219 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1220 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1221 
1222 	/* Set TX polling interval (defer until we TX first packet */
1223 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1224 
1225 	/* Load address of the TX list */
1226 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1227 	ste_wait(sc);
1228 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1229 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1230 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1231 	ste_wait(sc);
1232 	sc->ste_tx_prev_idx=-1;
1233 
1234 	/* Enable receiver and transmitter */
1235 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1236 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1237 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1238 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1239 
1240 	/* Enable stats counters. */
1241 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1242 
1243 	/* Enable interrupts. */
1244 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1245 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1246 
1247 	/* Accept VLAN length packets */
1248 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + EVL_ENCAPLEN);
1249 
1250 	ste_ifmedia_upd(ifp);
1251 
1252 	ifp->if_flags |= IFF_RUNNING;
1253 	ifp->if_flags &= ~IFF_OACTIVE;
1254 
1255 	crit_exit();
1256 
1257 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
1258 
1259 	return;
1260 }
1261 
1262 static void ste_stop(sc)
1263 	struct ste_softc	*sc;
1264 {
1265 	int			i;
1266 	struct ifnet		*ifp;
1267 
1268 	ifp = &sc->arpcom.ac_if;
1269 
1270 	callout_stop(&sc->ste_stat_timer);
1271 
1272 	CSR_WRITE_2(sc, STE_IMR, 0);
1273 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1274 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1275 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1276 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1277 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1278 	ste_wait(sc);
1279 	/*
1280 	 * Try really hard to stop the RX engine or under heavy RX
1281 	 * data chip will write into de-allocated memory.
1282 	 */
1283 	ste_reset(sc);
1284 
1285 	sc->ste_link = 0;
1286 
1287 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1288 		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1289 			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1290 			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1291 		}
1292 	}
1293 
1294 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1295 		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1296 			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1297 			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1298 		}
1299 	}
1300 
1301 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1302 
1303 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1304 
1305 	return;
1306 }
1307 
1308 static void ste_reset(sc)
1309 	struct ste_softc	*sc;
1310 {
1311 	int			i;
1312 
1313 	STE_SETBIT4(sc, STE_ASICCTL,
1314 	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1315 	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1316 	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1317 	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1318 	    STE_ASICCTL_EXTRESET_RESET);
1319 
1320 	DELAY(100000);
1321 
1322 	for (i = 0; i < STE_TIMEOUT; i++) {
1323 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1324 			break;
1325 	}
1326 
1327 	if (i == STE_TIMEOUT)
1328 		if_printf(&sc->arpcom.ac_if, "global reset never completed\n");
1329 
1330 	return;
1331 }
1332 
1333 static int ste_ioctl(ifp, command, data, cr)
1334 	struct ifnet		*ifp;
1335 	u_long			command;
1336 	caddr_t			data;
1337 	struct ucred		*cr;
1338 {
1339 	struct ste_softc	*sc;
1340 	struct ifreq		*ifr;
1341 	struct mii_data		*mii;
1342 	int			error = 0;
1343 
1344 	crit_enter();
1345 
1346 	sc = ifp->if_softc;
1347 	ifr = (struct ifreq *)data;
1348 
1349 	switch(command) {
1350 	case SIOCSIFFLAGS:
1351 		if (ifp->if_flags & IFF_UP) {
1352 			if (ifp->if_flags & IFF_RUNNING &&
1353 			    ifp->if_flags & IFF_PROMISC &&
1354 			    !(sc->ste_if_flags & IFF_PROMISC)) {
1355 				STE_SETBIT1(sc, STE_RX_MODE,
1356 				    STE_RXMODE_PROMISC);
1357 			} else if (ifp->if_flags & IFF_RUNNING &&
1358 			    !(ifp->if_flags & IFF_PROMISC) &&
1359 			    sc->ste_if_flags & IFF_PROMISC) {
1360 				STE_CLRBIT1(sc, STE_RX_MODE,
1361 				    STE_RXMODE_PROMISC);
1362 			}
1363 			if (!(ifp->if_flags & IFF_RUNNING)) {
1364 				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1365 				ste_init(sc);
1366 			}
1367 		} else {
1368 			if (ifp->if_flags & IFF_RUNNING)
1369 				ste_stop(sc);
1370 		}
1371 		sc->ste_if_flags = ifp->if_flags;
1372 		error = 0;
1373 		break;
1374 	case SIOCADDMULTI:
1375 	case SIOCDELMULTI:
1376 		ste_setmulti(sc);
1377 		error = 0;
1378 		break;
1379 	case SIOCGIFMEDIA:
1380 	case SIOCSIFMEDIA:
1381 		mii = device_get_softc(sc->ste_miibus);
1382 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1383 		break;
1384 	default:
1385 		error = ether_ioctl(ifp, command, data);
1386 		break;
1387 	}
1388 
1389 	crit_exit();
1390 
1391 	return(error);
1392 }
1393 
1394 static int ste_encap(sc, c, m_head)
1395 	struct ste_softc	*sc;
1396 	struct ste_chain	*c;
1397 	struct mbuf		*m_head;
1398 {
1399 	int			frag = 0;
1400 	struct ste_frag		*f = NULL;
1401 	struct mbuf		*m;
1402 	struct ste_desc		*d;
1403 	int			total_len = 0;
1404 
1405 	d = c->ste_ptr;
1406 	d->ste_ctl = 0;
1407 
1408 encap_retry:
1409 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1410 		if (m->m_len != 0) {
1411 			if (frag == STE_MAXFRAGS)
1412 				break;
1413 			total_len += m->m_len;
1414 			f = &d->ste_frags[frag];
1415 			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1416 			f->ste_len = m->m_len;
1417 			frag++;
1418 		}
1419 	}
1420 
1421 	if (m != NULL) {
1422 		struct mbuf *mn;
1423 
1424 		/*
1425 		 * We ran out of segments. We have to recopy this
1426 		 * mbuf chain first. Bail out if we can't get the
1427 		 * new buffers.  Code borrowed from if_fxp.c.
1428 		 */
1429 		MGETHDR(mn, MB_DONTWAIT, MT_DATA);
1430 		if (mn == NULL) {
1431 			m_freem(m_head);
1432 			return ENOMEM;
1433 		}
1434 		if (m_head->m_pkthdr.len > MHLEN) {
1435 			MCLGET(mn, MB_DONTWAIT);
1436 			if ((mn->m_flags & M_EXT) == 0) {
1437 				m_freem(mn);
1438 				m_freem(m_head);
1439 				return ENOMEM;
1440 			}
1441 		}
1442 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1443 		    mtod(mn, caddr_t));
1444 		mn->m_pkthdr.len = mn->m_len = m_head->m_pkthdr.len;
1445 		m_freem(m_head);
1446 		m_head = mn;
1447 		goto encap_retry;
1448 	}
1449 
1450 	c->ste_mbuf = m_head;
1451 	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1452 	d->ste_ctl = 1;
1453 
1454 	return(0);
1455 }
1456 
1457 static void ste_start(ifp)
1458 	struct ifnet		*ifp;
1459 {
1460 	struct ste_softc	*sc;
1461 	struct mbuf		*m_head = NULL;
1462 	struct ste_chain	*cur_tx = NULL;
1463 	int			idx;
1464 
1465 	sc = ifp->if_softc;
1466 
1467 	if (!sc->ste_link)
1468 		return;
1469 
1470 	if (ifp->if_flags & IFF_OACTIVE)
1471 		return;
1472 
1473 	idx = sc->ste_cdata.ste_tx_prod;
1474 
1475 	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1476 
1477 		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1478 			ifp->if_flags |= IFF_OACTIVE;
1479 			break;
1480 		}
1481 
1482 		m_head = ifq_dequeue(&ifp->if_snd);
1483 		if (m_head == NULL)
1484 			break;
1485 
1486 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1487 
1488 		if (ste_encap(sc, cur_tx, m_head) != 0)
1489 			break;
1490 
1491 		cur_tx->ste_ptr->ste_next = 0;
1492 
1493 		if(sc->ste_tx_prev_idx < 0){
1494 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1495 			/* Load address of the TX list */
1496 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1497 			ste_wait(sc);
1498 
1499 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1500 			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1501 
1502 			/* Set TX polling interval to start TX engine */
1503 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1504 
1505 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1506 			ste_wait(sc);
1507 		}else{
1508 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1509 			sc->ste_cdata.ste_tx_chain[
1510 			    sc->ste_tx_prev_idx].ste_ptr->ste_next
1511 				= cur_tx->ste_phys;
1512 		}
1513 
1514 		sc->ste_tx_prev_idx=idx;
1515 
1516 		BPF_MTAP(ifp, cur_tx->ste_mbuf);
1517 
1518 		STE_INC(idx, STE_TX_LIST_CNT);
1519 		sc->ste_cdata.ste_tx_cnt++;
1520 		ifp->if_timer = 5;
1521 		sc->ste_cdata.ste_tx_prod = idx;
1522 	}
1523 
1524 	return;
1525 }
1526 
1527 static void ste_watchdog(ifp)
1528 	struct ifnet		*ifp;
1529 {
1530 	struct ste_softc	*sc;
1531 
1532 	sc = ifp->if_softc;
1533 
1534 	ifp->if_oerrors++;
1535 	if_printf(ifp, "watchdog timeout\n");
1536 
1537 	ste_txeoc(sc);
1538 	ste_txeof(sc);
1539 	ste_rxeof(sc);
1540 	ste_reset(sc);
1541 	ste_init(sc);
1542 
1543 	if (!ifq_is_empty(&ifp->if_snd))
1544 		ste_start(ifp);
1545 
1546 	return;
1547 }
1548 
1549 static void ste_shutdown(dev)
1550 	device_t		dev;
1551 {
1552 	struct ste_softc	*sc;
1553 
1554 	sc = device_get_softc(dev);
1555 
1556 	ste_stop(sc);
1557 
1558 	return;
1559 }
1560