xref: /dragonfly/sys/dev/netif/ste/if_ste.c (revision 691866f9)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ste.c,v 1.14.2.9 2003/02/05 22:03:57 mbr Exp $
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/sockio.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/serialize.h>
43 #include <sys/bus.h>
44 #include <sys/rman.h>
45 #include <sys/thread2.h>
46 #include <sys/interrupt.h>
47 
48 #include <net/if.h>
49 #include <net/ifq_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/vlan/if_vlan_var.h>
55 
56 #include <net/bpf.h>
57 
58 #include <vm/vm.h>              /* for vtophys */
59 #include <vm/pmap.h>            /* for vtophys */
60 
61 #include "../mii_layer/mii.h"
62 #include "../mii_layer/miivar.h"
63 
64 #include <bus/pci/pcidevs.h>
65 #include <bus/pci/pcireg.h>
66 #include <bus/pci/pcivar.h>
67 
68 /* "controller miibus0" required.  See GENERIC if you get errors here. */
69 #include "miibus_if.h"
70 
71 #define STE_USEIOSPACE
72 
73 #include "if_stereg.h"
74 
75 /*
76  * Various supported device vendors/types and their names.
77  */
78 static struct ste_type ste_devs[] = {
79 	{ PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
80 		"Sundance ST201 10/100BaseTX" },
81 	{ PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201_0,
82 		"Sundance ST201 10/100BaseTX" },
83 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
84 		"D-Link DFE-550TX 10/100BaseTX" },
85 	{ 0, 0, NULL }
86 };
87 
88 static int ste_probe		(device_t);
89 static int ste_attach		(device_t);
90 static int ste_detach		(device_t);
91 static void ste_init		(void *);
92 static void ste_intr		(void *);
93 static void ste_rxeof		(struct ste_softc *);
94 static void ste_txeoc		(struct ste_softc *);
95 static void ste_txeof		(struct ste_softc *);
96 static void ste_stats_update	(void *);
97 static void ste_stop		(struct ste_softc *);
98 static void ste_reset		(struct ste_softc *);
99 static int ste_ioctl		(struct ifnet *, u_long, caddr_t,
100 					struct ucred *);
101 static int ste_encap		(struct ste_softc *, struct ste_chain *,
102 					struct mbuf *);
103 static void ste_start		(struct ifnet *, struct ifaltq_subque *);
104 static void ste_watchdog	(struct ifnet *);
105 static void ste_shutdown	(device_t);
106 static int ste_newbuf		(struct ste_softc *,
107 					struct ste_chain_onefrag *,
108 					struct mbuf *);
109 static int ste_ifmedia_upd	(struct ifnet *);
110 static void ste_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
111 
112 static void ste_mii_sync	(struct ste_softc *);
113 static void ste_mii_send	(struct ste_softc *, u_int32_t, int);
114 static int ste_mii_readreg	(struct ste_softc *,
115 					struct ste_mii_frame *);
116 static int ste_mii_writereg	(struct ste_softc *,
117 					struct ste_mii_frame *);
118 static int ste_miibus_readreg	(device_t, int, int);
119 static int ste_miibus_writereg	(device_t, int, int, int);
120 static void ste_miibus_statchg	(device_t);
121 
122 static int ste_eeprom_wait	(struct ste_softc *);
123 static int ste_read_eeprom	(struct ste_softc *, caddr_t, int,
124 							int, int);
125 static void ste_wait		(struct ste_softc *);
126 static void ste_setmulti	(struct ste_softc *);
127 static int ste_init_rx_list	(struct ste_softc *);
128 static void ste_init_tx_list	(struct ste_softc *);
129 
130 #ifdef STE_USEIOSPACE
131 #define STE_RES			SYS_RES_IOPORT
132 #define STE_RID			STE_PCI_LOIO
133 #else
134 #define STE_RES			SYS_RES_MEMORY
135 #define STE_RID			STE_PCI_LOMEM
136 #endif
137 
138 static device_method_t ste_methods[] = {
139 	/* Device interface */
140 	DEVMETHOD(device_probe,		ste_probe),
141 	DEVMETHOD(device_attach,	ste_attach),
142 	DEVMETHOD(device_detach,	ste_detach),
143 	DEVMETHOD(device_shutdown,	ste_shutdown),
144 
145 	/* bus interface */
146 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
147 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
148 
149 	/* MII interface */
150 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
151 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
152 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
153 
154 	DEVMETHOD_END
155 };
156 
157 static driver_t ste_driver = {
158 	"ste",
159 	ste_methods,
160 	sizeof(struct ste_softc)
161 };
162 
163 static devclass_t ste_devclass;
164 
165 DECLARE_DUMMY_MODULE(if_ste);
166 DRIVER_MODULE(if_ste, pci, ste_driver, ste_devclass, NULL, NULL);
167 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, NULL, NULL);
168 
169 #define STE_SETBIT4(sc, reg, x)				\
170 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
171 
172 #define STE_CLRBIT4(sc, reg, x)				\
173 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
174 
175 #define STE_SETBIT2(sc, reg, x)				\
176 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
177 
178 #define STE_CLRBIT2(sc, reg, x)				\
179 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
180 
181 #define STE_SETBIT1(sc, reg, x)				\
182 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
183 
184 #define STE_CLRBIT1(sc, reg, x)				\
185 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
186 
187 
188 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
189 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
190 
191 /*
192  * Sync the PHYs by setting data bit and strobing the clock 32 times.
193  */
194 static void
195 ste_mii_sync(struct ste_softc *sc)
196 {
197 	int		i;
198 
199 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
200 
201 	for (i = 0; i < 32; i++) {
202 		MII_SET(STE_PHYCTL_MCLK);
203 		DELAY(1);
204 		MII_CLR(STE_PHYCTL_MCLK);
205 		DELAY(1);
206 	}
207 
208 	return;
209 }
210 
211 /*
212  * Clock a series of bits through the MII.
213  */
214 static void
215 ste_mii_send(struct ste_softc *sc, u_int32_t bits, int cnt)
216 {
217 	int			i;
218 
219 	MII_CLR(STE_PHYCTL_MCLK);
220 
221 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
222                 if (bits & i) {
223 			MII_SET(STE_PHYCTL_MDATA);
224                 } else {
225 			MII_CLR(STE_PHYCTL_MDATA);
226                 }
227 		DELAY(1);
228 		MII_CLR(STE_PHYCTL_MCLK);
229 		DELAY(1);
230 		MII_SET(STE_PHYCTL_MCLK);
231 	}
232 }
233 
234 /*
235  * Read an PHY register through the MII.
236  */
237 static int
238 ste_mii_readreg(struct ste_softc *sc, struct ste_mii_frame *frame)
239 {
240 	int			i, ack;
241 
242 	/*
243 	 * Set up frame for RX.
244 	 */
245 	frame->mii_stdelim = STE_MII_STARTDELIM;
246 	frame->mii_opcode = STE_MII_READOP;
247 	frame->mii_turnaround = 0;
248 	frame->mii_data = 0;
249 
250 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
251 	/*
252  	 * Turn on data xmit.
253 	 */
254 	MII_SET(STE_PHYCTL_MDIR);
255 
256 	ste_mii_sync(sc);
257 
258 	/*
259 	 * Send command/address info.
260 	 */
261 	ste_mii_send(sc, frame->mii_stdelim, 2);
262 	ste_mii_send(sc, frame->mii_opcode, 2);
263 	ste_mii_send(sc, frame->mii_phyaddr, 5);
264 	ste_mii_send(sc, frame->mii_regaddr, 5);
265 
266 	/* Turn off xmit. */
267 	MII_CLR(STE_PHYCTL_MDIR);
268 
269 	/* Idle bit */
270 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
271 	DELAY(1);
272 	MII_SET(STE_PHYCTL_MCLK);
273 	DELAY(1);
274 
275 	/* Check for ack */
276 	MII_CLR(STE_PHYCTL_MCLK);
277 	DELAY(1);
278 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
279 	MII_SET(STE_PHYCTL_MCLK);
280 	DELAY(1);
281 
282 	/*
283 	 * Now try reading data bits. If the ack failed, we still
284 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
285 	 */
286 	if (ack) {
287 		for(i = 0; i < 16; i++) {
288 			MII_CLR(STE_PHYCTL_MCLK);
289 			DELAY(1);
290 			MII_SET(STE_PHYCTL_MCLK);
291 			DELAY(1);
292 		}
293 		goto fail;
294 	}
295 
296 	for (i = 0x8000; i; i >>= 1) {
297 		MII_CLR(STE_PHYCTL_MCLK);
298 		DELAY(1);
299 		if (!ack) {
300 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
301 				frame->mii_data |= i;
302 			DELAY(1);
303 		}
304 		MII_SET(STE_PHYCTL_MCLK);
305 		DELAY(1);
306 	}
307 
308 fail:
309 
310 	MII_CLR(STE_PHYCTL_MCLK);
311 	DELAY(1);
312 	MII_SET(STE_PHYCTL_MCLK);
313 	DELAY(1);
314 
315 	if (ack)
316 		return(1);
317 	return(0);
318 }
319 
320 /*
321  * Write to a PHY register through the MII.
322  */
323 static int
324 ste_mii_writereg(struct ste_softc *sc, struct ste_mii_frame *frame)
325 {
326 	/*
327 	 * Set up frame for TX.
328 	 */
329 
330 	frame->mii_stdelim = STE_MII_STARTDELIM;
331 	frame->mii_opcode = STE_MII_WRITEOP;
332 	frame->mii_turnaround = STE_MII_TURNAROUND;
333 
334 	/*
335  	 * Turn on data output.
336 	 */
337 	MII_SET(STE_PHYCTL_MDIR);
338 
339 	ste_mii_sync(sc);
340 
341 	ste_mii_send(sc, frame->mii_stdelim, 2);
342 	ste_mii_send(sc, frame->mii_opcode, 2);
343 	ste_mii_send(sc, frame->mii_phyaddr, 5);
344 	ste_mii_send(sc, frame->mii_regaddr, 5);
345 	ste_mii_send(sc, frame->mii_turnaround, 2);
346 	ste_mii_send(sc, frame->mii_data, 16);
347 
348 	/* Idle bit. */
349 	MII_SET(STE_PHYCTL_MCLK);
350 	DELAY(1);
351 	MII_CLR(STE_PHYCTL_MCLK);
352 	DELAY(1);
353 
354 	/*
355 	 * Turn off xmit.
356 	 */
357 	MII_CLR(STE_PHYCTL_MDIR);
358 
359 	return(0);
360 }
361 
362 static int
363 ste_miibus_readreg(device_t dev, int phy, int reg)
364 {
365 	struct ste_softc	*sc;
366 	struct ste_mii_frame	frame;
367 
368 	sc = device_get_softc(dev);
369 
370 	if ( sc->ste_one_phy && phy != 0 )
371 		return (0);
372 
373 	bzero((char *)&frame, sizeof(frame));
374 
375 	frame.mii_phyaddr = phy;
376 	frame.mii_regaddr = reg;
377 	ste_mii_readreg(sc, &frame);
378 
379 	return(frame.mii_data);
380 }
381 
382 static int
383 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
384 {
385 	struct ste_softc	*sc;
386 	struct ste_mii_frame	frame;
387 
388 	sc = device_get_softc(dev);
389 	bzero((char *)&frame, sizeof(frame));
390 
391 	frame.mii_phyaddr = phy;
392 	frame.mii_regaddr = reg;
393 	frame.mii_data = data;
394 
395 	ste_mii_writereg(sc, &frame);
396 
397 	return(0);
398 }
399 
400 static void
401 ste_miibus_statchg(device_t dev)
402 {
403 	struct ste_softc	*sc;
404 	struct mii_data		*mii;
405 	int			i;
406 
407 	sc = device_get_softc(dev);
408 	mii = device_get_softc(sc->ste_miibus);
409 
410 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
411 		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
412 	} else {
413 		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
414 	}
415 
416 	STE_SETBIT4(sc, STE_ASICCTL,STE_ASICCTL_RX_RESET |
417 		    STE_ASICCTL_TX_RESET);
418 	for (i = 0; i < STE_TIMEOUT; i++) {
419 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
420 			break;
421 	}
422 	if (i == STE_TIMEOUT)
423 		if_printf(&sc->arpcom.ac_if, "rx reset never completed\n");
424 
425 	return;
426 }
427 
428 static int
429 ste_ifmedia_upd(struct ifnet *ifp)
430 {
431 	struct ste_softc	*sc;
432 	struct mii_data		*mii;
433 
434 	sc = ifp->if_softc;
435 	mii = device_get_softc(sc->ste_miibus);
436 	sc->ste_link = 0;
437 	if (mii->mii_instance) {
438 		struct mii_softc	*miisc;
439 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
440 		    miisc = LIST_NEXT(miisc, mii_list))
441 			mii_phy_reset(miisc);
442 	}
443 	mii_mediachg(mii);
444 
445 	return(0);
446 }
447 
448 static void
449 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
450 {
451 	struct ste_softc	*sc;
452 	struct mii_data		*mii;
453 
454 	sc = ifp->if_softc;
455 	mii = device_get_softc(sc->ste_miibus);
456 
457 	mii_pollstat(mii);
458 	ifmr->ifm_active = mii->mii_media_active;
459 	ifmr->ifm_status = mii->mii_media_status;
460 
461 	return;
462 }
463 
464 static void
465 ste_wait(struct ste_softc *sc)
466 {
467 	int		i;
468 
469 	for (i = 0; i < STE_TIMEOUT; i++) {
470 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
471 			break;
472 	}
473 
474 	if (i == STE_TIMEOUT)
475 		if_printf(&sc->arpcom.ac_if, "command never completed!\n");
476 
477 	return;
478 }
479 
480 /*
481  * The EEPROM is slow: give it time to come ready after issuing
482  * it a command.
483  */
484 static int
485 ste_eeprom_wait(struct ste_softc *sc)
486 {
487 	int			i;
488 
489 	DELAY(1000);
490 
491 	for (i = 0; i < 100; i++) {
492 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
493 			DELAY(1000);
494 		else
495 			break;
496 	}
497 
498 	if (i == 100) {
499 		if_printf(&sc->arpcom.ac_if, "eeprom failed to come ready\n");
500 		return(1);
501 	}
502 
503 	return(0);
504 }
505 
506 /*
507  * Read a sequence of words from the EEPROM. Note that ethernet address
508  * data is stored in the EEPROM in network byte order.
509  */
510 static int
511 ste_read_eeprom(struct ste_softc *sc, caddr_t dest, int off, int cnt, int swap)
512 {
513 	int			err = 0, i;
514 	u_int16_t		word = 0, *ptr;
515 
516 	if (ste_eeprom_wait(sc))
517 		return(1);
518 
519 	for (i = 0; i < cnt; i++) {
520 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
521 		err = ste_eeprom_wait(sc);
522 		if (err)
523 			break;
524 		word = CSR_READ_2(sc, STE_EEPROM_DATA);
525 		ptr = (u_int16_t *)(dest + (i * 2));
526 		if (swap)
527 			*ptr = ntohs(word);
528 		else
529 			*ptr = word;
530 	}
531 
532 	return(err ? 1 : 0);
533 }
534 
535 static void
536 ste_setmulti(struct ste_softc *sc)
537 {
538 	struct ifnet		*ifp;
539 	int			h = 0;
540 	u_int32_t		hashes[2] = { 0, 0 };
541 	struct ifmultiaddr	*ifma;
542 
543 	ifp = &sc->arpcom.ac_if;
544 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
545 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
546 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
547 		return;
548 	}
549 
550 	/* first, zot all the existing hash bits */
551 	CSR_WRITE_2(sc, STE_MAR0, 0);
552 	CSR_WRITE_2(sc, STE_MAR1, 0);
553 	CSR_WRITE_2(sc, STE_MAR2, 0);
554 	CSR_WRITE_2(sc, STE_MAR3, 0);
555 
556 	/* now program new ones */
557 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
558 		if (ifma->ifma_addr->sa_family != AF_LINK)
559 			continue;
560 		h = ether_crc32_be(
561 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
562 			ETHER_ADDR_LEN) & 0x3f;
563 		if (h < 32)
564 			hashes[0] |= (1 << h);
565 		else
566 			hashes[1] |= (1 << (h - 32));
567 	}
568 
569 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
570 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
571 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
572 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
573 	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
574 	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
575 
576 	return;
577 }
578 
579 static void
580 ste_intr(void *xsc)
581 {
582 	struct ste_softc	*sc;
583 	struct ifnet		*ifp;
584 	u_int16_t		status;
585 
586 	sc = xsc;
587 	ifp = &sc->arpcom.ac_if;
588 
589 	/* See if this is really our interrupt. */
590 	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH))
591 		return;
592 
593 	for (;;) {
594 		status = CSR_READ_2(sc, STE_ISR_ACK);
595 
596 		if (!(status & STE_INTRS))
597 			break;
598 
599 		if (status & STE_ISR_RX_DMADONE)
600 			ste_rxeof(sc);
601 
602 		if (status & STE_ISR_TX_DMADONE)
603 			ste_txeof(sc);
604 
605 		if (status & STE_ISR_TX_DONE)
606 			ste_txeoc(sc);
607 
608 		if (status & STE_ISR_STATS_OFLOW) {
609 			callout_stop(&sc->ste_stat_timer);
610 			ste_stats_update(sc);
611 		}
612 
613 		if (status & STE_ISR_LINKEVENT)
614 			mii_pollstat(device_get_softc(sc->ste_miibus));
615 
616 		if (status & STE_ISR_HOSTERR) {
617 			ste_reset(sc);
618 			ste_init(sc);
619 		}
620 	}
621 
622 	/* Re-enable interrupts */
623 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
624 
625 	if (!ifq_is_empty(&ifp->if_snd))
626 		if_devstart(ifp);
627 }
628 
629 /*
630  * A frame has been uploaded: pass the resulting mbuf chain up to
631  * the higher level protocols.
632  */
633 static void
634 ste_rxeof(struct ste_softc *sc)
635 {
636         struct mbuf		*m;
637         struct ifnet		*ifp;
638 	struct ste_chain_onefrag	*cur_rx;
639 	int			total_len = 0, count=0;
640 	u_int32_t		rxstat;
641 
642 	ifp = &sc->arpcom.ac_if;
643 
644 	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
645 	      & STE_RXSTAT_DMADONE) {
646 		if ((STE_RX_LIST_CNT - count) < 3) {
647 			break;
648 		}
649 
650 		cur_rx = sc->ste_cdata.ste_rx_head;
651 		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
652 
653 		/*
654 		 * If an error occurs, update stats, clear the
655 		 * status word and leave the mbuf cluster in place:
656 		 * it should simply get re-used next time this descriptor
657 	 	 * comes up in the ring.
658 		 */
659 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
660 			IFNET_STAT_INC(ifp, ierrors, 1);
661 			cur_rx->ste_ptr->ste_status = 0;
662 			continue;
663 		}
664 
665 		/*
666 		 * If there error bit was not set, the upload complete
667 		 * bit should be set which means we have a valid packet.
668 		 * If not, something truly strange has happened.
669 		 */
670 		if (!(rxstat & STE_RXSTAT_DMADONE)) {
671 			if_printf(ifp, "bad receive status -- packet dropped");
672 			IFNET_STAT_INC(ifp, ierrors, 1);
673 			cur_rx->ste_ptr->ste_status = 0;
674 			continue;
675 		}
676 
677 		/* No errors; receive the packet. */
678 		m = cur_rx->ste_mbuf;
679 		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
680 
681 		/*
682 		 * Try to conjure up a new mbuf cluster. If that
683 		 * fails, it means we have an out of memory condition and
684 		 * should leave the buffer in place and continue. This will
685 		 * result in a lost packet, but there's little else we
686 		 * can do in this situation.
687 		 */
688 		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
689 			IFNET_STAT_INC(ifp, ierrors, 1);
690 			cur_rx->ste_ptr->ste_status = 0;
691 			continue;
692 		}
693 
694 		IFNET_STAT_INC(ifp, ipackets, 1);
695 		m->m_pkthdr.rcvif = ifp;
696 		m->m_pkthdr.len = m->m_len = total_len;
697 
698 		ifp->if_input(ifp, m);
699 
700 		cur_rx->ste_ptr->ste_status = 0;
701 		count++;
702 	}
703 
704 	return;
705 }
706 
707 static void
708 ste_txeoc(struct ste_softc *sc)
709 {
710 	u_int8_t		txstat;
711 	struct ifnet		*ifp;
712 
713 	ifp = &sc->arpcom.ac_if;
714 
715 	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
716 	    STE_TXSTATUS_TXDONE) {
717 		if (txstat & STE_TXSTATUS_UNDERRUN ||
718 		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
719 		    txstat & STE_TXSTATUS_RECLAIMERR) {
720 			IFNET_STAT_INC(ifp, oerrors, 1);
721 			if_printf(ifp, "transmission error: %x\n", txstat);
722 
723 			ste_reset(sc);
724 			ste_init(sc);
725 
726 			if (txstat & STE_TXSTATUS_UNDERRUN &&
727 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
728 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
729 				if_printf(ifp, "tx underrun, increasing tx"
730 				    " start threshold to %d bytes\n",
731 				    sc->ste_tx_thresh);
732 			}
733 			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
734 			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
735 			    (STE_PACKET_SIZE >> 4));
736 		}
737 		ste_init(sc);
738 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
739 	}
740 
741 	return;
742 }
743 
744 static void
745 ste_txeof(struct ste_softc *sc)
746 {
747 	struct ste_chain	*cur_tx = NULL;
748 	struct ifnet		*ifp;
749 	int			idx;
750 
751 	ifp = &sc->arpcom.ac_if;
752 
753 	idx = sc->ste_cdata.ste_tx_cons;
754 	while(idx != sc->ste_cdata.ste_tx_prod) {
755 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
756 
757 		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
758 			break;
759 
760 		if (cur_tx->ste_mbuf != NULL) {
761 			m_freem(cur_tx->ste_mbuf);
762 			cur_tx->ste_mbuf = NULL;
763 		}
764 
765 		IFNET_STAT_INC(ifp, opackets, 1);
766 
767 		sc->ste_cdata.ste_tx_cnt--;
768 		STE_INC(idx, STE_TX_LIST_CNT);
769 		ifp->if_timer = 0;
770 	}
771 
772 	sc->ste_cdata.ste_tx_cons = idx;
773 
774 	if (cur_tx != NULL)
775 		ifq_clr_oactive(&ifp->if_snd);
776 
777 	return;
778 }
779 
780 static void
781 ste_stats_update(void *xsc)
782 {
783 	struct ste_softc	*sc;
784 	struct ifnet		*ifp;
785 	struct mii_data		*mii;
786 
787 	sc = xsc;
788 	ifp = &sc->arpcom.ac_if;
789 	mii = device_get_softc(sc->ste_miibus);
790 
791 	lwkt_serialize_enter(ifp->if_serializer);
792 
793         IFNET_STAT_INC(ifp, collisions, CSR_READ_1(sc, STE_LATE_COLLS)
794             + CSR_READ_1(sc, STE_MULTI_COLLS)
795             + CSR_READ_1(sc, STE_SINGLE_COLLS));
796 
797 	if (!sc->ste_link) {
798 		mii_pollstat(mii);
799 		if (mii->mii_media_status & IFM_ACTIVE &&
800 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
801 			sc->ste_link++;
802 			/*
803 			 * we don't get a call-back on re-init so do it
804 			 * otherwise we get stuck in the wrong link state
805 			 */
806 			ste_miibus_statchg(sc->ste_dev);
807 			if (!ifq_is_empty(&ifp->if_snd))
808 				if_devstart(ifp);
809 		}
810 	}
811 
812 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
813 	lwkt_serialize_exit(ifp->if_serializer);
814 }
815 
816 
817 /*
818  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
819  * IDs against our list and return a device name if we find a match.
820  */
821 static int
822 ste_probe(device_t dev)
823 {
824 	struct ste_type		*t;
825 
826 	t = ste_devs;
827 
828 	while(t->ste_name != NULL) {
829 		if ((pci_get_vendor(dev) == t->ste_vid) &&
830 		    (pci_get_device(dev) == t->ste_did)) {
831 			device_set_desc(dev, t->ste_name);
832 			return(0);
833 		}
834 		t++;
835 	}
836 
837 	return(ENXIO);
838 }
839 
840 /*
841  * Attach the interface. Allocate softc structures, do ifmedia
842  * setup and ethernet/BPF attach.
843  */
844 static int
845 ste_attach(device_t dev)
846 {
847 	struct ste_softc	*sc;
848 	struct ifnet		*ifp;
849 	int			error = 0, rid;
850 	uint8_t			eaddr[ETHER_ADDR_LEN];
851 
852 	sc = device_get_softc(dev);
853 	sc->ste_dev = dev;
854 
855 	/*
856 	 * Only use one PHY since this chip reports multiple
857 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
858 	 * it is at 0 & 1.  It is rev 0x12.
859 	 */
860 	if (pci_get_vendor(dev) == PCI_VENDOR_DLINK &&
861 	    pci_get_device(dev) == PCI_PRODUCT_DLINK_DL1002 &&
862 	    pci_get_revid(dev) == 0x12 )
863 		sc->ste_one_phy = 1;
864 
865 	/*
866 	 * Handle power management nonsense.
867 	 */
868 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
869 		u_int32_t		iobase, membase, irq;
870 
871 		/* Save important PCI config data. */
872 		iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
873 		membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
874 		irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
875 
876 		/* Reset the power state. */
877 		device_printf(dev, "chip is in D%d power mode "
878 		"-- setting to D0\n", pci_get_powerstate(dev));
879 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
880 
881 		/* Restore PCI config data. */
882 		pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
883 		pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
884 		pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
885 	}
886 
887 	/*
888 	 * Map control/status registers.
889 	 */
890 	pci_enable_busmaster(dev);
891 
892 	rid = STE_RID;
893 	sc->ste_res = bus_alloc_resource_any(dev, STE_RES, &rid, RF_ACTIVE);
894 
895 	if (sc->ste_res == NULL) {
896 		device_printf(dev, "couldn't map ports/memory\n");
897 		error = ENXIO;
898 		goto fail;
899 	}
900 
901 	sc->ste_btag = rman_get_bustag(sc->ste_res);
902 	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
903 
904 	rid = 0;
905 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
906 	    RF_SHAREABLE | RF_ACTIVE);
907 
908 	if (sc->ste_irq == NULL) {
909 		device_printf(dev, "couldn't map interrupt\n");
910 		error = ENXIO;
911 		goto fail;
912 	}
913 
914 	callout_init(&sc->ste_stat_timer);
915 
916 	ifp = &sc->arpcom.ac_if;
917 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
918 
919 	/* Reset the adapter. */
920 	ste_reset(sc);
921 
922 	/*
923 	 * Get station address from the EEPROM.
924 	 */
925 	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, 3, 0)) {
926 		device_printf(dev, "failed to read station address\n");
927 		error = ENXIO;
928 		goto fail;
929 	}
930 
931 	/* Allocate the descriptor queues. */
932 	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
933 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
934 
935 	if (sc->ste_ldata == NULL) {
936 		device_printf(dev, "no memory for list buffers!\n");
937 		error = ENXIO;
938 		goto fail;
939 	}
940 
941 	/* Do MII setup. */
942 	if (mii_phy_probe(dev, &sc->ste_miibus,
943 		ste_ifmedia_upd, ste_ifmedia_sts)) {
944 		device_printf(dev, "MII without any phy!\n");
945 		error = ENXIO;
946 		goto fail;
947 	}
948 
949 	ifp->if_softc = sc;
950 	ifp->if_mtu = ETHERMTU;
951 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
952 	ifp->if_ioctl = ste_ioctl;
953 	ifp->if_start = ste_start;
954 	ifp->if_watchdog = ste_watchdog;
955 	ifp->if_init = ste_init;
956 	ifp->if_baudrate = 10000000;
957 	ifq_set_maxlen(&ifp->if_snd, STE_TX_LIST_CNT - 1);
958 	ifq_set_ready(&ifp->if_snd);
959 
960 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
961 
962 	/*
963 	 * Call MI attach routine.
964 	 */
965 	ether_ifattach(ifp, eaddr, NULL);
966 
967         /*
968          * Tell the upper layer(s) we support long frames.
969          */
970         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
971 
972 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->ste_irq));
973 
974 	error = bus_setup_intr(dev, sc->ste_irq, INTR_MPSAFE,
975 			       ste_intr, sc, &sc->ste_intrhand,
976 			       ifp->if_serializer);
977 	if (error) {
978 		device_printf(dev, "couldn't set up irq\n");
979 		ether_ifdetach(ifp);
980 		goto fail;
981 	}
982 
983 	return 0;
984 
985 fail:
986 	ste_detach(dev);
987 	return(error);
988 }
989 
990 static int
991 ste_detach(device_t dev)
992 {
993 	struct ste_softc	*sc = device_get_softc(dev);
994 	struct ifnet		*ifp = &sc->arpcom.ac_if;
995 
996 	if (device_is_attached(dev)) {
997 		lwkt_serialize_enter(ifp->if_serializer);
998 		ste_stop(sc);
999 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1000 		lwkt_serialize_exit(ifp->if_serializer);
1001 
1002 		ether_ifdetach(ifp);
1003 	}
1004 	if (sc->ste_miibus != NULL)
1005 		device_delete_child(dev, sc->ste_miibus);
1006 	bus_generic_detach(dev);
1007 
1008 	if (sc->ste_irq != NULL)
1009 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1010 	if (sc->ste_res != NULL)
1011 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1012 	if (sc->ste_ldata != NULL) {
1013 		contigfree(sc->ste_ldata, sizeof(struct ste_list_data),
1014 			   M_DEVBUF);
1015 	}
1016 
1017 	return(0);
1018 }
1019 
1020 static int
1021 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *c,
1022 	   struct mbuf *m)
1023 {
1024 	struct mbuf		*m_new = NULL;
1025 
1026 	if (m == NULL) {
1027 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1028 		if (m_new == NULL)
1029 			return(ENOBUFS);
1030 		MCLGET(m_new, MB_DONTWAIT);
1031 		if (!(m_new->m_flags & M_EXT)) {
1032 			m_freem(m_new);
1033 			return(ENOBUFS);
1034 		}
1035 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1036 	} else {
1037 		m_new = m;
1038 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1039 		m_new->m_data = m_new->m_ext.ext_buf;
1040 	}
1041 
1042 	m_adj(m_new, ETHER_ALIGN);
1043 
1044 	c->ste_mbuf = m_new;
1045 	c->ste_ptr->ste_status = 0;
1046 	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1047 	c->ste_ptr->ste_frag.ste_len = (1536 + EVL_ENCAPLEN) | STE_FRAG_LAST;
1048 
1049 	return(0);
1050 }
1051 
1052 static int
1053 ste_init_rx_list(struct ste_softc *sc)
1054 {
1055 	struct ste_chain_data	*cd;
1056 	struct ste_list_data	*ld;
1057 	int			i;
1058 
1059 	cd = &sc->ste_cdata;
1060 	ld = sc->ste_ldata;
1061 
1062 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1063 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1064 		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1065 			return(ENOBUFS);
1066 		if (i == (STE_RX_LIST_CNT - 1)) {
1067 			cd->ste_rx_chain[i].ste_next =
1068 			    &cd->ste_rx_chain[0];
1069 			ld->ste_rx_list[i].ste_next =
1070 			    vtophys(&ld->ste_rx_list[0]);
1071 		} else {
1072 			cd->ste_rx_chain[i].ste_next =
1073 			    &cd->ste_rx_chain[i + 1];
1074 			ld->ste_rx_list[i].ste_next =
1075 			    vtophys(&ld->ste_rx_list[i + 1]);
1076 		}
1077 		ld->ste_rx_list[i].ste_status = 0;
1078 	}
1079 
1080 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1081 
1082 	return(0);
1083 }
1084 
1085 static void
1086 ste_init_tx_list(struct ste_softc *sc)
1087 {
1088 	struct ste_chain_data	*cd;
1089 	struct ste_list_data	*ld;
1090 	int			i;
1091 
1092 	cd = &sc->ste_cdata;
1093 	ld = sc->ste_ldata;
1094 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1095 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1096 		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1097 		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1098 		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1099 		if (i == (STE_TX_LIST_CNT - 1))
1100 			cd->ste_tx_chain[i].ste_next =
1101 			    &cd->ste_tx_chain[0];
1102 		else
1103 			cd->ste_tx_chain[i].ste_next =
1104 			    &cd->ste_tx_chain[i + 1];
1105 		if (i == 0)
1106 			cd->ste_tx_chain[i].ste_prev =
1107 			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1108 		else
1109 			cd->ste_tx_chain[i].ste_prev =
1110 			     &cd->ste_tx_chain[i - 1];
1111 	}
1112 
1113 	cd->ste_tx_prod = 0;
1114 	cd->ste_tx_cons = 0;
1115 	cd->ste_tx_cnt = 0;
1116 
1117 	return;
1118 }
1119 
1120 static void
1121 ste_init(void *xsc)
1122 {
1123 	struct ste_softc	*sc;
1124 	int			i;
1125 	struct ifnet		*ifp;
1126 
1127 	sc = xsc;
1128 	ifp = &sc->arpcom.ac_if;
1129 
1130 	ste_stop(sc);
1131 
1132 	/* Init our MAC address */
1133 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1134 		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1135 	}
1136 
1137 	/* Init RX list */
1138 	if (ste_init_rx_list(sc) == ENOBUFS) {
1139 		if_printf(ifp, "initialization failed: no "
1140 		    "memory for RX buffers\n");
1141 		ste_stop(sc);
1142 		return;
1143 	}
1144 
1145 	/* Set RX polling interval */
1146 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 1);
1147 
1148 	/* Init TX descriptors */
1149 	ste_init_tx_list(sc);
1150 
1151 	/* Set the TX freethresh value */
1152 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1153 
1154 	/* Set the TX start threshold for best performance. */
1155 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1156 
1157 	/* Set the TX reclaim threshold. */
1158 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1159 
1160 	/* Set up the RX filter. */
1161 	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1162 
1163 	/* If we want promiscuous mode, set the allframes bit. */
1164 	if (ifp->if_flags & IFF_PROMISC) {
1165 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1166 	} else {
1167 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1168 	}
1169 
1170 	/* Set capture broadcast bit to accept broadcast frames. */
1171 	if (ifp->if_flags & IFF_BROADCAST) {
1172 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1173 	} else {
1174 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1175 	}
1176 
1177 	ste_setmulti(sc);
1178 
1179 	/* Load the address of the RX list. */
1180 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1181 	ste_wait(sc);
1182 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1183 	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1184 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1185 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1186 
1187 	/* Set TX polling interval (defer until we TX first packet */
1188 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1189 
1190 	/* Load address of the TX list */
1191 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1192 	ste_wait(sc);
1193 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1194 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1195 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1196 	ste_wait(sc);
1197 	sc->ste_tx_prev_idx=-1;
1198 
1199 	/* Enable receiver and transmitter */
1200 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1201 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1202 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1203 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1204 
1205 	/* Enable stats counters. */
1206 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1207 
1208 	/* Enable interrupts. */
1209 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1210 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1211 
1212 	/* Accept VLAN length packets */
1213 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + EVL_ENCAPLEN);
1214 
1215 	ste_ifmedia_upd(ifp);
1216 
1217 	ifp->if_flags |= IFF_RUNNING;
1218 	ifq_clr_oactive(&ifp->if_snd);
1219 
1220 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
1221 }
1222 
1223 static void
1224 ste_stop(struct ste_softc *sc)
1225 {
1226 	int			i;
1227 	struct ifnet		*ifp;
1228 
1229 	ifp = &sc->arpcom.ac_if;
1230 
1231 	callout_stop(&sc->ste_stat_timer);
1232 
1233 	CSR_WRITE_2(sc, STE_IMR, 0);
1234 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1235 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1236 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1237 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1238 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1239 	ste_wait(sc);
1240 	/*
1241 	 * Try really hard to stop the RX engine or under heavy RX
1242 	 * data chip will write into de-allocated memory.
1243 	 */
1244 	ste_reset(sc);
1245 
1246 	sc->ste_link = 0;
1247 
1248 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1249 		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1250 			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1251 			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1252 		}
1253 	}
1254 
1255 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1256 		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1257 			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1258 			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1259 		}
1260 	}
1261 
1262 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1263 
1264 	ifp->if_flags &= ~IFF_RUNNING;
1265 	ifq_clr_oactive(&ifp->if_snd);
1266 
1267 	return;
1268 }
1269 
1270 static void
1271 ste_reset(struct ste_softc *sc)
1272 {
1273 	int			i;
1274 
1275 	STE_SETBIT4(sc, STE_ASICCTL,
1276 	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1277 	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1278 	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1279 	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1280 	    STE_ASICCTL_EXTRESET_RESET);
1281 
1282 	DELAY(100000);
1283 
1284 	for (i = 0; i < STE_TIMEOUT; i++) {
1285 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1286 			break;
1287 	}
1288 
1289 	if (i == STE_TIMEOUT)
1290 		if_printf(&sc->arpcom.ac_if, "global reset never completed\n");
1291 
1292 	return;
1293 }
1294 
1295 static int
1296 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1297 {
1298 	struct ste_softc	*sc;
1299 	struct ifreq		*ifr;
1300 	struct mii_data		*mii;
1301 	int			error = 0;
1302 
1303 	sc = ifp->if_softc;
1304 	ifr = (struct ifreq *)data;
1305 
1306 	switch(command) {
1307 	case SIOCSIFFLAGS:
1308 		if (ifp->if_flags & IFF_UP) {
1309 			if (ifp->if_flags & IFF_RUNNING &&
1310 			    ifp->if_flags & IFF_PROMISC &&
1311 			    !(sc->ste_if_flags & IFF_PROMISC)) {
1312 				STE_SETBIT1(sc, STE_RX_MODE,
1313 				    STE_RXMODE_PROMISC);
1314 			} else if (ifp->if_flags & IFF_RUNNING &&
1315 			    !(ifp->if_flags & IFF_PROMISC) &&
1316 			    sc->ste_if_flags & IFF_PROMISC) {
1317 				STE_CLRBIT1(sc, STE_RX_MODE,
1318 				    STE_RXMODE_PROMISC);
1319 			}
1320 			if (!(ifp->if_flags & IFF_RUNNING)) {
1321 				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1322 				ste_init(sc);
1323 			}
1324 		} else {
1325 			if (ifp->if_flags & IFF_RUNNING)
1326 				ste_stop(sc);
1327 		}
1328 		sc->ste_if_flags = ifp->if_flags;
1329 		error = 0;
1330 		break;
1331 	case SIOCADDMULTI:
1332 	case SIOCDELMULTI:
1333 		ste_setmulti(sc);
1334 		error = 0;
1335 		break;
1336 	case SIOCGIFMEDIA:
1337 	case SIOCSIFMEDIA:
1338 		mii = device_get_softc(sc->ste_miibus);
1339 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1340 		break;
1341 	default:
1342 		error = ether_ioctl(ifp, command, data);
1343 		break;
1344 	}
1345 	return(error);
1346 }
1347 
1348 static int
1349 ste_encap(struct ste_softc *sc, struct ste_chain *c, struct mbuf *m_head)
1350 {
1351 	int			frag = 0;
1352 	struct ste_frag		*f = NULL;
1353 	struct mbuf		*m;
1354 	struct ste_desc		*d;
1355 	int			total_len = 0;
1356 
1357 	d = c->ste_ptr;
1358 	d->ste_ctl = 0;
1359 
1360 encap_retry:
1361 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1362 		if (m->m_len != 0) {
1363 			if (frag == STE_MAXFRAGS)
1364 				break;
1365 			total_len += m->m_len;
1366 			f = &d->ste_frags[frag];
1367 			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1368 			f->ste_len = m->m_len;
1369 			frag++;
1370 		}
1371 	}
1372 
1373 	if (m != NULL) {
1374 		struct mbuf *mn;
1375 
1376 		/*
1377 		 * We ran out of segments. We have to recopy this
1378 		 * mbuf chain first. Bail out if we can't get the
1379 		 * new buffers.  Code borrowed from if_fxp.c.
1380 		 */
1381 		MGETHDR(mn, MB_DONTWAIT, MT_DATA);
1382 		if (mn == NULL) {
1383 			m_freem(m_head);
1384 			return ENOMEM;
1385 		}
1386 		if (m_head->m_pkthdr.len > MHLEN) {
1387 			MCLGET(mn, MB_DONTWAIT);
1388 			if ((mn->m_flags & M_EXT) == 0) {
1389 				m_freem(mn);
1390 				m_freem(m_head);
1391 				return ENOMEM;
1392 			}
1393 		}
1394 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1395 		    mtod(mn, caddr_t));
1396 		mn->m_pkthdr.len = mn->m_len = m_head->m_pkthdr.len;
1397 		m_freem(m_head);
1398 		m_head = mn;
1399 		goto encap_retry;
1400 	}
1401 
1402 	c->ste_mbuf = m_head;
1403 	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1404 	d->ste_ctl = 1;
1405 
1406 	return(0);
1407 }
1408 
1409 static void
1410 ste_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1411 {
1412 	struct ste_softc	*sc;
1413 	struct mbuf		*m_head = NULL;
1414 	struct ste_chain	*cur_tx = NULL;
1415 	int			idx;
1416 
1417 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1418 
1419 	sc = ifp->if_softc;
1420 
1421 	if (!sc->ste_link) {
1422 		ifq_purge(&ifp->if_snd);
1423 		return;
1424 	}
1425 
1426 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1427 		return;
1428 
1429 	idx = sc->ste_cdata.ste_tx_prod;
1430 
1431 	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1432 
1433 		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1434 			ifq_set_oactive(&ifp->if_snd);
1435 			break;
1436 		}
1437 
1438 		m_head = ifq_dequeue(&ifp->if_snd);
1439 		if (m_head == NULL)
1440 			break;
1441 
1442 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1443 
1444 		if (ste_encap(sc, cur_tx, m_head) != 0)
1445 			break;
1446 
1447 		cur_tx->ste_ptr->ste_next = 0;
1448 
1449 		if(sc->ste_tx_prev_idx < 0){
1450 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1451 			/* Load address of the TX list */
1452 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1453 			ste_wait(sc);
1454 
1455 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1456 			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1457 
1458 			/* Set TX polling interval to start TX engine */
1459 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1460 
1461 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1462 			ste_wait(sc);
1463 		}else{
1464 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1465 			sc->ste_cdata.ste_tx_chain[
1466 			    sc->ste_tx_prev_idx].ste_ptr->ste_next
1467 				= cur_tx->ste_phys;
1468 		}
1469 
1470 		sc->ste_tx_prev_idx=idx;
1471 
1472 		BPF_MTAP(ifp, cur_tx->ste_mbuf);
1473 
1474 		STE_INC(idx, STE_TX_LIST_CNT);
1475 		sc->ste_cdata.ste_tx_cnt++;
1476 		ifp->if_timer = 5;
1477 		sc->ste_cdata.ste_tx_prod = idx;
1478 	}
1479 }
1480 
1481 static void
1482 ste_watchdog(struct ifnet *ifp)
1483 {
1484 	struct ste_softc	*sc;
1485 
1486 	sc = ifp->if_softc;
1487 
1488 	IFNET_STAT_INC(ifp, oerrors, 1);
1489 	if_printf(ifp, "watchdog timeout\n");
1490 
1491 	ste_txeoc(sc);
1492 	ste_txeof(sc);
1493 	ste_rxeof(sc);
1494 	ste_reset(sc);
1495 	ste_init(sc);
1496 
1497 	if (!ifq_is_empty(&ifp->if_snd))
1498 		if_devstart(ifp);
1499 }
1500 
1501 static void
1502 ste_shutdown(device_t dev)
1503 {
1504 	struct ste_softc	*sc;
1505 
1506 	sc = device_get_softc(dev);
1507 
1508 	ste_stop(sc);
1509 
1510 	return;
1511 }
1512