xref: /dragonfly/sys/dev/netif/ste/if_ste.c (revision 9b9cf381)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ste.c,v 1.14.2.9 2003/02/05 22:03:57 mbr Exp $
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/sockio.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/serialize.h>
43 #include <sys/bus.h>
44 #include <sys/rman.h>
45 #include <sys/thread2.h>
46 #include <sys/interrupt.h>
47 
48 #include <net/if.h>
49 #include <net/ifq_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/vlan/if_vlan_var.h>
55 
56 #include <net/bpf.h>
57 
58 #include <vm/vm.h>              /* for vtophys */
59 #include <vm/pmap.h>            /* for vtophys */
60 
61 #include "../mii_layer/mii.h"
62 #include "../mii_layer/miivar.h"
63 
64 #include <bus/pci/pcidevs.h>
65 #include <bus/pci/pcireg.h>
66 #include <bus/pci/pcivar.h>
67 
68 /* "controller miibus0" required.  See GENERIC if you get errors here. */
69 #include "miibus_if.h"
70 
71 #define STE_USEIOSPACE
72 
73 #include "if_stereg.h"
74 
75 /*
76  * Various supported device vendors/types and their names.
77  */
78 static struct ste_type ste_devs[] = {
79 	{ PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
80 		"Sundance ST201 10/100BaseTX" },
81 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
82 		"D-Link DFE-550TX 10/100BaseTX" },
83 	{ 0, 0, NULL }
84 };
85 
86 static int ste_probe		(device_t);
87 static int ste_attach		(device_t);
88 static int ste_detach		(device_t);
89 static void ste_init		(void *);
90 static void ste_intr		(void *);
91 static void ste_rxeof		(struct ste_softc *);
92 static void ste_txeoc		(struct ste_softc *);
93 static void ste_txeof		(struct ste_softc *);
94 static void ste_stats_update	(void *);
95 static void ste_stop		(struct ste_softc *);
96 static void ste_reset		(struct ste_softc *);
97 static int ste_ioctl		(struct ifnet *, u_long, caddr_t,
98 					struct ucred *);
99 static int ste_encap		(struct ste_softc *, struct ste_chain *,
100 					struct mbuf *);
101 static void ste_start		(struct ifnet *, struct ifaltq_subque *);
102 static void ste_watchdog	(struct ifnet *);
103 static void ste_shutdown	(device_t);
104 static int ste_newbuf		(struct ste_softc *,
105 					struct ste_chain_onefrag *,
106 					struct mbuf *);
107 static int ste_ifmedia_upd	(struct ifnet *);
108 static void ste_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
109 
110 static void ste_mii_sync	(struct ste_softc *);
111 static void ste_mii_send	(struct ste_softc *, u_int32_t, int);
112 static int ste_mii_readreg	(struct ste_softc *,
113 					struct ste_mii_frame *);
114 static int ste_mii_writereg	(struct ste_softc *,
115 					struct ste_mii_frame *);
116 static int ste_miibus_readreg	(device_t, int, int);
117 static int ste_miibus_writereg	(device_t, int, int, int);
118 static void ste_miibus_statchg	(device_t);
119 
120 static int ste_eeprom_wait	(struct ste_softc *);
121 static int ste_read_eeprom	(struct ste_softc *, caddr_t, int,
122 							int, int);
123 static void ste_wait		(struct ste_softc *);
124 static void ste_setmulti	(struct ste_softc *);
125 static int ste_init_rx_list	(struct ste_softc *);
126 static void ste_init_tx_list	(struct ste_softc *);
127 
128 #ifdef STE_USEIOSPACE
129 #define STE_RES			SYS_RES_IOPORT
130 #define STE_RID			STE_PCI_LOIO
131 #else
132 #define STE_RES			SYS_RES_MEMORY
133 #define STE_RID			STE_PCI_LOMEM
134 #endif
135 
136 static device_method_t ste_methods[] = {
137 	/* Device interface */
138 	DEVMETHOD(device_probe,		ste_probe),
139 	DEVMETHOD(device_attach,	ste_attach),
140 	DEVMETHOD(device_detach,	ste_detach),
141 	DEVMETHOD(device_shutdown,	ste_shutdown),
142 
143 	/* bus interface */
144 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
145 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
146 
147 	/* MII interface */
148 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
149 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
150 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
151 
152 	{ 0, 0 }
153 };
154 
155 static driver_t ste_driver = {
156 	"ste",
157 	ste_methods,
158 	sizeof(struct ste_softc)
159 };
160 
161 static devclass_t ste_devclass;
162 
163 DECLARE_DUMMY_MODULE(if_ste);
164 DRIVER_MODULE(if_ste, pci, ste_driver, ste_devclass, NULL, NULL);
165 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, NULL, NULL);
166 
167 #define STE_SETBIT4(sc, reg, x)				\
168 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
169 
170 #define STE_CLRBIT4(sc, reg, x)				\
171 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
172 
173 #define STE_SETBIT2(sc, reg, x)				\
174 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
175 
176 #define STE_CLRBIT2(sc, reg, x)				\
177 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
178 
179 #define STE_SETBIT1(sc, reg, x)				\
180 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
181 
182 #define STE_CLRBIT1(sc, reg, x)				\
183 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
184 
185 
186 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
187 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
188 
189 /*
190  * Sync the PHYs by setting data bit and strobing the clock 32 times.
191  */
192 static void
193 ste_mii_sync(struct ste_softc *sc)
194 {
195 	int		i;
196 
197 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
198 
199 	for (i = 0; i < 32; i++) {
200 		MII_SET(STE_PHYCTL_MCLK);
201 		DELAY(1);
202 		MII_CLR(STE_PHYCTL_MCLK);
203 		DELAY(1);
204 	}
205 
206 	return;
207 }
208 
209 /*
210  * Clock a series of bits through the MII.
211  */
212 static void
213 ste_mii_send(struct ste_softc *sc, u_int32_t bits, int cnt)
214 {
215 	int			i;
216 
217 	MII_CLR(STE_PHYCTL_MCLK);
218 
219 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
220                 if (bits & i) {
221 			MII_SET(STE_PHYCTL_MDATA);
222                 } else {
223 			MII_CLR(STE_PHYCTL_MDATA);
224                 }
225 		DELAY(1);
226 		MII_CLR(STE_PHYCTL_MCLK);
227 		DELAY(1);
228 		MII_SET(STE_PHYCTL_MCLK);
229 	}
230 }
231 
232 /*
233  * Read an PHY register through the MII.
234  */
235 static int
236 ste_mii_readreg(struct ste_softc *sc, struct ste_mii_frame *frame)
237 {
238 	int			i, ack;
239 
240 	/*
241 	 * Set up frame for RX.
242 	 */
243 	frame->mii_stdelim = STE_MII_STARTDELIM;
244 	frame->mii_opcode = STE_MII_READOP;
245 	frame->mii_turnaround = 0;
246 	frame->mii_data = 0;
247 
248 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
249 	/*
250  	 * Turn on data xmit.
251 	 */
252 	MII_SET(STE_PHYCTL_MDIR);
253 
254 	ste_mii_sync(sc);
255 
256 	/*
257 	 * Send command/address info.
258 	 */
259 	ste_mii_send(sc, frame->mii_stdelim, 2);
260 	ste_mii_send(sc, frame->mii_opcode, 2);
261 	ste_mii_send(sc, frame->mii_phyaddr, 5);
262 	ste_mii_send(sc, frame->mii_regaddr, 5);
263 
264 	/* Turn off xmit. */
265 	MII_CLR(STE_PHYCTL_MDIR);
266 
267 	/* Idle bit */
268 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
269 	DELAY(1);
270 	MII_SET(STE_PHYCTL_MCLK);
271 	DELAY(1);
272 
273 	/* Check for ack */
274 	MII_CLR(STE_PHYCTL_MCLK);
275 	DELAY(1);
276 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
277 	MII_SET(STE_PHYCTL_MCLK);
278 	DELAY(1);
279 
280 	/*
281 	 * Now try reading data bits. If the ack failed, we still
282 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
283 	 */
284 	if (ack) {
285 		for(i = 0; i < 16; i++) {
286 			MII_CLR(STE_PHYCTL_MCLK);
287 			DELAY(1);
288 			MII_SET(STE_PHYCTL_MCLK);
289 			DELAY(1);
290 		}
291 		goto fail;
292 	}
293 
294 	for (i = 0x8000; i; i >>= 1) {
295 		MII_CLR(STE_PHYCTL_MCLK);
296 		DELAY(1);
297 		if (!ack) {
298 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
299 				frame->mii_data |= i;
300 			DELAY(1);
301 		}
302 		MII_SET(STE_PHYCTL_MCLK);
303 		DELAY(1);
304 	}
305 
306 fail:
307 
308 	MII_CLR(STE_PHYCTL_MCLK);
309 	DELAY(1);
310 	MII_SET(STE_PHYCTL_MCLK);
311 	DELAY(1);
312 
313 	if (ack)
314 		return(1);
315 	return(0);
316 }
317 
318 /*
319  * Write to a PHY register through the MII.
320  */
321 static int
322 ste_mii_writereg(struct ste_softc *sc, struct ste_mii_frame *frame)
323 {
324 	/*
325 	 * Set up frame for TX.
326 	 */
327 
328 	frame->mii_stdelim = STE_MII_STARTDELIM;
329 	frame->mii_opcode = STE_MII_WRITEOP;
330 	frame->mii_turnaround = STE_MII_TURNAROUND;
331 
332 	/*
333  	 * Turn on data output.
334 	 */
335 	MII_SET(STE_PHYCTL_MDIR);
336 
337 	ste_mii_sync(sc);
338 
339 	ste_mii_send(sc, frame->mii_stdelim, 2);
340 	ste_mii_send(sc, frame->mii_opcode, 2);
341 	ste_mii_send(sc, frame->mii_phyaddr, 5);
342 	ste_mii_send(sc, frame->mii_regaddr, 5);
343 	ste_mii_send(sc, frame->mii_turnaround, 2);
344 	ste_mii_send(sc, frame->mii_data, 16);
345 
346 	/* Idle bit. */
347 	MII_SET(STE_PHYCTL_MCLK);
348 	DELAY(1);
349 	MII_CLR(STE_PHYCTL_MCLK);
350 	DELAY(1);
351 
352 	/*
353 	 * Turn off xmit.
354 	 */
355 	MII_CLR(STE_PHYCTL_MDIR);
356 
357 	return(0);
358 }
359 
360 static int
361 ste_miibus_readreg(device_t dev, int phy, int reg)
362 {
363 	struct ste_softc	*sc;
364 	struct ste_mii_frame	frame;
365 
366 	sc = device_get_softc(dev);
367 
368 	if ( sc->ste_one_phy && phy != 0 )
369 		return (0);
370 
371 	bzero((char *)&frame, sizeof(frame));
372 
373 	frame.mii_phyaddr = phy;
374 	frame.mii_regaddr = reg;
375 	ste_mii_readreg(sc, &frame);
376 
377 	return(frame.mii_data);
378 }
379 
380 static int
381 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
382 {
383 	struct ste_softc	*sc;
384 	struct ste_mii_frame	frame;
385 
386 	sc = device_get_softc(dev);
387 	bzero((char *)&frame, sizeof(frame));
388 
389 	frame.mii_phyaddr = phy;
390 	frame.mii_regaddr = reg;
391 	frame.mii_data = data;
392 
393 	ste_mii_writereg(sc, &frame);
394 
395 	return(0);
396 }
397 
398 static void
399 ste_miibus_statchg(device_t dev)
400 {
401 	struct ste_softc	*sc;
402 	struct mii_data		*mii;
403 	int			i;
404 
405 	sc = device_get_softc(dev);
406 	mii = device_get_softc(sc->ste_miibus);
407 
408 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
409 		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
410 	} else {
411 		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
412 	}
413 
414 	STE_SETBIT4(sc, STE_ASICCTL,STE_ASICCTL_RX_RESET |
415 		    STE_ASICCTL_TX_RESET);
416 	for (i = 0; i < STE_TIMEOUT; i++) {
417 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
418 			break;
419 	}
420 	if (i == STE_TIMEOUT)
421 		if_printf(&sc->arpcom.ac_if, "rx reset never completed\n");
422 
423 	return;
424 }
425 
426 static int
427 ste_ifmedia_upd(struct ifnet *ifp)
428 {
429 	struct ste_softc	*sc;
430 	struct mii_data		*mii;
431 
432 	sc = ifp->if_softc;
433 	mii = device_get_softc(sc->ste_miibus);
434 	sc->ste_link = 0;
435 	if (mii->mii_instance) {
436 		struct mii_softc	*miisc;
437 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
438 		    miisc = LIST_NEXT(miisc, mii_list))
439 			mii_phy_reset(miisc);
440 	}
441 	mii_mediachg(mii);
442 
443 	return(0);
444 }
445 
446 static void
447 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
448 {
449 	struct ste_softc	*sc;
450 	struct mii_data		*mii;
451 
452 	sc = ifp->if_softc;
453 	mii = device_get_softc(sc->ste_miibus);
454 
455 	mii_pollstat(mii);
456 	ifmr->ifm_active = mii->mii_media_active;
457 	ifmr->ifm_status = mii->mii_media_status;
458 
459 	return;
460 }
461 
462 static void
463 ste_wait(struct ste_softc *sc)
464 {
465 	int		i;
466 
467 	for (i = 0; i < STE_TIMEOUT; i++) {
468 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
469 			break;
470 	}
471 
472 	if (i == STE_TIMEOUT)
473 		if_printf(&sc->arpcom.ac_if, "command never completed!\n");
474 
475 	return;
476 }
477 
478 /*
479  * The EEPROM is slow: give it time to come ready after issuing
480  * it a command.
481  */
482 static int
483 ste_eeprom_wait(struct ste_softc *sc)
484 {
485 	int			i;
486 
487 	DELAY(1000);
488 
489 	for (i = 0; i < 100; i++) {
490 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
491 			DELAY(1000);
492 		else
493 			break;
494 	}
495 
496 	if (i == 100) {
497 		if_printf(&sc->arpcom.ac_if, "eeprom failed to come ready\n");
498 		return(1);
499 	}
500 
501 	return(0);
502 }
503 
504 /*
505  * Read a sequence of words from the EEPROM. Note that ethernet address
506  * data is stored in the EEPROM in network byte order.
507  */
508 static int
509 ste_read_eeprom(struct ste_softc *sc, caddr_t dest, int off, int cnt, int swap)
510 {
511 	int			err = 0, i;
512 	u_int16_t		word = 0, *ptr;
513 
514 	if (ste_eeprom_wait(sc))
515 		return(1);
516 
517 	for (i = 0; i < cnt; i++) {
518 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
519 		err = ste_eeprom_wait(sc);
520 		if (err)
521 			break;
522 		word = CSR_READ_2(sc, STE_EEPROM_DATA);
523 		ptr = (u_int16_t *)(dest + (i * 2));
524 		if (swap)
525 			*ptr = ntohs(word);
526 		else
527 			*ptr = word;
528 	}
529 
530 	return(err ? 1 : 0);
531 }
532 
533 static void
534 ste_setmulti(struct ste_softc *sc)
535 {
536 	struct ifnet		*ifp;
537 	int			h = 0;
538 	u_int32_t		hashes[2] = { 0, 0 };
539 	struct ifmultiaddr	*ifma;
540 
541 	ifp = &sc->arpcom.ac_if;
542 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
543 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
544 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
545 		return;
546 	}
547 
548 	/* first, zot all the existing hash bits */
549 	CSR_WRITE_2(sc, STE_MAR0, 0);
550 	CSR_WRITE_2(sc, STE_MAR1, 0);
551 	CSR_WRITE_2(sc, STE_MAR2, 0);
552 	CSR_WRITE_2(sc, STE_MAR3, 0);
553 
554 	/* now program new ones */
555 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
556 		if (ifma->ifma_addr->sa_family != AF_LINK)
557 			continue;
558 		h = ether_crc32_be(
559 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
560 			ETHER_ADDR_LEN) & 0x3f;
561 		if (h < 32)
562 			hashes[0] |= (1 << h);
563 		else
564 			hashes[1] |= (1 << (h - 32));
565 	}
566 
567 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
568 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
569 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
570 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
571 	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
572 	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
573 
574 	return;
575 }
576 
577 static void
578 ste_intr(void *xsc)
579 {
580 	struct ste_softc	*sc;
581 	struct ifnet		*ifp;
582 	u_int16_t		status;
583 
584 	sc = xsc;
585 	ifp = &sc->arpcom.ac_if;
586 
587 	/* See if this is really our interrupt. */
588 	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH))
589 		return;
590 
591 	for (;;) {
592 		status = CSR_READ_2(sc, STE_ISR_ACK);
593 
594 		if (!(status & STE_INTRS))
595 			break;
596 
597 		if (status & STE_ISR_RX_DMADONE)
598 			ste_rxeof(sc);
599 
600 		if (status & STE_ISR_TX_DMADONE)
601 			ste_txeof(sc);
602 
603 		if (status & STE_ISR_TX_DONE)
604 			ste_txeoc(sc);
605 
606 		if (status & STE_ISR_STATS_OFLOW) {
607 			callout_stop(&sc->ste_stat_timer);
608 			ste_stats_update(sc);
609 		}
610 
611 		if (status & STE_ISR_LINKEVENT)
612 			mii_pollstat(device_get_softc(sc->ste_miibus));
613 
614 		if (status & STE_ISR_HOSTERR) {
615 			ste_reset(sc);
616 			ste_init(sc);
617 		}
618 	}
619 
620 	/* Re-enable interrupts */
621 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
622 
623 	if (!ifq_is_empty(&ifp->if_snd))
624 		if_devstart(ifp);
625 }
626 
627 /*
628  * A frame has been uploaded: pass the resulting mbuf chain up to
629  * the higher level protocols.
630  */
631 static void
632 ste_rxeof(struct ste_softc *sc)
633 {
634         struct mbuf		*m;
635         struct ifnet		*ifp;
636 	struct ste_chain_onefrag	*cur_rx;
637 	int			total_len = 0, count=0;
638 	u_int32_t		rxstat;
639 
640 	ifp = &sc->arpcom.ac_if;
641 
642 	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
643 	      & STE_RXSTAT_DMADONE) {
644 		if ((STE_RX_LIST_CNT - count) < 3) {
645 			break;
646 		}
647 
648 		cur_rx = sc->ste_cdata.ste_rx_head;
649 		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
650 
651 		/*
652 		 * If an error occurs, update stats, clear the
653 		 * status word and leave the mbuf cluster in place:
654 		 * it should simply get re-used next time this descriptor
655 	 	 * comes up in the ring.
656 		 */
657 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
658 			ifp->if_ierrors++;
659 			cur_rx->ste_ptr->ste_status = 0;
660 			continue;
661 		}
662 
663 		/*
664 		 * If there error bit was not set, the upload complete
665 		 * bit should be set which means we have a valid packet.
666 		 * If not, something truly strange has happened.
667 		 */
668 		if (!(rxstat & STE_RXSTAT_DMADONE)) {
669 			if_printf(ifp, "bad receive status -- packet dropped");
670 			ifp->if_ierrors++;
671 			cur_rx->ste_ptr->ste_status = 0;
672 			continue;
673 		}
674 
675 		/* No errors; receive the packet. */
676 		m = cur_rx->ste_mbuf;
677 		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
678 
679 		/*
680 		 * Try to conjure up a new mbuf cluster. If that
681 		 * fails, it means we have an out of memory condition and
682 		 * should leave the buffer in place and continue. This will
683 		 * result in a lost packet, but there's little else we
684 		 * can do in this situation.
685 		 */
686 		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
687 			ifp->if_ierrors++;
688 			cur_rx->ste_ptr->ste_status = 0;
689 			continue;
690 		}
691 
692 		ifp->if_ipackets++;
693 		m->m_pkthdr.rcvif = ifp;
694 		m->m_pkthdr.len = m->m_len = total_len;
695 
696 		ifp->if_input(ifp, m);
697 
698 		cur_rx->ste_ptr->ste_status = 0;
699 		count++;
700 	}
701 
702 	return;
703 }
704 
705 static void
706 ste_txeoc(struct ste_softc *sc)
707 {
708 	u_int8_t		txstat;
709 	struct ifnet		*ifp;
710 
711 	ifp = &sc->arpcom.ac_if;
712 
713 	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
714 	    STE_TXSTATUS_TXDONE) {
715 		if (txstat & STE_TXSTATUS_UNDERRUN ||
716 		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
717 		    txstat & STE_TXSTATUS_RECLAIMERR) {
718 			ifp->if_oerrors++;
719 			if_printf(ifp, "transmission error: %x\n", txstat);
720 
721 			ste_reset(sc);
722 			ste_init(sc);
723 
724 			if (txstat & STE_TXSTATUS_UNDERRUN &&
725 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
726 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
727 				if_printf(ifp, "tx underrun, increasing tx"
728 				    " start threshold to %d bytes\n",
729 				    sc->ste_tx_thresh);
730 			}
731 			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
732 			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
733 			    (STE_PACKET_SIZE >> 4));
734 		}
735 		ste_init(sc);
736 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
737 	}
738 
739 	return;
740 }
741 
742 static void
743 ste_txeof(struct ste_softc *sc)
744 {
745 	struct ste_chain	*cur_tx = NULL;
746 	struct ifnet		*ifp;
747 	int			idx;
748 
749 	ifp = &sc->arpcom.ac_if;
750 
751 	idx = sc->ste_cdata.ste_tx_cons;
752 	while(idx != sc->ste_cdata.ste_tx_prod) {
753 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
754 
755 		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
756 			break;
757 
758 		if (cur_tx->ste_mbuf != NULL) {
759 			m_freem(cur_tx->ste_mbuf);
760 			cur_tx->ste_mbuf = NULL;
761 		}
762 
763 		ifp->if_opackets++;
764 
765 		sc->ste_cdata.ste_tx_cnt--;
766 		STE_INC(idx, STE_TX_LIST_CNT);
767 		ifp->if_timer = 0;
768 	}
769 
770 	sc->ste_cdata.ste_tx_cons = idx;
771 
772 	if (cur_tx != NULL)
773 		ifq_clr_oactive(&ifp->if_snd);
774 
775 	return;
776 }
777 
778 static void
779 ste_stats_update(void *xsc)
780 {
781 	struct ste_softc	*sc;
782 	struct ifnet		*ifp;
783 	struct mii_data		*mii;
784 
785 	sc = xsc;
786 	ifp = &sc->arpcom.ac_if;
787 	mii = device_get_softc(sc->ste_miibus);
788 
789 	lwkt_serialize_enter(ifp->if_serializer);
790 
791         ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
792             + CSR_READ_1(sc, STE_MULTI_COLLS)
793             + CSR_READ_1(sc, STE_SINGLE_COLLS);
794 
795 	if (!sc->ste_link) {
796 		mii_pollstat(mii);
797 		if (mii->mii_media_status & IFM_ACTIVE &&
798 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
799 			sc->ste_link++;
800 			/*
801 			 * we don't get a call-back on re-init so do it
802 			 * otherwise we get stuck in the wrong link state
803 			 */
804 			ste_miibus_statchg(sc->ste_dev);
805 			if (!ifq_is_empty(&ifp->if_snd))
806 				if_devstart(ifp);
807 		}
808 	}
809 
810 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
811 	lwkt_serialize_exit(ifp->if_serializer);
812 }
813 
814 
815 /*
816  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
817  * IDs against our list and return a device name if we find a match.
818  */
819 static int
820 ste_probe(device_t dev)
821 {
822 	struct ste_type		*t;
823 
824 	t = ste_devs;
825 
826 	while(t->ste_name != NULL) {
827 		if ((pci_get_vendor(dev) == t->ste_vid) &&
828 		    (pci_get_device(dev) == t->ste_did)) {
829 			device_set_desc(dev, t->ste_name);
830 			return(0);
831 		}
832 		t++;
833 	}
834 
835 	return(ENXIO);
836 }
837 
838 /*
839  * Attach the interface. Allocate softc structures, do ifmedia
840  * setup and ethernet/BPF attach.
841  */
842 static int
843 ste_attach(device_t dev)
844 {
845 	struct ste_softc	*sc;
846 	struct ifnet		*ifp;
847 	int			error = 0, rid;
848 	uint8_t			eaddr[ETHER_ADDR_LEN];
849 
850 	sc = device_get_softc(dev);
851 	sc->ste_dev = dev;
852 
853 	/*
854 	 * Only use one PHY since this chip reports multiple
855 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
856 	 * it is at 0 & 1.  It is rev 0x12.
857 	 */
858 	if (pci_get_vendor(dev) == PCI_VENDOR_DLINK &&
859 	    pci_get_device(dev) == PCI_PRODUCT_DLINK_DL1002 &&
860 	    pci_get_revid(dev) == 0x12 )
861 		sc->ste_one_phy = 1;
862 
863 	/*
864 	 * Handle power management nonsense.
865 	 */
866 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
867 		u_int32_t		iobase, membase, irq;
868 
869 		/* Save important PCI config data. */
870 		iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
871 		membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
872 		irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
873 
874 		/* Reset the power state. */
875 		device_printf(dev, "chip is in D%d power mode "
876 		"-- setting to D0\n", pci_get_powerstate(dev));
877 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
878 
879 		/* Restore PCI config data. */
880 		pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
881 		pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
882 		pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
883 	}
884 
885 	/*
886 	 * Map control/status registers.
887 	 */
888 	pci_enable_busmaster(dev);
889 
890 	rid = STE_RID;
891 	sc->ste_res = bus_alloc_resource_any(dev, STE_RES, &rid, RF_ACTIVE);
892 
893 	if (sc->ste_res == NULL) {
894 		device_printf(dev, "couldn't map ports/memory\n");
895 		error = ENXIO;
896 		goto fail;
897 	}
898 
899 	sc->ste_btag = rman_get_bustag(sc->ste_res);
900 	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
901 
902 	rid = 0;
903 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
904 	    RF_SHAREABLE | RF_ACTIVE);
905 
906 	if (sc->ste_irq == NULL) {
907 		device_printf(dev, "couldn't map interrupt\n");
908 		error = ENXIO;
909 		goto fail;
910 	}
911 
912 	callout_init(&sc->ste_stat_timer);
913 
914 	ifp = &sc->arpcom.ac_if;
915 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
916 
917 	/* Reset the adapter. */
918 	ste_reset(sc);
919 
920 	/*
921 	 * Get station address from the EEPROM.
922 	 */
923 	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, 3, 0)) {
924 		device_printf(dev, "failed to read station address\n");
925 		error = ENXIO;
926 		goto fail;
927 	}
928 
929 	/* Allocate the descriptor queues. */
930 	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
931 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
932 
933 	if (sc->ste_ldata == NULL) {
934 		device_printf(dev, "no memory for list buffers!\n");
935 		error = ENXIO;
936 		goto fail;
937 	}
938 
939 	/* Do MII setup. */
940 	if (mii_phy_probe(dev, &sc->ste_miibus,
941 		ste_ifmedia_upd, ste_ifmedia_sts)) {
942 		device_printf(dev, "MII without any phy!\n");
943 		error = ENXIO;
944 		goto fail;
945 	}
946 
947 	ifp->if_softc = sc;
948 	ifp->if_mtu = ETHERMTU;
949 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
950 	ifp->if_ioctl = ste_ioctl;
951 	ifp->if_start = ste_start;
952 	ifp->if_watchdog = ste_watchdog;
953 	ifp->if_init = ste_init;
954 	ifp->if_baudrate = 10000000;
955 	ifq_set_maxlen(&ifp->if_snd, STE_TX_LIST_CNT - 1);
956 	ifq_set_ready(&ifp->if_snd);
957 
958 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
959 
960 	/*
961 	 * Call MI attach routine.
962 	 */
963 	ether_ifattach(ifp, eaddr, NULL);
964 
965         /*
966          * Tell the upper layer(s) we support long frames.
967          */
968         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
969 
970 	error = bus_setup_intr(dev, sc->ste_irq, INTR_MPSAFE,
971 			       ste_intr, sc, &sc->ste_intrhand,
972 			       ifp->if_serializer);
973 	if (error) {
974 		device_printf(dev, "couldn't set up irq\n");
975 		ether_ifdetach(ifp);
976 		goto fail;
977 	}
978 
979 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->ste_irq));
980 
981 	return 0;
982 
983 fail:
984 	ste_detach(dev);
985 	return(error);
986 }
987 
988 static int
989 ste_detach(device_t dev)
990 {
991 	struct ste_softc	*sc = device_get_softc(dev);
992 	struct ifnet		*ifp = &sc->arpcom.ac_if;
993 
994 	if (device_is_attached(dev)) {
995 		lwkt_serialize_enter(ifp->if_serializer);
996 		ste_stop(sc);
997 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
998 		lwkt_serialize_exit(ifp->if_serializer);
999 
1000 		ether_ifdetach(ifp);
1001 	}
1002 	if (sc->ste_miibus != NULL)
1003 		device_delete_child(dev, sc->ste_miibus);
1004 	bus_generic_detach(dev);
1005 
1006 	if (sc->ste_irq != NULL)
1007 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1008 	if (sc->ste_res != NULL)
1009 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1010 	if (sc->ste_ldata != NULL) {
1011 		contigfree(sc->ste_ldata, sizeof(struct ste_list_data),
1012 			   M_DEVBUF);
1013 	}
1014 
1015 	return(0);
1016 }
1017 
1018 static int
1019 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *c,
1020 	   struct mbuf *m)
1021 {
1022 	struct mbuf		*m_new = NULL;
1023 
1024 	if (m == NULL) {
1025 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1026 		if (m_new == NULL)
1027 			return(ENOBUFS);
1028 		MCLGET(m_new, MB_DONTWAIT);
1029 		if (!(m_new->m_flags & M_EXT)) {
1030 			m_freem(m_new);
1031 			return(ENOBUFS);
1032 		}
1033 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1034 	} else {
1035 		m_new = m;
1036 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1037 		m_new->m_data = m_new->m_ext.ext_buf;
1038 	}
1039 
1040 	m_adj(m_new, ETHER_ALIGN);
1041 
1042 	c->ste_mbuf = m_new;
1043 	c->ste_ptr->ste_status = 0;
1044 	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1045 	c->ste_ptr->ste_frag.ste_len = (1536 + EVL_ENCAPLEN) | STE_FRAG_LAST;
1046 
1047 	return(0);
1048 }
1049 
1050 static int
1051 ste_init_rx_list(struct ste_softc *sc)
1052 {
1053 	struct ste_chain_data	*cd;
1054 	struct ste_list_data	*ld;
1055 	int			i;
1056 
1057 	cd = &sc->ste_cdata;
1058 	ld = sc->ste_ldata;
1059 
1060 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1061 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1062 		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1063 			return(ENOBUFS);
1064 		if (i == (STE_RX_LIST_CNT - 1)) {
1065 			cd->ste_rx_chain[i].ste_next =
1066 			    &cd->ste_rx_chain[0];
1067 			ld->ste_rx_list[i].ste_next =
1068 			    vtophys(&ld->ste_rx_list[0]);
1069 		} else {
1070 			cd->ste_rx_chain[i].ste_next =
1071 			    &cd->ste_rx_chain[i + 1];
1072 			ld->ste_rx_list[i].ste_next =
1073 			    vtophys(&ld->ste_rx_list[i + 1]);
1074 		}
1075 		ld->ste_rx_list[i].ste_status = 0;
1076 	}
1077 
1078 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1079 
1080 	return(0);
1081 }
1082 
1083 static void
1084 ste_init_tx_list(struct ste_softc *sc)
1085 {
1086 	struct ste_chain_data	*cd;
1087 	struct ste_list_data	*ld;
1088 	int			i;
1089 
1090 	cd = &sc->ste_cdata;
1091 	ld = sc->ste_ldata;
1092 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1093 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1094 		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1095 		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1096 		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1097 		if (i == (STE_TX_LIST_CNT - 1))
1098 			cd->ste_tx_chain[i].ste_next =
1099 			    &cd->ste_tx_chain[0];
1100 		else
1101 			cd->ste_tx_chain[i].ste_next =
1102 			    &cd->ste_tx_chain[i + 1];
1103 		if (i == 0)
1104 			cd->ste_tx_chain[i].ste_prev =
1105 			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1106 		else
1107 			cd->ste_tx_chain[i].ste_prev =
1108 			     &cd->ste_tx_chain[i - 1];
1109 	}
1110 
1111 	cd->ste_tx_prod = 0;
1112 	cd->ste_tx_cons = 0;
1113 	cd->ste_tx_cnt = 0;
1114 
1115 	return;
1116 }
1117 
1118 static void
1119 ste_init(void *xsc)
1120 {
1121 	struct ste_softc	*sc;
1122 	int			i;
1123 	struct ifnet		*ifp;
1124 
1125 	sc = xsc;
1126 	ifp = &sc->arpcom.ac_if;
1127 
1128 	ste_stop(sc);
1129 
1130 	/* Init our MAC address */
1131 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1132 		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1133 	}
1134 
1135 	/* Init RX list */
1136 	if (ste_init_rx_list(sc) == ENOBUFS) {
1137 		if_printf(ifp, "initialization failed: no "
1138 		    "memory for RX buffers\n");
1139 		ste_stop(sc);
1140 		return;
1141 	}
1142 
1143 	/* Set RX polling interval */
1144 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 1);
1145 
1146 	/* Init TX descriptors */
1147 	ste_init_tx_list(sc);
1148 
1149 	/* Set the TX freethresh value */
1150 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1151 
1152 	/* Set the TX start threshold for best performance. */
1153 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1154 
1155 	/* Set the TX reclaim threshold. */
1156 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1157 
1158 	/* Set up the RX filter. */
1159 	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1160 
1161 	/* If we want promiscuous mode, set the allframes bit. */
1162 	if (ifp->if_flags & IFF_PROMISC) {
1163 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1164 	} else {
1165 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1166 	}
1167 
1168 	/* Set capture broadcast bit to accept broadcast frames. */
1169 	if (ifp->if_flags & IFF_BROADCAST) {
1170 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1171 	} else {
1172 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1173 	}
1174 
1175 	ste_setmulti(sc);
1176 
1177 	/* Load the address of the RX list. */
1178 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1179 	ste_wait(sc);
1180 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1181 	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1182 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1183 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1184 
1185 	/* Set TX polling interval (defer until we TX first packet */
1186 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1187 
1188 	/* Load address of the TX list */
1189 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1190 	ste_wait(sc);
1191 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1192 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1193 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1194 	ste_wait(sc);
1195 	sc->ste_tx_prev_idx=-1;
1196 
1197 	/* Enable receiver and transmitter */
1198 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1199 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1200 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1201 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1202 
1203 	/* Enable stats counters. */
1204 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1205 
1206 	/* Enable interrupts. */
1207 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1208 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1209 
1210 	/* Accept VLAN length packets */
1211 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + EVL_ENCAPLEN);
1212 
1213 	ste_ifmedia_upd(ifp);
1214 
1215 	ifp->if_flags |= IFF_RUNNING;
1216 	ifq_clr_oactive(&ifp->if_snd);
1217 
1218 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
1219 }
1220 
1221 static void
1222 ste_stop(struct ste_softc *sc)
1223 {
1224 	int			i;
1225 	struct ifnet		*ifp;
1226 
1227 	ifp = &sc->arpcom.ac_if;
1228 
1229 	callout_stop(&sc->ste_stat_timer);
1230 
1231 	CSR_WRITE_2(sc, STE_IMR, 0);
1232 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1233 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1234 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1235 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1236 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1237 	ste_wait(sc);
1238 	/*
1239 	 * Try really hard to stop the RX engine or under heavy RX
1240 	 * data chip will write into de-allocated memory.
1241 	 */
1242 	ste_reset(sc);
1243 
1244 	sc->ste_link = 0;
1245 
1246 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1247 		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1248 			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1249 			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1250 		}
1251 	}
1252 
1253 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1254 		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1255 			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1256 			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1257 		}
1258 	}
1259 
1260 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1261 
1262 	ifp->if_flags &= ~IFF_RUNNING;
1263 	ifq_clr_oactive(&ifp->if_snd);
1264 
1265 	return;
1266 }
1267 
1268 static void
1269 ste_reset(struct ste_softc *sc)
1270 {
1271 	int			i;
1272 
1273 	STE_SETBIT4(sc, STE_ASICCTL,
1274 	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1275 	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1276 	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1277 	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1278 	    STE_ASICCTL_EXTRESET_RESET);
1279 
1280 	DELAY(100000);
1281 
1282 	for (i = 0; i < STE_TIMEOUT; i++) {
1283 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1284 			break;
1285 	}
1286 
1287 	if (i == STE_TIMEOUT)
1288 		if_printf(&sc->arpcom.ac_if, "global reset never completed\n");
1289 
1290 	return;
1291 }
1292 
1293 static int
1294 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1295 {
1296 	struct ste_softc	*sc;
1297 	struct ifreq		*ifr;
1298 	struct mii_data		*mii;
1299 	int			error = 0;
1300 
1301 	sc = ifp->if_softc;
1302 	ifr = (struct ifreq *)data;
1303 
1304 	switch(command) {
1305 	case SIOCSIFFLAGS:
1306 		if (ifp->if_flags & IFF_UP) {
1307 			if (ifp->if_flags & IFF_RUNNING &&
1308 			    ifp->if_flags & IFF_PROMISC &&
1309 			    !(sc->ste_if_flags & IFF_PROMISC)) {
1310 				STE_SETBIT1(sc, STE_RX_MODE,
1311 				    STE_RXMODE_PROMISC);
1312 			} else if (ifp->if_flags & IFF_RUNNING &&
1313 			    !(ifp->if_flags & IFF_PROMISC) &&
1314 			    sc->ste_if_flags & IFF_PROMISC) {
1315 				STE_CLRBIT1(sc, STE_RX_MODE,
1316 				    STE_RXMODE_PROMISC);
1317 			}
1318 			if (!(ifp->if_flags & IFF_RUNNING)) {
1319 				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1320 				ste_init(sc);
1321 			}
1322 		} else {
1323 			if (ifp->if_flags & IFF_RUNNING)
1324 				ste_stop(sc);
1325 		}
1326 		sc->ste_if_flags = ifp->if_flags;
1327 		error = 0;
1328 		break;
1329 	case SIOCADDMULTI:
1330 	case SIOCDELMULTI:
1331 		ste_setmulti(sc);
1332 		error = 0;
1333 		break;
1334 	case SIOCGIFMEDIA:
1335 	case SIOCSIFMEDIA:
1336 		mii = device_get_softc(sc->ste_miibus);
1337 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1338 		break;
1339 	default:
1340 		error = ether_ioctl(ifp, command, data);
1341 		break;
1342 	}
1343 	return(error);
1344 }
1345 
1346 static int
1347 ste_encap(struct ste_softc *sc, struct ste_chain *c, struct mbuf *m_head)
1348 {
1349 	int			frag = 0;
1350 	struct ste_frag		*f = NULL;
1351 	struct mbuf		*m;
1352 	struct ste_desc		*d;
1353 	int			total_len = 0;
1354 
1355 	d = c->ste_ptr;
1356 	d->ste_ctl = 0;
1357 
1358 encap_retry:
1359 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1360 		if (m->m_len != 0) {
1361 			if (frag == STE_MAXFRAGS)
1362 				break;
1363 			total_len += m->m_len;
1364 			f = &d->ste_frags[frag];
1365 			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1366 			f->ste_len = m->m_len;
1367 			frag++;
1368 		}
1369 	}
1370 
1371 	if (m != NULL) {
1372 		struct mbuf *mn;
1373 
1374 		/*
1375 		 * We ran out of segments. We have to recopy this
1376 		 * mbuf chain first. Bail out if we can't get the
1377 		 * new buffers.  Code borrowed from if_fxp.c.
1378 		 */
1379 		MGETHDR(mn, MB_DONTWAIT, MT_DATA);
1380 		if (mn == NULL) {
1381 			m_freem(m_head);
1382 			return ENOMEM;
1383 		}
1384 		if (m_head->m_pkthdr.len > MHLEN) {
1385 			MCLGET(mn, MB_DONTWAIT);
1386 			if ((mn->m_flags & M_EXT) == 0) {
1387 				m_freem(mn);
1388 				m_freem(m_head);
1389 				return ENOMEM;
1390 			}
1391 		}
1392 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1393 		    mtod(mn, caddr_t));
1394 		mn->m_pkthdr.len = mn->m_len = m_head->m_pkthdr.len;
1395 		m_freem(m_head);
1396 		m_head = mn;
1397 		goto encap_retry;
1398 	}
1399 
1400 	c->ste_mbuf = m_head;
1401 	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1402 	d->ste_ctl = 1;
1403 
1404 	return(0);
1405 }
1406 
1407 static void
1408 ste_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1409 {
1410 	struct ste_softc	*sc;
1411 	struct mbuf		*m_head = NULL;
1412 	struct ste_chain	*cur_tx = NULL;
1413 	int			idx;
1414 
1415 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1416 
1417 	sc = ifp->if_softc;
1418 
1419 	if (!sc->ste_link) {
1420 		ifq_purge(&ifp->if_snd);
1421 		return;
1422 	}
1423 
1424 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1425 		return;
1426 
1427 	idx = sc->ste_cdata.ste_tx_prod;
1428 
1429 	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1430 
1431 		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1432 			ifq_set_oactive(&ifp->if_snd);
1433 			break;
1434 		}
1435 
1436 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1437 		if (m_head == NULL)
1438 			break;
1439 
1440 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1441 
1442 		if (ste_encap(sc, cur_tx, m_head) != 0)
1443 			break;
1444 
1445 		cur_tx->ste_ptr->ste_next = 0;
1446 
1447 		if(sc->ste_tx_prev_idx < 0){
1448 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1449 			/* Load address of the TX list */
1450 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1451 			ste_wait(sc);
1452 
1453 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1454 			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1455 
1456 			/* Set TX polling interval to start TX engine */
1457 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1458 
1459 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1460 			ste_wait(sc);
1461 		}else{
1462 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1463 			sc->ste_cdata.ste_tx_chain[
1464 			    sc->ste_tx_prev_idx].ste_ptr->ste_next
1465 				= cur_tx->ste_phys;
1466 		}
1467 
1468 		sc->ste_tx_prev_idx=idx;
1469 
1470 		BPF_MTAP(ifp, cur_tx->ste_mbuf);
1471 
1472 		STE_INC(idx, STE_TX_LIST_CNT);
1473 		sc->ste_cdata.ste_tx_cnt++;
1474 		ifp->if_timer = 5;
1475 		sc->ste_cdata.ste_tx_prod = idx;
1476 	}
1477 }
1478 
1479 static void
1480 ste_watchdog(struct ifnet *ifp)
1481 {
1482 	struct ste_softc	*sc;
1483 
1484 	sc = ifp->if_softc;
1485 
1486 	ifp->if_oerrors++;
1487 	if_printf(ifp, "watchdog timeout\n");
1488 
1489 	ste_txeoc(sc);
1490 	ste_txeof(sc);
1491 	ste_rxeof(sc);
1492 	ste_reset(sc);
1493 	ste_init(sc);
1494 
1495 	if (!ifq_is_empty(&ifp->if_snd))
1496 		if_devstart(ifp);
1497 }
1498 
1499 static void
1500 ste_shutdown(device_t dev)
1501 {
1502 	struct ste_softc	*sc;
1503 
1504 	sc = device_get_softc(dev);
1505 
1506 	ste_stop(sc);
1507 
1508 	return;
1509 }
1510