xref: /dragonfly/sys/dev/netif/ste/if_ste.c (revision b40e316c)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ste.c,v 1.14.2.9 2003/02/05 22:03:57 mbr Exp $
33  * $DragonFly: src/sys/dev/netif/ste/if_ste.c,v 1.14 2005/01/23 20:23:22 joerg Exp $
34  *
35  * $FreeBSD: src/sys/pci/if_ste.c,v 1.14.2.9 2003/02/05 22:03:57 mbr Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/socket.h>
45 
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/ethernet.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/vlan/if_vlan_var.h>
52 
53 #include <net/bpf.h>
54 
55 #include <vm/vm.h>              /* for vtophys */
56 #include <vm/pmap.h>            /* for vtophys */
57 #include <machine/clock.h>      /* for DELAY */
58 #include <machine/bus_memio.h>
59 #include <machine/bus_pio.h>
60 #include <machine/bus.h>
61 #include <machine/resource.h>
62 #include <sys/bus.h>
63 #include <sys/rman.h>
64 
65 #include "../mii_layer/mii.h"
66 #include "../mii_layer/miivar.h"
67 
68 #include <bus/pci/pcireg.h>
69 #include <bus/pci/pcivar.h>
70 
71 /* "controller miibus0" required.  See GENERIC if you get errors here. */
72 #include "miibus_if.h"
73 
74 #define STE_USEIOSPACE
75 
76 #include "if_stereg.h"
77 
78 /*
79  * Various supported device vendors/types and their names.
80  */
81 static struct ste_type ste_devs[] = {
82 	{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
83 	{ DL_VENDORID, DL_DEVICEID_550TX, "D-Link DFE-550TX 10/100BaseTX" },
84 	{ 0, 0, NULL }
85 };
86 
87 static int ste_probe		(device_t);
88 static int ste_attach		(device_t);
89 static int ste_detach		(device_t);
90 static void ste_init		(void *);
91 static void ste_intr		(void *);
92 static void ste_rxeof		(struct ste_softc *);
93 static void ste_txeoc		(struct ste_softc *);
94 static void ste_txeof		(struct ste_softc *);
95 static void ste_stats_update	(void *);
96 static void ste_stop		(struct ste_softc *);
97 static void ste_reset		(struct ste_softc *);
98 static int ste_ioctl		(struct ifnet *, u_long, caddr_t,
99 					struct ucred *);
100 static int ste_encap		(struct ste_softc *, struct ste_chain *,
101 					struct mbuf *);
102 static void ste_start		(struct ifnet *);
103 static void ste_watchdog	(struct ifnet *);
104 static void ste_shutdown	(device_t);
105 static int ste_newbuf		(struct ste_softc *,
106 					struct ste_chain_onefrag *,
107 					struct mbuf *);
108 static int ste_ifmedia_upd	(struct ifnet *);
109 static void ste_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
110 
111 static void ste_mii_sync	(struct ste_softc *);
112 static void ste_mii_send	(struct ste_softc *, u_int32_t, int);
113 static int ste_mii_readreg	(struct ste_softc *,
114 					struct ste_mii_frame *);
115 static int ste_mii_writereg	(struct ste_softc *,
116 					struct ste_mii_frame *);
117 static int ste_miibus_readreg	(device_t, int, int);
118 static int ste_miibus_writereg	(device_t, int, int, int);
119 static void ste_miibus_statchg	(device_t);
120 
121 static int ste_eeprom_wait	(struct ste_softc *);
122 static int ste_read_eeprom	(struct ste_softc *, caddr_t, int,
123 							int, int);
124 static void ste_wait		(struct ste_softc *);
125 static u_int8_t ste_calchash	(caddr_t);
126 static void ste_setmulti	(struct ste_softc *);
127 static int ste_init_rx_list	(struct ste_softc *);
128 static void ste_init_tx_list	(struct ste_softc *);
129 
130 #ifdef STE_USEIOSPACE
131 #define STE_RES			SYS_RES_IOPORT
132 #define STE_RID			STE_PCI_LOIO
133 #else
134 #define STE_RES			SYS_RES_MEMORY
135 #define STE_RID			STE_PCI_LOMEM
136 #endif
137 
138 static device_method_t ste_methods[] = {
139 	/* Device interface */
140 	DEVMETHOD(device_probe,		ste_probe),
141 	DEVMETHOD(device_attach,	ste_attach),
142 	DEVMETHOD(device_detach,	ste_detach),
143 	DEVMETHOD(device_shutdown,	ste_shutdown),
144 
145 	/* bus interface */
146 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
147 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
148 
149 	/* MII interface */
150 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
151 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
152 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
153 
154 	{ 0, 0 }
155 };
156 
157 static driver_t ste_driver = {
158 	"ste",
159 	ste_methods,
160 	sizeof(struct ste_softc)
161 };
162 
163 static devclass_t ste_devclass;
164 
165 DECLARE_DUMMY_MODULE(if_ste);
166 DRIVER_MODULE(if_ste, pci, ste_driver, ste_devclass, 0, 0);
167 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
168 
169 #define STE_SETBIT4(sc, reg, x)				\
170 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
171 
172 #define STE_CLRBIT4(sc, reg, x)				\
173 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
174 
175 #define STE_SETBIT2(sc, reg, x)				\
176 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
177 
178 #define STE_CLRBIT2(sc, reg, x)				\
179 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
180 
181 #define STE_SETBIT1(sc, reg, x)				\
182 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
183 
184 #define STE_CLRBIT1(sc, reg, x)				\
185 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
186 
187 
188 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
189 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
190 
191 /*
192  * Sync the PHYs by setting data bit and strobing the clock 32 times.
193  */
194 static void ste_mii_sync(sc)
195 	struct ste_softc		*sc;
196 {
197 	int		i;
198 
199 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
200 
201 	for (i = 0; i < 32; i++) {
202 		MII_SET(STE_PHYCTL_MCLK);
203 		DELAY(1);
204 		MII_CLR(STE_PHYCTL_MCLK);
205 		DELAY(1);
206 	}
207 
208 	return;
209 }
210 
211 /*
212  * Clock a series of bits through the MII.
213  */
214 static void ste_mii_send(sc, bits, cnt)
215 	struct ste_softc		*sc;
216 	u_int32_t		bits;
217 	int			cnt;
218 {
219 	int			i;
220 
221 	MII_CLR(STE_PHYCTL_MCLK);
222 
223 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
224                 if (bits & i) {
225 			MII_SET(STE_PHYCTL_MDATA);
226                 } else {
227 			MII_CLR(STE_PHYCTL_MDATA);
228                 }
229 		DELAY(1);
230 		MII_CLR(STE_PHYCTL_MCLK);
231 		DELAY(1);
232 		MII_SET(STE_PHYCTL_MCLK);
233 	}
234 }
235 
236 /*
237  * Read an PHY register through the MII.
238  */
239 static int ste_mii_readreg(sc, frame)
240 	struct ste_softc		*sc;
241 	struct ste_mii_frame	*frame;
242 
243 {
244 	int			i, ack, s;
245 
246 	s = splimp();
247 
248 	/*
249 	 * Set up frame for RX.
250 	 */
251 	frame->mii_stdelim = STE_MII_STARTDELIM;
252 	frame->mii_opcode = STE_MII_READOP;
253 	frame->mii_turnaround = 0;
254 	frame->mii_data = 0;
255 
256 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
257 	/*
258  	 * Turn on data xmit.
259 	 */
260 	MII_SET(STE_PHYCTL_MDIR);
261 
262 	ste_mii_sync(sc);
263 
264 	/*
265 	 * Send command/address info.
266 	 */
267 	ste_mii_send(sc, frame->mii_stdelim, 2);
268 	ste_mii_send(sc, frame->mii_opcode, 2);
269 	ste_mii_send(sc, frame->mii_phyaddr, 5);
270 	ste_mii_send(sc, frame->mii_regaddr, 5);
271 
272 	/* Turn off xmit. */
273 	MII_CLR(STE_PHYCTL_MDIR);
274 
275 	/* Idle bit */
276 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
277 	DELAY(1);
278 	MII_SET(STE_PHYCTL_MCLK);
279 	DELAY(1);
280 
281 	/* Check for ack */
282 	MII_CLR(STE_PHYCTL_MCLK);
283 	DELAY(1);
284 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
285 	MII_SET(STE_PHYCTL_MCLK);
286 	DELAY(1);
287 
288 	/*
289 	 * Now try reading data bits. If the ack failed, we still
290 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
291 	 */
292 	if (ack) {
293 		for(i = 0; i < 16; i++) {
294 			MII_CLR(STE_PHYCTL_MCLK);
295 			DELAY(1);
296 			MII_SET(STE_PHYCTL_MCLK);
297 			DELAY(1);
298 		}
299 		goto fail;
300 	}
301 
302 	for (i = 0x8000; i; i >>= 1) {
303 		MII_CLR(STE_PHYCTL_MCLK);
304 		DELAY(1);
305 		if (!ack) {
306 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
307 				frame->mii_data |= i;
308 			DELAY(1);
309 		}
310 		MII_SET(STE_PHYCTL_MCLK);
311 		DELAY(1);
312 	}
313 
314 fail:
315 
316 	MII_CLR(STE_PHYCTL_MCLK);
317 	DELAY(1);
318 	MII_SET(STE_PHYCTL_MCLK);
319 	DELAY(1);
320 
321 	splx(s);
322 
323 	if (ack)
324 		return(1);
325 	return(0);
326 }
327 
328 /*
329  * Write to a PHY register through the MII.
330  */
331 static int ste_mii_writereg(sc, frame)
332 	struct ste_softc		*sc;
333 	struct ste_mii_frame	*frame;
334 
335 {
336 	int			s;
337 
338 	s = splimp();
339 	/*
340 	 * Set up frame for TX.
341 	 */
342 
343 	frame->mii_stdelim = STE_MII_STARTDELIM;
344 	frame->mii_opcode = STE_MII_WRITEOP;
345 	frame->mii_turnaround = STE_MII_TURNAROUND;
346 
347 	/*
348  	 * Turn on data output.
349 	 */
350 	MII_SET(STE_PHYCTL_MDIR);
351 
352 	ste_mii_sync(sc);
353 
354 	ste_mii_send(sc, frame->mii_stdelim, 2);
355 	ste_mii_send(sc, frame->mii_opcode, 2);
356 	ste_mii_send(sc, frame->mii_phyaddr, 5);
357 	ste_mii_send(sc, frame->mii_regaddr, 5);
358 	ste_mii_send(sc, frame->mii_turnaround, 2);
359 	ste_mii_send(sc, frame->mii_data, 16);
360 
361 	/* Idle bit. */
362 	MII_SET(STE_PHYCTL_MCLK);
363 	DELAY(1);
364 	MII_CLR(STE_PHYCTL_MCLK);
365 	DELAY(1);
366 
367 	/*
368 	 * Turn off xmit.
369 	 */
370 	MII_CLR(STE_PHYCTL_MDIR);
371 
372 	splx(s);
373 
374 	return(0);
375 }
376 
377 static int ste_miibus_readreg(dev, phy, reg)
378 	device_t		dev;
379 	int			phy, reg;
380 {
381 	struct ste_softc	*sc;
382 	struct ste_mii_frame	frame;
383 
384 	sc = device_get_softc(dev);
385 
386 	if ( sc->ste_one_phy && phy != 0 )
387 		return (0);
388 
389 	bzero((char *)&frame, sizeof(frame));
390 
391 	frame.mii_phyaddr = phy;
392 	frame.mii_regaddr = reg;
393 	ste_mii_readreg(sc, &frame);
394 
395 	return(frame.mii_data);
396 }
397 
398 static int ste_miibus_writereg(dev, phy, reg, data)
399 	device_t		dev;
400 	int			phy, reg, data;
401 {
402 	struct ste_softc	*sc;
403 	struct ste_mii_frame	frame;
404 
405 	sc = device_get_softc(dev);
406 	bzero((char *)&frame, sizeof(frame));
407 
408 	frame.mii_phyaddr = phy;
409 	frame.mii_regaddr = reg;
410 	frame.mii_data = data;
411 
412 	ste_mii_writereg(sc, &frame);
413 
414 	return(0);
415 }
416 
417 static void ste_miibus_statchg(dev)
418 	device_t		dev;
419 {
420 	struct ste_softc	*sc;
421 	struct mii_data		*mii;
422 	int			i;
423 
424 	sc = device_get_softc(dev);
425 	mii = device_get_softc(sc->ste_miibus);
426 
427 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
428 		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
429 	} else {
430 		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
431 	}
432 
433 	STE_SETBIT4(sc, STE_ASICCTL,STE_ASICCTL_RX_RESET |
434 		    STE_ASICCTL_TX_RESET);
435 	for (i = 0; i < STE_TIMEOUT; i++) {
436 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
437 			break;
438 	}
439 	if (i == STE_TIMEOUT)
440 		printf("ste%d: rx reset never completed\n", sc->ste_unit);
441 
442 	return;
443 }
444 
445 static int ste_ifmedia_upd(ifp)
446 	struct ifnet		*ifp;
447 {
448 	struct ste_softc	*sc;
449 	struct mii_data		*mii;
450 
451 	sc = ifp->if_softc;
452 	mii = device_get_softc(sc->ste_miibus);
453 	sc->ste_link = 0;
454 	if (mii->mii_instance) {
455 		struct mii_softc	*miisc;
456 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
457 		    miisc = LIST_NEXT(miisc, mii_list))
458 			mii_phy_reset(miisc);
459 	}
460 	mii_mediachg(mii);
461 
462 	return(0);
463 }
464 
465 static void ste_ifmedia_sts(ifp, ifmr)
466 	struct ifnet		*ifp;
467 	struct ifmediareq	*ifmr;
468 {
469 	struct ste_softc	*sc;
470 	struct mii_data		*mii;
471 
472 	sc = ifp->if_softc;
473 	mii = device_get_softc(sc->ste_miibus);
474 
475 	mii_pollstat(mii);
476 	ifmr->ifm_active = mii->mii_media_active;
477 	ifmr->ifm_status = mii->mii_media_status;
478 
479 	return;
480 }
481 
482 static void ste_wait(sc)
483 	struct ste_softc		*sc;
484 {
485 	int		i;
486 
487 	for (i = 0; i < STE_TIMEOUT; i++) {
488 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
489 			break;
490 	}
491 
492 	if (i == STE_TIMEOUT)
493 		printf("ste%d: command never completed!\n", sc->ste_unit);
494 
495 	return;
496 }
497 
498 /*
499  * The EEPROM is slow: give it time to come ready after issuing
500  * it a command.
501  */
502 static int ste_eeprom_wait(sc)
503 	struct ste_softc		*sc;
504 {
505 	int			i;
506 
507 	DELAY(1000);
508 
509 	for (i = 0; i < 100; i++) {
510 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
511 			DELAY(1000);
512 		else
513 			break;
514 	}
515 
516 	if (i == 100) {
517 		printf("ste%d: eeprom failed to come ready\n", sc->ste_unit);
518 		return(1);
519 	}
520 
521 	return(0);
522 }
523 
524 /*
525  * Read a sequence of words from the EEPROM. Note that ethernet address
526  * data is stored in the EEPROM in network byte order.
527  */
528 static int ste_read_eeprom(sc, dest, off, cnt, swap)
529 	struct ste_softc		*sc;
530 	caddr_t			dest;
531 	int			off;
532 	int			cnt;
533 	int			swap;
534 {
535 	int			err = 0, i;
536 	u_int16_t		word = 0, *ptr;
537 
538 	if (ste_eeprom_wait(sc))
539 		return(1);
540 
541 	for (i = 0; i < cnt; i++) {
542 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
543 		err = ste_eeprom_wait(sc);
544 		if (err)
545 			break;
546 		word = CSR_READ_2(sc, STE_EEPROM_DATA);
547 		ptr = (u_int16_t *)(dest + (i * 2));
548 		if (swap)
549 			*ptr = ntohs(word);
550 		else
551 			*ptr = word;
552 	}
553 
554 	return(err ? 1 : 0);
555 }
556 
557 static u_int8_t ste_calchash(addr)
558 	caddr_t			addr;
559 {
560 
561 	u_int32_t		crc, carry;
562 	int			i, j;
563 	u_int8_t		c;
564 
565 	/* Compute CRC for the address value. */
566 	crc = 0xFFFFFFFF; /* initial value */
567 
568 	for (i = 0; i < 6; i++) {
569 		c = *(addr + i);
570 		for (j = 0; j < 8; j++) {
571 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
572 			crc <<= 1;
573 			c >>= 1;
574 			if (carry)
575 				crc = (crc ^ 0x04c11db6) | carry;
576 		}
577 	}
578 
579 	/* return the filter bit position */
580 	return(crc & 0x0000003F);
581 }
582 
583 static void ste_setmulti(sc)
584 	struct ste_softc	*sc;
585 {
586 	struct ifnet		*ifp;
587 	int			h = 0;
588 	u_int32_t		hashes[2] = { 0, 0 };
589 	struct ifmultiaddr	*ifma;
590 
591 	ifp = &sc->arpcom.ac_if;
592 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
593 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
594 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
595 		return;
596 	}
597 
598 	/* first, zot all the existing hash bits */
599 	CSR_WRITE_2(sc, STE_MAR0, 0);
600 	CSR_WRITE_2(sc, STE_MAR1, 0);
601 	CSR_WRITE_2(sc, STE_MAR2, 0);
602 	CSR_WRITE_2(sc, STE_MAR3, 0);
603 
604 	/* now program new ones */
605 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
606 	    ifma = ifma->ifma_link.le_next) {
607 		if (ifma->ifma_addr->sa_family != AF_LINK)
608 			continue;
609 		h = ste_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
610 		if (h < 32)
611 			hashes[0] |= (1 << h);
612 		else
613 			hashes[1] |= (1 << (h - 32));
614 	}
615 
616 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
617 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
618 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
619 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
620 	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
621 	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
622 
623 	return;
624 }
625 
626 static void ste_intr(xsc)
627 	void			*xsc;
628 {
629 	struct ste_softc	*sc;
630 	struct ifnet		*ifp;
631 	u_int16_t		status;
632 
633 	sc = xsc;
634 	ifp = &sc->arpcom.ac_if;
635 
636 	/* See if this is really our interrupt. */
637 	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH))
638 		return;
639 
640 	for (;;) {
641 		status = CSR_READ_2(sc, STE_ISR_ACK);
642 
643 		if (!(status & STE_INTRS))
644 			break;
645 
646 		if (status & STE_ISR_RX_DMADONE)
647 			ste_rxeof(sc);
648 
649 		if (status & STE_ISR_TX_DMADONE)
650 			ste_txeof(sc);
651 
652 		if (status & STE_ISR_TX_DONE)
653 			ste_txeoc(sc);
654 
655 		if (status & STE_ISR_STATS_OFLOW) {
656 			callout_stop(&sc->ste_stat_timer);
657 			ste_stats_update(sc);
658 		}
659 
660 		if (status & STE_ISR_LINKEVENT)
661 			mii_pollstat(device_get_softc(sc->ste_miibus));
662 
663 		if (status & STE_ISR_HOSTERR) {
664 			ste_reset(sc);
665 			ste_init(sc);
666 		}
667 	}
668 
669 	/* Re-enable interrupts */
670 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
671 
672 	if (ifp->if_snd.ifq_head != NULL)
673 		ste_start(ifp);
674 
675 	return;
676 }
677 
678 /*
679  * A frame has been uploaded: pass the resulting mbuf chain up to
680  * the higher level protocols.
681  */
682 static void ste_rxeof(sc)
683 	struct ste_softc		*sc;
684 {
685         struct mbuf		*m;
686         struct ifnet		*ifp;
687 	struct ste_chain_onefrag	*cur_rx;
688 	int			total_len = 0, count=0;
689 	u_int32_t		rxstat;
690 
691 	ifp = &sc->arpcom.ac_if;
692 
693 	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
694 	      & STE_RXSTAT_DMADONE) {
695 		if ((STE_RX_LIST_CNT - count) < 3) {
696 			break;
697 		}
698 
699 		cur_rx = sc->ste_cdata.ste_rx_head;
700 		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
701 
702 		/*
703 		 * If an error occurs, update stats, clear the
704 		 * status word and leave the mbuf cluster in place:
705 		 * it should simply get re-used next time this descriptor
706 	 	 * comes up in the ring.
707 		 */
708 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
709 			ifp->if_ierrors++;
710 			cur_rx->ste_ptr->ste_status = 0;
711 			continue;
712 		}
713 
714 		/*
715 		 * If there error bit was not set, the upload complete
716 		 * bit should be set which means we have a valid packet.
717 		 * If not, something truly strange has happened.
718 		 */
719 		if (!(rxstat & STE_RXSTAT_DMADONE)) {
720 			printf("ste%d: bad receive status -- packet dropped",
721 							sc->ste_unit);
722 			ifp->if_ierrors++;
723 			cur_rx->ste_ptr->ste_status = 0;
724 			continue;
725 		}
726 
727 		/* No errors; receive the packet. */
728 		m = cur_rx->ste_mbuf;
729 		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
730 
731 		/*
732 		 * Try to conjure up a new mbuf cluster. If that
733 		 * fails, it means we have an out of memory condition and
734 		 * should leave the buffer in place and continue. This will
735 		 * result in a lost packet, but there's little else we
736 		 * can do in this situation.
737 		 */
738 		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
739 			ifp->if_ierrors++;
740 			cur_rx->ste_ptr->ste_status = 0;
741 			continue;
742 		}
743 
744 		ifp->if_ipackets++;
745 		m->m_pkthdr.rcvif = ifp;
746 		m->m_pkthdr.len = m->m_len = total_len;
747 
748 		(*ifp->if_input)(ifp, m);
749 
750 		cur_rx->ste_ptr->ste_status = 0;
751 		count++;
752 	}
753 
754 	return;
755 }
756 
757 static void ste_txeoc(sc)
758 	struct ste_softc	*sc;
759 {
760 	u_int8_t		txstat;
761 	struct ifnet		*ifp;
762 
763 	ifp = &sc->arpcom.ac_if;
764 
765 	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
766 	    STE_TXSTATUS_TXDONE) {
767 		if (txstat & STE_TXSTATUS_UNDERRUN ||
768 		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
769 		    txstat & STE_TXSTATUS_RECLAIMERR) {
770 			ifp->if_oerrors++;
771 			printf("ste%d: transmission error: %x\n",
772 			    sc->ste_unit, txstat);
773 
774 			ste_reset(sc);
775 			ste_init(sc);
776 
777 			if (txstat & STE_TXSTATUS_UNDERRUN &&
778 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
779 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
780 				printf("ste%d: tx underrun, increasing tx"
781 				    " start threshold to %d bytes\n",
782 				    sc->ste_unit, sc->ste_tx_thresh);
783 			}
784 			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
785 			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
786 			    (STE_PACKET_SIZE >> 4));
787 		}
788 		ste_init(sc);
789 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
790 	}
791 
792 	return;
793 }
794 
795 static void ste_txeof(sc)
796 	struct ste_softc	*sc;
797 {
798 	struct ste_chain	*cur_tx = NULL;
799 	struct ifnet		*ifp;
800 	int			idx;
801 
802 	ifp = &sc->arpcom.ac_if;
803 
804 	idx = sc->ste_cdata.ste_tx_cons;
805 	while(idx != sc->ste_cdata.ste_tx_prod) {
806 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
807 
808 		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
809 			break;
810 
811 		if (cur_tx->ste_mbuf != NULL) {
812 			m_freem(cur_tx->ste_mbuf);
813 			cur_tx->ste_mbuf = NULL;
814 		}
815 
816 		ifp->if_opackets++;
817 
818 		sc->ste_cdata.ste_tx_cnt--;
819 		STE_INC(idx, STE_TX_LIST_CNT);
820 		ifp->if_timer = 0;
821 	}
822 
823 	sc->ste_cdata.ste_tx_cons = idx;
824 
825 	if (cur_tx != NULL)
826 		ifp->if_flags &= ~IFF_OACTIVE;
827 
828 	return;
829 }
830 
831 static void ste_stats_update(xsc)
832 	void			*xsc;
833 {
834 	struct ste_softc	*sc;
835 	struct ifnet		*ifp;
836 	struct mii_data		*mii;
837 	int			s;
838 
839 	s = splimp();
840 
841 	sc = xsc;
842 	ifp = &sc->arpcom.ac_if;
843 	mii = device_get_softc(sc->ste_miibus);
844 
845         ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
846             + CSR_READ_1(sc, STE_MULTI_COLLS)
847             + CSR_READ_1(sc, STE_SINGLE_COLLS);
848 
849 	if (!sc->ste_link) {
850 		mii_pollstat(mii);
851 		if (mii->mii_media_status & IFM_ACTIVE &&
852 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
853 			sc->ste_link++;
854 			/*
855 			 * we don't get a call-back on re-init so do it
856 			 * otherwise we get stuck in the wrong link state
857 			 */
858 			ste_miibus_statchg(sc->ste_dev);
859 			if (ifp->if_snd.ifq_head != NULL)
860 				ste_start(ifp);
861 		}
862 	}
863 
864 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
865 	splx(s);
866 
867 	return;
868 }
869 
870 
871 /*
872  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
873  * IDs against our list and return a device name if we find a match.
874  */
875 static int ste_probe(dev)
876 	device_t		dev;
877 {
878 	struct ste_type		*t;
879 
880 	t = ste_devs;
881 
882 	while(t->ste_name != NULL) {
883 		if ((pci_get_vendor(dev) == t->ste_vid) &&
884 		    (pci_get_device(dev) == t->ste_did)) {
885 			device_set_desc(dev, t->ste_name);
886 			return(0);
887 		}
888 		t++;
889 	}
890 
891 	return(ENXIO);
892 }
893 
894 /*
895  * Attach the interface. Allocate softc structures, do ifmedia
896  * setup and ethernet/BPF attach.
897  */
898 static int ste_attach(dev)
899 	device_t		dev;
900 {
901 	int			s;
902 	u_int32_t		command;
903 	struct ste_softc	*sc;
904 	struct ifnet		*ifp;
905 	int			unit, error = 0, rid;
906 
907 	s = splimp();
908 
909 	sc = device_get_softc(dev);
910 	unit = device_get_unit(dev);
911 	bzero(sc, sizeof(struct ste_softc));
912 	sc->ste_dev = dev;
913 
914 	/*
915 	 * Only use one PHY since this chip reports multiple
916 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
917 	 * it is at 0 & 1.  It is rev 0x12.
918 	 */
919 	if (pci_get_vendor(dev) == DL_VENDORID &&
920 	    pci_get_device(dev) == DL_DEVICEID_550TX &&
921 	    pci_get_revid(dev) == 0x12 )
922 		sc->ste_one_phy = 1;
923 
924 	/*
925 	 * Handle power management nonsense.
926 	 */
927 	command = pci_read_config(dev, STE_PCI_CAPID, 4) & 0x000000FF;
928 	if (command == 0x01) {
929 
930 		command = pci_read_config(dev, STE_PCI_PWRMGMTCTRL, 4);
931 		if (command & STE_PSTATE_MASK) {
932 			u_int32_t		iobase, membase, irq;
933 
934 			/* Save important PCI config data. */
935 			iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
936 			membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
937 			irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
938 
939 			/* Reset the power state. */
940 			printf("ste%d: chip is in D%d power mode "
941 			"-- setting to D0\n", unit, command & STE_PSTATE_MASK);
942 			command &= 0xFFFFFFFC;
943 			pci_write_config(dev, STE_PCI_PWRMGMTCTRL, command, 4);
944 
945 			/* Restore PCI config data. */
946 			pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
947 			pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
948 			pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
949 		}
950 	}
951 
952 	/*
953 	 * Map control/status registers.
954 	 */
955 	command = pci_read_config(dev, PCIR_COMMAND, 4);
956 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
957 	pci_write_config(dev, PCIR_COMMAND, command, 4);
958 	command = pci_read_config(dev, PCIR_COMMAND, 4);
959 
960 #ifdef STE_USEIOSPACE
961 	if (!(command & PCIM_CMD_PORTEN)) {
962 		printf("ste%d: failed to enable I/O ports!\n", unit);
963 		error = ENXIO;
964 		goto fail;
965 	}
966 #else
967 	if (!(command & PCIM_CMD_MEMEN)) {
968 		printf("ste%d: failed to enable memory mapping!\n", unit);
969 		error = ENXIO;
970 		goto fail;
971 	}
972 #endif
973 
974 	rid = STE_RID;
975 	sc->ste_res = bus_alloc_resource(dev, STE_RES, &rid,
976 	    0, ~0, 1, RF_ACTIVE);
977 
978 	if (sc->ste_res == NULL) {
979 		printf ("ste%d: couldn't map ports/memory\n", unit);
980 		error = ENXIO;
981 		goto fail;
982 	}
983 
984 	sc->ste_btag = rman_get_bustag(sc->ste_res);
985 	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
986 
987 	rid = 0;
988 	sc->ste_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
989 	    RF_SHAREABLE | RF_ACTIVE);
990 
991 	if (sc->ste_irq == NULL) {
992 		printf("ste%d: couldn't map interrupt\n", unit);
993 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
994 		error = ENXIO;
995 		goto fail;
996 	}
997 
998 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET,
999 	    ste_intr, sc, &sc->ste_intrhand);
1000 
1001 	if (error) {
1002 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1003 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1004 		printf("ste%d: couldn't set up irq\n", unit);
1005 		goto fail;
1006 	}
1007 
1008 	callout_init(&sc->ste_stat_timer);
1009 
1010 	/* Reset the adapter. */
1011 	ste_reset(sc);
1012 
1013 	/*
1014 	 * Get station address from the EEPROM.
1015 	 */
1016 	if (ste_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1017 	    STE_EEADDR_NODE0, 3, 0)) {
1018 		printf("ste%d: failed to read station address\n", unit);
1019 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1020 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1021 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1022 		error = ENXIO;;
1023 		goto fail;
1024 	}
1025 
1026 	sc->ste_unit = unit;
1027 
1028 	/* Allocate the descriptor queues. */
1029 	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
1030 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1031 
1032 	if (sc->ste_ldata == NULL) {
1033 		printf("ste%d: no memory for list buffers!\n", unit);
1034 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1035 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1036 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1037 		error = ENXIO;
1038 		goto fail;
1039 	}
1040 
1041 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1042 
1043 	/* Do MII setup. */
1044 	if (mii_phy_probe(dev, &sc->ste_miibus,
1045 		ste_ifmedia_upd, ste_ifmedia_sts)) {
1046 		printf("ste%d: MII without any phy!\n", sc->ste_unit);
1047 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1048 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1049 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1050 		contigfree(sc->ste_ldata,
1051 		    sizeof(struct ste_list_data), M_DEVBUF);
1052 		error = ENXIO;
1053 		goto fail;
1054 	}
1055 
1056 	ifp = &sc->arpcom.ac_if;
1057 	ifp->if_softc = sc;
1058 	if_initname(ifp, "ste", unit);
1059 	ifp->if_mtu = ETHERMTU;
1060 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1061 	ifp->if_ioctl = ste_ioctl;
1062 	ifp->if_start = ste_start;
1063 	ifp->if_watchdog = ste_watchdog;
1064 	ifp->if_init = ste_init;
1065 	ifp->if_baudrate = 10000000;
1066 	ifp->if_snd.ifq_maxlen = STE_TX_LIST_CNT - 1;
1067 
1068 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1069 
1070 	/*
1071 	 * Call MI attach routine.
1072 	 */
1073 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
1074 
1075         /*
1076          * Tell the upper layer(s) we support long frames.
1077          */
1078         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1079 
1080 fail:
1081 	splx(s);
1082 	return(error);
1083 }
1084 
1085 static int ste_detach(dev)
1086 	device_t		dev;
1087 {
1088 	struct ste_softc	*sc;
1089 	struct ifnet		*ifp;
1090 	int			s;
1091 
1092 	s = splimp();
1093 
1094 	sc = device_get_softc(dev);
1095 	ifp = &sc->arpcom.ac_if;
1096 
1097 	ste_stop(sc);
1098 	ether_ifdetach(ifp);
1099 
1100 	bus_generic_detach(dev);
1101 	device_delete_child(dev, sc->ste_miibus);
1102 
1103 	bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1104 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1105 	bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1106 
1107 	contigfree(sc->ste_ldata, sizeof(struct ste_list_data), M_DEVBUF);
1108 
1109 	splx(s);
1110 
1111 	return(0);
1112 }
1113 
1114 static int ste_newbuf(sc, c, m)
1115 	struct ste_softc	*sc;
1116 	struct ste_chain_onefrag	*c;
1117 	struct mbuf		*m;
1118 {
1119 	struct mbuf		*m_new = NULL;
1120 
1121 	if (m == NULL) {
1122 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1123 		if (m_new == NULL)
1124 			return(ENOBUFS);
1125 		MCLGET(m_new, MB_DONTWAIT);
1126 		if (!(m_new->m_flags & M_EXT)) {
1127 			m_freem(m_new);
1128 			return(ENOBUFS);
1129 		}
1130 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1131 	} else {
1132 		m_new = m;
1133 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1134 		m_new->m_data = m_new->m_ext.ext_buf;
1135 	}
1136 
1137 	m_adj(m_new, ETHER_ALIGN);
1138 
1139 	c->ste_mbuf = m_new;
1140 	c->ste_ptr->ste_status = 0;
1141 	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1142 	c->ste_ptr->ste_frag.ste_len = (1536 + EVL_ENCAPLEN) | STE_FRAG_LAST;
1143 
1144 	return(0);
1145 }
1146 
1147 static int ste_init_rx_list(sc)
1148 	struct ste_softc	*sc;
1149 {
1150 	struct ste_chain_data	*cd;
1151 	struct ste_list_data	*ld;
1152 	int			i;
1153 
1154 	cd = &sc->ste_cdata;
1155 	ld = sc->ste_ldata;
1156 
1157 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1158 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1159 		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1160 			return(ENOBUFS);
1161 		if (i == (STE_RX_LIST_CNT - 1)) {
1162 			cd->ste_rx_chain[i].ste_next =
1163 			    &cd->ste_rx_chain[0];
1164 			ld->ste_rx_list[i].ste_next =
1165 			    vtophys(&ld->ste_rx_list[0]);
1166 		} else {
1167 			cd->ste_rx_chain[i].ste_next =
1168 			    &cd->ste_rx_chain[i + 1];
1169 			ld->ste_rx_list[i].ste_next =
1170 			    vtophys(&ld->ste_rx_list[i + 1]);
1171 		}
1172 		ld->ste_rx_list[i].ste_status = 0;
1173 	}
1174 
1175 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1176 
1177 	return(0);
1178 }
1179 
1180 static void ste_init_tx_list(sc)
1181 	struct ste_softc	*sc;
1182 {
1183 	struct ste_chain_data	*cd;
1184 	struct ste_list_data	*ld;
1185 	int			i;
1186 
1187 	cd = &sc->ste_cdata;
1188 	ld = sc->ste_ldata;
1189 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1190 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1191 		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1192 		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1193 		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1194 		if (i == (STE_TX_LIST_CNT - 1))
1195 			cd->ste_tx_chain[i].ste_next =
1196 			    &cd->ste_tx_chain[0];
1197 		else
1198 			cd->ste_tx_chain[i].ste_next =
1199 			    &cd->ste_tx_chain[i + 1];
1200 		if (i == 0)
1201 			cd->ste_tx_chain[i].ste_prev =
1202 			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1203 		else
1204 			cd->ste_tx_chain[i].ste_prev =
1205 			     &cd->ste_tx_chain[i - 1];
1206 	}
1207 
1208 	cd->ste_tx_prod = 0;
1209 	cd->ste_tx_cons = 0;
1210 	cd->ste_tx_cnt = 0;
1211 
1212 	return;
1213 }
1214 
1215 static void ste_init(xsc)
1216 	void			*xsc;
1217 {
1218 	struct ste_softc	*sc;
1219 	int			i, s;
1220 	struct ifnet		*ifp;
1221 	struct mii_data		*mii;
1222 
1223 	s = splimp();
1224 
1225 	sc = xsc;
1226 	ifp = &sc->arpcom.ac_if;
1227 	mii = device_get_softc(sc->ste_miibus);
1228 
1229 	ste_stop(sc);
1230 
1231 	/* Init our MAC address */
1232 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1233 		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1234 	}
1235 
1236 	/* Init RX list */
1237 	if (ste_init_rx_list(sc) == ENOBUFS) {
1238 		printf("ste%d: initialization failed: no "
1239 		    "memory for RX buffers\n", sc->ste_unit);
1240 		ste_stop(sc);
1241 		splx(s);
1242 		return;
1243 	}
1244 
1245 	/* Set RX polling interval */
1246 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 1);
1247 
1248 	/* Init TX descriptors */
1249 	ste_init_tx_list(sc);
1250 
1251 	/* Set the TX freethresh value */
1252 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1253 
1254 	/* Set the TX start threshold for best performance. */
1255 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1256 
1257 	/* Set the TX reclaim threshold. */
1258 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1259 
1260 	/* Set up the RX filter. */
1261 	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1262 
1263 	/* If we want promiscuous mode, set the allframes bit. */
1264 	if (ifp->if_flags & IFF_PROMISC) {
1265 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1266 	} else {
1267 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1268 	}
1269 
1270 	/* Set capture broadcast bit to accept broadcast frames. */
1271 	if (ifp->if_flags & IFF_BROADCAST) {
1272 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1273 	} else {
1274 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1275 	}
1276 
1277 	ste_setmulti(sc);
1278 
1279 	/* Load the address of the RX list. */
1280 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1281 	ste_wait(sc);
1282 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1283 	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1284 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1285 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1286 
1287 	/* Set TX polling interval (defer until we TX first packet */
1288 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1289 
1290 	/* Load address of the TX list */
1291 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1292 	ste_wait(sc);
1293 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1294 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1295 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1296 	ste_wait(sc);
1297 	sc->ste_tx_prev_idx=-1;
1298 
1299 	/* Enable receiver and transmitter */
1300 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1301 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1302 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1303 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1304 
1305 	/* Enable stats counters. */
1306 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1307 
1308 	/* Enable interrupts. */
1309 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1310 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1311 
1312 	/* Accept VLAN length packets */
1313 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + EVL_ENCAPLEN);
1314 
1315 	ste_ifmedia_upd(ifp);
1316 
1317 	ifp->if_flags |= IFF_RUNNING;
1318 	ifp->if_flags &= ~IFF_OACTIVE;
1319 
1320 	splx(s);
1321 
1322 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
1323 
1324 	return;
1325 }
1326 
1327 static void ste_stop(sc)
1328 	struct ste_softc	*sc;
1329 {
1330 	int			i;
1331 	struct ifnet		*ifp;
1332 
1333 	ifp = &sc->arpcom.ac_if;
1334 
1335 	callout_stop(&sc->ste_stat_timer);
1336 
1337 	CSR_WRITE_2(sc, STE_IMR, 0);
1338 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1339 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1340 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1341 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1342 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1343 	ste_wait(sc);
1344 	/*
1345 	 * Try really hard to stop the RX engine or under heavy RX
1346 	 * data chip will write into de-allocated memory.
1347 	 */
1348 	ste_reset(sc);
1349 
1350 	sc->ste_link = 0;
1351 
1352 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1353 		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1354 			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1355 			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1356 		}
1357 	}
1358 
1359 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1360 		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1361 			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1362 			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1363 		}
1364 	}
1365 
1366 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1367 
1368 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1369 
1370 	return;
1371 }
1372 
1373 static void ste_reset(sc)
1374 	struct ste_softc	*sc;
1375 {
1376 	int			i;
1377 
1378 	STE_SETBIT4(sc, STE_ASICCTL,
1379 	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1380 	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1381 	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1382 	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1383 	    STE_ASICCTL_EXTRESET_RESET);
1384 
1385 	DELAY(100000);
1386 
1387 	for (i = 0; i < STE_TIMEOUT; i++) {
1388 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1389 			break;
1390 	}
1391 
1392 	if (i == STE_TIMEOUT)
1393 		printf("ste%d: global reset never completed\n", sc->ste_unit);
1394 
1395 	return;
1396 }
1397 
1398 static int ste_ioctl(ifp, command, data, cr)
1399 	struct ifnet		*ifp;
1400 	u_long			command;
1401 	caddr_t			data;
1402 	struct ucred		*cr;
1403 {
1404 	struct ste_softc	*sc;
1405 	struct ifreq		*ifr;
1406 	struct mii_data		*mii;
1407 	int			error = 0, s;
1408 
1409 	s = splimp();
1410 
1411 	sc = ifp->if_softc;
1412 	ifr = (struct ifreq *)data;
1413 
1414 	switch(command) {
1415 	case SIOCSIFADDR:
1416 	case SIOCGIFADDR:
1417 	case SIOCSIFMTU:
1418 		error = ether_ioctl(ifp, command, data);
1419 		break;
1420 	case SIOCSIFFLAGS:
1421 		if (ifp->if_flags & IFF_UP) {
1422 			if (ifp->if_flags & IFF_RUNNING &&
1423 			    ifp->if_flags & IFF_PROMISC &&
1424 			    !(sc->ste_if_flags & IFF_PROMISC)) {
1425 				STE_SETBIT1(sc, STE_RX_MODE,
1426 				    STE_RXMODE_PROMISC);
1427 			} else if (ifp->if_flags & IFF_RUNNING &&
1428 			    !(ifp->if_flags & IFF_PROMISC) &&
1429 			    sc->ste_if_flags & IFF_PROMISC) {
1430 				STE_CLRBIT1(sc, STE_RX_MODE,
1431 				    STE_RXMODE_PROMISC);
1432 			}
1433 			if (!(ifp->if_flags & IFF_RUNNING)) {
1434 				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1435 				ste_init(sc);
1436 			}
1437 		} else {
1438 			if (ifp->if_flags & IFF_RUNNING)
1439 				ste_stop(sc);
1440 		}
1441 		sc->ste_if_flags = ifp->if_flags;
1442 		error = 0;
1443 		break;
1444 	case SIOCADDMULTI:
1445 	case SIOCDELMULTI:
1446 		ste_setmulti(sc);
1447 		error = 0;
1448 		break;
1449 	case SIOCGIFMEDIA:
1450 	case SIOCSIFMEDIA:
1451 		mii = device_get_softc(sc->ste_miibus);
1452 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1453 		break;
1454 	default:
1455 		error = EINVAL;
1456 		break;
1457 	}
1458 
1459 	splx(s);
1460 
1461 	return(error);
1462 }
1463 
1464 static int ste_encap(sc, c, m_head)
1465 	struct ste_softc	*sc;
1466 	struct ste_chain	*c;
1467 	struct mbuf		*m_head;
1468 {
1469 	int			frag = 0;
1470 	struct ste_frag		*f = NULL;
1471 	struct mbuf		*m;
1472 	struct ste_desc		*d;
1473 	int			total_len = 0;
1474 
1475 	d = c->ste_ptr;
1476 	d->ste_ctl = 0;
1477 
1478 encap_retry:
1479 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1480 		if (m->m_len != 0) {
1481 			if (frag == STE_MAXFRAGS)
1482 				break;
1483 			total_len += m->m_len;
1484 			f = &d->ste_frags[frag];
1485 			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1486 			f->ste_len = m->m_len;
1487 			frag++;
1488 		}
1489 	}
1490 
1491 	if (m != NULL) {
1492 		struct mbuf *mn;
1493 
1494 		/*
1495 		 * We ran out of segments. We have to recopy this
1496 		 * mbuf chain first. Bail out if we can't get the
1497 		 * new buffers.  Code borrowed from if_fxp.c.
1498 		 */
1499 		MGETHDR(mn, MB_DONTWAIT, MT_DATA);
1500 		if (mn == NULL) {
1501 			m_freem(m_head);
1502 			return ENOMEM;
1503 		}
1504 		if (m_head->m_pkthdr.len > MHLEN) {
1505 			MCLGET(mn, MB_DONTWAIT);
1506 			if ((mn->m_flags & M_EXT) == 0) {
1507 				m_freem(mn);
1508 				m_freem(m_head);
1509 				return ENOMEM;
1510 			}
1511 		}
1512 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1513 		    mtod(mn, caddr_t));
1514 		mn->m_pkthdr.len = mn->m_len = m_head->m_pkthdr.len;
1515 		m_freem(m_head);
1516 		m_head = mn;
1517 		goto encap_retry;
1518 	}
1519 
1520 	c->ste_mbuf = m_head;
1521 	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1522 	d->ste_ctl = 1;
1523 
1524 	return(0);
1525 }
1526 
1527 static void ste_start(ifp)
1528 	struct ifnet		*ifp;
1529 {
1530 	struct ste_softc	*sc;
1531 	struct mbuf		*m_head = NULL;
1532 	struct ste_chain	*cur_tx = NULL;
1533 	int			idx;
1534 
1535 	sc = ifp->if_softc;
1536 
1537 	if (!sc->ste_link)
1538 		return;
1539 
1540 	if (ifp->if_flags & IFF_OACTIVE)
1541 		return;
1542 
1543 	idx = sc->ste_cdata.ste_tx_prod;
1544 
1545 	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1546 
1547 		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1548 			ifp->if_flags |= IFF_OACTIVE;
1549 			break;
1550 		}
1551 
1552 		IF_DEQUEUE(&ifp->if_snd, m_head);
1553 		if (m_head == NULL)
1554 			break;
1555 
1556 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1557 
1558 		if (ste_encap(sc, cur_tx, m_head) != 0)
1559 			break;
1560 
1561 		cur_tx->ste_ptr->ste_next = 0;
1562 
1563 		if(sc->ste_tx_prev_idx < 0){
1564 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1565 			/* Load address of the TX list */
1566 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1567 			ste_wait(sc);
1568 
1569 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1570 			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1571 
1572 			/* Set TX polling interval to start TX engine */
1573 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1574 
1575 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1576 			ste_wait(sc);
1577 		}else{
1578 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1579 			sc->ste_cdata.ste_tx_chain[
1580 			    sc->ste_tx_prev_idx].ste_ptr->ste_next
1581 				= cur_tx->ste_phys;
1582 		}
1583 
1584 		sc->ste_tx_prev_idx=idx;
1585 
1586 		BPF_MTAP(ifp, cur_tx->ste_mbuf);
1587 
1588 		STE_INC(idx, STE_TX_LIST_CNT);
1589 		sc->ste_cdata.ste_tx_cnt++;
1590 		ifp->if_timer = 5;
1591 		sc->ste_cdata.ste_tx_prod = idx;
1592 	}
1593 
1594 	return;
1595 }
1596 
1597 static void ste_watchdog(ifp)
1598 	struct ifnet		*ifp;
1599 {
1600 	struct ste_softc	*sc;
1601 
1602 	sc = ifp->if_softc;
1603 
1604 	ifp->if_oerrors++;
1605 	printf("ste%d: watchdog timeout\n", sc->ste_unit);
1606 
1607 	ste_txeoc(sc);
1608 	ste_txeof(sc);
1609 	ste_rxeof(sc);
1610 	ste_reset(sc);
1611 	ste_init(sc);
1612 
1613 	if (ifp->if_snd.ifq_head != NULL)
1614 		ste_start(ifp);
1615 
1616 	return;
1617 }
1618 
1619 static void ste_shutdown(dev)
1620 	device_t		dev;
1621 {
1622 	struct ste_softc	*sc;
1623 
1624 	sc = device_get_softc(dev);
1625 
1626 	ste_stop(sc);
1627 
1628 	return;
1629 }
1630