xref: /dragonfly/sys/dev/netif/ste/if_ste.c (revision cdecd76a)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ste.c,v 1.14.2.9 2003/02/05 22:03:57 mbr Exp $
33  * $DragonFly: src/sys/dev/netif/ste/if_ste.c,v 1.3 2003/07/26 21:56:10 rob Exp $
34  *
35  * $FreeBSD: src/sys/pci/if_ste.c,v 1.14.2.9 2003/02/05 22:03:57 mbr Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/socket.h>
45 
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/ethernet.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_vlan_var.h>
52 
53 #include <net/bpf.h>
54 
55 #include <vm/vm.h>              /* for vtophys */
56 #include <vm/pmap.h>            /* for vtophys */
57 #include <machine/clock.h>      /* for DELAY */
58 #include <machine/bus_memio.h>
59 #include <machine/bus_pio.h>
60 #include <machine/bus.h>
61 #include <machine/resource.h>
62 #include <sys/bus.h>
63 #include <sys/rman.h>
64 
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 
68 #include <pci/pcireg.h>
69 #include <pci/pcivar.h>
70 
71 /* "controller miibus0" required.  See GENERIC if you get errors here. */
72 #include "miibus_if.h"
73 
74 #define STE_USEIOSPACE
75 
76 #include <pci/if_stereg.h>
77 
78 /*
79  * Various supported device vendors/types and their names.
80  */
81 static struct ste_type ste_devs[] = {
82 	{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
83 	{ DL_VENDORID, DL_DEVICEID_550TX, "D-Link DFE-550TX 10/100BaseTX" },
84 	{ 0, 0, NULL }
85 };
86 
87 static int ste_probe		__P((device_t));
88 static int ste_attach		__P((device_t));
89 static int ste_detach		__P((device_t));
90 static void ste_init		__P((void *));
91 static void ste_intr		__P((void *));
92 static void ste_rxeof		__P((struct ste_softc *));
93 static void ste_txeoc		__P((struct ste_softc *));
94 static void ste_txeof		__P((struct ste_softc *));
95 static void ste_stats_update	__P((void *));
96 static void ste_stop		__P((struct ste_softc *));
97 static void ste_reset		__P((struct ste_softc *));
98 static int ste_ioctl		__P((struct ifnet *, u_long, caddr_t));
99 static int ste_encap		__P((struct ste_softc *, struct ste_chain *,
100 					struct mbuf *));
101 static void ste_start		__P((struct ifnet *));
102 static void ste_watchdog	__P((struct ifnet *));
103 static void ste_shutdown	__P((device_t));
104 static int ste_newbuf		__P((struct ste_softc *,
105 					struct ste_chain_onefrag *,
106 					struct mbuf *));
107 static int ste_ifmedia_upd	__P((struct ifnet *));
108 static void ste_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
109 
110 static void ste_mii_sync	__P((struct ste_softc *));
111 static void ste_mii_send	__P((struct ste_softc *, u_int32_t, int));
112 static int ste_mii_readreg	__P((struct ste_softc *,
113 					struct ste_mii_frame *));
114 static int ste_mii_writereg	__P((struct ste_softc *,
115 					struct ste_mii_frame *));
116 static int ste_miibus_readreg	__P((device_t, int, int));
117 static int ste_miibus_writereg	__P((device_t, int, int, int));
118 static void ste_miibus_statchg	__P((device_t));
119 
120 static int ste_eeprom_wait	__P((struct ste_softc *));
121 static int ste_read_eeprom	__P((struct ste_softc *, caddr_t, int,
122 							int, int));
123 static void ste_wait		__P((struct ste_softc *));
124 static u_int8_t ste_calchash	__P((caddr_t));
125 static void ste_setmulti	__P((struct ste_softc *));
126 static int ste_init_rx_list	__P((struct ste_softc *));
127 static void ste_init_tx_list	__P((struct ste_softc *));
128 
129 #ifdef STE_USEIOSPACE
130 #define STE_RES			SYS_RES_IOPORT
131 #define STE_RID			STE_PCI_LOIO
132 #else
133 #define STE_RES			SYS_RES_MEMORY
134 #define STE_RID			STE_PCI_LOMEM
135 #endif
136 
137 static device_method_t ste_methods[] = {
138 	/* Device interface */
139 	DEVMETHOD(device_probe,		ste_probe),
140 	DEVMETHOD(device_attach,	ste_attach),
141 	DEVMETHOD(device_detach,	ste_detach),
142 	DEVMETHOD(device_shutdown,	ste_shutdown),
143 
144 	/* bus interface */
145 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
146 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
147 
148 	/* MII interface */
149 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
150 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
151 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
152 
153 	{ 0, 0 }
154 };
155 
156 static driver_t ste_driver = {
157 	"ste",
158 	ste_methods,
159 	sizeof(struct ste_softc)
160 };
161 
162 static devclass_t ste_devclass;
163 
164 DRIVER_MODULE(if_ste, pci, ste_driver, ste_devclass, 0, 0);
165 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
166 
167 #define STE_SETBIT4(sc, reg, x)				\
168 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
169 
170 #define STE_CLRBIT4(sc, reg, x)				\
171 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
172 
173 #define STE_SETBIT2(sc, reg, x)				\
174 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
175 
176 #define STE_CLRBIT2(sc, reg, x)				\
177 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
178 
179 #define STE_SETBIT1(sc, reg, x)				\
180 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
181 
182 #define STE_CLRBIT1(sc, reg, x)				\
183 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
184 
185 
186 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
187 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
188 
189 /*
190  * Sync the PHYs by setting data bit and strobing the clock 32 times.
191  */
192 static void ste_mii_sync(sc)
193 	struct ste_softc		*sc;
194 {
195 	int		i;
196 
197 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
198 
199 	for (i = 0; i < 32; i++) {
200 		MII_SET(STE_PHYCTL_MCLK);
201 		DELAY(1);
202 		MII_CLR(STE_PHYCTL_MCLK);
203 		DELAY(1);
204 	}
205 
206 	return;
207 }
208 
209 /*
210  * Clock a series of bits through the MII.
211  */
212 static void ste_mii_send(sc, bits, cnt)
213 	struct ste_softc		*sc;
214 	u_int32_t		bits;
215 	int			cnt;
216 {
217 	int			i;
218 
219 	MII_CLR(STE_PHYCTL_MCLK);
220 
221 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
222                 if (bits & i) {
223 			MII_SET(STE_PHYCTL_MDATA);
224                 } else {
225 			MII_CLR(STE_PHYCTL_MDATA);
226                 }
227 		DELAY(1);
228 		MII_CLR(STE_PHYCTL_MCLK);
229 		DELAY(1);
230 		MII_SET(STE_PHYCTL_MCLK);
231 	}
232 }
233 
234 /*
235  * Read an PHY register through the MII.
236  */
237 static int ste_mii_readreg(sc, frame)
238 	struct ste_softc		*sc;
239 	struct ste_mii_frame	*frame;
240 
241 {
242 	int			i, ack, s;
243 
244 	s = splimp();
245 
246 	/*
247 	 * Set up frame for RX.
248 	 */
249 	frame->mii_stdelim = STE_MII_STARTDELIM;
250 	frame->mii_opcode = STE_MII_READOP;
251 	frame->mii_turnaround = 0;
252 	frame->mii_data = 0;
253 
254 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
255 	/*
256  	 * Turn on data xmit.
257 	 */
258 	MII_SET(STE_PHYCTL_MDIR);
259 
260 	ste_mii_sync(sc);
261 
262 	/*
263 	 * Send command/address info.
264 	 */
265 	ste_mii_send(sc, frame->mii_stdelim, 2);
266 	ste_mii_send(sc, frame->mii_opcode, 2);
267 	ste_mii_send(sc, frame->mii_phyaddr, 5);
268 	ste_mii_send(sc, frame->mii_regaddr, 5);
269 
270 	/* Turn off xmit. */
271 	MII_CLR(STE_PHYCTL_MDIR);
272 
273 	/* Idle bit */
274 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
275 	DELAY(1);
276 	MII_SET(STE_PHYCTL_MCLK);
277 	DELAY(1);
278 
279 	/* Check for ack */
280 	MII_CLR(STE_PHYCTL_MCLK);
281 	DELAY(1);
282 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
283 	MII_SET(STE_PHYCTL_MCLK);
284 	DELAY(1);
285 
286 	/*
287 	 * Now try reading data bits. If the ack failed, we still
288 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
289 	 */
290 	if (ack) {
291 		for(i = 0; i < 16; i++) {
292 			MII_CLR(STE_PHYCTL_MCLK);
293 			DELAY(1);
294 			MII_SET(STE_PHYCTL_MCLK);
295 			DELAY(1);
296 		}
297 		goto fail;
298 	}
299 
300 	for (i = 0x8000; i; i >>= 1) {
301 		MII_CLR(STE_PHYCTL_MCLK);
302 		DELAY(1);
303 		if (!ack) {
304 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
305 				frame->mii_data |= i;
306 			DELAY(1);
307 		}
308 		MII_SET(STE_PHYCTL_MCLK);
309 		DELAY(1);
310 	}
311 
312 fail:
313 
314 	MII_CLR(STE_PHYCTL_MCLK);
315 	DELAY(1);
316 	MII_SET(STE_PHYCTL_MCLK);
317 	DELAY(1);
318 
319 	splx(s);
320 
321 	if (ack)
322 		return(1);
323 	return(0);
324 }
325 
326 /*
327  * Write to a PHY register through the MII.
328  */
329 static int ste_mii_writereg(sc, frame)
330 	struct ste_softc		*sc;
331 	struct ste_mii_frame	*frame;
332 
333 {
334 	int			s;
335 
336 	s = splimp();
337 	/*
338 	 * Set up frame for TX.
339 	 */
340 
341 	frame->mii_stdelim = STE_MII_STARTDELIM;
342 	frame->mii_opcode = STE_MII_WRITEOP;
343 	frame->mii_turnaround = STE_MII_TURNAROUND;
344 
345 	/*
346  	 * Turn on data output.
347 	 */
348 	MII_SET(STE_PHYCTL_MDIR);
349 
350 	ste_mii_sync(sc);
351 
352 	ste_mii_send(sc, frame->mii_stdelim, 2);
353 	ste_mii_send(sc, frame->mii_opcode, 2);
354 	ste_mii_send(sc, frame->mii_phyaddr, 5);
355 	ste_mii_send(sc, frame->mii_regaddr, 5);
356 	ste_mii_send(sc, frame->mii_turnaround, 2);
357 	ste_mii_send(sc, frame->mii_data, 16);
358 
359 	/* Idle bit. */
360 	MII_SET(STE_PHYCTL_MCLK);
361 	DELAY(1);
362 	MII_CLR(STE_PHYCTL_MCLK);
363 	DELAY(1);
364 
365 	/*
366 	 * Turn off xmit.
367 	 */
368 	MII_CLR(STE_PHYCTL_MDIR);
369 
370 	splx(s);
371 
372 	return(0);
373 }
374 
375 static int ste_miibus_readreg(dev, phy, reg)
376 	device_t		dev;
377 	int			phy, reg;
378 {
379 	struct ste_softc	*sc;
380 	struct ste_mii_frame	frame;
381 
382 	sc = device_get_softc(dev);
383 
384 	if ( sc->ste_one_phy && phy != 0 )
385 		return (0);
386 
387 	bzero((char *)&frame, sizeof(frame));
388 
389 	frame.mii_phyaddr = phy;
390 	frame.mii_regaddr = reg;
391 	ste_mii_readreg(sc, &frame);
392 
393 	return(frame.mii_data);
394 }
395 
396 static int ste_miibus_writereg(dev, phy, reg, data)
397 	device_t		dev;
398 	int			phy, reg, data;
399 {
400 	struct ste_softc	*sc;
401 	struct ste_mii_frame	frame;
402 
403 	sc = device_get_softc(dev);
404 	bzero((char *)&frame, sizeof(frame));
405 
406 	frame.mii_phyaddr = phy;
407 	frame.mii_regaddr = reg;
408 	frame.mii_data = data;
409 
410 	ste_mii_writereg(sc, &frame);
411 
412 	return(0);
413 }
414 
415 static void ste_miibus_statchg(dev)
416 	device_t		dev;
417 {
418 	struct ste_softc	*sc;
419 	struct mii_data		*mii;
420 	int			i;
421 
422 	sc = device_get_softc(dev);
423 	mii = device_get_softc(sc->ste_miibus);
424 
425 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
426 		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
427 	} else {
428 		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
429 	}
430 
431 	STE_SETBIT4(sc, STE_ASICCTL,STE_ASICCTL_RX_RESET |
432 		    STE_ASICCTL_TX_RESET);
433 	for (i = 0; i < STE_TIMEOUT; i++) {
434 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
435 			break;
436 	}
437 	if (i == STE_TIMEOUT)
438 		printf("ste%d: rx reset never completed\n", sc->ste_unit);
439 
440 	return;
441 }
442 
443 static int ste_ifmedia_upd(ifp)
444 	struct ifnet		*ifp;
445 {
446 	struct ste_softc	*sc;
447 	struct mii_data		*mii;
448 
449 	sc = ifp->if_softc;
450 	mii = device_get_softc(sc->ste_miibus);
451 	sc->ste_link = 0;
452 	if (mii->mii_instance) {
453 		struct mii_softc	*miisc;
454 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
455 		    miisc = LIST_NEXT(miisc, mii_list))
456 			mii_phy_reset(miisc);
457 	}
458 	mii_mediachg(mii);
459 
460 	return(0);
461 }
462 
463 static void ste_ifmedia_sts(ifp, ifmr)
464 	struct ifnet		*ifp;
465 	struct ifmediareq	*ifmr;
466 {
467 	struct ste_softc	*sc;
468 	struct mii_data		*mii;
469 
470 	sc = ifp->if_softc;
471 	mii = device_get_softc(sc->ste_miibus);
472 
473 	mii_pollstat(mii);
474 	ifmr->ifm_active = mii->mii_media_active;
475 	ifmr->ifm_status = mii->mii_media_status;
476 
477 	return;
478 }
479 
480 static void ste_wait(sc)
481 	struct ste_softc		*sc;
482 {
483 	int		i;
484 
485 	for (i = 0; i < STE_TIMEOUT; i++) {
486 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
487 			break;
488 	}
489 
490 	if (i == STE_TIMEOUT)
491 		printf("ste%d: command never completed!\n", sc->ste_unit);
492 
493 	return;
494 }
495 
496 /*
497  * The EEPROM is slow: give it time to come ready after issuing
498  * it a command.
499  */
500 static int ste_eeprom_wait(sc)
501 	struct ste_softc		*sc;
502 {
503 	int			i;
504 
505 	DELAY(1000);
506 
507 	for (i = 0; i < 100; i++) {
508 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
509 			DELAY(1000);
510 		else
511 			break;
512 	}
513 
514 	if (i == 100) {
515 		printf("ste%d: eeprom failed to come ready\n", sc->ste_unit);
516 		return(1);
517 	}
518 
519 	return(0);
520 }
521 
522 /*
523  * Read a sequence of words from the EEPROM. Note that ethernet address
524  * data is stored in the EEPROM in network byte order.
525  */
526 static int ste_read_eeprom(sc, dest, off, cnt, swap)
527 	struct ste_softc		*sc;
528 	caddr_t			dest;
529 	int			off;
530 	int			cnt;
531 	int			swap;
532 {
533 	int			err = 0, i;
534 	u_int16_t		word = 0, *ptr;
535 
536 	if (ste_eeprom_wait(sc))
537 		return(1);
538 
539 	for (i = 0; i < cnt; i++) {
540 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
541 		err = ste_eeprom_wait(sc);
542 		if (err)
543 			break;
544 		word = CSR_READ_2(sc, STE_EEPROM_DATA);
545 		ptr = (u_int16_t *)(dest + (i * 2));
546 		if (swap)
547 			*ptr = ntohs(word);
548 		else
549 			*ptr = word;
550 	}
551 
552 	return(err ? 1 : 0);
553 }
554 
555 static u_int8_t ste_calchash(addr)
556 	caddr_t			addr;
557 {
558 
559 	u_int32_t		crc, carry;
560 	int			i, j;
561 	u_int8_t		c;
562 
563 	/* Compute CRC for the address value. */
564 	crc = 0xFFFFFFFF; /* initial value */
565 
566 	for (i = 0; i < 6; i++) {
567 		c = *(addr + i);
568 		for (j = 0; j < 8; j++) {
569 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
570 			crc <<= 1;
571 			c >>= 1;
572 			if (carry)
573 				crc = (crc ^ 0x04c11db6) | carry;
574 		}
575 	}
576 
577 	/* return the filter bit position */
578 	return(crc & 0x0000003F);
579 }
580 
581 static void ste_setmulti(sc)
582 	struct ste_softc	*sc;
583 {
584 	struct ifnet		*ifp;
585 	int			h = 0;
586 	u_int32_t		hashes[2] = { 0, 0 };
587 	struct ifmultiaddr	*ifma;
588 
589 	ifp = &sc->arpcom.ac_if;
590 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
591 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
592 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
593 		return;
594 	}
595 
596 	/* first, zot all the existing hash bits */
597 	CSR_WRITE_2(sc, STE_MAR0, 0);
598 	CSR_WRITE_2(sc, STE_MAR1, 0);
599 	CSR_WRITE_2(sc, STE_MAR2, 0);
600 	CSR_WRITE_2(sc, STE_MAR3, 0);
601 
602 	/* now program new ones */
603 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
604 	    ifma = ifma->ifma_link.le_next) {
605 		if (ifma->ifma_addr->sa_family != AF_LINK)
606 			continue;
607 		h = ste_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
608 		if (h < 32)
609 			hashes[0] |= (1 << h);
610 		else
611 			hashes[1] |= (1 << (h - 32));
612 	}
613 
614 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
615 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
616 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
617 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
618 	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
619 	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
620 
621 	return;
622 }
623 
624 static void ste_intr(xsc)
625 	void			*xsc;
626 {
627 	struct ste_softc	*sc;
628 	struct ifnet		*ifp;
629 	u_int16_t		status;
630 
631 	sc = xsc;
632 	ifp = &sc->arpcom.ac_if;
633 
634 	/* See if this is really our interrupt. */
635 	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH))
636 		return;
637 
638 	for (;;) {
639 		status = CSR_READ_2(sc, STE_ISR_ACK);
640 
641 		if (!(status & STE_INTRS))
642 			break;
643 
644 		if (status & STE_ISR_RX_DMADONE)
645 			ste_rxeof(sc);
646 
647 		if (status & STE_ISR_TX_DMADONE)
648 			ste_txeof(sc);
649 
650 		if (status & STE_ISR_TX_DONE)
651 			ste_txeoc(sc);
652 
653 		if (status & STE_ISR_STATS_OFLOW) {
654 			untimeout(ste_stats_update, sc, sc->ste_stat_ch);
655 			ste_stats_update(sc);
656 		}
657 
658 		if (status & STE_ISR_LINKEVENT)
659 			mii_pollstat(device_get_softc(sc->ste_miibus));
660 
661 		if (status & STE_ISR_HOSTERR) {
662 			ste_reset(sc);
663 			ste_init(sc);
664 		}
665 	}
666 
667 	/* Re-enable interrupts */
668 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
669 
670 	if (ifp->if_snd.ifq_head != NULL)
671 		ste_start(ifp);
672 
673 	return;
674 }
675 
676 /*
677  * A frame has been uploaded: pass the resulting mbuf chain up to
678  * the higher level protocols.
679  */
680 static void ste_rxeof(sc)
681 	struct ste_softc		*sc;
682 {
683         struct ether_header	*eh;
684         struct mbuf		*m;
685         struct ifnet		*ifp;
686 	struct ste_chain_onefrag	*cur_rx;
687 	int			total_len = 0, count=0;
688 	u_int32_t		rxstat;
689 
690 	ifp = &sc->arpcom.ac_if;
691 
692 	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
693 	      & STE_RXSTAT_DMADONE) {
694 		if ((STE_RX_LIST_CNT - count) < 3) {
695 			break;
696 		}
697 
698 		cur_rx = sc->ste_cdata.ste_rx_head;
699 		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
700 
701 		/*
702 		 * If an error occurs, update stats, clear the
703 		 * status word and leave the mbuf cluster in place:
704 		 * it should simply get re-used next time this descriptor
705 	 	 * comes up in the ring.
706 		 */
707 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
708 			ifp->if_ierrors++;
709 			cur_rx->ste_ptr->ste_status = 0;
710 			continue;
711 		}
712 
713 		/*
714 		 * If there error bit was not set, the upload complete
715 		 * bit should be set which means we have a valid packet.
716 		 * If not, something truly strange has happened.
717 		 */
718 		if (!(rxstat & STE_RXSTAT_DMADONE)) {
719 			printf("ste%d: bad receive status -- packet dropped",
720 							sc->ste_unit);
721 			ifp->if_ierrors++;
722 			cur_rx->ste_ptr->ste_status = 0;
723 			continue;
724 		}
725 
726 		/* No errors; receive the packet. */
727 		m = cur_rx->ste_mbuf;
728 		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
729 
730 		/*
731 		 * Try to conjure up a new mbuf cluster. If that
732 		 * fails, it means we have an out of memory condition and
733 		 * should leave the buffer in place and continue. This will
734 		 * result in a lost packet, but there's little else we
735 		 * can do in this situation.
736 		 */
737 		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
738 			ifp->if_ierrors++;
739 			cur_rx->ste_ptr->ste_status = 0;
740 			continue;
741 		}
742 
743 		ifp->if_ipackets++;
744 		eh = mtod(m, struct ether_header *);
745 		m->m_pkthdr.rcvif = ifp;
746 		m->m_pkthdr.len = m->m_len = total_len;
747 
748 		/* Remove header from mbuf and pass it on. */
749 		m_adj(m, sizeof(struct ether_header));
750 		ether_input(ifp, eh, m);
751 
752 		cur_rx->ste_ptr->ste_status = 0;
753 		count++;
754 	}
755 
756 	return;
757 }
758 
759 static void ste_txeoc(sc)
760 	struct ste_softc	*sc;
761 {
762 	u_int8_t		txstat;
763 	struct ifnet		*ifp;
764 
765 	ifp = &sc->arpcom.ac_if;
766 
767 	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
768 	    STE_TXSTATUS_TXDONE) {
769 		if (txstat & STE_TXSTATUS_UNDERRUN ||
770 		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
771 		    txstat & STE_TXSTATUS_RECLAIMERR) {
772 			ifp->if_oerrors++;
773 			printf("ste%d: transmission error: %x\n",
774 			    sc->ste_unit, txstat);
775 
776 			ste_reset(sc);
777 			ste_init(sc);
778 
779 			if (txstat & STE_TXSTATUS_UNDERRUN &&
780 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
781 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
782 				printf("ste%d: tx underrun, increasing tx"
783 				    " start threshold to %d bytes\n",
784 				    sc->ste_unit, sc->ste_tx_thresh);
785 			}
786 			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
787 			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
788 			    (STE_PACKET_SIZE >> 4));
789 		}
790 		ste_init(sc);
791 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
792 	}
793 
794 	return;
795 }
796 
797 static void ste_txeof(sc)
798 	struct ste_softc	*sc;
799 {
800 	struct ste_chain	*cur_tx = NULL;
801 	struct ifnet		*ifp;
802 	int			idx;
803 
804 	ifp = &sc->arpcom.ac_if;
805 
806 	idx = sc->ste_cdata.ste_tx_cons;
807 	while(idx != sc->ste_cdata.ste_tx_prod) {
808 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
809 
810 		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
811 			break;
812 
813 		if (cur_tx->ste_mbuf != NULL) {
814 			m_freem(cur_tx->ste_mbuf);
815 			cur_tx->ste_mbuf = NULL;
816 		}
817 
818 		ifp->if_opackets++;
819 
820 		sc->ste_cdata.ste_tx_cnt--;
821 		STE_INC(idx, STE_TX_LIST_CNT);
822 		ifp->if_timer = 0;
823 	}
824 
825 	sc->ste_cdata.ste_tx_cons = idx;
826 
827 	if (cur_tx != NULL)
828 		ifp->if_flags &= ~IFF_OACTIVE;
829 
830 	return;
831 }
832 
833 static void ste_stats_update(xsc)
834 	void			*xsc;
835 {
836 	struct ste_softc	*sc;
837 	struct ifnet		*ifp;
838 	struct mii_data		*mii;
839 	int			s;
840 
841 	s = splimp();
842 
843 	sc = xsc;
844 	ifp = &sc->arpcom.ac_if;
845 	mii = device_get_softc(sc->ste_miibus);
846 
847         ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
848             + CSR_READ_1(sc, STE_MULTI_COLLS)
849             + CSR_READ_1(sc, STE_SINGLE_COLLS);
850 
851 	if (!sc->ste_link) {
852 		mii_pollstat(mii);
853 		if (mii->mii_media_status & IFM_ACTIVE &&
854 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
855 			sc->ste_link++;
856 			/*
857 			 * we don't get a call-back on re-init so do it
858 			 * otherwise we get stuck in the wrong link state
859 			 */
860 			ste_miibus_statchg(sc->ste_dev);
861 			if (ifp->if_snd.ifq_head != NULL)
862 				ste_start(ifp);
863 		}
864 	}
865 
866 	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
867 	splx(s);
868 
869 	return;
870 }
871 
872 
873 /*
874  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
875  * IDs against our list and return a device name if we find a match.
876  */
877 static int ste_probe(dev)
878 	device_t		dev;
879 {
880 	struct ste_type		*t;
881 
882 	t = ste_devs;
883 
884 	while(t->ste_name != NULL) {
885 		if ((pci_get_vendor(dev) == t->ste_vid) &&
886 		    (pci_get_device(dev) == t->ste_did)) {
887 			device_set_desc(dev, t->ste_name);
888 			return(0);
889 		}
890 		t++;
891 	}
892 
893 	return(ENXIO);
894 }
895 
896 /*
897  * Attach the interface. Allocate softc structures, do ifmedia
898  * setup and ethernet/BPF attach.
899  */
900 static int ste_attach(dev)
901 	device_t		dev;
902 {
903 	int			s;
904 	u_int32_t		command;
905 	struct ste_softc	*sc;
906 	struct ifnet		*ifp;
907 	int			unit, error = 0, rid;
908 
909 	s = splimp();
910 
911 	sc = device_get_softc(dev);
912 	unit = device_get_unit(dev);
913 	bzero(sc, sizeof(struct ste_softc));
914 	sc->ste_dev = dev;
915 
916 	/*
917 	 * Only use one PHY since this chip reports multiple
918 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
919 	 * it is at 0 & 1.  It is rev 0x12.
920 	 */
921 	if (pci_get_vendor(dev) == DL_VENDORID &&
922 	    pci_get_device(dev) == DL_DEVICEID_550TX &&
923 	    pci_get_revid(dev) == 0x12 )
924 		sc->ste_one_phy = 1;
925 
926 	/*
927 	 * Handle power management nonsense.
928 	 */
929 	command = pci_read_config(dev, STE_PCI_CAPID, 4) & 0x000000FF;
930 	if (command == 0x01) {
931 
932 		command = pci_read_config(dev, STE_PCI_PWRMGMTCTRL, 4);
933 		if (command & STE_PSTATE_MASK) {
934 			u_int32_t		iobase, membase, irq;
935 
936 			/* Save important PCI config data. */
937 			iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
938 			membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
939 			irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
940 
941 			/* Reset the power state. */
942 			printf("ste%d: chip is in D%d power mode "
943 			"-- setting to D0\n", unit, command & STE_PSTATE_MASK);
944 			command &= 0xFFFFFFFC;
945 			pci_write_config(dev, STE_PCI_PWRMGMTCTRL, command, 4);
946 
947 			/* Restore PCI config data. */
948 			pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
949 			pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
950 			pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
951 		}
952 	}
953 
954 	/*
955 	 * Map control/status registers.
956 	 */
957 	command = pci_read_config(dev, PCIR_COMMAND, 4);
958 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
959 	pci_write_config(dev, PCIR_COMMAND, command, 4);
960 	command = pci_read_config(dev, PCIR_COMMAND, 4);
961 
962 #ifdef STE_USEIOSPACE
963 	if (!(command & PCIM_CMD_PORTEN)) {
964 		printf("ste%d: failed to enable I/O ports!\n", unit);
965 		error = ENXIO;
966 		goto fail;
967 	}
968 #else
969 	if (!(command & PCIM_CMD_MEMEN)) {
970 		printf("ste%d: failed to enable memory mapping!\n", unit);
971 		error = ENXIO;
972 		goto fail;
973 	}
974 #endif
975 
976 	rid = STE_RID;
977 	sc->ste_res = bus_alloc_resource(dev, STE_RES, &rid,
978 	    0, ~0, 1, RF_ACTIVE);
979 
980 	if (sc->ste_res == NULL) {
981 		printf ("ste%d: couldn't map ports/memory\n", unit);
982 		error = ENXIO;
983 		goto fail;
984 	}
985 
986 	sc->ste_btag = rman_get_bustag(sc->ste_res);
987 	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
988 
989 	rid = 0;
990 	sc->ste_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
991 	    RF_SHAREABLE | RF_ACTIVE);
992 
993 	if (sc->ste_irq == NULL) {
994 		printf("ste%d: couldn't map interrupt\n", unit);
995 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
996 		error = ENXIO;
997 		goto fail;
998 	}
999 
1000 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET,
1001 	    ste_intr, sc, &sc->ste_intrhand);
1002 
1003 	if (error) {
1004 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1005 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1006 		printf("ste%d: couldn't set up irq\n", unit);
1007 		goto fail;
1008 	}
1009 
1010 	callout_handle_init(&sc->ste_stat_ch);
1011 
1012 	/* Reset the adapter. */
1013 	ste_reset(sc);
1014 
1015 	/*
1016 	 * Get station address from the EEPROM.
1017 	 */
1018 	if (ste_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1019 	    STE_EEADDR_NODE0, 3, 0)) {
1020 		printf("ste%d: failed to read station address\n", unit);
1021 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1022 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1023 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1024 		error = ENXIO;;
1025 		goto fail;
1026 	}
1027 
1028 	/*
1029 	 * A Sundance chip was detected. Inform the world.
1030 	 */
1031 	printf("ste%d: Ethernet address: %6D\n", unit,
1032 	    sc->arpcom.ac_enaddr, ":");
1033 
1034 	sc->ste_unit = unit;
1035 
1036 	/* Allocate the descriptor queues. */
1037 	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
1038 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1039 
1040 	if (sc->ste_ldata == NULL) {
1041 		printf("ste%d: no memory for list buffers!\n", unit);
1042 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1043 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1044 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1045 		error = ENXIO;
1046 		goto fail;
1047 	}
1048 
1049 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1050 
1051 	/* Do MII setup. */
1052 	if (mii_phy_probe(dev, &sc->ste_miibus,
1053 		ste_ifmedia_upd, ste_ifmedia_sts)) {
1054 		printf("ste%d: MII without any phy!\n", sc->ste_unit);
1055 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1056 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1057 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1058 		contigfree(sc->ste_ldata,
1059 		    sizeof(struct ste_list_data), M_DEVBUF);
1060 		error = ENXIO;
1061 		goto fail;
1062 	}
1063 
1064 	ifp = &sc->arpcom.ac_if;
1065 	ifp->if_softc = sc;
1066 	ifp->if_unit = unit;
1067 	ifp->if_name = "ste";
1068 	ifp->if_mtu = ETHERMTU;
1069 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1070 	ifp->if_ioctl = ste_ioctl;
1071 	ifp->if_output = ether_output;
1072 	ifp->if_start = ste_start;
1073 	ifp->if_watchdog = ste_watchdog;
1074 	ifp->if_init = ste_init;
1075 	ifp->if_baudrate = 10000000;
1076 	ifp->if_snd.ifq_maxlen = STE_TX_LIST_CNT - 1;
1077 
1078 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1079 
1080 	/*
1081 	 * Call MI attach routine.
1082 	 */
1083 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1084 
1085         /*
1086          * Tell the upper layer(s) we support long frames.
1087          */
1088         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1089 
1090 fail:
1091 	splx(s);
1092 	return(error);
1093 }
1094 
1095 static int ste_detach(dev)
1096 	device_t		dev;
1097 {
1098 	struct ste_softc	*sc;
1099 	struct ifnet		*ifp;
1100 	int			s;
1101 
1102 	s = splimp();
1103 
1104 	sc = device_get_softc(dev);
1105 	ifp = &sc->arpcom.ac_if;
1106 
1107 	ste_stop(sc);
1108 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1109 
1110 	bus_generic_detach(dev);
1111 	device_delete_child(dev, sc->ste_miibus);
1112 
1113 	bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1114 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1115 	bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1116 
1117 	contigfree(sc->ste_ldata, sizeof(struct ste_list_data), M_DEVBUF);
1118 
1119 	splx(s);
1120 
1121 	return(0);
1122 }
1123 
1124 static int ste_newbuf(sc, c, m)
1125 	struct ste_softc	*sc;
1126 	struct ste_chain_onefrag	*c;
1127 	struct mbuf		*m;
1128 {
1129 	struct mbuf		*m_new = NULL;
1130 
1131 	if (m == NULL) {
1132 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1133 		if (m_new == NULL)
1134 			return(ENOBUFS);
1135 		MCLGET(m_new, M_DONTWAIT);
1136 		if (!(m_new->m_flags & M_EXT)) {
1137 			m_freem(m_new);
1138 			return(ENOBUFS);
1139 		}
1140 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1141 	} else {
1142 		m_new = m;
1143 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1144 		m_new->m_data = m_new->m_ext.ext_buf;
1145 	}
1146 
1147 	m_adj(m_new, ETHER_ALIGN);
1148 
1149 	c->ste_mbuf = m_new;
1150 	c->ste_ptr->ste_status = 0;
1151 	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1152 	c->ste_ptr->ste_frag.ste_len = (1536 + EVL_ENCAPLEN) | STE_FRAG_LAST;
1153 
1154 	return(0);
1155 }
1156 
1157 static int ste_init_rx_list(sc)
1158 	struct ste_softc	*sc;
1159 {
1160 	struct ste_chain_data	*cd;
1161 	struct ste_list_data	*ld;
1162 	int			i;
1163 
1164 	cd = &sc->ste_cdata;
1165 	ld = sc->ste_ldata;
1166 
1167 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1168 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1169 		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1170 			return(ENOBUFS);
1171 		if (i == (STE_RX_LIST_CNT - 1)) {
1172 			cd->ste_rx_chain[i].ste_next =
1173 			    &cd->ste_rx_chain[0];
1174 			ld->ste_rx_list[i].ste_next =
1175 			    vtophys(&ld->ste_rx_list[0]);
1176 		} else {
1177 			cd->ste_rx_chain[i].ste_next =
1178 			    &cd->ste_rx_chain[i + 1];
1179 			ld->ste_rx_list[i].ste_next =
1180 			    vtophys(&ld->ste_rx_list[i + 1]);
1181 		}
1182 		ld->ste_rx_list[i].ste_status = 0;
1183 	}
1184 
1185 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1186 
1187 	return(0);
1188 }
1189 
1190 static void ste_init_tx_list(sc)
1191 	struct ste_softc	*sc;
1192 {
1193 	struct ste_chain_data	*cd;
1194 	struct ste_list_data	*ld;
1195 	int			i;
1196 
1197 	cd = &sc->ste_cdata;
1198 	ld = sc->ste_ldata;
1199 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1200 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1201 		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1202 		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1203 		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1204 		if (i == (STE_TX_LIST_CNT - 1))
1205 			cd->ste_tx_chain[i].ste_next =
1206 			    &cd->ste_tx_chain[0];
1207 		else
1208 			cd->ste_tx_chain[i].ste_next =
1209 			    &cd->ste_tx_chain[i + 1];
1210 		if (i == 0)
1211 			cd->ste_tx_chain[i].ste_prev =
1212 			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1213 		else
1214 			cd->ste_tx_chain[i].ste_prev =
1215 			     &cd->ste_tx_chain[i - 1];
1216 	}
1217 
1218 	cd->ste_tx_prod = 0;
1219 	cd->ste_tx_cons = 0;
1220 	cd->ste_tx_cnt = 0;
1221 
1222 	return;
1223 }
1224 
1225 static void ste_init(xsc)
1226 	void			*xsc;
1227 {
1228 	struct ste_softc	*sc;
1229 	int			i, s;
1230 	struct ifnet		*ifp;
1231 	struct mii_data		*mii;
1232 
1233 	s = splimp();
1234 
1235 	sc = xsc;
1236 	ifp = &sc->arpcom.ac_if;
1237 	mii = device_get_softc(sc->ste_miibus);
1238 
1239 	ste_stop(sc);
1240 
1241 	/* Init our MAC address */
1242 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1243 		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1244 	}
1245 
1246 	/* Init RX list */
1247 	if (ste_init_rx_list(sc) == ENOBUFS) {
1248 		printf("ste%d: initialization failed: no "
1249 		    "memory for RX buffers\n", sc->ste_unit);
1250 		ste_stop(sc);
1251 		splx(s);
1252 		return;
1253 	}
1254 
1255 	/* Set RX polling interval */
1256 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 1);
1257 
1258 	/* Init TX descriptors */
1259 	ste_init_tx_list(sc);
1260 
1261 	/* Set the TX freethresh value */
1262 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1263 
1264 	/* Set the TX start threshold for best performance. */
1265 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1266 
1267 	/* Set the TX reclaim threshold. */
1268 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1269 
1270 	/* Set up the RX filter. */
1271 	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1272 
1273 	/* If we want promiscuous mode, set the allframes bit. */
1274 	if (ifp->if_flags & IFF_PROMISC) {
1275 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1276 	} else {
1277 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1278 	}
1279 
1280 	/* Set capture broadcast bit to accept broadcast frames. */
1281 	if (ifp->if_flags & IFF_BROADCAST) {
1282 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1283 	} else {
1284 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1285 	}
1286 
1287 	ste_setmulti(sc);
1288 
1289 	/* Load the address of the RX list. */
1290 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1291 	ste_wait(sc);
1292 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1293 	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1294 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1295 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1296 
1297 	/* Set TX polling interval (defer until we TX first packet */
1298 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1299 
1300 	/* Load address of the TX list */
1301 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1302 	ste_wait(sc);
1303 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1304 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1305 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1306 	ste_wait(sc);
1307 	sc->ste_tx_prev_idx=-1;
1308 
1309 	/* Enable receiver and transmitter */
1310 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1311 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1312 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1313 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1314 
1315 	/* Enable stats counters. */
1316 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1317 
1318 	/* Enable interrupts. */
1319 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1320 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1321 
1322 	/* Accept VLAN length packets */
1323 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + EVL_ENCAPLEN);
1324 
1325 	ste_ifmedia_upd(ifp);
1326 
1327 	ifp->if_flags |= IFF_RUNNING;
1328 	ifp->if_flags &= ~IFF_OACTIVE;
1329 
1330 	splx(s);
1331 
1332 	sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
1333 
1334 	return;
1335 }
1336 
1337 static void ste_stop(sc)
1338 	struct ste_softc	*sc;
1339 {
1340 	int			i;
1341 	struct ifnet		*ifp;
1342 
1343 	ifp = &sc->arpcom.ac_if;
1344 
1345 	untimeout(ste_stats_update, sc, sc->ste_stat_ch);
1346 
1347 	CSR_WRITE_2(sc, STE_IMR, 0);
1348 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1349 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1350 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1351 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1352 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1353 	ste_wait(sc);
1354 	/*
1355 	 * Try really hard to stop the RX engine or under heavy RX
1356 	 * data chip will write into de-allocated memory.
1357 	 */
1358 	ste_reset(sc);
1359 
1360 	sc->ste_link = 0;
1361 
1362 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1363 		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1364 			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1365 			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1366 		}
1367 	}
1368 
1369 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1370 		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1371 			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1372 			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1373 		}
1374 	}
1375 
1376 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1377 
1378 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1379 
1380 	return;
1381 }
1382 
1383 static void ste_reset(sc)
1384 	struct ste_softc	*sc;
1385 {
1386 	int			i;
1387 
1388 	STE_SETBIT4(sc, STE_ASICCTL,
1389 	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1390 	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1391 	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1392 	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1393 	    STE_ASICCTL_EXTRESET_RESET);
1394 
1395 	DELAY(100000);
1396 
1397 	for (i = 0; i < STE_TIMEOUT; i++) {
1398 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1399 			break;
1400 	}
1401 
1402 	if (i == STE_TIMEOUT)
1403 		printf("ste%d: global reset never completed\n", sc->ste_unit);
1404 
1405 	return;
1406 }
1407 
1408 static int ste_ioctl(ifp, command, data)
1409 	struct ifnet		*ifp;
1410 	u_long			command;
1411 	caddr_t			data;
1412 {
1413 	struct ste_softc	*sc;
1414 	struct ifreq		*ifr;
1415 	struct mii_data		*mii;
1416 	int			error = 0, s;
1417 
1418 	s = splimp();
1419 
1420 	sc = ifp->if_softc;
1421 	ifr = (struct ifreq *)data;
1422 
1423 	switch(command) {
1424 	case SIOCSIFADDR:
1425 	case SIOCGIFADDR:
1426 	case SIOCSIFMTU:
1427 		error = ether_ioctl(ifp, command, data);
1428 		break;
1429 	case SIOCSIFFLAGS:
1430 		if (ifp->if_flags & IFF_UP) {
1431 			if (ifp->if_flags & IFF_RUNNING &&
1432 			    ifp->if_flags & IFF_PROMISC &&
1433 			    !(sc->ste_if_flags & IFF_PROMISC)) {
1434 				STE_SETBIT1(sc, STE_RX_MODE,
1435 				    STE_RXMODE_PROMISC);
1436 			} else if (ifp->if_flags & IFF_RUNNING &&
1437 			    !(ifp->if_flags & IFF_PROMISC) &&
1438 			    sc->ste_if_flags & IFF_PROMISC) {
1439 				STE_CLRBIT1(sc, STE_RX_MODE,
1440 				    STE_RXMODE_PROMISC);
1441 			}
1442 			if (!(ifp->if_flags & IFF_RUNNING)) {
1443 				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1444 				ste_init(sc);
1445 			}
1446 		} else {
1447 			if (ifp->if_flags & IFF_RUNNING)
1448 				ste_stop(sc);
1449 		}
1450 		sc->ste_if_flags = ifp->if_flags;
1451 		error = 0;
1452 		break;
1453 	case SIOCADDMULTI:
1454 	case SIOCDELMULTI:
1455 		ste_setmulti(sc);
1456 		error = 0;
1457 		break;
1458 	case SIOCGIFMEDIA:
1459 	case SIOCSIFMEDIA:
1460 		mii = device_get_softc(sc->ste_miibus);
1461 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1462 		break;
1463 	default:
1464 		error = EINVAL;
1465 		break;
1466 	}
1467 
1468 	splx(s);
1469 
1470 	return(error);
1471 }
1472 
1473 static int ste_encap(sc, c, m_head)
1474 	struct ste_softc	*sc;
1475 	struct ste_chain	*c;
1476 	struct mbuf		*m_head;
1477 {
1478 	int			frag = 0;
1479 	struct ste_frag		*f = NULL;
1480 	struct mbuf		*m;
1481 	struct ste_desc		*d;
1482 	int			total_len = 0;
1483 
1484 	d = c->ste_ptr;
1485 	d->ste_ctl = 0;
1486 
1487 encap_retry:
1488 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1489 		if (m->m_len != 0) {
1490 			if (frag == STE_MAXFRAGS)
1491 				break;
1492 			total_len += m->m_len;
1493 			f = &d->ste_frags[frag];
1494 			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1495 			f->ste_len = m->m_len;
1496 			frag++;
1497 		}
1498 	}
1499 
1500 	if (m != NULL) {
1501 		struct mbuf *mn;
1502 
1503 		/*
1504 		 * We ran out of segments. We have to recopy this
1505 		 * mbuf chain first. Bail out if we can't get the
1506 		 * new buffers.  Code borrowed from if_fxp.c.
1507 		 */
1508 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
1509 		if (mn == NULL) {
1510 			m_freem(m_head);
1511 			return ENOMEM;
1512 		}
1513 		if (m_head->m_pkthdr.len > MHLEN) {
1514 			MCLGET(mn, M_DONTWAIT);
1515 			if ((mn->m_flags & M_EXT) == 0) {
1516 				m_freem(mn);
1517 				m_freem(m_head);
1518 				return ENOMEM;
1519 			}
1520 		}
1521 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1522 		    mtod(mn, caddr_t));
1523 		mn->m_pkthdr.len = mn->m_len = m_head->m_pkthdr.len;
1524 		m_freem(m_head);
1525 		m_head = mn;
1526 		goto encap_retry;
1527 	}
1528 
1529 	c->ste_mbuf = m_head;
1530 	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1531 	d->ste_ctl = 1;
1532 
1533 	return(0);
1534 }
1535 
1536 static void ste_start(ifp)
1537 	struct ifnet		*ifp;
1538 {
1539 	struct ste_softc	*sc;
1540 	struct mbuf		*m_head = NULL;
1541 	struct ste_chain	*cur_tx = NULL;
1542 	int			idx;
1543 
1544 	sc = ifp->if_softc;
1545 
1546 	if (!sc->ste_link)
1547 		return;
1548 
1549 	if (ifp->if_flags & IFF_OACTIVE)
1550 		return;
1551 
1552 	idx = sc->ste_cdata.ste_tx_prod;
1553 
1554 	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1555 
1556 		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1557 			ifp->if_flags |= IFF_OACTIVE;
1558 			break;
1559 		}
1560 
1561 		IF_DEQUEUE(&ifp->if_snd, m_head);
1562 		if (m_head == NULL)
1563 			break;
1564 
1565 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1566 
1567 		if (ste_encap(sc, cur_tx, m_head) != 0)
1568 			break;
1569 
1570 		cur_tx->ste_ptr->ste_next = 0;
1571 
1572 		if(sc->ste_tx_prev_idx < 0){
1573 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1574 			/* Load address of the TX list */
1575 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1576 			ste_wait(sc);
1577 
1578 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1579 			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1580 
1581 			/* Set TX polling interval to start TX engine */
1582 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1583 
1584 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1585 			ste_wait(sc);
1586 		}else{
1587 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1588 			sc->ste_cdata.ste_tx_chain[
1589 			    sc->ste_tx_prev_idx].ste_ptr->ste_next
1590 				= cur_tx->ste_phys;
1591 		}
1592 
1593 		sc->ste_tx_prev_idx=idx;
1594 
1595 		/*
1596 		 * If there's a BPF listener, bounce a copy of this frame
1597 		 * to him.
1598 	 	 */
1599 		if (ifp->if_bpf)
1600 			bpf_mtap(ifp, cur_tx->ste_mbuf);
1601 
1602 		STE_INC(idx, STE_TX_LIST_CNT);
1603 		sc->ste_cdata.ste_tx_cnt++;
1604 		ifp->if_timer = 5;
1605 		sc->ste_cdata.ste_tx_prod = idx;
1606 	}
1607 
1608 	return;
1609 }
1610 
1611 static void ste_watchdog(ifp)
1612 	struct ifnet		*ifp;
1613 {
1614 	struct ste_softc	*sc;
1615 
1616 	sc = ifp->if_softc;
1617 
1618 	ifp->if_oerrors++;
1619 	printf("ste%d: watchdog timeout\n", sc->ste_unit);
1620 
1621 	ste_txeoc(sc);
1622 	ste_txeof(sc);
1623 	ste_rxeof(sc);
1624 	ste_reset(sc);
1625 	ste_init(sc);
1626 
1627 	if (ifp->if_snd.ifq_head != NULL)
1628 		ste_start(ifp);
1629 
1630 	return;
1631 }
1632 
1633 static void ste_shutdown(dev)
1634 	device_t		dev;
1635 {
1636 	struct ste_softc	*sc;
1637 
1638 	sc = device_get_softc(dev);
1639 
1640 	ste_stop(sc);
1641 
1642 	return;
1643 }
1644