xref: /dragonfly/sys/dev/netif/ste/if_ste.c (revision d600454b)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ste.c,v 1.14.2.9 2003/02/05 22:03:57 mbr Exp $
33  * $DragonFly: src/sys/dev/netif/ste/if_ste.c,v 1.33 2005/12/31 14:08:00 sephe Exp $
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/sockio.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/serialize.h>
44 #include <sys/thread2.h>
45 
46 #include <net/if.h>
47 #include <net/ifq_var.h>
48 #include <net/if_arp.h>
49 #include <net/ethernet.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/vlan/if_vlan_var.h>
53 
54 #include <net/bpf.h>
55 
56 #include <vm/vm.h>              /* for vtophys */
57 #include <vm/pmap.h>            /* for vtophys */
58 #include <machine/bus_memio.h>
59 #include <machine/bus_pio.h>
60 #include <machine/bus.h>
61 #include <machine/resource.h>
62 #include <sys/bus.h>
63 #include <sys/rman.h>
64 
65 #include "../mii_layer/mii.h"
66 #include "../mii_layer/miivar.h"
67 
68 #include <bus/pci/pcireg.h>
69 #include <bus/pci/pcivar.h>
70 
71 /* "controller miibus0" required.  See GENERIC if you get errors here. */
72 #include "miibus_if.h"
73 
74 #define STE_USEIOSPACE
75 
76 #include "if_stereg.h"
77 
78 /*
79  * Various supported device vendors/types and their names.
80  */
81 static struct ste_type ste_devs[] = {
82 	{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
83 	{ DL_VENDORID, DL_DEVICEID_550TX, "D-Link DFE-550TX 10/100BaseTX" },
84 	{ 0, 0, NULL }
85 };
86 
87 static int ste_probe		(device_t);
88 static int ste_attach		(device_t);
89 static int ste_detach		(device_t);
90 static void ste_init		(void *);
91 static void ste_intr		(void *);
92 static void ste_rxeof		(struct ste_softc *);
93 static void ste_txeoc		(struct ste_softc *);
94 static void ste_txeof		(struct ste_softc *);
95 static void ste_stats_update	(void *);
96 static void ste_stop		(struct ste_softc *);
97 static void ste_reset		(struct ste_softc *);
98 static int ste_ioctl		(struct ifnet *, u_long, caddr_t,
99 					struct ucred *);
100 static int ste_encap		(struct ste_softc *, struct ste_chain *,
101 					struct mbuf *);
102 static void ste_start		(struct ifnet *);
103 static void ste_watchdog	(struct ifnet *);
104 static void ste_shutdown	(device_t);
105 static int ste_newbuf		(struct ste_softc *,
106 					struct ste_chain_onefrag *,
107 					struct mbuf *);
108 static int ste_ifmedia_upd	(struct ifnet *);
109 static void ste_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
110 
111 static void ste_mii_sync	(struct ste_softc *);
112 static void ste_mii_send	(struct ste_softc *, u_int32_t, int);
113 static int ste_mii_readreg	(struct ste_softc *,
114 					struct ste_mii_frame *);
115 static int ste_mii_writereg	(struct ste_softc *,
116 					struct ste_mii_frame *);
117 static int ste_miibus_readreg	(device_t, int, int);
118 static int ste_miibus_writereg	(device_t, int, int, int);
119 static void ste_miibus_statchg	(device_t);
120 
121 static int ste_eeprom_wait	(struct ste_softc *);
122 static int ste_read_eeprom	(struct ste_softc *, caddr_t, int,
123 							int, int);
124 static void ste_wait		(struct ste_softc *);
125 static void ste_setmulti	(struct ste_softc *);
126 static int ste_init_rx_list	(struct ste_softc *);
127 static void ste_init_tx_list	(struct ste_softc *);
128 
129 #ifdef STE_USEIOSPACE
130 #define STE_RES			SYS_RES_IOPORT
131 #define STE_RID			STE_PCI_LOIO
132 #else
133 #define STE_RES			SYS_RES_MEMORY
134 #define STE_RID			STE_PCI_LOMEM
135 #endif
136 
137 static device_method_t ste_methods[] = {
138 	/* Device interface */
139 	DEVMETHOD(device_probe,		ste_probe),
140 	DEVMETHOD(device_attach,	ste_attach),
141 	DEVMETHOD(device_detach,	ste_detach),
142 	DEVMETHOD(device_shutdown,	ste_shutdown),
143 
144 	/* bus interface */
145 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
146 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
147 
148 	/* MII interface */
149 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
150 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
151 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
152 
153 	{ 0, 0 }
154 };
155 
156 static driver_t ste_driver = {
157 	"ste",
158 	ste_methods,
159 	sizeof(struct ste_softc)
160 };
161 
162 static devclass_t ste_devclass;
163 
164 DECLARE_DUMMY_MODULE(if_ste);
165 DRIVER_MODULE(if_ste, pci, ste_driver, ste_devclass, 0, 0);
166 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
167 
168 #define STE_SETBIT4(sc, reg, x)				\
169 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
170 
171 #define STE_CLRBIT4(sc, reg, x)				\
172 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
173 
174 #define STE_SETBIT2(sc, reg, x)				\
175 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
176 
177 #define STE_CLRBIT2(sc, reg, x)				\
178 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
179 
180 #define STE_SETBIT1(sc, reg, x)				\
181 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
182 
183 #define STE_CLRBIT1(sc, reg, x)				\
184 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
185 
186 
187 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
188 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
189 
190 /*
191  * Sync the PHYs by setting data bit and strobing the clock 32 times.
192  */
193 static void
194 ste_mii_sync(struct ste_softc *sc)
195 {
196 	int		i;
197 
198 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
199 
200 	for (i = 0; i < 32; i++) {
201 		MII_SET(STE_PHYCTL_MCLK);
202 		DELAY(1);
203 		MII_CLR(STE_PHYCTL_MCLK);
204 		DELAY(1);
205 	}
206 
207 	return;
208 }
209 
210 /*
211  * Clock a series of bits through the MII.
212  */
213 static void
214 ste_mii_send(struct ste_softc *sc, u_int32_t bits, int cnt)
215 {
216 	int			i;
217 
218 	MII_CLR(STE_PHYCTL_MCLK);
219 
220 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
221                 if (bits & i) {
222 			MII_SET(STE_PHYCTL_MDATA);
223                 } else {
224 			MII_CLR(STE_PHYCTL_MDATA);
225                 }
226 		DELAY(1);
227 		MII_CLR(STE_PHYCTL_MCLK);
228 		DELAY(1);
229 		MII_SET(STE_PHYCTL_MCLK);
230 	}
231 }
232 
233 /*
234  * Read an PHY register through the MII.
235  */
236 static int
237 ste_mii_readreg(struct ste_softc *sc, struct ste_mii_frame *frame)
238 {
239 	int			i, ack;
240 
241 	/*
242 	 * Set up frame for RX.
243 	 */
244 	frame->mii_stdelim = STE_MII_STARTDELIM;
245 	frame->mii_opcode = STE_MII_READOP;
246 	frame->mii_turnaround = 0;
247 	frame->mii_data = 0;
248 
249 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
250 	/*
251  	 * Turn on data xmit.
252 	 */
253 	MII_SET(STE_PHYCTL_MDIR);
254 
255 	ste_mii_sync(sc);
256 
257 	/*
258 	 * Send command/address info.
259 	 */
260 	ste_mii_send(sc, frame->mii_stdelim, 2);
261 	ste_mii_send(sc, frame->mii_opcode, 2);
262 	ste_mii_send(sc, frame->mii_phyaddr, 5);
263 	ste_mii_send(sc, frame->mii_regaddr, 5);
264 
265 	/* Turn off xmit. */
266 	MII_CLR(STE_PHYCTL_MDIR);
267 
268 	/* Idle bit */
269 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
270 	DELAY(1);
271 	MII_SET(STE_PHYCTL_MCLK);
272 	DELAY(1);
273 
274 	/* Check for ack */
275 	MII_CLR(STE_PHYCTL_MCLK);
276 	DELAY(1);
277 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
278 	MII_SET(STE_PHYCTL_MCLK);
279 	DELAY(1);
280 
281 	/*
282 	 * Now try reading data bits. If the ack failed, we still
283 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
284 	 */
285 	if (ack) {
286 		for(i = 0; i < 16; i++) {
287 			MII_CLR(STE_PHYCTL_MCLK);
288 			DELAY(1);
289 			MII_SET(STE_PHYCTL_MCLK);
290 			DELAY(1);
291 		}
292 		goto fail;
293 	}
294 
295 	for (i = 0x8000; i; i >>= 1) {
296 		MII_CLR(STE_PHYCTL_MCLK);
297 		DELAY(1);
298 		if (!ack) {
299 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
300 				frame->mii_data |= i;
301 			DELAY(1);
302 		}
303 		MII_SET(STE_PHYCTL_MCLK);
304 		DELAY(1);
305 	}
306 
307 fail:
308 
309 	MII_CLR(STE_PHYCTL_MCLK);
310 	DELAY(1);
311 	MII_SET(STE_PHYCTL_MCLK);
312 	DELAY(1);
313 
314 	if (ack)
315 		return(1);
316 	return(0);
317 }
318 
319 /*
320  * Write to a PHY register through the MII.
321  */
322 static int
323 ste_mii_writereg(struct ste_softc *sc, struct ste_mii_frame *frame)
324 {
325 	/*
326 	 * Set up frame for TX.
327 	 */
328 
329 	frame->mii_stdelim = STE_MII_STARTDELIM;
330 	frame->mii_opcode = STE_MII_WRITEOP;
331 	frame->mii_turnaround = STE_MII_TURNAROUND;
332 
333 	/*
334  	 * Turn on data output.
335 	 */
336 	MII_SET(STE_PHYCTL_MDIR);
337 
338 	ste_mii_sync(sc);
339 
340 	ste_mii_send(sc, frame->mii_stdelim, 2);
341 	ste_mii_send(sc, frame->mii_opcode, 2);
342 	ste_mii_send(sc, frame->mii_phyaddr, 5);
343 	ste_mii_send(sc, frame->mii_regaddr, 5);
344 	ste_mii_send(sc, frame->mii_turnaround, 2);
345 	ste_mii_send(sc, frame->mii_data, 16);
346 
347 	/* Idle bit. */
348 	MII_SET(STE_PHYCTL_MCLK);
349 	DELAY(1);
350 	MII_CLR(STE_PHYCTL_MCLK);
351 	DELAY(1);
352 
353 	/*
354 	 * Turn off xmit.
355 	 */
356 	MII_CLR(STE_PHYCTL_MDIR);
357 
358 	return(0);
359 }
360 
361 static int
362 ste_miibus_readreg(device_t dev, int phy, int reg)
363 {
364 	struct ste_softc	*sc;
365 	struct ste_mii_frame	frame;
366 
367 	sc = device_get_softc(dev);
368 
369 	if ( sc->ste_one_phy && phy != 0 )
370 		return (0);
371 
372 	bzero((char *)&frame, sizeof(frame));
373 
374 	frame.mii_phyaddr = phy;
375 	frame.mii_regaddr = reg;
376 	ste_mii_readreg(sc, &frame);
377 
378 	return(frame.mii_data);
379 }
380 
381 static int
382 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
383 {
384 	struct ste_softc	*sc;
385 	struct ste_mii_frame	frame;
386 
387 	sc = device_get_softc(dev);
388 	bzero((char *)&frame, sizeof(frame));
389 
390 	frame.mii_phyaddr = phy;
391 	frame.mii_regaddr = reg;
392 	frame.mii_data = data;
393 
394 	ste_mii_writereg(sc, &frame);
395 
396 	return(0);
397 }
398 
399 static void
400 ste_miibus_statchg(device_t dev)
401 {
402 	struct ste_softc	*sc;
403 	struct mii_data		*mii;
404 	int			i;
405 
406 	sc = device_get_softc(dev);
407 	mii = device_get_softc(sc->ste_miibus);
408 
409 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
410 		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
411 	} else {
412 		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
413 	}
414 
415 	STE_SETBIT4(sc, STE_ASICCTL,STE_ASICCTL_RX_RESET |
416 		    STE_ASICCTL_TX_RESET);
417 	for (i = 0; i < STE_TIMEOUT; i++) {
418 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
419 			break;
420 	}
421 	if (i == STE_TIMEOUT)
422 		if_printf(&sc->arpcom.ac_if, "rx reset never completed\n");
423 
424 	return;
425 }
426 
427 static int
428 ste_ifmedia_upd(struct ifnet *ifp)
429 {
430 	struct ste_softc	*sc;
431 	struct mii_data		*mii;
432 
433 	sc = ifp->if_softc;
434 	mii = device_get_softc(sc->ste_miibus);
435 	sc->ste_link = 0;
436 	if (mii->mii_instance) {
437 		struct mii_softc	*miisc;
438 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
439 		    miisc = LIST_NEXT(miisc, mii_list))
440 			mii_phy_reset(miisc);
441 	}
442 	mii_mediachg(mii);
443 
444 	return(0);
445 }
446 
447 static void
448 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
449 {
450 	struct ste_softc	*sc;
451 	struct mii_data		*mii;
452 
453 	sc = ifp->if_softc;
454 	mii = device_get_softc(sc->ste_miibus);
455 
456 	mii_pollstat(mii);
457 	ifmr->ifm_active = mii->mii_media_active;
458 	ifmr->ifm_status = mii->mii_media_status;
459 
460 	return;
461 }
462 
463 static void
464 ste_wait(struct ste_softc *sc)
465 {
466 	int		i;
467 
468 	for (i = 0; i < STE_TIMEOUT; i++) {
469 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
470 			break;
471 	}
472 
473 	if (i == STE_TIMEOUT)
474 		if_printf(&sc->arpcom.ac_if, "command never completed!\n");
475 
476 	return;
477 }
478 
479 /*
480  * The EEPROM is slow: give it time to come ready after issuing
481  * it a command.
482  */
483 static int
484 ste_eeprom_wait(struct ste_softc *sc)
485 {
486 	int			i;
487 
488 	DELAY(1000);
489 
490 	for (i = 0; i < 100; i++) {
491 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
492 			DELAY(1000);
493 		else
494 			break;
495 	}
496 
497 	if (i == 100) {
498 		if_printf(&sc->arpcom.ac_if, "eeprom failed to come ready\n");
499 		return(1);
500 	}
501 
502 	return(0);
503 }
504 
505 /*
506  * Read a sequence of words from the EEPROM. Note that ethernet address
507  * data is stored in the EEPROM in network byte order.
508  */
509 static int
510 ste_read_eeprom(struct ste_softc *sc, caddr_t dest, int off, int cnt, int swap)
511 {
512 	int			err = 0, i;
513 	u_int16_t		word = 0, *ptr;
514 
515 	if (ste_eeprom_wait(sc))
516 		return(1);
517 
518 	for (i = 0; i < cnt; i++) {
519 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
520 		err = ste_eeprom_wait(sc);
521 		if (err)
522 			break;
523 		word = CSR_READ_2(sc, STE_EEPROM_DATA);
524 		ptr = (u_int16_t *)(dest + (i * 2));
525 		if (swap)
526 			*ptr = ntohs(word);
527 		else
528 			*ptr = word;
529 	}
530 
531 	return(err ? 1 : 0);
532 }
533 
534 static void
535 ste_setmulti(struct ste_softc *sc)
536 {
537 	struct ifnet		*ifp;
538 	int			h = 0;
539 	u_int32_t		hashes[2] = { 0, 0 };
540 	struct ifmultiaddr	*ifma;
541 
542 	ifp = &sc->arpcom.ac_if;
543 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
544 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
545 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
546 		return;
547 	}
548 
549 	/* first, zot all the existing hash bits */
550 	CSR_WRITE_2(sc, STE_MAR0, 0);
551 	CSR_WRITE_2(sc, STE_MAR1, 0);
552 	CSR_WRITE_2(sc, STE_MAR2, 0);
553 	CSR_WRITE_2(sc, STE_MAR3, 0);
554 
555 	/* now program new ones */
556 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
557 		if (ifma->ifma_addr->sa_family != AF_LINK)
558 			continue;
559 		h = ether_crc32_be(
560 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
561 			ETHER_ADDR_LEN) & 0x3f;
562 		if (h < 32)
563 			hashes[0] |= (1 << h);
564 		else
565 			hashes[1] |= (1 << (h - 32));
566 	}
567 
568 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
569 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
570 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
571 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
572 	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
573 	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
574 
575 	return;
576 }
577 
578 static void
579 ste_intr(void *xsc)
580 {
581 	struct ste_softc	*sc;
582 	struct ifnet		*ifp;
583 	u_int16_t		status;
584 
585 	sc = xsc;
586 	ifp = &sc->arpcom.ac_if;
587 
588 	/* See if this is really our interrupt. */
589 	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH))
590 		return;
591 
592 	for (;;) {
593 		status = CSR_READ_2(sc, STE_ISR_ACK);
594 
595 		if (!(status & STE_INTRS))
596 			break;
597 
598 		if (status & STE_ISR_RX_DMADONE)
599 			ste_rxeof(sc);
600 
601 		if (status & STE_ISR_TX_DMADONE)
602 			ste_txeof(sc);
603 
604 		if (status & STE_ISR_TX_DONE)
605 			ste_txeoc(sc);
606 
607 		if (status & STE_ISR_STATS_OFLOW) {
608 			callout_stop(&sc->ste_stat_timer);
609 			ste_stats_update(sc);
610 		}
611 
612 		if (status & STE_ISR_LINKEVENT)
613 			mii_pollstat(device_get_softc(sc->ste_miibus));
614 
615 		if (status & STE_ISR_HOSTERR) {
616 			ste_reset(sc);
617 			ste_init(sc);
618 		}
619 	}
620 
621 	/* Re-enable interrupts */
622 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
623 
624 	if (!ifq_is_empty(&ifp->if_snd))
625 		ste_start(ifp);
626 
627 	return;
628 }
629 
630 /*
631  * A frame has been uploaded: pass the resulting mbuf chain up to
632  * the higher level protocols.
633  */
634 static void
635 ste_rxeof(struct ste_softc *sc)
636 {
637         struct mbuf		*m;
638         struct ifnet		*ifp;
639 	struct ste_chain_onefrag	*cur_rx;
640 	int			total_len = 0, count=0;
641 	u_int32_t		rxstat;
642 
643 	ifp = &sc->arpcom.ac_if;
644 
645 	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
646 	      & STE_RXSTAT_DMADONE) {
647 		if ((STE_RX_LIST_CNT - count) < 3) {
648 			break;
649 		}
650 
651 		cur_rx = sc->ste_cdata.ste_rx_head;
652 		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
653 
654 		/*
655 		 * If an error occurs, update stats, clear the
656 		 * status word and leave the mbuf cluster in place:
657 		 * it should simply get re-used next time this descriptor
658 	 	 * comes up in the ring.
659 		 */
660 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
661 			ifp->if_ierrors++;
662 			cur_rx->ste_ptr->ste_status = 0;
663 			continue;
664 		}
665 
666 		/*
667 		 * If there error bit was not set, the upload complete
668 		 * bit should be set which means we have a valid packet.
669 		 * If not, something truly strange has happened.
670 		 */
671 		if (!(rxstat & STE_RXSTAT_DMADONE)) {
672 			if_printf(ifp, "bad receive status -- packet dropped");
673 			ifp->if_ierrors++;
674 			cur_rx->ste_ptr->ste_status = 0;
675 			continue;
676 		}
677 
678 		/* No errors; receive the packet. */
679 		m = cur_rx->ste_mbuf;
680 		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
681 
682 		/*
683 		 * Try to conjure up a new mbuf cluster. If that
684 		 * fails, it means we have an out of memory condition and
685 		 * should leave the buffer in place and continue. This will
686 		 * result in a lost packet, but there's little else we
687 		 * can do in this situation.
688 		 */
689 		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
690 			ifp->if_ierrors++;
691 			cur_rx->ste_ptr->ste_status = 0;
692 			continue;
693 		}
694 
695 		ifp->if_ipackets++;
696 		m->m_pkthdr.rcvif = ifp;
697 		m->m_pkthdr.len = m->m_len = total_len;
698 
699 		ifp->if_input(ifp, m);
700 
701 		cur_rx->ste_ptr->ste_status = 0;
702 		count++;
703 	}
704 
705 	return;
706 }
707 
708 static void
709 ste_txeoc(struct ste_softc *sc)
710 {
711 	u_int8_t		txstat;
712 	struct ifnet		*ifp;
713 
714 	ifp = &sc->arpcom.ac_if;
715 
716 	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
717 	    STE_TXSTATUS_TXDONE) {
718 		if (txstat & STE_TXSTATUS_UNDERRUN ||
719 		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
720 		    txstat & STE_TXSTATUS_RECLAIMERR) {
721 			ifp->if_oerrors++;
722 			if_printf(ifp, "transmission error: %x\n", txstat);
723 
724 			ste_reset(sc);
725 			ste_init(sc);
726 
727 			if (txstat & STE_TXSTATUS_UNDERRUN &&
728 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
729 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
730 				if_printf(ifp, "tx underrun, increasing tx"
731 				    " start threshold to %d bytes\n",
732 				    sc->ste_tx_thresh);
733 			}
734 			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
735 			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
736 			    (STE_PACKET_SIZE >> 4));
737 		}
738 		ste_init(sc);
739 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
740 	}
741 
742 	return;
743 }
744 
745 static void
746 ste_txeof(struct ste_softc *sc)
747 {
748 	struct ste_chain	*cur_tx = NULL;
749 	struct ifnet		*ifp;
750 	int			idx;
751 
752 	ifp = &sc->arpcom.ac_if;
753 
754 	idx = sc->ste_cdata.ste_tx_cons;
755 	while(idx != sc->ste_cdata.ste_tx_prod) {
756 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
757 
758 		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
759 			break;
760 
761 		if (cur_tx->ste_mbuf != NULL) {
762 			m_freem(cur_tx->ste_mbuf);
763 			cur_tx->ste_mbuf = NULL;
764 		}
765 
766 		ifp->if_opackets++;
767 
768 		sc->ste_cdata.ste_tx_cnt--;
769 		STE_INC(idx, STE_TX_LIST_CNT);
770 		ifp->if_timer = 0;
771 	}
772 
773 	sc->ste_cdata.ste_tx_cons = idx;
774 
775 	if (cur_tx != NULL)
776 		ifp->if_flags &= ~IFF_OACTIVE;
777 
778 	return;
779 }
780 
781 static void
782 ste_stats_update(void *xsc)
783 {
784 	struct ste_softc	*sc;
785 	struct ifnet		*ifp;
786 	struct mii_data		*mii;
787 
788 	sc = xsc;
789 	ifp = &sc->arpcom.ac_if;
790 	mii = device_get_softc(sc->ste_miibus);
791 
792 	lwkt_serialize_enter(ifp->if_serializer);
793 
794         ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
795             + CSR_READ_1(sc, STE_MULTI_COLLS)
796             + CSR_READ_1(sc, STE_SINGLE_COLLS);
797 
798 	if (!sc->ste_link) {
799 		mii_pollstat(mii);
800 		if (mii->mii_media_status & IFM_ACTIVE &&
801 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
802 			sc->ste_link++;
803 			/*
804 			 * we don't get a call-back on re-init so do it
805 			 * otherwise we get stuck in the wrong link state
806 			 */
807 			ste_miibus_statchg(sc->ste_dev);
808 			if (!ifq_is_empty(&ifp->if_snd))
809 				ste_start(ifp);
810 		}
811 	}
812 
813 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
814 	lwkt_serialize_exit(ifp->if_serializer);
815 }
816 
817 
818 /*
819  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
820  * IDs against our list and return a device name if we find a match.
821  */
822 static int
823 ste_probe(device_t dev)
824 {
825 	struct ste_type		*t;
826 
827 	t = ste_devs;
828 
829 	while(t->ste_name != NULL) {
830 		if ((pci_get_vendor(dev) == t->ste_vid) &&
831 		    (pci_get_device(dev) == t->ste_did)) {
832 			device_set_desc(dev, t->ste_name);
833 			return(0);
834 		}
835 		t++;
836 	}
837 
838 	return(ENXIO);
839 }
840 
841 /*
842  * Attach the interface. Allocate softc structures, do ifmedia
843  * setup and ethernet/BPF attach.
844  */
845 static int
846 ste_attach(device_t dev)
847 {
848 	struct ste_softc	*sc;
849 	struct ifnet		*ifp;
850 	int			error = 0, rid;
851 	uint8_t			eaddr[ETHER_ADDR_LEN];
852 
853 	sc = device_get_softc(dev);
854 	sc->ste_dev = dev;
855 
856 	/*
857 	 * Only use one PHY since this chip reports multiple
858 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
859 	 * it is at 0 & 1.  It is rev 0x12.
860 	 */
861 	if (pci_get_vendor(dev) == DL_VENDORID &&
862 	    pci_get_device(dev) == DL_DEVICEID_550TX &&
863 	    pci_get_revid(dev) == 0x12 )
864 		sc->ste_one_phy = 1;
865 
866 	/*
867 	 * Handle power management nonsense.
868 	 */
869 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
870 		u_int32_t		iobase, membase, irq;
871 
872 		/* Save important PCI config data. */
873 		iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
874 		membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
875 		irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
876 
877 		/* Reset the power state. */
878 		device_printf(dev, "chip is in D%d power mode "
879 		"-- setting to D0\n", pci_get_powerstate(dev));
880 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
881 
882 		/* Restore PCI config data. */
883 		pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
884 		pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
885 		pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
886 	}
887 
888 	/*
889 	 * Map control/status registers.
890 	 */
891 	pci_enable_busmaster(dev);
892 
893 	rid = STE_RID;
894 	sc->ste_res = bus_alloc_resource_any(dev, STE_RES, &rid, RF_ACTIVE);
895 
896 	if (sc->ste_res == NULL) {
897 		device_printf(dev, "couldn't map ports/memory\n");
898 		error = ENXIO;
899 		goto fail;
900 	}
901 
902 	sc->ste_btag = rman_get_bustag(sc->ste_res);
903 	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
904 
905 	rid = 0;
906 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
907 	    RF_SHAREABLE | RF_ACTIVE);
908 
909 	if (sc->ste_irq == NULL) {
910 		device_printf(dev, "couldn't map interrupt\n");
911 		error = ENXIO;
912 		goto fail;
913 	}
914 
915 	callout_init(&sc->ste_stat_timer);
916 
917 	ifp = &sc->arpcom.ac_if;
918 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
919 
920 	/* Reset the adapter. */
921 	ste_reset(sc);
922 
923 	/*
924 	 * Get station address from the EEPROM.
925 	 */
926 	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, 3, 0)) {
927 		device_printf(dev, "failed to read station address\n");
928 		error = ENXIO;
929 		goto fail;
930 	}
931 
932 	/* Allocate the descriptor queues. */
933 	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
934 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
935 
936 	if (sc->ste_ldata == NULL) {
937 		device_printf(dev, "no memory for list buffers!\n");
938 		error = ENXIO;
939 		goto fail;
940 	}
941 
942 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
943 
944 	/* Do MII setup. */
945 	if (mii_phy_probe(dev, &sc->ste_miibus,
946 		ste_ifmedia_upd, ste_ifmedia_sts)) {
947 		device_printf(dev, "MII without any phy!\n");
948 		error = ENXIO;
949 		goto fail;
950 	}
951 
952 	ifp->if_softc = sc;
953 	ifp->if_mtu = ETHERMTU;
954 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
955 	ifp->if_ioctl = ste_ioctl;
956 	ifp->if_start = ste_start;
957 	ifp->if_watchdog = ste_watchdog;
958 	ifp->if_init = ste_init;
959 	ifp->if_baudrate = 10000000;
960 	ifq_set_maxlen(&ifp->if_snd, STE_TX_LIST_CNT - 1);
961 	ifq_set_ready(&ifp->if_snd);
962 
963 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
964 
965 	/*
966 	 * Call MI attach routine.
967 	 */
968 	ether_ifattach(ifp, eaddr, NULL);
969 
970         /*
971          * Tell the upper layer(s) we support long frames.
972          */
973         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
974 
975 	error = bus_setup_intr(dev, sc->ste_irq, INTR_NETSAFE,
976 			       ste_intr, sc, &sc->ste_intrhand,
977 			       ifp->if_serializer);
978 	if (error) {
979 		device_printf(dev, "couldn't set up irq\n");
980 		ether_ifdetach(ifp);
981 		goto fail;
982 	}
983 
984 	return 0;
985 
986 fail:
987 	ste_detach(dev);
988 	return(error);
989 }
990 
991 static int
992 ste_detach(device_t dev)
993 {
994 	struct ste_softc	*sc = device_get_softc(dev);
995 	struct ifnet		*ifp = &sc->arpcom.ac_if;
996 
997 	if (device_is_attached(dev)) {
998 		lwkt_serialize_enter(ifp->if_serializer);
999 		ste_stop(sc);
1000 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1001 		lwkt_serialize_exit(ifp->if_serializer);
1002 
1003 		ether_ifdetach(ifp);
1004 	}
1005 	if (sc->ste_miibus != NULL)
1006 		device_delete_child(dev, sc->ste_miibus);
1007 	bus_generic_detach(dev);
1008 
1009 	if (sc->ste_irq != NULL)
1010 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1011 	if (sc->ste_res != NULL)
1012 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1013 	if (sc->ste_ldata != NULL) {
1014 		contigfree(sc->ste_ldata, sizeof(struct ste_list_data),
1015 			   M_DEVBUF);
1016 	}
1017 
1018 	return(0);
1019 }
1020 
1021 static int
1022 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *c,
1023 	   struct mbuf *m)
1024 {
1025 	struct mbuf		*m_new = NULL;
1026 
1027 	if (m == NULL) {
1028 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1029 		if (m_new == NULL)
1030 			return(ENOBUFS);
1031 		MCLGET(m_new, MB_DONTWAIT);
1032 		if (!(m_new->m_flags & M_EXT)) {
1033 			m_freem(m_new);
1034 			return(ENOBUFS);
1035 		}
1036 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1037 	} else {
1038 		m_new = m;
1039 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1040 		m_new->m_data = m_new->m_ext.ext_buf;
1041 	}
1042 
1043 	m_adj(m_new, ETHER_ALIGN);
1044 
1045 	c->ste_mbuf = m_new;
1046 	c->ste_ptr->ste_status = 0;
1047 	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1048 	c->ste_ptr->ste_frag.ste_len = (1536 + EVL_ENCAPLEN) | STE_FRAG_LAST;
1049 
1050 	return(0);
1051 }
1052 
1053 static int
1054 ste_init_rx_list(struct ste_softc *sc)
1055 {
1056 	struct ste_chain_data	*cd;
1057 	struct ste_list_data	*ld;
1058 	int			i;
1059 
1060 	cd = &sc->ste_cdata;
1061 	ld = sc->ste_ldata;
1062 
1063 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1064 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1065 		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1066 			return(ENOBUFS);
1067 		if (i == (STE_RX_LIST_CNT - 1)) {
1068 			cd->ste_rx_chain[i].ste_next =
1069 			    &cd->ste_rx_chain[0];
1070 			ld->ste_rx_list[i].ste_next =
1071 			    vtophys(&ld->ste_rx_list[0]);
1072 		} else {
1073 			cd->ste_rx_chain[i].ste_next =
1074 			    &cd->ste_rx_chain[i + 1];
1075 			ld->ste_rx_list[i].ste_next =
1076 			    vtophys(&ld->ste_rx_list[i + 1]);
1077 		}
1078 		ld->ste_rx_list[i].ste_status = 0;
1079 	}
1080 
1081 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1082 
1083 	return(0);
1084 }
1085 
1086 static void
1087 ste_init_tx_list(struct ste_softc *sc)
1088 {
1089 	struct ste_chain_data	*cd;
1090 	struct ste_list_data	*ld;
1091 	int			i;
1092 
1093 	cd = &sc->ste_cdata;
1094 	ld = sc->ste_ldata;
1095 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1096 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1097 		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1098 		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1099 		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1100 		if (i == (STE_TX_LIST_CNT - 1))
1101 			cd->ste_tx_chain[i].ste_next =
1102 			    &cd->ste_tx_chain[0];
1103 		else
1104 			cd->ste_tx_chain[i].ste_next =
1105 			    &cd->ste_tx_chain[i + 1];
1106 		if (i == 0)
1107 			cd->ste_tx_chain[i].ste_prev =
1108 			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1109 		else
1110 			cd->ste_tx_chain[i].ste_prev =
1111 			     &cd->ste_tx_chain[i - 1];
1112 	}
1113 
1114 	cd->ste_tx_prod = 0;
1115 	cd->ste_tx_cons = 0;
1116 	cd->ste_tx_cnt = 0;
1117 
1118 	return;
1119 }
1120 
1121 static void
1122 ste_init(void *xsc)
1123 {
1124 	struct ste_softc	*sc;
1125 	int			i;
1126 	struct ifnet		*ifp;
1127 	struct mii_data		*mii;
1128 
1129 	sc = xsc;
1130 	ifp = &sc->arpcom.ac_if;
1131 	mii = device_get_softc(sc->ste_miibus);
1132 
1133 	ste_stop(sc);
1134 
1135 	/* Init our MAC address */
1136 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1137 		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1138 	}
1139 
1140 	/* Init RX list */
1141 	if (ste_init_rx_list(sc) == ENOBUFS) {
1142 		if_printf(ifp, "initialization failed: no "
1143 		    "memory for RX buffers\n");
1144 		ste_stop(sc);
1145 		return;
1146 	}
1147 
1148 	/* Set RX polling interval */
1149 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 1);
1150 
1151 	/* Init TX descriptors */
1152 	ste_init_tx_list(sc);
1153 
1154 	/* Set the TX freethresh value */
1155 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1156 
1157 	/* Set the TX start threshold for best performance. */
1158 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1159 
1160 	/* Set the TX reclaim threshold. */
1161 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1162 
1163 	/* Set up the RX filter. */
1164 	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1165 
1166 	/* If we want promiscuous mode, set the allframes bit. */
1167 	if (ifp->if_flags & IFF_PROMISC) {
1168 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1169 	} else {
1170 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1171 	}
1172 
1173 	/* Set capture broadcast bit to accept broadcast frames. */
1174 	if (ifp->if_flags & IFF_BROADCAST) {
1175 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1176 	} else {
1177 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1178 	}
1179 
1180 	ste_setmulti(sc);
1181 
1182 	/* Load the address of the RX list. */
1183 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1184 	ste_wait(sc);
1185 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1186 	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1187 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1188 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1189 
1190 	/* Set TX polling interval (defer until we TX first packet */
1191 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1192 
1193 	/* Load address of the TX list */
1194 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1195 	ste_wait(sc);
1196 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1197 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1198 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1199 	ste_wait(sc);
1200 	sc->ste_tx_prev_idx=-1;
1201 
1202 	/* Enable receiver and transmitter */
1203 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1204 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1205 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1206 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1207 
1208 	/* Enable stats counters. */
1209 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1210 
1211 	/* Enable interrupts. */
1212 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1213 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1214 
1215 	/* Accept VLAN length packets */
1216 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + EVL_ENCAPLEN);
1217 
1218 	ste_ifmedia_upd(ifp);
1219 
1220 	ifp->if_flags |= IFF_RUNNING;
1221 	ifp->if_flags &= ~IFF_OACTIVE;
1222 
1223 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
1224 }
1225 
1226 static void
1227 ste_stop(struct ste_softc *sc)
1228 {
1229 	int			i;
1230 	struct ifnet		*ifp;
1231 
1232 	ifp = &sc->arpcom.ac_if;
1233 
1234 	callout_stop(&sc->ste_stat_timer);
1235 
1236 	CSR_WRITE_2(sc, STE_IMR, 0);
1237 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1238 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1239 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1240 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1241 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1242 	ste_wait(sc);
1243 	/*
1244 	 * Try really hard to stop the RX engine or under heavy RX
1245 	 * data chip will write into de-allocated memory.
1246 	 */
1247 	ste_reset(sc);
1248 
1249 	sc->ste_link = 0;
1250 
1251 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1252 		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1253 			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1254 			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1255 		}
1256 	}
1257 
1258 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1259 		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1260 			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1261 			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1262 		}
1263 	}
1264 
1265 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1266 
1267 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1268 
1269 	return;
1270 }
1271 
1272 static void
1273 ste_reset(struct ste_softc *sc)
1274 {
1275 	int			i;
1276 
1277 	STE_SETBIT4(sc, STE_ASICCTL,
1278 	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1279 	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1280 	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1281 	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1282 	    STE_ASICCTL_EXTRESET_RESET);
1283 
1284 	DELAY(100000);
1285 
1286 	for (i = 0; i < STE_TIMEOUT; i++) {
1287 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1288 			break;
1289 	}
1290 
1291 	if (i == STE_TIMEOUT)
1292 		if_printf(&sc->arpcom.ac_if, "global reset never completed\n");
1293 
1294 	return;
1295 }
1296 
1297 static int
1298 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1299 {
1300 	struct ste_softc	*sc;
1301 	struct ifreq		*ifr;
1302 	struct mii_data		*mii;
1303 	int			error = 0;
1304 
1305 	sc = ifp->if_softc;
1306 	ifr = (struct ifreq *)data;
1307 
1308 	switch(command) {
1309 	case SIOCSIFFLAGS:
1310 		if (ifp->if_flags & IFF_UP) {
1311 			if (ifp->if_flags & IFF_RUNNING &&
1312 			    ifp->if_flags & IFF_PROMISC &&
1313 			    !(sc->ste_if_flags & IFF_PROMISC)) {
1314 				STE_SETBIT1(sc, STE_RX_MODE,
1315 				    STE_RXMODE_PROMISC);
1316 			} else if (ifp->if_flags & IFF_RUNNING &&
1317 			    !(ifp->if_flags & IFF_PROMISC) &&
1318 			    sc->ste_if_flags & IFF_PROMISC) {
1319 				STE_CLRBIT1(sc, STE_RX_MODE,
1320 				    STE_RXMODE_PROMISC);
1321 			}
1322 			if (!(ifp->if_flags & IFF_RUNNING)) {
1323 				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1324 				ste_init(sc);
1325 			}
1326 		} else {
1327 			if (ifp->if_flags & IFF_RUNNING)
1328 				ste_stop(sc);
1329 		}
1330 		sc->ste_if_flags = ifp->if_flags;
1331 		error = 0;
1332 		break;
1333 	case SIOCADDMULTI:
1334 	case SIOCDELMULTI:
1335 		ste_setmulti(sc);
1336 		error = 0;
1337 		break;
1338 	case SIOCGIFMEDIA:
1339 	case SIOCSIFMEDIA:
1340 		mii = device_get_softc(sc->ste_miibus);
1341 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1342 		break;
1343 	default:
1344 		error = ether_ioctl(ifp, command, data);
1345 		break;
1346 	}
1347 	return(error);
1348 }
1349 
1350 static int
1351 ste_encap(struct ste_softc *sc, struct ste_chain *c, struct mbuf *m_head)
1352 {
1353 	int			frag = 0;
1354 	struct ste_frag		*f = NULL;
1355 	struct mbuf		*m;
1356 	struct ste_desc		*d;
1357 	int			total_len = 0;
1358 
1359 	d = c->ste_ptr;
1360 	d->ste_ctl = 0;
1361 
1362 encap_retry:
1363 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1364 		if (m->m_len != 0) {
1365 			if (frag == STE_MAXFRAGS)
1366 				break;
1367 			total_len += m->m_len;
1368 			f = &d->ste_frags[frag];
1369 			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1370 			f->ste_len = m->m_len;
1371 			frag++;
1372 		}
1373 	}
1374 
1375 	if (m != NULL) {
1376 		struct mbuf *mn;
1377 
1378 		/*
1379 		 * We ran out of segments. We have to recopy this
1380 		 * mbuf chain first. Bail out if we can't get the
1381 		 * new buffers.  Code borrowed from if_fxp.c.
1382 		 */
1383 		MGETHDR(mn, MB_DONTWAIT, MT_DATA);
1384 		if (mn == NULL) {
1385 			m_freem(m_head);
1386 			return ENOMEM;
1387 		}
1388 		if (m_head->m_pkthdr.len > MHLEN) {
1389 			MCLGET(mn, MB_DONTWAIT);
1390 			if ((mn->m_flags & M_EXT) == 0) {
1391 				m_freem(mn);
1392 				m_freem(m_head);
1393 				return ENOMEM;
1394 			}
1395 		}
1396 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1397 		    mtod(mn, caddr_t));
1398 		mn->m_pkthdr.len = mn->m_len = m_head->m_pkthdr.len;
1399 		m_freem(m_head);
1400 		m_head = mn;
1401 		goto encap_retry;
1402 	}
1403 
1404 	c->ste_mbuf = m_head;
1405 	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1406 	d->ste_ctl = 1;
1407 
1408 	return(0);
1409 }
1410 
1411 static void
1412 ste_start(struct ifnet *ifp)
1413 {
1414 	struct ste_softc	*sc;
1415 	struct mbuf		*m_head = NULL;
1416 	struct ste_chain	*cur_tx = NULL;
1417 	int			idx;
1418 
1419 	sc = ifp->if_softc;
1420 
1421 	if (!sc->ste_link)
1422 		return;
1423 
1424 	if (ifp->if_flags & IFF_OACTIVE)
1425 		return;
1426 
1427 	idx = sc->ste_cdata.ste_tx_prod;
1428 
1429 	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1430 
1431 		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1432 			ifp->if_flags |= IFF_OACTIVE;
1433 			break;
1434 		}
1435 
1436 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1437 		if (m_head == NULL)
1438 			break;
1439 
1440 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1441 
1442 		if (ste_encap(sc, cur_tx, m_head) != 0)
1443 			break;
1444 
1445 		cur_tx->ste_ptr->ste_next = 0;
1446 
1447 		if(sc->ste_tx_prev_idx < 0){
1448 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1449 			/* Load address of the TX list */
1450 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1451 			ste_wait(sc);
1452 
1453 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1454 			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1455 
1456 			/* Set TX polling interval to start TX engine */
1457 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1458 
1459 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1460 			ste_wait(sc);
1461 		}else{
1462 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1463 			sc->ste_cdata.ste_tx_chain[
1464 			    sc->ste_tx_prev_idx].ste_ptr->ste_next
1465 				= cur_tx->ste_phys;
1466 		}
1467 
1468 		sc->ste_tx_prev_idx=idx;
1469 
1470 		BPF_MTAP(ifp, cur_tx->ste_mbuf);
1471 
1472 		STE_INC(idx, STE_TX_LIST_CNT);
1473 		sc->ste_cdata.ste_tx_cnt++;
1474 		ifp->if_timer = 5;
1475 		sc->ste_cdata.ste_tx_prod = idx;
1476 	}
1477 
1478 	return;
1479 }
1480 
1481 static void
1482 ste_watchdog(struct ifnet *ifp)
1483 {
1484 	struct ste_softc	*sc;
1485 
1486 	sc = ifp->if_softc;
1487 
1488 	ifp->if_oerrors++;
1489 	if_printf(ifp, "watchdog timeout\n");
1490 
1491 	ste_txeoc(sc);
1492 	ste_txeof(sc);
1493 	ste_rxeof(sc);
1494 	ste_reset(sc);
1495 	ste_init(sc);
1496 
1497 	if (!ifq_is_empty(&ifp->if_snd))
1498 		ste_start(ifp);
1499 
1500 	return;
1501 }
1502 
1503 static void
1504 ste_shutdown(device_t dev)
1505 {
1506 	struct ste_softc	*sc;
1507 
1508 	sc = device_get_softc(dev);
1509 
1510 	ste_stop(sc);
1511 
1512 	return;
1513 }
1514