xref: /dragonfly/sys/dev/netif/ti/if_ti.c (revision 23265324)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ti.c,v 1.25.2.14 2002/02/15 04:20:20 silby Exp $
33  * $DragonFly: src/sys/dev/netif/ti/if_ti.c,v 1.42 2006/10/25 20:55:59 dillon Exp $
34  */
35 
36 /*
37  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
38  * Manuals, sample driver and firmware source kits are available
39  * from http://www.alteon.com/support/openkits.
40  *
41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
42  * Electrical Engineering Department
43  * Columbia University, New York City
44  */
45 
46 /*
47  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
48  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
49  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
50  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
51  * filtering and jumbo (9014 byte) frames. The hardware is largely
52  * controlled by firmware, which must be loaded into the NIC during
53  * initialization.
54  *
55  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
56  * revision, which supports new features such as extended commands,
57  * extended jumbo receive ring desciptors and a mini receive ring.
58  *
59  * Alteon Networks is to be commended for releasing such a vast amount
60  * of development material for the Tigon NIC without requiring an NDA
61  * (although they really should have done it a long time ago). With
62  * any luck, the other vendors will finally wise up and follow Alteon's
63  * stellar example.
64  *
65  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
66  * this driver by #including it as a C header file. This bloats the
67  * driver somewhat, but it's the easiest method considering that the
68  * driver code and firmware code need to be kept in sync. The source
69  * for the firmware is not provided with the FreeBSD distribution since
70  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
71  *
72  * The following people deserve special thanks:
73  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
74  *   for testing
75  * - Raymond Lee of Netgear, for providing a pair of Netgear
76  *   GA620 Tigon 2 boards for testing
77  * - Ulf Zimmermann, for bringing the GA260 to my attention and
78  *   convincing me to write this driver.
79  * - Andrew Gallatin for providing FreeBSD/Alpha support.
80  */
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/sockio.h>
85 #include <sys/mbuf.h>
86 #include <sys/malloc.h>
87 #include <sys/kernel.h>
88 #include <sys/socket.h>
89 #include <sys/queue.h>
90 #include <sys/serialize.h>
91 #include <sys/bus.h>
92 #include <sys/rman.h>
93 #include <sys/thread2.h>
94 
95 #include <net/if.h>
96 #include <net/ifq_var.h>
97 #include <net/if_arp.h>
98 #include <net/ethernet.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_types.h>
102 #include <net/vlan/if_vlan_var.h>
103 
104 #include <net/bpf.h>
105 
106 #include <netinet/in_systm.h>
107 #include <netinet/in.h>
108 #include <netinet/ip.h>
109 
110 #include <vm/vm.h>              /* for vtophys */
111 #include <vm/pmap.h>            /* for vtophys */
112 
113 #include <bus/pci/pcireg.h>
114 #include <bus/pci/pcivar.h>
115 
116 #include "if_tireg.h"
117 #include "ti_fw.h"
118 #include "ti_fw2.h"
119 
120 /*
121  * Temporarily disable the checksum offload support for now.
122  * Tests with ftp.freesoftware.com show that after about 12 hours,
123  * the firmware will begin calculating completely bogus TX checksums
124  * and refuse to stop until the interface is reset. Unfortunately,
125  * there isn't enough time to fully debug this before the 4.1
126  * release, so this will need to stay off for now.
127  */
128 #ifdef notdef
129 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
130 #else
131 #define TI_CSUM_FEATURES	0
132 #endif
133 
134 /*
135  * Various supported device vendors/types and their names.
136  */
137 
138 static struct ti_type ti_devs[] = {
139 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
140 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
141 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
142 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
143 	{ TC_VENDORID,	TC_DEVICEID_3C985,
144 		"3Com 3c985-SX Gigabit Ethernet" },
145 	{ NG_VENDORID, NG_DEVICEID_GA620,
146 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
147 	{ NG_VENDORID, NG_DEVICEID_GA620T,
148 		"Netgear GA620 1000baseT Gigabit Ethernet" },
149 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
150 		"Silicon Graphics Gigabit Ethernet" },
151 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
152 		"Farallon PN9000SX Gigabit Ethernet" },
153 	{ 0, 0, NULL }
154 };
155 
156 static int	ti_probe(device_t);
157 static int	ti_attach(device_t);
158 static int	ti_detach(device_t);
159 static void	ti_txeof(struct ti_softc *);
160 static void	ti_rxeof(struct ti_softc *);
161 
162 static void	ti_stats_update(struct ti_softc *);
163 static int	ti_encap(struct ti_softc *, struct mbuf *, uint32_t *);
164 
165 static void	ti_intr(void *);
166 static void	ti_start(struct ifnet *);
167 static int	ti_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
168 static void	ti_init(void *);
169 static void	ti_init2(struct ti_softc *);
170 static void	ti_stop(struct ti_softc *);
171 static void	ti_watchdog(struct ifnet *);
172 static void	ti_shutdown(device_t);
173 static int	ti_ifmedia_upd(struct ifnet *);
174 static void	ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
175 
176 static uint32_t	ti_eeprom_putbyte(struct ti_softc *, int);
177 static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
178 static int	ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
179 
180 static void	ti_add_mcast(struct ti_softc *, struct ether_addr *);
181 static void	ti_del_mcast(struct ti_softc *, struct ether_addr *);
182 static void	ti_setmulti(struct ti_softc *);
183 
184 static void	ti_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t);
185 static void	ti_loadfw(struct ti_softc *);
186 static void	ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
187 static void	ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *,
188 			   caddr_t, int);
189 static void	ti_handle_events(struct ti_softc *);
190 static int	ti_alloc_jumbo_mem(struct ti_softc *);
191 static struct ti_jslot *
192 		ti_jalloc(struct ti_softc *);
193 static void	ti_jfree(void *);
194 static void	ti_jref(void *);
195 static int	ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
196 static int	ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
197 static int	ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
198 static int	ti_init_rx_ring_std(struct ti_softc *);
199 static void	ti_free_rx_ring_std(struct ti_softc *);
200 static int	ti_init_rx_ring_jumbo(struct ti_softc *);
201 static void	ti_free_rx_ring_jumbo(struct ti_softc *);
202 static int	ti_init_rx_ring_mini(struct ti_softc *);
203 static void	ti_free_rx_ring_mini(struct ti_softc *);
204 static void	ti_free_tx_ring(struct ti_softc *);
205 static int	ti_init_tx_ring(struct ti_softc *);
206 
207 static int	ti_64bitslot_war(struct ti_softc *);
208 static int	ti_chipinit(struct ti_softc *);
209 static int	ti_gibinit(struct ti_softc *);
210 
211 static device_method_t ti_methods[] = {
212 	/* Device interface */
213 	DEVMETHOD(device_probe,		ti_probe),
214 	DEVMETHOD(device_attach,	ti_attach),
215 	DEVMETHOD(device_detach,	ti_detach),
216 	DEVMETHOD(device_shutdown,	ti_shutdown),
217 	{ 0, 0 }
218 };
219 
220 
221 static DEFINE_CLASS_0(ti, ti_driver, ti_methods, sizeof(struct ti_softc));
222 static devclass_t ti_devclass;
223 
224 DECLARE_DUMMY_MODULE(if_ti);
225 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
226 
227 /*
228  * Send an instruction or address to the EEPROM, check for ACK.
229  */
230 static uint32_t
231 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
232 {
233 	int ack = 0, i;
234 
235 	/*
236 	 * Make sure we're in TX mode.
237 	 */
238 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
239 
240 	/*
241 	 * Feed in each bit and stobe the clock.
242 	 */
243 	for (i = 0x80; i; i >>= 1) {
244 		if (byte & i)
245 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
246 		else
247 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
248 		DELAY(1);
249 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
250 		DELAY(1);
251 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
252 	}
253 
254 	/*
255 	 * Turn off TX mode.
256 	 */
257 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
258 
259 	/*
260 	 * Check for ack.
261 	 */
262 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
263 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
264 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
265 
266 	return(ack);
267 }
268 
269 /*
270  * Read a byte of data stored in the EEPROM at address 'addr.'
271  * We have to send two address bytes since the EEPROM can hold
272  * more than 256 bytes of data.
273  */
274 static uint8_t
275 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
276 {
277 	struct ifnet *ifp = &sc->arpcom.ac_if;
278 	int i;
279 	uint8_t byte = 0;
280 
281 	EEPROM_START;
282 
283 	/*
284 	 * Send write control code to EEPROM.
285 	 */
286 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
287 		if_printf(ifp, "failed to send write command, status: %x\n",
288 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
289 		return(1);
290 	}
291 
292 	/*
293 	 * Send first byte of address of byte we want to read.
294 	 */
295 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
296 		if_printf(ifp, "failed to send address, status: %x\n",
297 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
298 		return(1);
299 	}
300 	/*
301 	 * Send second byte address of byte we want to read.
302 	 */
303 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
304 		if_printf(ifp, "failed to send address, status: %x\n",
305 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
306 		return(1);
307 	}
308 
309 	EEPROM_STOP;
310 	EEPROM_START;
311 	/*
312 	 * Send read control code to EEPROM.
313 	 */
314 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
315 		if_printf(ifp, "failed to send read command, status: %x\n",
316 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
317 		return(1);
318 	}
319 
320 	/*
321 	 * Start reading bits from EEPROM.
322 	 */
323 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
324 	for (i = 0x80; i; i >>= 1) {
325 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
326 		DELAY(1);
327 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
328 			byte |= i;
329 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
330 		DELAY(1);
331 	}
332 
333 	EEPROM_STOP;
334 
335 	/*
336 	 * No ACK generated for read, so just return byte.
337 	 */
338 
339 	*dest = byte;
340 
341 	return(0);
342 }
343 
344 /*
345  * Read a sequence of bytes from the EEPROM.
346  */
347 static int
348 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
349 {
350 	int err = 0, i;
351 	uint8_t byte = 0;
352 
353 	for (i = 0; i < cnt; i++) {
354 		err = ti_eeprom_getbyte(sc, off + i, &byte);
355 		if (err)
356 			break;
357 		*(dest + i) = byte;
358 	}
359 
360 	return(err ? 1 : 0);
361 }
362 
363 /*
364  * NIC memory access function. Can be used to either clear a section
365  * of NIC local memory or (if buf is non-NULL) copy data into it.
366  */
367 static void
368 ti_mem(struct ti_softc *sc, uint32_t addr, uint32_t len, caddr_t buf)
369 {
370 	int cnt, segptr, segsize;
371 	caddr_t ti_winbase, ptr;
372 
373 	segptr = addr;
374 	cnt = len;
375 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
376 	ptr = buf;
377 
378 	while(cnt) {
379 		if (cnt < TI_WINLEN)
380 			segsize = cnt;
381 		else
382 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
383 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
384 		if (buf == NULL)
385 			bzero((char *)ti_winbase + (segptr &
386 			    (TI_WINLEN - 1)), segsize);
387 		else {
388 			bcopy((char *)ptr, (char *)ti_winbase +
389 			    (segptr & (TI_WINLEN - 1)), segsize);
390 			ptr += segsize;
391 		}
392 		segptr += segsize;
393 		cnt -= segsize;
394 	}
395 }
396 
397 /*
398  * Load firmware image into the NIC. Check that the firmware revision
399  * is acceptable and see if we want the firmware for the Tigon 1 or
400  * Tigon 2.
401  */
402 static void
403 ti_loadfw(struct ti_softc *sc)
404 {
405 	struct ifnet *ifp = &sc->arpcom.ac_if;
406 
407 	switch(sc->ti_hwrev) {
408 	case TI_HWREV_TIGON:
409 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
410 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
411 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
412 			if_printf(ifp, "firmware revision mismatch; want "
413 				  "%d.%d.%d, got %d.%d.%d\n",
414 				  TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
415 				  TI_FIRMWARE_FIX, tigonFwReleaseMajor,
416 				  tigonFwReleaseMinor, tigonFwReleaseFix);
417 			return;
418 		}
419 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
420 		    (caddr_t)tigonFwText);
421 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
422 		    (caddr_t)tigonFwData);
423 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
424 		    (caddr_t)tigonFwRodata);
425 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
426 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
427 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
428 		break;
429 	case TI_HWREV_TIGON_II:
430 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
431 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
432 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
433 			if_printf(ifp, "firmware revision mismatch; want "
434 				  "%d.%d.%d, got %d.%d.%d\n",
435 				  TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
436 				  TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
437 				  tigon2FwReleaseMinor, tigon2FwReleaseFix);
438 			return;
439 		}
440 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
441 		    (caddr_t)tigon2FwText);
442 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
443 		    (caddr_t)tigon2FwData);
444 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
445 		    (caddr_t)tigon2FwRodata);
446 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
447 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
448 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
449 		break;
450 	default:
451 		if_printf(ifp, "can't load firmware: unknown hardware rev\n");
452 		break;
453 	}
454 }
455 
456 /*
457  * Send the NIC a command via the command ring.
458  */
459 static void
460 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
461 {
462 	uint32_t index;
463 
464 	if (sc->ti_rdata->ti_cmd_ring == NULL)
465 		return;
466 
467 	index = sc->ti_cmd_saved_prodidx;
468 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
469 	TI_INC(index, TI_CMD_RING_CNT);
470 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
471 	sc->ti_cmd_saved_prodidx = index;
472 }
473 
474 /*
475  * Send the NIC an extended command. The 'len' parameter specifies the
476  * number of command slots to include after the initial command.
477  */
478 static void
479 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
480 {
481 	uint32_t index;
482 	int i;
483 
484 	if (sc->ti_rdata->ti_cmd_ring == NULL)
485 		return;
486 
487 	index = sc->ti_cmd_saved_prodidx;
488 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
489 	TI_INC(index, TI_CMD_RING_CNT);
490 	for (i = 0; i < len; i++) {
491 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
492 		    *(uint32_t *)(&arg[i * 4]));
493 		TI_INC(index, TI_CMD_RING_CNT);
494 	}
495 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
496 	sc->ti_cmd_saved_prodidx = index;
497 }
498 
499 /*
500  * Handle events that have triggered interrupts.
501  */
502 static void
503 ti_handle_events(struct ti_softc *sc)
504 {
505 	struct ifnet *ifp = &sc->arpcom.ac_if;
506 	struct ti_event_desc *e;
507 
508 	if (sc->ti_rdata->ti_event_ring == NULL)
509 		return;
510 
511 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
512 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
513 		switch(e->ti_event) {
514 		case TI_EV_LINKSTAT_CHANGED:
515 			sc->ti_linkstat = e->ti_code;
516 			if (e->ti_code == TI_EV_CODE_LINK_UP) {
517 				if_printf(ifp, "10/100 link up\n");
518 			} else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP) {
519 				if_printf(ifp, "gigabit link up\n");
520 			} else if (e->ti_code == TI_EV_CODE_LINK_DOWN) {
521 				if_printf(ifp, "link down\n");
522 			}
523 			break;
524 		case TI_EV_ERROR:
525 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD) {
526 				if_printf(ifp, "invalid command\n");
527 			} else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD) {
528 				if_printf(ifp, "unknown command\n");
529 			} else if (e->ti_code == TI_EV_CODE_ERR_BADCFG) {
530 				if_printf(ifp, "bad config data\n");
531 			}
532 			break;
533 		case TI_EV_FIRMWARE_UP:
534 			ti_init2(sc);
535 			break;
536 		case TI_EV_STATS_UPDATED:
537 			ti_stats_update(sc);
538 			break;
539 		case TI_EV_RESET_JUMBO_RING:
540 		case TI_EV_MCAST_UPDATED:
541 			/* Who cares. */
542 			break;
543 		default:
544 			if_printf(ifp, "unknown event: %d\n", e->ti_event);
545 			break;
546 		}
547 		/* Advance the consumer index. */
548 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
549 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
550 	}
551 }
552 
553 /*
554  * Memory management for the jumbo receive ring is a pain in the
555  * butt. We need to allocate at least 9018 bytes of space per frame,
556  * _and_ it has to be contiguous (unless you use the extended
557  * jumbo descriptor format). Using malloc() all the time won't
558  * work: malloc() allocates memory in powers of two, which means we
559  * would end up wasting a considerable amount of space by allocating
560  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
561  * to do our own memory management.
562  *
563  * The driver needs to allocate a contiguous chunk of memory at boot
564  * time. We then chop this up ourselves into 9K pieces and use them
565  * as external mbuf storage.
566  *
567  * One issue here is how much memory to allocate. The jumbo ring has
568  * 256 slots in it, but at 9K per slot than can consume over 2MB of
569  * RAM. This is a bit much, especially considering we also need
570  * RAM for the standard ring and mini ring (on the Tigon 2). To
571  * save space, we only actually allocate enough memory for 64 slots
572  * by default, which works out to between 500 and 600K. This can
573  * be tuned by changing a #define in if_tireg.h.
574  */
575 
576 static int
577 ti_alloc_jumbo_mem(struct ti_softc *sc)
578 {
579 	struct ti_jslot *entry;
580 	caddr_t ptr;
581 	int i;
582 
583 	/* Grab a big chunk o' storage. */
584 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
585 		M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
586 
587 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
588 		if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
589 		return(ENOBUFS);
590 	}
591 
592 	SLIST_INIT(&sc->ti_jfree_listhead);
593 
594 	/*
595 	 * Now divide it up into 9K pieces and save the addresses
596 	 * in an array. Note that we play an evil trick here by using
597 	 * the first few bytes in the buffer to hold the the address
598 	 * of the softc structure for this interface. This is because
599 	 * ti_jfree() needs it, but it is called by the mbuf management
600 	 * code which will not pass it to us explicitly.
601 	 */
602 	ptr = sc->ti_cdata.ti_jumbo_buf;
603 	for (i = 0; i < TI_JSLOTS; i++) {
604 		entry = &sc->ti_cdata.ti_jslots[i];
605 		entry->ti_sc = sc;
606 		entry->ti_buf = ptr;
607 		entry->ti_inuse = 0;
608 		entry->ti_slot = i;
609 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jslot_link);
610 		ptr += TI_JLEN;
611 	}
612 
613 	return(0);
614 }
615 
616 /*
617  * Allocate a jumbo buffer.
618  */
619 static struct ti_jslot *
620 ti_jalloc(struct ti_softc *sc)
621 {
622 	struct ti_jslot *entry;
623 
624 	lwkt_serialize_enter(&sc->ti_jslot_serializer);
625 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
626 	if (entry) {
627 		SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jslot_link);
628 		entry->ti_inuse = 1;
629 	} else {
630 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
631 	}
632 	lwkt_serialize_exit(&sc->ti_jslot_serializer);
633 	return(entry);
634 }
635 
636 /*
637  * Adjust usage count on a jumbo buffer. In general this doesn't
638  * get used much because our jumbo buffers don't get passed around
639  * too much, but it's implemented for correctness.
640  */
641 static void
642 ti_jref(void *arg)
643 {
644 	struct ti_jslot *entry = (struct ti_jslot *)arg;
645 	struct ti_softc *sc = entry->ti_sc;
646 
647 	if (sc == NULL)
648 		panic("ti_jref: can't find softc pointer!");
649 
650 	if (&sc->ti_cdata.ti_jslots[entry->ti_slot] != entry)
651 		panic("ti_jref: asked to reference buffer "
652 		    "that we don't manage!");
653 	if (entry->ti_inuse == 0)
654 		panic("ti_jref: buffer already free!");
655 	atomic_add_int(&entry->ti_inuse, 1);
656 }
657 
658 /*
659  * Release a jumbo buffer.
660  */
661 static void
662 ti_jfree(void *arg)
663 {
664 	struct ti_jslot *entry = (struct ti_jslot *)arg;
665 	struct ti_softc *sc = entry->ti_sc;
666 
667 	if (sc == NULL)
668 		panic("ti_jref: can't find softc pointer!");
669 
670 	if (&sc->ti_cdata.ti_jslots[entry->ti_slot] != entry)
671 		panic("ti_jref: asked to reference buffer "
672 		    "that we don't manage!");
673 	if (entry->ti_inuse == 0)
674 		panic("ti_jref: buffer already free!");
675 	lwkt_serialize_enter(&sc->ti_jslot_serializer);
676 	atomic_subtract_int(&entry->ti_inuse, 1);
677 	if (entry->ti_inuse == 0)
678 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jslot_link);
679 	lwkt_serialize_exit(&sc->ti_jslot_serializer);
680 }
681 
682 
683 /*
684  * Intialize a standard receive ring descriptor.
685  */
686 static int
687 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m)
688 {
689 	struct mbuf *m_new;
690 	struct ti_rx_desc *r;
691 
692 	if (m == NULL) {
693 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
694 		if (m_new == NULL)
695 			return (ENOBUFS);
696 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
697 	} else {
698 		m_new = m;
699 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
700 		m_new->m_data = m_new->m_ext.ext_buf;
701 	}
702 
703 
704 	m_adj(m_new, ETHER_ALIGN);
705 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
706 	r = &sc->ti_rdata->ti_rx_std_ring[i];
707 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
708 	r->ti_type = TI_BDTYPE_RECV_BD;
709 	r->ti_flags = 0;
710 	if (sc->arpcom.ac_if.if_hwassist)
711 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
712 	r->ti_len = m_new->m_len;
713 	r->ti_idx = i;
714 
715 	return(0);
716 }
717 
718 /*
719  * Intialize a mini receive ring descriptor. This only applies to
720  * the Tigon 2.
721  */
722 static int
723 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m)
724 {
725 	struct mbuf *m_new;
726 	struct ti_rx_desc *r;
727 
728 	if (m == NULL) {
729 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
730 		if (m_new == NULL) {
731 			return(ENOBUFS);
732 		}
733 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
734 	} else {
735 		m_new = m;
736 		m_new->m_data = m_new->m_pktdat;
737 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
738 	}
739 
740 	m_adj(m_new, ETHER_ALIGN);
741 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
742 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
743 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
744 	r->ti_type = TI_BDTYPE_RECV_BD;
745 	r->ti_flags = TI_BDFLAG_MINI_RING;
746 	if (sc->arpcom.ac_if.if_hwassist)
747 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
748 	r->ti_len = m_new->m_len;
749 	r->ti_idx = i;
750 
751 	return(0);
752 }
753 
754 /*
755  * Initialize a jumbo receive ring descriptor. This allocates
756  * a jumbo buffer from the pool managed internally by the driver.
757  */
758 static int
759 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
760 {
761 	struct mbuf *m_new;
762 	struct ti_rx_desc *r;
763 	struct ti_jslot *buf;
764 
765 	if (m == NULL) {
766 		/* Allocate the mbuf. */
767 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
768 		if (m_new == NULL) {
769 			return(ENOBUFS);
770 		}
771 
772 		/* Allocate the jumbo buffer */
773 		buf = ti_jalloc(sc);
774 		if (buf == NULL) {
775 			m_freem(m_new);
776 			if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
777 				  "-- packet dropped!\n");
778 			return(ENOBUFS);
779 		}
780 
781 		/* Attach the buffer to the mbuf. */
782 		m_new->m_ext.ext_arg = buf;
783 		m_new->m_ext.ext_free = ti_jfree;
784 		m_new->m_ext.ext_ref = ti_jref;
785 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
786 
787 		m_new->m_data = m_new->m_ext.ext_buf;
788 		m_new->m_flags |= M_EXT;
789 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
790 	} else {
791 		m_new = m;
792 		m_new->m_data = m_new->m_ext.ext_buf;
793 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
794 	}
795 
796 	m_adj(m_new, ETHER_ALIGN);
797 	/* Set up the descriptor. */
798 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
799 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
800 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
801 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
802 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
803 	if (sc->arpcom.ac_if.if_hwassist)
804 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
805 	r->ti_len = m_new->m_len;
806 	r->ti_idx = i;
807 
808 	return(0);
809 }
810 
811 /*
812  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
813  * that's 1MB or memory, which is a lot. For now, we fill only the first
814  * 256 ring entries and hope that our CPU is fast enough to keep up with
815  * the NIC.
816  */
817 static int
818 ti_init_rx_ring_std(struct ti_softc *sc)
819 {
820 	int i;
821 	struct ti_cmd_desc cmd;
822 
823 	for (i = 0; i < TI_SSLOTS; i++) {
824 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
825 			return(ENOBUFS);
826 	};
827 
828 	TI_UPDATE_STDPROD(sc, i - 1);
829 	sc->ti_std = i - 1;
830 
831 	return(0);
832 }
833 
834 static void
835 ti_free_rx_ring_std(struct ti_softc *sc)
836 {
837 	int i;
838 
839 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
840 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
841 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
842 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
843 		}
844 		bzero(&sc->ti_rdata->ti_rx_std_ring[i],
845 		    sizeof(struct ti_rx_desc));
846 	}
847 }
848 
849 static int
850 ti_init_rx_ring_jumbo(struct ti_softc *sc)
851 {
852 	int i;
853 	struct ti_cmd_desc cmd;
854 
855 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
856 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
857 			return(ENOBUFS);
858 	}
859 
860 	TI_UPDATE_JUMBOPROD(sc, i - 1);
861 	sc->ti_jumbo = i - 1;
862 
863 	return(0);
864 }
865 
866 static void
867 ti_free_rx_ring_jumbo(struct ti_softc *sc)
868 {
869 	int i;
870 
871 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
872 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
873 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
874 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
875 		}
876 		bzero(&sc->ti_rdata->ti_rx_jumbo_ring[i],
877 		    sizeof(struct ti_rx_desc));
878 	}
879 }
880 
881 static int
882 ti_init_rx_ring_mini(struct ti_softc *sc)
883 {
884 	int i;
885 
886 	for (i = 0; i < TI_MSLOTS; i++) {
887 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
888 			return(ENOBUFS);
889 	}
890 
891 	TI_UPDATE_MINIPROD(sc, i - 1);
892 	sc->ti_mini = i - 1;
893 
894 	return(0);
895 }
896 
897 static void
898 ti_free_rx_ring_mini(struct ti_softc *sc)
899 {
900 	int i;
901 
902 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
903 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
904 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
905 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
906 		}
907 		bzero(&sc->ti_rdata->ti_rx_mini_ring[i],
908 		    sizeof(struct ti_rx_desc));
909 	}
910 }
911 
912 static void
913 ti_free_tx_ring(struct ti_softc *sc)
914 {
915 	int i;
916 
917 	if (sc->ti_rdata->ti_tx_ring == NULL)
918 		return;
919 
920 	for (i = 0; i < TI_TX_RING_CNT; i++) {
921 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
922 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
923 			sc->ti_cdata.ti_tx_chain[i] = NULL;
924 		}
925 		bzero(&sc->ti_rdata->ti_tx_ring[i],
926 		    sizeof(struct ti_tx_desc));
927 	}
928 }
929 
930 static int
931 ti_init_tx_ring(struct ti_softc *sc)
932 {
933 	sc->ti_txcnt = 0;
934 	sc->ti_tx_saved_considx = 0;
935 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
936 	return(0);
937 }
938 
939 /*
940  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
941  * but we have to support the old way too so that Tigon 1 cards will
942  * work.
943  */
944 static void
945 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
946 {
947 	struct ti_cmd_desc cmd;
948 	uint16_t *m;
949 	uint32_t ext[2] = {0, 0};
950 
951 	m = (uint16_t *)&addr->octet[0];
952 
953 	switch(sc->ti_hwrev) {
954 	case TI_HWREV_TIGON:
955 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
956 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
957 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
958 		break;
959 	case TI_HWREV_TIGON_II:
960 		ext[0] = htons(m[0]);
961 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
962 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
963 		break;
964 	default:
965 		if_printf(&sc->arpcom.ac_if, "unknown hwrev\n");
966 		break;
967 	}
968 }
969 
970 static void
971 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
972 {
973 	struct ti_cmd_desc cmd;
974 	uint16_t *m;
975 	uint32_t ext[2] = {0, 0};
976 
977 	m = (uint16_t *)&addr->octet[0];
978 
979 	switch(sc->ti_hwrev) {
980 	case TI_HWREV_TIGON:
981 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
982 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
983 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
984 		break;
985 	case TI_HWREV_TIGON_II:
986 		ext[0] = htons(m[0]);
987 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
988 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
989 		break;
990 	default:
991 		if_printf(&sc->arpcom.ac_if, "unknown hwrev\n");
992 		break;
993 	}
994 }
995 
996 /*
997  * Configure the Tigon's multicast address filter.
998  *
999  * The actual multicast table management is a bit of a pain, thanks to
1000  * slight brain damage on the part of both Alteon and us. With our
1001  * multicast code, we are only alerted when the multicast address table
1002  * changes and at that point we only have the current list of addresses:
1003  * we only know the current state, not the previous state, so we don't
1004  * actually know what addresses were removed or added. The firmware has
1005  * state, but we can't get our grubby mits on it, and there is no 'delete
1006  * all multicast addresses' command. Hence, we have to maintain our own
1007  * state so we know what addresses have been programmed into the NIC at
1008  * any given time.
1009  */
1010 static void
1011 ti_setmulti(struct ti_softc *sc)
1012 {
1013 	struct ifnet *ifp = &sc->arpcom.ac_if;
1014 	struct ifmultiaddr *ifma;
1015 	struct ti_cmd_desc cmd;
1016 	struct ti_mc_entry *mc;
1017 	uint32_t intrs;
1018 
1019 	if (ifp->if_flags & IFF_ALLMULTI) {
1020 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1021 		return;
1022 	}
1023 
1024 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1025 
1026 	/* Disable interrupts. */
1027 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1028 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1029 
1030 	/* First, zot all the existing filters. */
1031 	while (sc->ti_mc_listhead.slh_first != NULL) {
1032 		mc = sc->ti_mc_listhead.slh_first;
1033 		ti_del_mcast(sc, &mc->mc_addr);
1034 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1035 		kfree(mc, M_DEVBUF);
1036 	}
1037 
1038 	/* Now program new ones. */
1039 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1040 		if (ifma->ifma_addr->sa_family != AF_LINK)
1041 			continue;
1042 		mc = kmalloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_INTWAIT);
1043 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1044 		    &mc->mc_addr, ETHER_ADDR_LEN);
1045 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1046 		ti_add_mcast(sc, &mc->mc_addr);
1047 	}
1048 
1049 	/* Re-enable interrupts. */
1050 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1051 }
1052 
1053 /*
1054  * Check to see if the BIOS has configured us for a 64 bit slot when
1055  * we aren't actually in one. If we detect this condition, we can work
1056  * around it on the Tigon 2 by setting a bit in the PCI state register,
1057  * but for the Tigon 1 we must give up and abort the interface attach.
1058  */
1059 static int
1060 ti_64bitslot_war(struct ti_softc *sc)
1061 {
1062 	if ((CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS) == 0) {
1063 		CSR_WRITE_4(sc, 0x600, 0);
1064 		CSR_WRITE_4(sc, 0x604, 0);
1065 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1066 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1067 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1068 				return(EINVAL);
1069 			TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_32BIT_BUS);
1070 			return(0);
1071 		}
1072 	}
1073 
1074 	return(0);
1075 }
1076 
1077 /*
1078  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1079  * self-test results.
1080  */
1081 static int
1082 ti_chipinit(struct ti_softc *sc)
1083 {
1084 	struct ifnet *ifp = &sc->arpcom.ac_if;
1085 	uint32_t cacheline;
1086 	uint32_t pci_writemax = 0;
1087 
1088 	/* Initialize link to down state. */
1089 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1090 
1091 	if (ifp->if_capenable & IFCAP_HWCSUM)
1092 		ifp->if_hwassist = TI_CSUM_FEATURES;
1093 	else
1094 		ifp->if_hwassist = 0;
1095 
1096 	/* Set endianness before we access any non-PCI registers. */
1097 #if BYTE_ORDER == BIG_ENDIAN
1098 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1099 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1100 #else
1101 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1102 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1103 #endif
1104 
1105 	/* Check the ROM failed bit to see if self-tests passed. */
1106 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1107 		if_printf(ifp, "board self-diagnostics failed!\n");
1108 		return(ENODEV);
1109 	}
1110 
1111 	/* Halt the CPU. */
1112 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1113 
1114 	/* Figure out the hardware revision. */
1115 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1116 	case TI_REV_TIGON_I:
1117 		sc->ti_hwrev = TI_HWREV_TIGON;
1118 		break;
1119 	case TI_REV_TIGON_II:
1120 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1121 		break;
1122 	default:
1123 		if_printf(ifp, "unsupported chip revision\n");
1124 		return(ENODEV);
1125 	}
1126 
1127 	/* Do special setup for Tigon 2. */
1128 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1129 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1130 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1131 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1132 	}
1133 
1134 	/* Set up the PCI state register. */
1135 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1136 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1137 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1138 	}
1139 
1140 	/* Clear the read/write max DMA parameters. */
1141 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1142 	    TI_PCISTATE_READ_MAXDMA));
1143 
1144 	/* Get cache line size. */
1145 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1146 
1147 	/*
1148 	 * If the system has set enabled the PCI memory write
1149 	 * and invalidate command in the command register, set
1150 	 * the write max parameter accordingly. This is necessary
1151 	 * to use MWI with the Tigon 2.
1152 	 */
1153 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1154 		switch(cacheline) {
1155 		case 1:
1156 		case 4:
1157 		case 8:
1158 		case 16:
1159 		case 32:
1160 		case 64:
1161 			break;
1162 		default:
1163 		/* Disable PCI memory write and invalidate. */
1164 			if (bootverbose) {
1165 				if_printf(ifp, "cache line size %d not "
1166 					  "supported; disabling PCI MWI\n",
1167 					  cacheline);
1168 			}
1169 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1170 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1171 			break;
1172 		}
1173 	}
1174 
1175 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1176 
1177 	/* This sets the min dma param all the way up (0xff). */
1178 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1179 
1180 	/* Configure DMA variables. */
1181 #if BYTE_ORDER == BIG_ENDIAN
1182 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1183 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1184 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1185 	    TI_OPMODE_DONT_FRAG_JUMBO);
1186 #else
1187 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1188 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1189 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1190 #endif
1191 
1192 	/*
1193 	 * Only allow 1 DMA channel to be active at a time.
1194 	 * I don't think this is a good idea, but without it
1195 	 * the firmware racks up lots of nicDmaReadRingFull
1196 	 * errors.  This is not compatible with hardware checksums.
1197 	 */
1198 	if (ifp->if_hwassist == 0)
1199 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1200 
1201 	/* Recommended settings from Tigon manual. */
1202 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1203 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1204 
1205 	if (ti_64bitslot_war(sc)) {
1206 		if_printf(ifp, "bios thinks we're in a 64 bit slot, "
1207 			  "but we aren't");
1208 		return(EINVAL);
1209 	}
1210 
1211 	return(0);
1212 }
1213 
1214 /*
1215  * Initialize the general information block and firmware, and
1216  * start the CPU(s) running.
1217  */
1218 static int
1219 ti_gibinit(struct ti_softc *sc)
1220 {
1221 	struct ifnet *ifp = &sc->arpcom.ac_if;
1222 	struct ti_rcb *rcb;
1223 	int i;
1224 
1225 	/* Disable interrupts for now. */
1226 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1227 
1228 	/* Tell the chip where to find the general information block. */
1229 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1230 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1231 
1232 	/* Load the firmware into SRAM. */
1233 	ti_loadfw(sc);
1234 
1235 	/* Set up the contents of the general info and ring control blocks. */
1236 
1237 	/* Set up the event ring and producer pointer. */
1238 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1239 
1240 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1241 	rcb->ti_flags = 0;
1242 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1243 	    vtophys(&sc->ti_ev_prodidx);
1244 	sc->ti_ev_prodidx.ti_idx = 0;
1245 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1246 	sc->ti_ev_saved_considx = 0;
1247 
1248 	/* Set up the command ring and producer mailbox. */
1249 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1250 
1251 	sc->ti_rdata->ti_cmd_ring =
1252 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1253 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1254 	rcb->ti_flags = 0;
1255 	rcb->ti_max_len = 0;
1256 	for (i = 0; i < TI_CMD_RING_CNT; i++)
1257 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1258 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1259 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1260 	sc->ti_cmd_saved_prodidx = 0;
1261 
1262 	/*
1263 	 * Assign the address of the stats refresh buffer.
1264 	 * We re-use the current stats buffer for this to
1265 	 * conserve memory.
1266 	 */
1267 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1268 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1269 
1270 	/* Set up the standard receive ring. */
1271 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1272 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1273 	rcb->ti_max_len = TI_FRAMELEN;
1274 	rcb->ti_flags = 0;
1275 	if (ifp->if_hwassist)
1276 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1277 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1278 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1279 
1280 	/* Set up the jumbo receive ring. */
1281 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1282 	TI_HOSTADDR(rcb->ti_hostaddr) =
1283 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1284 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1285 	rcb->ti_flags = 0;
1286 	if (ifp->if_hwassist)
1287 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1288 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1289 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1290 
1291 	/*
1292 	 * Set up the mini ring. Only activated on the
1293 	 * Tigon 2 but the slot in the config block is
1294 	 * still there on the Tigon 1.
1295 	 */
1296 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1297 	TI_HOSTADDR(rcb->ti_hostaddr) =
1298 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1299 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1300 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1301 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1302 	else
1303 		rcb->ti_flags = 0;
1304 	if (ifp->if_hwassist)
1305 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1306 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1307 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1308 
1309 	/*
1310 	 * Set up the receive return ring.
1311 	 */
1312 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1313 	TI_HOSTADDR(rcb->ti_hostaddr) =
1314 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1315 	rcb->ti_flags = 0;
1316 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1317 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1318 	    vtophys(&sc->ti_return_prodidx);
1319 
1320 	/*
1321 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1322 	 * of putting the transmit ring in the host's address space and
1323 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1324 	 * memory and accessing it through the shared memory region. We
1325 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1326 	 * so we have to revert to the shared memory scheme if we detect
1327 	 * a Tigon 1 chip.
1328 	 */
1329 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1330 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1331 		sc->ti_rdata->ti_tx_ring_nic =
1332 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1333 	}
1334 	bzero(sc->ti_rdata->ti_tx_ring,
1335 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1336 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1337 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1338 		rcb->ti_flags = 0;
1339 	else
1340 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1341 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1342 	if (ifp->if_hwassist)
1343 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1344 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1345 	rcb->ti_max_len = TI_TX_RING_CNT;
1346 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1347 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1348 	else
1349 		TI_HOSTADDR(rcb->ti_hostaddr) =
1350 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1351 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1352 	    vtophys(&sc->ti_tx_considx);
1353 
1354 	/* Set up tuneables */
1355 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1356 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1357 		    (sc->ti_rx_coal_ticks / 10));
1358 	else
1359 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1360 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1361 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1362 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1363 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1364 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1365 
1366 	/* Turn interrupts on. */
1367 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1368 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1369 
1370 	/* Start CPU. */
1371 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1372 
1373 	return(0);
1374 }
1375 
1376 /*
1377  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1378  * against our list and return its name if we find a match.
1379  */
1380 static int
1381 ti_probe(device_t dev)
1382 {
1383 	struct ti_type *t;
1384 	uint16_t vendor, product;
1385 
1386 	vendor = pci_get_vendor(dev);
1387 	product = pci_get_device(dev);
1388 
1389 	for (t = ti_devs; t->ti_name != NULL; t++) {
1390 		if (vendor == t->ti_vid && product == t->ti_did) {
1391 			device_set_desc(dev, t->ti_name);
1392 			return(0);
1393 		}
1394 	}
1395 
1396 	return(ENXIO);
1397 }
1398 
1399 static int
1400 ti_attach(device_t dev)
1401 {
1402 	struct ti_softc *sc;
1403 	struct ifnet *ifp;
1404 	int error = 0, rid;
1405 	uint8_t eaddr[ETHER_ADDR_LEN];
1406 
1407 	sc = device_get_softc(dev);
1408 	ifp = &sc->arpcom.ac_if;
1409 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1410 	ifp->if_capabilities = IFCAP_HWCSUM;
1411 	ifp->if_capenable = ifp->if_capabilities;
1412 
1413 	pci_enable_busmaster(dev);
1414 
1415 	/*
1416 	 * Initialize media before any possible error may occur,
1417 	 * so we can destroy it unconditionally, if an error occurs later on.
1418 	 */
1419 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1420 
1421 	rid = TI_PCI_LOMEM;
1422 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1423 	    RF_ACTIVE);
1424 
1425 	if (sc->ti_res == NULL) {
1426 		device_printf(dev, "couldn't map memory\n");
1427 		error = ENXIO;
1428 		goto fail;
1429 	}
1430 
1431 	sc->ti_btag = rman_get_bustag(sc->ti_res);
1432 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1433 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1434 
1435 	/* Allocate interrupt */
1436 	rid = 0;
1437 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1438 	    RF_SHAREABLE | RF_ACTIVE);
1439 	if (sc->ti_irq == NULL) {
1440 		device_printf(dev, "couldn't map interrupt\n");
1441 		error = ENXIO;
1442 		goto fail;
1443 	}
1444 
1445 	if (ti_chipinit(sc)) {
1446 		device_printf(dev, "chip initialization failed\n");
1447 		error = ENXIO;
1448 		goto fail;
1449 	}
1450 
1451 	/* Zero out the NIC's on-board SRAM. */
1452 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1453 
1454 	/* Init again -- zeroing memory may have clobbered some registers. */
1455 	if (ti_chipinit(sc)) {
1456 		device_printf(dev, "chip initialization failed\n");
1457 		error = ENXIO;
1458 		goto fail;
1459 	}
1460 
1461 	/*
1462 	 * Get station address from the EEPROM. Note: the manual states
1463 	 * that the MAC address is at offset 0x8c, however the data is
1464 	 * stored as two longwords (since that's how it's loaded into
1465 	 * the NIC). This means the MAC address is actually preceeded
1466 	 * by two zero bytes. We need to skip over those.
1467 	 */
1468 	if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1469 		device_printf(dev, "failed to read station address\n");
1470 		error = ENXIO;
1471 		goto fail;
1472 	}
1473 
1474 	/* Allocate the general information block and ring buffers. */
1475 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1476 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1477 
1478 	if (sc->ti_rdata == NULL) {
1479 		device_printf(dev, "no memory for list buffers!\n");
1480 		error = ENXIO;
1481 		goto fail;
1482 	}
1483 
1484 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1485 
1486 	/* Try to allocate memory for jumbo buffers. */
1487 	if (ti_alloc_jumbo_mem(sc)) {
1488 		device_printf(dev, "jumbo buffer allocation failed\n");
1489 		error = ENXIO;
1490 		goto fail;
1491 	}
1492 
1493 	/*
1494 	 * We really need a better way to tell a 1000baseTX card
1495 	 * from a 1000baseSX one, since in theory there could be
1496 	 * OEMed 1000baseTX cards from lame vendors who aren't
1497 	 * clever enough to change the PCI ID. For the moment
1498 	 * though, the AceNIC is the only copper card available.
1499 	 */
1500 	if (pci_get_vendor(dev) == ALT_VENDORID &&
1501 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1502 		sc->ti_copper = 1;
1503 	/* Ok, it's not the only copper card available. */
1504 	if (pci_get_vendor(dev) == NG_VENDORID &&
1505 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1506 		sc->ti_copper = 1;
1507 
1508 	/* Set default tuneable values. */
1509 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1510 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1511 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1512 	sc->ti_rx_max_coal_bds = 64;
1513 	sc->ti_tx_max_coal_bds = 128;
1514 	sc->ti_tx_buf_ratio = 21;
1515 
1516 	/* Set up ifnet structure */
1517 	ifp->if_softc = sc;
1518 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1519 	ifp->if_ioctl = ti_ioctl;
1520 	ifp->if_start = ti_start;
1521 	ifp->if_watchdog = ti_watchdog;
1522 	ifp->if_init = ti_init;
1523 	ifp->if_mtu = ETHERMTU;
1524 	ifq_set_maxlen(&ifp->if_snd, TI_TX_RING_CNT - 1);
1525 	ifq_set_ready(&ifp->if_snd);
1526 
1527 	/* Set up ifmedia support. */
1528 	if (sc->ti_copper) {
1529 		/*
1530 		 * Copper cards allow manual 10/100 mode selection,
1531 		 * but not manual 1000baseTX mode selection. Why?
1532 		 * Becuase currently there's no way to specify the
1533 		 * master/slave setting through the firmware interface,
1534 		 * so Alteon decided to just bag it and handle it
1535 		 * via autonegotiation.
1536 		 */
1537 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1538 		ifmedia_add(&sc->ifmedia,
1539 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1540 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1541 		ifmedia_add(&sc->ifmedia,
1542 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1543 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
1544 		ifmedia_add(&sc->ifmedia,
1545 		    IFM_ETHER|IFM_1000_T | IFM_FDX, 0, NULL);
1546 	} else {
1547 		/* Fiber cards don't support 10/100 modes. */
1548 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1549 		ifmedia_add(&sc->ifmedia,
1550 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1551 	}
1552 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1553 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1554 
1555 	/*
1556 	 * Call MI attach routine.
1557 	 */
1558 	ether_ifattach(ifp, eaddr, NULL);
1559 
1560 	error = bus_setup_intr(dev, sc->ti_irq, INTR_NETSAFE,
1561 			       ti_intr, sc, &sc->ti_intrhand,
1562 			       ifp->if_serializer);
1563 	if (error) {
1564 		device_printf(dev, "couldn't set up irq\n");
1565 		ether_ifdetach(ifp);
1566 		goto fail;
1567 	}
1568 	return 0;
1569 
1570 fail:
1571 	ti_detach(dev);
1572 	return(error);
1573 }
1574 
1575 static int
1576 ti_detach(device_t dev)
1577 {
1578 	struct ti_softc *sc = device_get_softc(dev);
1579 	struct ifnet *ifp = &sc->arpcom.ac_if;
1580 
1581 	if (device_is_attached(dev)) {
1582 		lwkt_serialize_enter(ifp->if_serializer);
1583 		ti_stop(sc);
1584 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1585 		lwkt_serialize_exit(ifp->if_serializer);
1586 
1587 		ether_ifdetach(ifp);
1588 	}
1589 
1590 	if (sc->ti_irq != NULL)
1591 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1592 	if (sc->ti_res != NULL) {
1593 		bus_release_resource(dev, SYS_RES_MEMORY,
1594 				     TI_PCI_LOMEM, sc->ti_res);
1595 	}
1596 	if (sc->ti_cdata.ti_jumbo_buf != NULL)
1597 		contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1598 	if (sc->ti_rdata != NULL)
1599 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1600 	ifmedia_removeall(&sc->ifmedia);
1601 
1602 
1603 	return(0);
1604 }
1605 
1606 /*
1607  * Frame reception handling. This is called if there's a frame
1608  * on the receive return list.
1609  *
1610  * Note: we have to be able to handle three possibilities here:
1611  * 1) the frame is from the mini receive ring (can only happen)
1612  *    on Tigon 2 boards)
1613  * 2) the frame is from the jumbo recieve ring
1614  * 3) the frame is from the standard receive ring
1615  */
1616 static void
1617 ti_rxeof(struct ti_softc *sc)
1618 {
1619 	struct ifnet *ifp = &sc->arpcom.ac_if;
1620 	struct ti_cmd_desc cmd;
1621 
1622 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1623 		struct ti_rx_desc *cur_rx;
1624 		uint32_t rxidx;
1625 		struct mbuf *m;
1626 		uint16_t vlan_tag = 0;
1627 		int have_tag = 0;
1628 
1629 		cur_rx =
1630 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1631 		rxidx = cur_rx->ti_idx;
1632 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1633 
1634 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1635 			have_tag = 1;
1636 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
1637 		}
1638 
1639 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1640 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1641 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1642 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1643 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1644 				ifp->if_ierrors++;
1645 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1646 				continue;
1647 			}
1648 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1649 				ifp->if_ierrors++;
1650 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1651 				continue;
1652 			}
1653 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1654 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1655 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1656 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1657 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1658 				ifp->if_ierrors++;
1659 				ti_newbuf_mini(sc, sc->ti_mini, m);
1660 				continue;
1661 			}
1662 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1663 				ifp->if_ierrors++;
1664 				ti_newbuf_mini(sc, sc->ti_mini, m);
1665 				continue;
1666 			}
1667 		} else {
1668 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1669 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1670 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1671 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1672 				ifp->if_ierrors++;
1673 				ti_newbuf_std(sc, sc->ti_std, m);
1674 				continue;
1675 			}
1676 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1677 				ifp->if_ierrors++;
1678 				ti_newbuf_std(sc, sc->ti_std, m);
1679 				continue;
1680 			}
1681 		}
1682 
1683 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1684 		ifp->if_ipackets++;
1685 		m->m_pkthdr.rcvif = ifp;
1686 
1687 		if (ifp->if_hwassist) {
1688 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1689 			    CSUM_DATA_VALID;
1690 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1691 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1692 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1693 		}
1694 
1695 		/*
1696 		 * If we received a packet with a vlan tag, pass it
1697 		 * to vlan_input() instead of ether_input().
1698 		 */
1699 		lwkt_serialize_enter(ifp->if_serializer);
1700 		if (have_tag)
1701 			VLAN_INPUT_TAG(m, vlan_tag);
1702 		else
1703 			ifp->if_input(ifp, m);
1704 		lwkt_serialize_exit(ifp->if_serializer);
1705 	}
1706 
1707 	/* Only necessary on the Tigon 1. */
1708 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1709 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1710 		    sc->ti_rx_saved_considx);
1711 
1712 	TI_UPDATE_STDPROD(sc, sc->ti_std);
1713 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1714 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1715 }
1716 
1717 static void
1718 ti_txeof(struct ti_softc *sc)
1719 {
1720 	struct ifnet *ifp = &sc->arpcom.ac_if;
1721 	struct ti_tx_desc *cur_tx = NULL;
1722 
1723 	/*
1724 	 * Go through our tx ring and free mbufs for those
1725 	 * frames that have been sent.
1726 	 */
1727 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1728 		uint32_t idx = 0;
1729 
1730 		idx = sc->ti_tx_saved_considx;
1731 		if (sc->ti_hwrev != TI_HWREV_TIGON) {
1732 			if (idx > 383)
1733 				CSR_WRITE_4(sc, TI_WINBASE,
1734 				    TI_TX_RING_BASE + 6144);
1735 			else if (idx > 255)
1736 				CSR_WRITE_4(sc, TI_WINBASE,
1737 				    TI_TX_RING_BASE + 4096);
1738 			else if (idx > 127)
1739 				CSR_WRITE_4(sc, TI_WINBASE,
1740 				    TI_TX_RING_BASE + 2048);
1741 			else
1742 				CSR_WRITE_4(sc, TI_WINBASE,
1743 				    TI_TX_RING_BASE);
1744 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1745 		} else
1746 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1747 		if (cur_tx->ti_flags & TI_BDFLAG_END)
1748 			ifp->if_opackets++;
1749 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1750 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1751 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1752 		}
1753 		sc->ti_txcnt--;
1754 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1755 		ifp->if_timer = 0;
1756 	}
1757 
1758 	if (cur_tx != NULL)
1759 		ifp->if_flags &= ~IFF_OACTIVE;
1760 }
1761 
1762 static void
1763 ti_intr(void *xsc)
1764 {
1765 	struct ti_softc *sc = xsc;
1766 	struct ifnet *ifp = &sc->arpcom.ac_if;
1767 
1768 #ifdef notdef
1769 	/* Avoid this for now -- checking this register is expensive. */
1770 	/* Make sure this is really our interrupt. */
1771 	if ((CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE) == 0)
1772 		return;
1773 #endif
1774 
1775 	/* Ack interrupt and stop others from occuring. */
1776 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1777 
1778 	if (ifp->if_flags & IFF_RUNNING) {
1779 		/* Check RX return ring producer/consumer */
1780 		ti_rxeof(sc);
1781 
1782 		/* Check TX ring producer/consumer */
1783 		ti_txeof(sc);
1784 	}
1785 
1786 	ti_handle_events(sc);
1787 
1788 	/* Re-enable interrupts. */
1789 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1790 
1791 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1792 		ti_start(ifp);
1793 }
1794 
1795 static void
1796 ti_stats_update(struct ti_softc *sc)
1797 {
1798 	struct ifnet *ifp = &sc->arpcom.ac_if;
1799 
1800 	ifp->if_collisions +=
1801 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1802 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1803 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1804 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1805 	   ifp->if_collisions;
1806 }
1807 
1808 /*
1809  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1810  * pointers to descriptors.
1811  */
1812 static int
1813 ti_encap(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1814 {
1815 	struct ti_tx_desc *f = NULL;
1816 	struct mbuf *m;
1817 	struct ifvlan *ifv = NULL;
1818 	uint32_t cnt = 0, cur, frag;
1819 	uint16_t csum_flags = 0;
1820 
1821 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1822 	    m_head->m_pkthdr.rcvif != NULL &&
1823 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1824 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1825 
1826 	m = m_head;
1827 	cur = frag = *txidx;
1828 
1829 	if (m_head->m_pkthdr.csum_flags) {
1830 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1831 			csum_flags |= TI_BDFLAG_IP_CKSUM;
1832 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1833 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1834 		if (m_head->m_flags & M_LASTFRAG)
1835 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1836 		else if (m_head->m_flags & M_FRAG)
1837 			csum_flags |= TI_BDFLAG_IP_FRAG;
1838 	}
1839 	/*
1840  	 * Start packing the mbufs in this chain into
1841 	 * the fragment pointers. Stop when we run out
1842  	 * of fragments or hit the end of the mbuf chain.
1843 	 */
1844 	for (m = m_head; m != NULL; m = m->m_next) {
1845 		if (m->m_len != 0) {
1846 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
1847 				if (frag > 383)
1848 					CSR_WRITE_4(sc, TI_WINBASE,
1849 					    TI_TX_RING_BASE + 6144);
1850 				else if (frag > 255)
1851 					CSR_WRITE_4(sc, TI_WINBASE,
1852 					    TI_TX_RING_BASE + 4096);
1853 				else if (frag > 127)
1854 					CSR_WRITE_4(sc, TI_WINBASE,
1855 					    TI_TX_RING_BASE + 2048);
1856 				else
1857 					CSR_WRITE_4(sc, TI_WINBASE,
1858 					    TI_TX_RING_BASE);
1859 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
1860 			} else
1861 				f = &sc->ti_rdata->ti_tx_ring[frag];
1862 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1863 				break;
1864 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
1865 			f->ti_len = m->m_len;
1866 			f->ti_flags = csum_flags;
1867 
1868 			if (ifv != NULL) {
1869 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
1870 				f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
1871 			} else {
1872 				f->ti_vlan_tag = 0;
1873 			}
1874 
1875 			/*
1876 			 * Sanity check: avoid coming within 16 descriptors
1877 			 * of the end of the ring.
1878 			 */
1879 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
1880 				return(ENOBUFS);
1881 			cur = frag;
1882 			TI_INC(frag, TI_TX_RING_CNT);
1883 			cnt++;
1884 		}
1885 	}
1886 
1887 	if (m != NULL)
1888 		return(ENOBUFS);
1889 
1890 	if (frag == sc->ti_tx_saved_considx)
1891 		return(ENOBUFS);
1892 
1893 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1894 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
1895 		    TI_BDFLAG_END;
1896 	else
1897 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
1898 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
1899 	sc->ti_txcnt += cnt;
1900 
1901 	*txidx = frag;
1902 
1903 	return(0);
1904 }
1905 
1906 /*
1907  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1908  * to the mbuf data regions directly in the transmit descriptors.
1909  */
1910 static void
1911 ti_start(struct ifnet *ifp)
1912 {
1913 	struct ti_softc *sc = ifp->if_softc;
1914 	struct mbuf *m_head = NULL;
1915 	uint32_t prodidx = 0;
1916 	int need_trans;
1917 
1918 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
1919 
1920 	need_trans = 0;
1921 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
1922 		m_head = ifq_poll(&ifp->if_snd);
1923 		if (m_head == NULL)
1924 			break;
1925 
1926 		/*
1927 		 * XXX
1928 		 * safety overkill.  If this is a fragmented packet chain
1929 		 * with delayed TCP/UDP checksums, then only encapsulate
1930 		 * it if we have enough descriptors to handle the entire
1931 		 * chain at once.
1932 		 * (paranoia -- may not actually be needed)
1933 		 */
1934 		if (m_head->m_flags & M_FIRSTFRAG &&
1935 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
1936 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
1937 			    m_head->m_pkthdr.csum_data + 16) {
1938 				ifp->if_flags |= IFF_OACTIVE;
1939 				break;
1940 			}
1941 		}
1942 
1943 		/*
1944 		 * Pack the data into the transmit ring. If we
1945 		 * don't have room, set the OACTIVE flag and wait
1946 		 * for the NIC to drain the ring.
1947 		 */
1948 		if (ti_encap(sc, m_head, &prodidx)) {
1949 			ifp->if_flags |= IFF_OACTIVE;
1950 			break;
1951 		}
1952 		ifq_dequeue(&ifp->if_snd, m_head);
1953 		need_trans = 1;
1954 
1955 		BPF_MTAP(ifp, m_head);
1956 	}
1957 
1958 	if (!need_trans)
1959 		return;
1960 
1961 	/* Transmit */
1962 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
1963 
1964 	/*
1965 	 * Set a timeout in case the chip goes out to lunch.
1966 	 */
1967 	ifp->if_timer = 5;
1968 }
1969 
1970 static void
1971 ti_init(void *xsc)
1972 {
1973 	struct ti_softc *sc = xsc;
1974 
1975 	/* Cancel pending I/O and flush buffers. */
1976 	ti_stop(sc);
1977 
1978 	/* Init the gen info block, ring control blocks and firmware. */
1979 	if (ti_gibinit(sc)) {
1980 		if_printf(&sc->arpcom.ac_if, "initialization failure\n");
1981 		return;
1982 	}
1983 }
1984 
1985 static void
1986 ti_init2(struct ti_softc *sc)
1987 {
1988 	struct ifnet *ifp = &sc->arpcom.ac_if;
1989 	struct ti_cmd_desc cmd;
1990 	uint16_t *m;
1991 	struct ifmedia *ifm;
1992 	int tmp;
1993 
1994 	/* Specify MTU and interface index. */
1995 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_dunit);
1996 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
1997 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
1998 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
1999 
2000 	/* Load our MAC address. */
2001 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2002 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2003 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2004 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2005 
2006 	/* Enable or disable promiscuous mode as needed. */
2007 	if (ifp->if_flags & IFF_PROMISC)
2008 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2009 	else
2010 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2011 
2012 	/* Program multicast filter. */
2013 	ti_setmulti(sc);
2014 
2015 	/*
2016 	 * If this is a Tigon 1, we should tell the
2017 	 * firmware to use software packet filtering.
2018 	 */
2019 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2020 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2021 
2022 	/* Init RX ring. */
2023 	ti_init_rx_ring_std(sc);
2024 
2025 	/* Init jumbo RX ring. */
2026 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2027 		ti_init_rx_ring_jumbo(sc);
2028 
2029 	/*
2030 	 * If this is a Tigon 2, we can also configure the
2031 	 * mini ring.
2032 	 */
2033 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2034 		ti_init_rx_ring_mini(sc);
2035 
2036 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2037 	sc->ti_rx_saved_considx = 0;
2038 
2039 	/* Init TX ring. */
2040 	ti_init_tx_ring(sc);
2041 
2042 	/* Tell firmware we're alive. */
2043 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2044 
2045 	/* Enable host interrupts. */
2046 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2047 
2048 	ifp->if_flags |= IFF_RUNNING;
2049 	ifp->if_flags &= ~IFF_OACTIVE;
2050 
2051 	/*
2052 	 * Make sure to set media properly. We have to do this
2053 	 * here since we have to issue commands in order to set
2054 	 * the link negotiation and we can't issue commands until
2055 	 * the firmware is running.
2056 	 */
2057 	ifm = &sc->ifmedia;
2058 	tmp = ifm->ifm_media;
2059 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2060 	ti_ifmedia_upd(ifp);
2061 	ifm->ifm_media = tmp;
2062 }
2063 
2064 /*
2065  * Set media options.
2066  */
2067 static int
2068 ti_ifmedia_upd(struct ifnet *ifp)
2069 {
2070 	struct ti_softc *sc = ifp->if_softc;
2071 	struct ifmedia *ifm = &sc->ifmedia;
2072 	struct ti_cmd_desc cmd;
2073 
2074 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2075 		return(EINVAL);
2076 
2077 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2078 	case IFM_AUTO:
2079 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB |
2080 		    TI_GLNK_FULL_DUPLEX | TI_GLNK_RX_FLOWCTL_Y |
2081 		    TI_GLNK_AUTONEGENB | TI_GLNK_ENB);
2082 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB | TI_LNK_10MB |
2083 		    TI_LNK_FULL_DUPLEX | TI_LNK_HALF_DUPLEX |
2084 		    TI_LNK_AUTONEGENB | TI_LNK_ENB);
2085 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2086 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2087 		break;
2088 	case IFM_1000_SX:
2089 	case IFM_1000_T:
2090 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB |
2091 		    TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2092 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2093 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2094 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2095 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2096 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2097 		break;
2098 	case IFM_100_FX:
2099 	case IFM_10_FL:
2100 	case IFM_100_TX:
2101 	case IFM_10_T:
2102 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2103 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB | TI_LNK_PREF);
2104 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2105 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
2106 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2107 		else
2108 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2109 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2110 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2111 		else
2112 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2113 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2114 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2115 		break;
2116 	}
2117 
2118 	return(0);
2119 }
2120 
2121 /*
2122  * Report current media status.
2123  */
2124 static void
2125 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2126 {
2127 	struct ti_softc *sc = ifp->if_softc;
2128 	uint32_t media = 0;
2129 
2130 	ifmr->ifm_status = IFM_AVALID;
2131 	ifmr->ifm_active = IFM_ETHER;
2132 
2133 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2134 		return;
2135 
2136 	ifmr->ifm_status |= IFM_ACTIVE;
2137 
2138 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2139 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2140 		if (sc->ti_copper)
2141 			ifmr->ifm_active |= IFM_1000_T;
2142 		else
2143 			ifmr->ifm_active |= IFM_1000_SX;
2144 		if (media & TI_GLNK_FULL_DUPLEX)
2145 			ifmr->ifm_active |= IFM_FDX;
2146 		else
2147 			ifmr->ifm_active |= IFM_HDX;
2148 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2149 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2150 		if (sc->ti_copper) {
2151 			if (media & TI_LNK_100MB)
2152 				ifmr->ifm_active |= IFM_100_TX;
2153 			if (media & TI_LNK_10MB)
2154 				ifmr->ifm_active |= IFM_10_T;
2155 		} else {
2156 			if (media & TI_LNK_100MB)
2157 				ifmr->ifm_active |= IFM_100_FX;
2158 			if (media & TI_LNK_10MB)
2159 				ifmr->ifm_active |= IFM_10_FL;
2160 		}
2161 		if (media & TI_LNK_FULL_DUPLEX)
2162 			ifmr->ifm_active |= IFM_FDX;
2163 		if (media & TI_LNK_HALF_DUPLEX)
2164 			ifmr->ifm_active |= IFM_HDX;
2165 	}
2166 }
2167 
2168 static int
2169 ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2170 {
2171 	struct ti_softc *sc = ifp->if_softc;
2172 	struct ifreq *ifr = (struct ifreq *) data;
2173 	struct ti_cmd_desc cmd;
2174 	int error = 0, mask;
2175 
2176 	switch(command) {
2177 	case SIOCSIFMTU:
2178 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2179 			error = EINVAL;
2180 		else {
2181 			ifp->if_mtu = ifr->ifr_mtu;
2182 			ti_init(sc);
2183 		}
2184 		break;
2185 	case SIOCSIFFLAGS:
2186 		if (ifp->if_flags & IFF_UP) {
2187 			/*
2188 			 * If only the state of the PROMISC flag changed,
2189 			 * then just use the 'set promisc mode' command
2190 			 * instead of reinitializing the entire NIC. Doing
2191 			 * a full re-init means reloading the firmware and
2192 			 * waiting for it to start up, which may take a
2193 			 * second or two.
2194 			 */
2195 			if (ifp->if_flags & IFF_RUNNING &&
2196 			    ifp->if_flags & IFF_PROMISC &&
2197 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2198 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2199 				    TI_CMD_CODE_PROMISC_ENB, 0);
2200 			} else if (ifp->if_flags & IFF_RUNNING &&
2201 			    !(ifp->if_flags & IFF_PROMISC) &&
2202 			    sc->ti_if_flags & IFF_PROMISC) {
2203 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2204 				    TI_CMD_CODE_PROMISC_DIS, 0);
2205 			} else
2206 				ti_init(sc);
2207 		} else if (ifp->if_flags & IFF_RUNNING) {
2208 			ti_stop(sc);
2209 		}
2210 		sc->ti_if_flags = ifp->if_flags;
2211 		error = 0;
2212 		break;
2213 	case SIOCADDMULTI:
2214 	case SIOCDELMULTI:
2215 		if (ifp->if_flags & IFF_RUNNING) {
2216 			ti_setmulti(sc);
2217 			error = 0;
2218 		}
2219 		break;
2220 	case SIOCSIFMEDIA:
2221 	case SIOCGIFMEDIA:
2222 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2223 		break;
2224 	case SIOCSIFCAP:
2225 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2226 		if (mask & IFCAP_HWCSUM) {
2227 			if (IFCAP_HWCSUM & ifp->if_capenable)
2228 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2229                         else
2230                                 ifp->if_capenable |= IFCAP_HWCSUM;
2231 			if (ifp->if_flags & IFF_RUNNING)
2232 				ti_init(sc);
2233                 }
2234 		error = 0;
2235 		break;
2236 	default:
2237 		error = ether_ioctl(ifp, command, data);
2238 		break;
2239 	}
2240 	return(error);
2241 }
2242 
2243 static void
2244 ti_watchdog(struct ifnet *ifp)
2245 {
2246 	struct ti_softc *sc = ifp->if_softc;
2247 
2248 	if_printf(ifp, "watchdog timeout -- resetting\n");
2249 	ti_stop(sc);
2250 	ti_init(sc);
2251 
2252 	ifp->if_oerrors++;
2253 
2254 	if (!ifq_is_empty(&ifp->if_snd))
2255 		ifp->if_start(ifp);
2256 }
2257 
2258 /*
2259  * Stop the adapter and free any mbufs allocated to the
2260  * RX and TX lists.
2261  */
2262 static void
2263 ti_stop(struct ti_softc *sc)
2264 {
2265 	struct ifnet *ifp = &sc->arpcom.ac_if;
2266 	struct ti_cmd_desc cmd;
2267 
2268 	/* Disable host interrupts. */
2269 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2270 	/*
2271 	 * Tell firmware we're shutting down.
2272 	 */
2273 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2274 
2275 	/* Halt and reinitialize. */
2276 	ti_chipinit(sc);
2277 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2278 	ti_chipinit(sc);
2279 
2280 	/* Free the RX lists. */
2281 	ti_free_rx_ring_std(sc);
2282 
2283 	/* Free jumbo RX list. */
2284 	ti_free_rx_ring_jumbo(sc);
2285 
2286 	/* Free mini RX list. */
2287 	ti_free_rx_ring_mini(sc);
2288 
2289 	/* Free TX buffers. */
2290 	ti_free_tx_ring(sc);
2291 
2292 	sc->ti_ev_prodidx.ti_idx = 0;
2293 	sc->ti_return_prodidx.ti_idx = 0;
2294 	sc->ti_tx_considx.ti_idx = 0;
2295 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2296 
2297 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2298 }
2299 
2300 /*
2301  * Stop all chip I/O so that the kernel's probe routines don't
2302  * get confused by errant DMAs when rebooting.
2303  */
2304 static void
2305 ti_shutdown(device_t dev)
2306 {
2307 	struct ti_softc *sc = device_get_softc(dev);
2308 
2309 	ti_chipinit(sc);
2310 }
2311