xref: /dragonfly/sys/dev/netif/ti/if_ti.c (revision 3170ffd7)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ti.c,v 1.25.2.14 2002/02/15 04:20:20 silby Exp $
33  */
34 
35 /*
36  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37  * Manuals, sample driver and firmware source kits are available
38  * from http://www.alteon.com/support/openkits.
39  *
40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
41  * Electrical Engineering Department
42  * Columbia University, New York City
43  */
44 
45 /*
46  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50  * filtering and jumbo (9014 byte) frames. The hardware is largely
51  * controlled by firmware, which must be loaded into the NIC during
52  * initialization.
53  *
54  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55  * revision, which supports new features such as extended commands,
56  * extended jumbo receive ring desciptors and a mini receive ring.
57  *
58  * Alteon Networks is to be commended for releasing such a vast amount
59  * of development material for the Tigon NIC without requiring an NDA
60  * (although they really should have done it a long time ago). With
61  * any luck, the other vendors will finally wise up and follow Alteon's
62  * stellar example.
63  *
64  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65  * this driver by #including it as a C header file. This bloats the
66  * driver somewhat, but it's the easiest method considering that the
67  * driver code and firmware code need to be kept in sync. The source
68  * for the firmware is not provided with the FreeBSD distribution since
69  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70  *
71  * The following people deserve special thanks:
72  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73  *   for testing
74  * - Raymond Lee of Netgear, for providing a pair of Netgear
75  *   GA620 Tigon 2 boards for testing
76  * - Ulf Zimmermann, for bringing the GA260 to my attention and
77  *   convincing me to write this driver.
78  * - Andrew Gallatin for providing FreeBSD/Alpha support.
79  */
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/sockio.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/queue.h>
89 #include <sys/serialize.h>
90 #include <sys/bus.h>
91 #include <sys/rman.h>
92 #include <sys/thread2.h>
93 #include <sys/interrupt.h>
94 
95 #include <net/if.h>
96 #include <net/ifq_var.h>
97 #include <net/if_arp.h>
98 #include <net/ethernet.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_types.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <net/bpf.h>
106 
107 #include <netinet/in_systm.h>
108 #include <netinet/in.h>
109 #include <netinet/ip.h>
110 
111 #include <vm/vm.h>              /* for vtophys */
112 #include <vm/pmap.h>            /* for vtophys */
113 
114 #include <bus/pci/pcireg.h>
115 #include <bus/pci/pcivar.h>
116 
117 #include "if_tireg.h"
118 #include "ti_fw.h"
119 #include "ti_fw2.h"
120 
121 /*
122  * Temporarily disable the checksum offload support for now.
123  * Tests with ftp.freesoftware.com show that after about 12 hours,
124  * the firmware will begin calculating completely bogus TX checksums
125  * and refuse to stop until the interface is reset. Unfortunately,
126  * there isn't enough time to fully debug this before the 4.1
127  * release, so this will need to stay off for now.
128  */
129 #ifdef notdef
130 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
131 #else
132 #define TI_CSUM_FEATURES	0
133 #endif
134 
135 /*
136  * Various supported device vendors/types and their names.
137  */
138 
139 static struct ti_type ti_devs[] = {
140 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
141 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
142 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
143 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
144 	{ TC_VENDORID,	TC_DEVICEID_3C985,
145 		"3Com 3c985-SX Gigabit Ethernet" },
146 	{ NG_VENDORID, NG_DEVICEID_GA620,
147 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
148 	{ NG_VENDORID, NG_DEVICEID_GA620T,
149 		"Netgear GA620 1000baseT Gigabit Ethernet" },
150 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
151 		"Silicon Graphics Gigabit Ethernet" },
152 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
153 		"Farallon PN9000SX Gigabit Ethernet" },
154 	{ 0, 0, NULL }
155 };
156 
157 static int	ti_probe(device_t);
158 static int	ti_attach(device_t);
159 static int	ti_detach(device_t);
160 static void	ti_txeof(struct ti_softc *);
161 static void	ti_rxeof(struct ti_softc *);
162 
163 static void	ti_stats_update(struct ti_softc *);
164 static int	ti_encap(struct ti_softc *, struct mbuf *, uint32_t *);
165 
166 static void	ti_intr(void *);
167 static void	ti_start(struct ifnet *, struct ifaltq_subque *);
168 static int	ti_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
169 static void	ti_init(void *);
170 static void	ti_init2(struct ti_softc *);
171 static void	ti_stop(struct ti_softc *);
172 static void	ti_watchdog(struct ifnet *);
173 static void	ti_shutdown(device_t);
174 static int	ti_ifmedia_upd(struct ifnet *);
175 static void	ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176 
177 static uint32_t	ti_eeprom_putbyte(struct ti_softc *, int);
178 static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
179 static int	ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
180 
181 static void	ti_add_mcast(struct ti_softc *, struct ether_addr *);
182 static void	ti_del_mcast(struct ti_softc *, struct ether_addr *);
183 static void	ti_setmulti(struct ti_softc *);
184 
185 static void	ti_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t);
186 static void	ti_loadfw(struct ti_softc *);
187 static void	ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
188 static void	ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *,
189 			   caddr_t, int);
190 static void	ti_handle_events(struct ti_softc *);
191 static int	ti_alloc_jumbo_mem(struct ti_softc *);
192 static struct ti_jslot *
193 		ti_jalloc(struct ti_softc *);
194 static void	ti_jfree(void *);
195 static void	ti_jref(void *);
196 static int	ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
197 static int	ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
198 static int	ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
199 static int	ti_init_rx_ring_std(struct ti_softc *);
200 static void	ti_free_rx_ring_std(struct ti_softc *);
201 static int	ti_init_rx_ring_jumbo(struct ti_softc *);
202 static void	ti_free_rx_ring_jumbo(struct ti_softc *);
203 static int	ti_init_rx_ring_mini(struct ti_softc *);
204 static void	ti_free_rx_ring_mini(struct ti_softc *);
205 static void	ti_free_tx_ring(struct ti_softc *);
206 static int	ti_init_tx_ring(struct ti_softc *);
207 
208 static int	ti_64bitslot_war(struct ti_softc *);
209 static int	ti_chipinit(struct ti_softc *);
210 static int	ti_gibinit(struct ti_softc *);
211 
212 static device_method_t ti_methods[] = {
213 	/* Device interface */
214 	DEVMETHOD(device_probe,		ti_probe),
215 	DEVMETHOD(device_attach,	ti_attach),
216 	DEVMETHOD(device_detach,	ti_detach),
217 	DEVMETHOD(device_shutdown,	ti_shutdown),
218 	DEVMETHOD_END
219 };
220 
221 
222 static DEFINE_CLASS_0(ti, ti_driver, ti_methods, sizeof(struct ti_softc));
223 static devclass_t ti_devclass;
224 
225 DECLARE_DUMMY_MODULE(if_ti);
226 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, NULL, NULL);
227 
228 /*
229  * Send an instruction or address to the EEPROM, check for ACK.
230  */
231 static uint32_t
232 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
233 {
234 	int ack = 0, i;
235 
236 	/*
237 	 * Make sure we're in TX mode.
238 	 */
239 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
240 
241 	/*
242 	 * Feed in each bit and stobe the clock.
243 	 */
244 	for (i = 0x80; i; i >>= 1) {
245 		if (byte & i)
246 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
247 		else
248 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
249 		DELAY(1);
250 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
251 		DELAY(1);
252 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
253 	}
254 
255 	/*
256 	 * Turn off TX mode.
257 	 */
258 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
259 
260 	/*
261 	 * Check for ack.
262 	 */
263 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
264 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
265 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
266 
267 	return(ack);
268 }
269 
270 /*
271  * Read a byte of data stored in the EEPROM at address 'addr.'
272  * We have to send two address bytes since the EEPROM can hold
273  * more than 256 bytes of data.
274  */
275 static uint8_t
276 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
277 {
278 	struct ifnet *ifp = &sc->arpcom.ac_if;
279 	int i;
280 	uint8_t byte = 0;
281 
282 	EEPROM_START;
283 
284 	/*
285 	 * Send write control code to EEPROM.
286 	 */
287 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
288 		if_printf(ifp, "failed to send write command, status: %x\n",
289 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
290 		return(1);
291 	}
292 
293 	/*
294 	 * Send first byte of address of byte we want to read.
295 	 */
296 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
297 		if_printf(ifp, "failed to send address, status: %x\n",
298 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
299 		return(1);
300 	}
301 	/*
302 	 * Send second byte address of byte we want to read.
303 	 */
304 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
305 		if_printf(ifp, "failed to send address, status: %x\n",
306 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
307 		return(1);
308 	}
309 
310 	EEPROM_STOP;
311 	EEPROM_START;
312 	/*
313 	 * Send read control code to EEPROM.
314 	 */
315 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
316 		if_printf(ifp, "failed to send read command, status: %x\n",
317 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
318 		return(1);
319 	}
320 
321 	/*
322 	 * Start reading bits from EEPROM.
323 	 */
324 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
325 	for (i = 0x80; i; i >>= 1) {
326 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
327 		DELAY(1);
328 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
329 			byte |= i;
330 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
331 		DELAY(1);
332 	}
333 
334 	EEPROM_STOP;
335 
336 	/*
337 	 * No ACK generated for read, so just return byte.
338 	 */
339 
340 	*dest = byte;
341 
342 	return(0);
343 }
344 
345 /*
346  * Read a sequence of bytes from the EEPROM.
347  */
348 static int
349 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
350 {
351 	int err = 0, i;
352 	uint8_t byte = 0;
353 
354 	for (i = 0; i < cnt; i++) {
355 		err = ti_eeprom_getbyte(sc, off + i, &byte);
356 		if (err)
357 			break;
358 		*(dest + i) = byte;
359 	}
360 
361 	return(err ? 1 : 0);
362 }
363 
364 /*
365  * NIC memory access function. Can be used to either clear a section
366  * of NIC local memory or (if buf is non-NULL) copy data into it.
367  */
368 static void
369 ti_mem(struct ti_softc *sc, uint32_t addr, uint32_t len, caddr_t buf)
370 {
371 	int cnt, segptr, segsize;
372 	caddr_t ti_winbase, ptr;
373 
374 	segptr = addr;
375 	cnt = len;
376 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
377 	ptr = buf;
378 
379 	while(cnt) {
380 		if (cnt < TI_WINLEN)
381 			segsize = cnt;
382 		else
383 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
384 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
385 		if (buf == NULL)
386 			bzero((char *)ti_winbase + (segptr &
387 			    (TI_WINLEN - 1)), segsize);
388 		else {
389 			bcopy((char *)ptr, (char *)ti_winbase +
390 			    (segptr & (TI_WINLEN - 1)), segsize);
391 			ptr += segsize;
392 		}
393 		segptr += segsize;
394 		cnt -= segsize;
395 	}
396 }
397 
398 /*
399  * Load firmware image into the NIC. Check that the firmware revision
400  * is acceptable and see if we want the firmware for the Tigon 1 or
401  * Tigon 2.
402  */
403 static void
404 ti_loadfw(struct ti_softc *sc)
405 {
406 	struct ifnet *ifp = &sc->arpcom.ac_if;
407 
408 	switch(sc->ti_hwrev) {
409 	case TI_HWREV_TIGON:
410 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
411 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
412 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
413 			if_printf(ifp, "firmware revision mismatch; want "
414 				  "%d.%d.%d, got %d.%d.%d\n",
415 				  TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
416 				  TI_FIRMWARE_FIX, tigonFwReleaseMajor,
417 				  tigonFwReleaseMinor, tigonFwReleaseFix);
418 			return;
419 		}
420 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
421 		    (caddr_t)tigonFwText);
422 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
423 		    (caddr_t)tigonFwData);
424 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
425 		    (caddr_t)tigonFwRodata);
426 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
427 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
428 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
429 		break;
430 	case TI_HWREV_TIGON_II:
431 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
432 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
433 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
434 			if_printf(ifp, "firmware revision mismatch; want "
435 				  "%d.%d.%d, got %d.%d.%d\n",
436 				  TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
437 				  TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
438 				  tigon2FwReleaseMinor, tigon2FwReleaseFix);
439 			return;
440 		}
441 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
442 		    (caddr_t)tigon2FwText);
443 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
444 		    (caddr_t)tigon2FwData);
445 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
446 		    (caddr_t)tigon2FwRodata);
447 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
448 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
449 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
450 		break;
451 	default:
452 		if_printf(ifp, "can't load firmware: unknown hardware rev\n");
453 		break;
454 	}
455 }
456 
457 /*
458  * Send the NIC a command via the command ring.
459  */
460 static void
461 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
462 {
463 	uint32_t index;
464 
465 	if (sc->ti_rdata->ti_cmd_ring == NULL)
466 		return;
467 
468 	index = sc->ti_cmd_saved_prodidx;
469 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
470 	TI_INC(index, TI_CMD_RING_CNT);
471 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
472 	sc->ti_cmd_saved_prodidx = index;
473 }
474 
475 /*
476  * Send the NIC an extended command. The 'len' parameter specifies the
477  * number of command slots to include after the initial command.
478  */
479 static void
480 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
481 {
482 	uint32_t index;
483 	int i;
484 
485 	if (sc->ti_rdata->ti_cmd_ring == NULL)
486 		return;
487 
488 	index = sc->ti_cmd_saved_prodidx;
489 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
490 	TI_INC(index, TI_CMD_RING_CNT);
491 	for (i = 0; i < len; i++) {
492 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
493 		    *(uint32_t *)(&arg[i * 4]));
494 		TI_INC(index, TI_CMD_RING_CNT);
495 	}
496 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
497 	sc->ti_cmd_saved_prodidx = index;
498 }
499 
500 /*
501  * Handle events that have triggered interrupts.
502  */
503 static void
504 ti_handle_events(struct ti_softc *sc)
505 {
506 	struct ifnet *ifp = &sc->arpcom.ac_if;
507 	struct ti_event_desc *e;
508 
509 	if (sc->ti_rdata->ti_event_ring == NULL)
510 		return;
511 
512 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
513 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
514 		switch(e->ti_event) {
515 		case TI_EV_LINKSTAT_CHANGED:
516 			sc->ti_linkstat = e->ti_code;
517 			if (e->ti_code == TI_EV_CODE_LINK_UP) {
518 				if_printf(ifp, "10/100 link up\n");
519 			} else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP) {
520 				if_printf(ifp, "gigabit link up\n");
521 			} else if (e->ti_code == TI_EV_CODE_LINK_DOWN) {
522 				if_printf(ifp, "link down\n");
523 			}
524 			break;
525 		case TI_EV_ERROR:
526 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD) {
527 				if_printf(ifp, "invalid command\n");
528 			} else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD) {
529 				if_printf(ifp, "unknown command\n");
530 			} else if (e->ti_code == TI_EV_CODE_ERR_BADCFG) {
531 				if_printf(ifp, "bad config data\n");
532 			}
533 			break;
534 		case TI_EV_FIRMWARE_UP:
535 			ti_init2(sc);
536 			break;
537 		case TI_EV_STATS_UPDATED:
538 			ti_stats_update(sc);
539 			break;
540 		case TI_EV_RESET_JUMBO_RING:
541 		case TI_EV_MCAST_UPDATED:
542 			/* Who cares. */
543 			break;
544 		default:
545 			if_printf(ifp, "unknown event: %d\n", e->ti_event);
546 			break;
547 		}
548 		/* Advance the consumer index. */
549 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
550 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
551 	}
552 }
553 
554 /*
555  * Memory management for the jumbo receive ring is a pain in the
556  * butt. We need to allocate at least 9018 bytes of space per frame,
557  * _and_ it has to be contiguous (unless you use the extended
558  * jumbo descriptor format). Using malloc() all the time won't
559  * work: malloc() allocates memory in powers of two, which means we
560  * would end up wasting a considerable amount of space by allocating
561  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
562  * to do our own memory management.
563  *
564  * The driver needs to allocate a contiguous chunk of memory at boot
565  * time. We then chop this up ourselves into 9K pieces and use them
566  * as external mbuf storage.
567  *
568  * One issue here is how much memory to allocate. The jumbo ring has
569  * 256 slots in it, but at 9K per slot than can consume over 2MB of
570  * RAM. This is a bit much, especially considering we also need
571  * RAM for the standard ring and mini ring (on the Tigon 2). To
572  * save space, we only actually allocate enough memory for 64 slots
573  * by default, which works out to between 500 and 600K. This can
574  * be tuned by changing a #define in if_tireg.h.
575  */
576 
577 static int
578 ti_alloc_jumbo_mem(struct ti_softc *sc)
579 {
580 	struct ti_jslot *entry;
581 	caddr_t ptr;
582 	int i;
583 
584 	/* Grab a big chunk o' storage. */
585 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
586 		M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
587 
588 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
589 		if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
590 		return(ENOBUFS);
591 	}
592 
593 	lwkt_serialize_init(&sc->ti_jslot_serializer);
594 	SLIST_INIT(&sc->ti_jfree_listhead);
595 
596 	/*
597 	 * Now divide it up into 9K pieces and save the addresses
598 	 * in an array. Note that we play an evil trick here by using
599 	 * the first few bytes in the buffer to hold the the address
600 	 * of the softc structure for this interface. This is because
601 	 * ti_jfree() needs it, but it is called by the mbuf management
602 	 * code which will not pass it to us explicitly.
603 	 */
604 	ptr = sc->ti_cdata.ti_jumbo_buf;
605 	for (i = 0; i < TI_JSLOTS; i++) {
606 		entry = &sc->ti_cdata.ti_jslots[i];
607 		entry->ti_sc = sc;
608 		entry->ti_buf = ptr;
609 		entry->ti_inuse = 0;
610 		entry->ti_slot = i;
611 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jslot_link);
612 		ptr += TI_JLEN;
613 	}
614 
615 	return(0);
616 }
617 
618 /*
619  * Allocate a jumbo buffer.
620  */
621 static struct ti_jslot *
622 ti_jalloc(struct ti_softc *sc)
623 {
624 	struct ti_jslot *entry;
625 
626 	lwkt_serialize_enter(&sc->ti_jslot_serializer);
627 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
628 	if (entry) {
629 		SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jslot_link);
630 		entry->ti_inuse = 1;
631 	} else {
632 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
633 	}
634 	lwkt_serialize_exit(&sc->ti_jslot_serializer);
635 	return(entry);
636 }
637 
638 /*
639  * Adjust usage count on a jumbo buffer. In general this doesn't
640  * get used much because our jumbo buffers don't get passed around
641  * too much, but it's implemented for correctness.
642  */
643 static void
644 ti_jref(void *arg)
645 {
646 	struct ti_jslot *entry = (struct ti_jslot *)arg;
647 	struct ti_softc *sc = entry->ti_sc;
648 
649 	if (sc == NULL)
650 		panic("ti_jref: can't find softc pointer!");
651 
652 	if (&sc->ti_cdata.ti_jslots[entry->ti_slot] != entry)
653 		panic("ti_jref: asked to reference buffer "
654 		    "that we don't manage!");
655 	if (entry->ti_inuse == 0)
656 		panic("ti_jref: buffer already free!");
657 	atomic_add_int(&entry->ti_inuse, 1);
658 }
659 
660 /*
661  * Release a jumbo buffer.
662  */
663 static void
664 ti_jfree(void *arg)
665 {
666 	struct ti_jslot *entry = (struct ti_jslot *)arg;
667 	struct ti_softc *sc = entry->ti_sc;
668 
669 	if (sc == NULL)
670 		panic("ti_jref: can't find softc pointer!");
671 
672 	if (&sc->ti_cdata.ti_jslots[entry->ti_slot] != entry)
673 		panic("ti_jref: asked to reference buffer "
674 		    "that we don't manage!");
675 	if (entry->ti_inuse == 0)
676 		panic("ti_jref: buffer already free!");
677 	lwkt_serialize_enter(&sc->ti_jslot_serializer);
678 	atomic_subtract_int(&entry->ti_inuse, 1);
679 	if (entry->ti_inuse == 0)
680 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jslot_link);
681 	lwkt_serialize_exit(&sc->ti_jslot_serializer);
682 }
683 
684 
685 /*
686  * Intialize a standard receive ring descriptor.
687  */
688 static int
689 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m)
690 {
691 	struct mbuf *m_new;
692 	struct ti_rx_desc *r;
693 
694 	if (m == NULL) {
695 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
696 		if (m_new == NULL)
697 			return (ENOBUFS);
698 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
699 	} else {
700 		m_new = m;
701 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
702 		m_new->m_data = m_new->m_ext.ext_buf;
703 	}
704 
705 
706 	m_adj(m_new, ETHER_ALIGN);
707 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
708 	r = &sc->ti_rdata->ti_rx_std_ring[i];
709 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
710 	r->ti_type = TI_BDTYPE_RECV_BD;
711 	r->ti_flags = 0;
712 	if (sc->arpcom.ac_if.if_hwassist)
713 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
714 	r->ti_len = m_new->m_len;
715 	r->ti_idx = i;
716 
717 	return(0);
718 }
719 
720 /*
721  * Intialize a mini receive ring descriptor. This only applies to
722  * the Tigon 2.
723  */
724 static int
725 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m)
726 {
727 	struct mbuf *m_new;
728 	struct ti_rx_desc *r;
729 
730 	if (m == NULL) {
731 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
732 		if (m_new == NULL) {
733 			return(ENOBUFS);
734 		}
735 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
736 	} else {
737 		m_new = m;
738 		m_new->m_data = m_new->m_pktdat;
739 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
740 	}
741 
742 	m_adj(m_new, ETHER_ALIGN);
743 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
744 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
745 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
746 	r->ti_type = TI_BDTYPE_RECV_BD;
747 	r->ti_flags = TI_BDFLAG_MINI_RING;
748 	if (sc->arpcom.ac_if.if_hwassist)
749 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
750 	r->ti_len = m_new->m_len;
751 	r->ti_idx = i;
752 
753 	return(0);
754 }
755 
756 /*
757  * Initialize a jumbo receive ring descriptor. This allocates
758  * a jumbo buffer from the pool managed internally by the driver.
759  */
760 static int
761 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
762 {
763 	struct mbuf *m_new;
764 	struct ti_rx_desc *r;
765 	struct ti_jslot *buf;
766 
767 	if (m == NULL) {
768 		/* Allocate the mbuf. */
769 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
770 		if (m_new == NULL) {
771 			return(ENOBUFS);
772 		}
773 
774 		/* Allocate the jumbo buffer */
775 		buf = ti_jalloc(sc);
776 		if (buf == NULL) {
777 			m_freem(m_new);
778 			if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
779 				  "-- packet dropped!\n");
780 			return(ENOBUFS);
781 		}
782 
783 		/* Attach the buffer to the mbuf. */
784 		m_new->m_ext.ext_arg = buf;
785 		m_new->m_ext.ext_buf = buf->ti_buf;
786 		m_new->m_ext.ext_free = ti_jfree;
787 		m_new->m_ext.ext_ref = ti_jref;
788 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
789 
790 		m_new->m_flags |= M_EXT;
791 	} else {
792 		/*
793 	 	 * We're re-using a previously allocated mbuf;
794 		 * be sure to re-init pointers and lengths to
795 		 * default values.
796 		 */
797 		KKASSERT(m->m_flags & M_EXT);
798 		m_new = m;
799 	}
800 	m_new->m_data = m_new->m_ext.ext_buf;
801 	m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
802 
803 	m_adj(m_new, ETHER_ALIGN);
804 	/* Set up the descriptor. */
805 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
806 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
807 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
808 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
809 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
810 	if (sc->arpcom.ac_if.if_hwassist)
811 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
812 	r->ti_len = m_new->m_len;
813 	r->ti_idx = i;
814 
815 	return(0);
816 }
817 
818 /*
819  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
820  * that's 1MB or memory, which is a lot. For now, we fill only the first
821  * 256 ring entries and hope that our CPU is fast enough to keep up with
822  * the NIC.
823  */
824 static int
825 ti_init_rx_ring_std(struct ti_softc *sc)
826 {
827 	int i;
828 	struct ti_cmd_desc cmd;
829 
830 	for (i = 0; i < TI_SSLOTS; i++) {
831 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
832 			return(ENOBUFS);
833 	}
834 
835 	TI_UPDATE_STDPROD(sc, i - 1);
836 	sc->ti_std = i - 1;
837 
838 	return(0);
839 }
840 
841 static void
842 ti_free_rx_ring_std(struct ti_softc *sc)
843 {
844 	int i;
845 
846 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
847 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
848 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
849 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
850 		}
851 		bzero(&sc->ti_rdata->ti_rx_std_ring[i],
852 		    sizeof(struct ti_rx_desc));
853 	}
854 }
855 
856 static int
857 ti_init_rx_ring_jumbo(struct ti_softc *sc)
858 {
859 	int i;
860 	struct ti_cmd_desc cmd;
861 
862 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
863 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
864 			return(ENOBUFS);
865 	}
866 
867 	TI_UPDATE_JUMBOPROD(sc, i - 1);
868 	sc->ti_jumbo = i - 1;
869 
870 	return(0);
871 }
872 
873 static void
874 ti_free_rx_ring_jumbo(struct ti_softc *sc)
875 {
876 	int i;
877 
878 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
879 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
880 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
881 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
882 		}
883 		bzero(&sc->ti_rdata->ti_rx_jumbo_ring[i],
884 		    sizeof(struct ti_rx_desc));
885 	}
886 }
887 
888 static int
889 ti_init_rx_ring_mini(struct ti_softc *sc)
890 {
891 	int i;
892 
893 	for (i = 0; i < TI_MSLOTS; i++) {
894 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
895 			return(ENOBUFS);
896 	}
897 
898 	TI_UPDATE_MINIPROD(sc, i - 1);
899 	sc->ti_mini = i - 1;
900 
901 	return(0);
902 }
903 
904 static void
905 ti_free_rx_ring_mini(struct ti_softc *sc)
906 {
907 	int i;
908 
909 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
910 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
911 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
912 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
913 		}
914 		bzero(&sc->ti_rdata->ti_rx_mini_ring[i],
915 		    sizeof(struct ti_rx_desc));
916 	}
917 }
918 
919 static void
920 ti_free_tx_ring(struct ti_softc *sc)
921 {
922 	int i;
923 
924 	if (sc->ti_rdata->ti_tx_ring == NULL)
925 		return;
926 
927 	for (i = 0; i < TI_TX_RING_CNT; i++) {
928 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
929 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
930 			sc->ti_cdata.ti_tx_chain[i] = NULL;
931 		}
932 		bzero(&sc->ti_rdata->ti_tx_ring[i],
933 		    sizeof(struct ti_tx_desc));
934 	}
935 }
936 
937 static int
938 ti_init_tx_ring(struct ti_softc *sc)
939 {
940 	sc->ti_txcnt = 0;
941 	sc->ti_tx_saved_considx = 0;
942 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
943 	return(0);
944 }
945 
946 /*
947  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
948  * but we have to support the old way too so that Tigon 1 cards will
949  * work.
950  */
951 static void
952 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
953 {
954 	struct ti_cmd_desc cmd;
955 	uint16_t *m;
956 	uint32_t ext[2] = {0, 0};
957 
958 	m = (uint16_t *)&addr->octet[0];
959 
960 	switch(sc->ti_hwrev) {
961 	case TI_HWREV_TIGON:
962 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
963 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
964 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
965 		break;
966 	case TI_HWREV_TIGON_II:
967 		ext[0] = htons(m[0]);
968 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
969 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
970 		break;
971 	default:
972 		if_printf(&sc->arpcom.ac_if, "unknown hwrev\n");
973 		break;
974 	}
975 }
976 
977 static void
978 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
979 {
980 	struct ti_cmd_desc cmd;
981 	uint16_t *m;
982 	uint32_t ext[2] = {0, 0};
983 
984 	m = (uint16_t *)&addr->octet[0];
985 
986 	switch(sc->ti_hwrev) {
987 	case TI_HWREV_TIGON:
988 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
989 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
990 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
991 		break;
992 	case TI_HWREV_TIGON_II:
993 		ext[0] = htons(m[0]);
994 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
995 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
996 		break;
997 	default:
998 		if_printf(&sc->arpcom.ac_if, "unknown hwrev\n");
999 		break;
1000 	}
1001 }
1002 
1003 /*
1004  * Configure the Tigon's multicast address filter.
1005  *
1006  * The actual multicast table management is a bit of a pain, thanks to
1007  * slight brain damage on the part of both Alteon and us. With our
1008  * multicast code, we are only alerted when the multicast address table
1009  * changes and at that point we only have the current list of addresses:
1010  * we only know the current state, not the previous state, so we don't
1011  * actually know what addresses were removed or added. The firmware has
1012  * state, but we can't get our grubby mits on it, and there is no 'delete
1013  * all multicast addresses' command. Hence, we have to maintain our own
1014  * state so we know what addresses have been programmed into the NIC at
1015  * any given time.
1016  */
1017 static void
1018 ti_setmulti(struct ti_softc *sc)
1019 {
1020 	struct ifnet *ifp = &sc->arpcom.ac_if;
1021 	struct ifmultiaddr *ifma;
1022 	struct ti_cmd_desc cmd;
1023 	struct ti_mc_entry *mc;
1024 	uint32_t intrs;
1025 
1026 	if (ifp->if_flags & IFF_ALLMULTI) {
1027 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1028 		return;
1029 	}
1030 
1031 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1032 
1033 	/* Disable interrupts. */
1034 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1035 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1036 
1037 	/* First, zot all the existing filters. */
1038 	while (sc->ti_mc_listhead.slh_first != NULL) {
1039 		mc = sc->ti_mc_listhead.slh_first;
1040 		ti_del_mcast(sc, &mc->mc_addr);
1041 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1042 		kfree(mc, M_DEVBUF);
1043 	}
1044 
1045 	/* Now program new ones. */
1046 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1047 		if (ifma->ifma_addr->sa_family != AF_LINK)
1048 			continue;
1049 		mc = kmalloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_INTWAIT);
1050 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1051 		    &mc->mc_addr, ETHER_ADDR_LEN);
1052 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1053 		ti_add_mcast(sc, &mc->mc_addr);
1054 	}
1055 
1056 	/* Re-enable interrupts. */
1057 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1058 }
1059 
1060 /*
1061  * Check to see if the BIOS has configured us for a 64 bit slot when
1062  * we aren't actually in one. If we detect this condition, we can work
1063  * around it on the Tigon 2 by setting a bit in the PCI state register,
1064  * but for the Tigon 1 we must give up and abort the interface attach.
1065  */
1066 static int
1067 ti_64bitslot_war(struct ti_softc *sc)
1068 {
1069 	if ((CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS) == 0) {
1070 		CSR_WRITE_4(sc, 0x600, 0);
1071 		CSR_WRITE_4(sc, 0x604, 0);
1072 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1073 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1074 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1075 				return(EINVAL);
1076 			TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_32BIT_BUS);
1077 			return(0);
1078 		}
1079 	}
1080 
1081 	return(0);
1082 }
1083 
1084 /*
1085  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1086  * self-test results.
1087  */
1088 static int
1089 ti_chipinit(struct ti_softc *sc)
1090 {
1091 	struct ifnet *ifp = &sc->arpcom.ac_if;
1092 	uint32_t cacheline;
1093 	uint32_t pci_writemax = 0;
1094 
1095 	/* Initialize link to down state. */
1096 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1097 
1098 	if (ifp->if_capenable & IFCAP_HWCSUM)
1099 		ifp->if_hwassist = TI_CSUM_FEATURES;
1100 	else
1101 		ifp->if_hwassist = 0;
1102 
1103 	/* Set endianness before we access any non-PCI registers. */
1104 #if BYTE_ORDER == BIG_ENDIAN
1105 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1106 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1107 #else
1108 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1109 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1110 #endif
1111 
1112 	/* Check the ROM failed bit to see if self-tests passed. */
1113 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1114 		if_printf(ifp, "board self-diagnostics failed!\n");
1115 		return(ENODEV);
1116 	}
1117 
1118 	/* Halt the CPU. */
1119 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1120 
1121 	/* Figure out the hardware revision. */
1122 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1123 	case TI_REV_TIGON_I:
1124 		sc->ti_hwrev = TI_HWREV_TIGON;
1125 		break;
1126 	case TI_REV_TIGON_II:
1127 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1128 		break;
1129 	default:
1130 		if_printf(ifp, "unsupported chip revision\n");
1131 		return(ENODEV);
1132 	}
1133 
1134 	/* Do special setup for Tigon 2. */
1135 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1136 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1137 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1138 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1139 	}
1140 
1141 	/* Set up the PCI state register. */
1142 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1143 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1144 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1145 	}
1146 
1147 	/* Clear the read/write max DMA parameters. */
1148 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1149 	    TI_PCISTATE_READ_MAXDMA));
1150 
1151 	/* Get cache line size. */
1152 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1153 
1154 	/*
1155 	 * If the system has set enabled the PCI memory write
1156 	 * and invalidate command in the command register, set
1157 	 * the write max parameter accordingly. This is necessary
1158 	 * to use MWI with the Tigon 2.
1159 	 */
1160 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1161 		switch(cacheline) {
1162 		case 1:
1163 		case 4:
1164 		case 8:
1165 		case 16:
1166 		case 32:
1167 		case 64:
1168 			break;
1169 		default:
1170 		/* Disable PCI memory write and invalidate. */
1171 			if (bootverbose) {
1172 				if_printf(ifp, "cache line size %d not "
1173 					  "supported; disabling PCI MWI\n",
1174 					  cacheline);
1175 			}
1176 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1177 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1178 			break;
1179 		}
1180 	}
1181 
1182 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1183 
1184 	/* This sets the min dma param all the way up (0xff). */
1185 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1186 
1187 	/* Configure DMA variables. */
1188 #if BYTE_ORDER == BIG_ENDIAN
1189 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1190 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1191 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1192 	    TI_OPMODE_DONT_FRAG_JUMBO);
1193 #else
1194 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1195 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1196 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1197 #endif
1198 
1199 	/*
1200 	 * Only allow 1 DMA channel to be active at a time.
1201 	 * I don't think this is a good idea, but without it
1202 	 * the firmware racks up lots of nicDmaReadRingFull
1203 	 * errors.  This is not compatible with hardware checksums.
1204 	 */
1205 	if (ifp->if_hwassist == 0)
1206 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1207 
1208 	/* Recommended settings from Tigon manual. */
1209 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1210 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1211 
1212 	if (ti_64bitslot_war(sc)) {
1213 		if_printf(ifp, "bios thinks we're in a 64 bit slot, "
1214 			  "but we aren't");
1215 		return(EINVAL);
1216 	}
1217 
1218 	return(0);
1219 }
1220 
1221 /*
1222  * Initialize the general information block and firmware, and
1223  * start the CPU(s) running.
1224  */
1225 static int
1226 ti_gibinit(struct ti_softc *sc)
1227 {
1228 	struct ifnet *ifp = &sc->arpcom.ac_if;
1229 	struct ti_rcb *rcb;
1230 	int i;
1231 
1232 	/* Disable interrupts for now. */
1233 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1234 
1235 	/* Tell the chip where to find the general information block. */
1236 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1237 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1238 
1239 	/* Load the firmware into SRAM. */
1240 	ti_loadfw(sc);
1241 
1242 	/* Set up the contents of the general info and ring control blocks. */
1243 
1244 	/* Set up the event ring and producer pointer. */
1245 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1246 
1247 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1248 	rcb->ti_flags = 0;
1249 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1250 	    vtophys(&sc->ti_ev_prodidx);
1251 	sc->ti_ev_prodidx.ti_idx = 0;
1252 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1253 	sc->ti_ev_saved_considx = 0;
1254 
1255 	/* Set up the command ring and producer mailbox. */
1256 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1257 
1258 	sc->ti_rdata->ti_cmd_ring =
1259 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1260 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1261 	rcb->ti_flags = 0;
1262 	rcb->ti_max_len = 0;
1263 	for (i = 0; i < TI_CMD_RING_CNT; i++)
1264 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1265 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1266 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1267 	sc->ti_cmd_saved_prodidx = 0;
1268 
1269 	/*
1270 	 * Assign the address of the stats refresh buffer.
1271 	 * We re-use the current stats buffer for this to
1272 	 * conserve memory.
1273 	 */
1274 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1275 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1276 
1277 	/* Set up the standard receive ring. */
1278 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1279 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1280 	rcb->ti_max_len = TI_FRAMELEN;
1281 	rcb->ti_flags = 0;
1282 	if (ifp->if_hwassist)
1283 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1284 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1285 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1286 
1287 	/* Set up the jumbo receive ring. */
1288 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1289 	TI_HOSTADDR(rcb->ti_hostaddr) =
1290 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1291 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1292 	rcb->ti_flags = 0;
1293 	if (ifp->if_hwassist)
1294 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1295 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1296 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1297 
1298 	/*
1299 	 * Set up the mini ring. Only activated on the
1300 	 * Tigon 2 but the slot in the config block is
1301 	 * still there on the Tigon 1.
1302 	 */
1303 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1304 	TI_HOSTADDR(rcb->ti_hostaddr) =
1305 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1306 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1307 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1308 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1309 	else
1310 		rcb->ti_flags = 0;
1311 	if (ifp->if_hwassist)
1312 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1313 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1314 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1315 
1316 	/*
1317 	 * Set up the receive return ring.
1318 	 */
1319 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1320 	TI_HOSTADDR(rcb->ti_hostaddr) =
1321 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1322 	rcb->ti_flags = 0;
1323 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1324 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1325 	    vtophys(&sc->ti_return_prodidx);
1326 
1327 	/*
1328 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1329 	 * of putting the transmit ring in the host's address space and
1330 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1331 	 * memory and accessing it through the shared memory region. We
1332 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1333 	 * so we have to revert to the shared memory scheme if we detect
1334 	 * a Tigon 1 chip.
1335 	 */
1336 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1337 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1338 		sc->ti_rdata->ti_tx_ring_nic =
1339 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1340 	}
1341 	bzero(sc->ti_rdata->ti_tx_ring,
1342 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1343 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1344 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1345 		rcb->ti_flags = 0;
1346 	else
1347 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1348 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1349 	if (ifp->if_hwassist)
1350 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1351 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1352 	rcb->ti_max_len = TI_TX_RING_CNT;
1353 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1354 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1355 	else
1356 		TI_HOSTADDR(rcb->ti_hostaddr) =
1357 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1358 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1359 	    vtophys(&sc->ti_tx_considx);
1360 
1361 	/* Set up tuneables */
1362 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1363 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1364 		    (sc->ti_rx_coal_ticks / 10));
1365 	else
1366 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1367 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1368 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1369 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1370 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1371 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1372 
1373 	/* Turn interrupts on. */
1374 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1375 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1376 
1377 	/* Start CPU. */
1378 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1379 
1380 	return(0);
1381 }
1382 
1383 /*
1384  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1385  * against our list and return its name if we find a match.
1386  */
1387 static int
1388 ti_probe(device_t dev)
1389 {
1390 	struct ti_type *t;
1391 	uint16_t vendor, product;
1392 
1393 	vendor = pci_get_vendor(dev);
1394 	product = pci_get_device(dev);
1395 
1396 	for (t = ti_devs; t->ti_name != NULL; t++) {
1397 		if (vendor == t->ti_vid && product == t->ti_did) {
1398 			device_set_desc(dev, t->ti_name);
1399 			return(0);
1400 		}
1401 	}
1402 
1403 	return(ENXIO);
1404 }
1405 
1406 static int
1407 ti_attach(device_t dev)
1408 {
1409 	struct ti_softc *sc;
1410 	struct ifnet *ifp;
1411 	int error = 0, rid;
1412 	uint8_t eaddr[ETHER_ADDR_LEN];
1413 
1414 	sc = device_get_softc(dev);
1415 	ifp = &sc->arpcom.ac_if;
1416 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1417 	ifp->if_capabilities = IFCAP_HWCSUM |
1418 	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1419 	ifp->if_capenable = ifp->if_capabilities;
1420 
1421 	pci_enable_busmaster(dev);
1422 
1423 	/*
1424 	 * Initialize media before any possible error may occur,
1425 	 * so we can destroy it unconditionally, if an error occurs later on.
1426 	 */
1427 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1428 
1429 	rid = TI_PCI_LOMEM;
1430 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1431 	    RF_ACTIVE);
1432 
1433 	if (sc->ti_res == NULL) {
1434 		device_printf(dev, "couldn't map memory\n");
1435 		error = ENXIO;
1436 		goto fail;
1437 	}
1438 
1439 	sc->ti_btag = rman_get_bustag(sc->ti_res);
1440 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1441 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1442 
1443 	/* Allocate interrupt */
1444 	rid = 0;
1445 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1446 	    RF_SHAREABLE | RF_ACTIVE);
1447 	if (sc->ti_irq == NULL) {
1448 		device_printf(dev, "couldn't map interrupt\n");
1449 		error = ENXIO;
1450 		goto fail;
1451 	}
1452 
1453 	if (ti_chipinit(sc)) {
1454 		device_printf(dev, "chip initialization failed\n");
1455 		error = ENXIO;
1456 		goto fail;
1457 	}
1458 
1459 	/* Zero out the NIC's on-board SRAM. */
1460 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1461 
1462 	/* Init again -- zeroing memory may have clobbered some registers. */
1463 	if (ti_chipinit(sc)) {
1464 		device_printf(dev, "chip initialization failed\n");
1465 		error = ENXIO;
1466 		goto fail;
1467 	}
1468 
1469 	/*
1470 	 * Get station address from the EEPROM. Note: the manual states
1471 	 * that the MAC address is at offset 0x8c, however the data is
1472 	 * stored as two longwords (since that's how it's loaded into
1473 	 * the NIC). This means the MAC address is actually preceeded
1474 	 * by two zero bytes. We need to skip over those.
1475 	 */
1476 	if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1477 		device_printf(dev, "failed to read station address\n");
1478 		error = ENXIO;
1479 		goto fail;
1480 	}
1481 
1482 	/* Allocate the general information block and ring buffers. */
1483 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1484 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
1485 
1486 	if (sc->ti_rdata == NULL) {
1487 		device_printf(dev, "no memory for list buffers!\n");
1488 		error = ENXIO;
1489 		goto fail;
1490 	}
1491 
1492 	/* Try to allocate memory for jumbo buffers. */
1493 	if (ti_alloc_jumbo_mem(sc)) {
1494 		device_printf(dev, "jumbo buffer allocation failed\n");
1495 		error = ENXIO;
1496 		goto fail;
1497 	}
1498 
1499 	/*
1500 	 * We really need a better way to tell a 1000baseT card
1501 	 * from a 1000baseSX one, since in theory there could be
1502 	 * OEMed 1000baseT cards from lame vendors who aren't
1503 	 * clever enough to change the PCI ID. For the moment
1504 	 * though, the AceNIC is the only copper card available.
1505 	 */
1506 	if (pci_get_vendor(dev) == ALT_VENDORID &&
1507 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1508 		sc->ti_copper = 1;
1509 	/* Ok, it's not the only copper card available. */
1510 	if (pci_get_vendor(dev) == NG_VENDORID &&
1511 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1512 		sc->ti_copper = 1;
1513 
1514 	/* Set default tuneable values. */
1515 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1516 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1517 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1518 	sc->ti_rx_max_coal_bds = 64;
1519 	sc->ti_tx_max_coal_bds = 128;
1520 	sc->ti_tx_buf_ratio = 21;
1521 
1522 	/* Set up ifnet structure */
1523 	ifp->if_softc = sc;
1524 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1525 	ifp->if_ioctl = ti_ioctl;
1526 	ifp->if_start = ti_start;
1527 	ifp->if_watchdog = ti_watchdog;
1528 	ifp->if_init = ti_init;
1529 	ifp->if_mtu = ETHERMTU;
1530 	ifq_set_maxlen(&ifp->if_snd, TI_TX_RING_CNT - 1);
1531 	ifq_set_ready(&ifp->if_snd);
1532 
1533 	/* Set up ifmedia support. */
1534 	if (sc->ti_copper) {
1535 		/*
1536 		 * Copper cards allow manual 10/100 mode selection,
1537 		 * but not manual 1000baseT mode selection. Why?
1538 		 * Becuase currently there's no way to specify the
1539 		 * master/slave setting through the firmware interface,
1540 		 * so Alteon decided to just bag it and handle it
1541 		 * via autonegotiation.
1542 		 */
1543 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1544 		ifmedia_add(&sc->ifmedia,
1545 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1546 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1547 		ifmedia_add(&sc->ifmedia,
1548 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1549 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
1550 		ifmedia_add(&sc->ifmedia,
1551 		    IFM_ETHER|IFM_1000_T | IFM_FDX, 0, NULL);
1552 	} else {
1553 		/* Fiber cards don't support 10/100 modes. */
1554 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1555 		ifmedia_add(&sc->ifmedia,
1556 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1557 	}
1558 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1559 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1560 
1561 	/*
1562 	 * Call MI attach routine.
1563 	 */
1564 	ether_ifattach(ifp, eaddr, NULL);
1565 
1566 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->ti_irq));
1567 
1568 	error = bus_setup_intr(dev, sc->ti_irq, INTR_MPSAFE,
1569 			       ti_intr, sc, &sc->ti_intrhand,
1570 			       ifp->if_serializer);
1571 	if (error) {
1572 		device_printf(dev, "couldn't set up irq\n");
1573 		ether_ifdetach(ifp);
1574 		goto fail;
1575 	}
1576 
1577 	return 0;
1578 fail:
1579 	ti_detach(dev);
1580 	return(error);
1581 }
1582 
1583 static int
1584 ti_detach(device_t dev)
1585 {
1586 	struct ti_softc *sc = device_get_softc(dev);
1587 	struct ifnet *ifp = &sc->arpcom.ac_if;
1588 
1589 	if (device_is_attached(dev)) {
1590 		lwkt_serialize_enter(ifp->if_serializer);
1591 		ti_stop(sc);
1592 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1593 		lwkt_serialize_exit(ifp->if_serializer);
1594 
1595 		ether_ifdetach(ifp);
1596 	}
1597 
1598 	if (sc->ti_irq != NULL)
1599 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1600 	if (sc->ti_res != NULL) {
1601 		bus_release_resource(dev, SYS_RES_MEMORY,
1602 				     TI_PCI_LOMEM, sc->ti_res);
1603 	}
1604 	if (sc->ti_cdata.ti_jumbo_buf != NULL)
1605 		contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1606 	if (sc->ti_rdata != NULL)
1607 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1608 	ifmedia_removeall(&sc->ifmedia);
1609 
1610 
1611 	return(0);
1612 }
1613 
1614 /*
1615  * Frame reception handling. This is called if there's a frame
1616  * on the receive return list.
1617  *
1618  * Note: we have to be able to handle three possibilities here:
1619  * 1) the frame is from the mini receive ring (can only happen)
1620  *    on Tigon 2 boards)
1621  * 2) the frame is from the jumbo recieve ring
1622  * 3) the frame is from the standard receive ring
1623  */
1624 static void
1625 ti_rxeof(struct ti_softc *sc)
1626 {
1627 	struct ifnet *ifp = &sc->arpcom.ac_if;
1628 	struct ti_cmd_desc cmd;
1629 
1630 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1631 		struct ti_rx_desc *cur_rx;
1632 		uint32_t rxidx;
1633 		struct mbuf *m;
1634 		uint16_t vlan_tag = 0;
1635 		int have_tag = 0;
1636 
1637 		cur_rx =
1638 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1639 		rxidx = cur_rx->ti_idx;
1640 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1641 
1642 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1643 			have_tag = 1;
1644 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
1645 		}
1646 
1647 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1648 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1649 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1650 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1651 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1652 				IFNET_STAT_INC(ifp, ierrors, 1);
1653 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1654 				continue;
1655 			}
1656 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1657 				IFNET_STAT_INC(ifp, ierrors, 1);
1658 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1659 				continue;
1660 			}
1661 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1662 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1663 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1664 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1665 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1666 				IFNET_STAT_INC(ifp, ierrors, 1);
1667 				ti_newbuf_mini(sc, sc->ti_mini, m);
1668 				continue;
1669 			}
1670 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1671 				IFNET_STAT_INC(ifp, ierrors, 1);
1672 				ti_newbuf_mini(sc, sc->ti_mini, m);
1673 				continue;
1674 			}
1675 		} else {
1676 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1677 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1678 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1679 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1680 				IFNET_STAT_INC(ifp, ierrors, 1);
1681 				ti_newbuf_std(sc, sc->ti_std, m);
1682 				continue;
1683 			}
1684 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1685 				IFNET_STAT_INC(ifp, ierrors, 1);
1686 				ti_newbuf_std(sc, sc->ti_std, m);
1687 				continue;
1688 			}
1689 		}
1690 
1691 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1692 		IFNET_STAT_INC(ifp, ipackets, 1);
1693 		m->m_pkthdr.rcvif = ifp;
1694 
1695 		if (ifp->if_hwassist) {
1696 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1697 			    CSUM_DATA_VALID;
1698 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1699 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1700 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1701 		}
1702 
1703 		if (have_tag) {
1704 			m->m_flags |= M_VLANTAG;
1705 			m->m_pkthdr.ether_vlantag = vlan_tag;
1706 		}
1707 		ifp->if_input(ifp, m);
1708 	}
1709 
1710 	/* Only necessary on the Tigon 1. */
1711 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1712 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1713 		    sc->ti_rx_saved_considx);
1714 
1715 	TI_UPDATE_STDPROD(sc, sc->ti_std);
1716 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1717 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1718 }
1719 
1720 static void
1721 ti_txeof(struct ti_softc *sc)
1722 {
1723 	struct ifnet *ifp = &sc->arpcom.ac_if;
1724 	struct ti_tx_desc *cur_tx = NULL;
1725 
1726 	/*
1727 	 * Go through our tx ring and free mbufs for those
1728 	 * frames that have been sent.
1729 	 */
1730 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1731 		uint32_t idx = 0;
1732 
1733 		idx = sc->ti_tx_saved_considx;
1734 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1735 			if (idx > 383)
1736 				CSR_WRITE_4(sc, TI_WINBASE,
1737 				    TI_TX_RING_BASE + 6144);
1738 			else if (idx > 255)
1739 				CSR_WRITE_4(sc, TI_WINBASE,
1740 				    TI_TX_RING_BASE + 4096);
1741 			else if (idx > 127)
1742 				CSR_WRITE_4(sc, TI_WINBASE,
1743 				    TI_TX_RING_BASE + 2048);
1744 			else
1745 				CSR_WRITE_4(sc, TI_WINBASE,
1746 				    TI_TX_RING_BASE);
1747 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1748 		} else
1749 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1750 		if (cur_tx->ti_flags & TI_BDFLAG_END)
1751 			IFNET_STAT_INC(ifp, opackets, 1);
1752 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1753 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1754 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1755 		}
1756 		sc->ti_txcnt--;
1757 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1758 		ifp->if_timer = 0;
1759 	}
1760 
1761 	if (cur_tx != NULL)
1762 		ifq_clr_oactive(&ifp->if_snd);
1763 }
1764 
1765 static void
1766 ti_intr(void *xsc)
1767 {
1768 	struct ti_softc *sc = xsc;
1769 	struct ifnet *ifp = &sc->arpcom.ac_if;
1770 
1771 #ifdef notdef
1772 	/* Avoid this for now -- checking this register is expensive. */
1773 	/* Make sure this is really our interrupt. */
1774 	if ((CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE) == 0)
1775 		return;
1776 #endif
1777 
1778 	/* Ack interrupt and stop others from occuring. */
1779 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1780 
1781 	if (ifp->if_flags & IFF_RUNNING) {
1782 		/* Check RX return ring producer/consumer */
1783 		ti_rxeof(sc);
1784 
1785 		/* Check TX ring producer/consumer */
1786 		ti_txeof(sc);
1787 	}
1788 
1789 	ti_handle_events(sc);
1790 
1791 	/* Re-enable interrupts. */
1792 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1793 
1794 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1795 		if_devstart(ifp);
1796 }
1797 
1798 static void
1799 ti_stats_update(struct ti_softc *sc)
1800 {
1801 	struct ifnet *ifp = &sc->arpcom.ac_if;
1802 
1803 	IFNET_STAT_SET(ifp, collisions,
1804 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1805 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1806 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1807 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions));
1808 }
1809 
1810 /*
1811  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1812  * pointers to descriptors.
1813  */
1814 static int
1815 ti_encap(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1816 {
1817 	struct ti_tx_desc *f = NULL;
1818 	struct mbuf *m;
1819 	uint32_t cnt = 0, cur, frag;
1820 	uint16_t csum_flags = 0, vlan_tag = 0, vlan_flag = 0;
1821 
1822 	if (m_head->m_flags & M_VLANTAG) {
1823 		vlan_tag = m_head->m_pkthdr.ether_vlantag;
1824 		vlan_flag = TI_BDFLAG_VLAN_TAG;
1825 	}
1826 
1827 	m = m_head;
1828 	cur = frag = *txidx;
1829 
1830 	if (m_head->m_pkthdr.csum_flags) {
1831 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1832 			csum_flags |= TI_BDFLAG_IP_CKSUM;
1833 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1834 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1835 		if (m_head->m_flags & M_LASTFRAG)
1836 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1837 		else if (m_head->m_flags & M_FRAG)
1838 			csum_flags |= TI_BDFLAG_IP_FRAG;
1839 	}
1840 	/*
1841  	 * Start packing the mbufs in this chain into
1842 	 * the fragment pointers. Stop when we run out
1843  	 * of fragments or hit the end of the mbuf chain.
1844 	 */
1845 	for (m = m_head; m != NULL; m = m->m_next) {
1846 		if (m->m_len != 0) {
1847 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
1848 				if (frag > 383)
1849 					CSR_WRITE_4(sc, TI_WINBASE,
1850 					    TI_TX_RING_BASE + 6144);
1851 				else if (frag > 255)
1852 					CSR_WRITE_4(sc, TI_WINBASE,
1853 					    TI_TX_RING_BASE + 4096);
1854 				else if (frag > 127)
1855 					CSR_WRITE_4(sc, TI_WINBASE,
1856 					    TI_TX_RING_BASE + 2048);
1857 				else
1858 					CSR_WRITE_4(sc, TI_WINBASE,
1859 					    TI_TX_RING_BASE);
1860 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
1861 			} else
1862 				f = &sc->ti_rdata->ti_tx_ring[frag];
1863 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1864 				break;
1865 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
1866 			f->ti_len = m->m_len;
1867 			f->ti_flags = csum_flags | vlan_flag;
1868 			f->ti_vlan_tag = vlan_tag & 0xfff;
1869 
1870 			/*
1871 			 * Sanity check: avoid coming within 16 descriptors
1872 			 * of the end of the ring.
1873 			 */
1874 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
1875 				return(ENOBUFS);
1876 			cur = frag;
1877 			TI_INC(frag, TI_TX_RING_CNT);
1878 			cnt++;
1879 		}
1880 	}
1881 
1882 	if (m != NULL)
1883 		return(ENOBUFS);
1884 
1885 	if (frag == sc->ti_tx_saved_considx)
1886 		return(ENOBUFS);
1887 
1888 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1889 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
1890 		    TI_BDFLAG_END;
1891 	else
1892 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
1893 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
1894 	sc->ti_txcnt += cnt;
1895 
1896 	*txidx = frag;
1897 
1898 	return(0);
1899 }
1900 
1901 /*
1902  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1903  * to the mbuf data regions directly in the transmit descriptors.
1904  */
1905 static void
1906 ti_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1907 {
1908 	struct ti_softc *sc = ifp->if_softc;
1909 	struct mbuf *m_head = NULL;
1910 	uint32_t prodidx = 0;
1911 	int need_trans;
1912 
1913 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1914 
1915 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
1916 
1917 	need_trans = 0;
1918 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
1919 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1920 		if (m_head == NULL)
1921 			break;
1922 
1923 		/*
1924 		 * XXX
1925 		 * safety overkill.  If this is a fragmented packet chain
1926 		 * with delayed TCP/UDP checksums, then only encapsulate
1927 		 * it if we have enough descriptors to handle the entire
1928 		 * chain at once.
1929 		 * (paranoia -- may not actually be needed)
1930 		 */
1931 		if (m_head->m_flags & M_FIRSTFRAG &&
1932 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
1933 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
1934 			    m_head->m_pkthdr.csum_data + 16) {
1935 				ifq_set_oactive(&ifp->if_snd);
1936 				ifq_prepend(&ifp->if_snd, m_head);
1937 				break;
1938 			}
1939 		}
1940 
1941 		/*
1942 		 * Pack the data into the transmit ring. If we
1943 		 * don't have room, set the OACTIVE flag and wait
1944 		 * for the NIC to drain the ring.
1945 		 */
1946 		if (ti_encap(sc, m_head, &prodidx)) {
1947 			ifq_set_oactive(&ifp->if_snd);
1948 			ifq_prepend(&ifp->if_snd, m_head);
1949 			break;
1950 		}
1951 		need_trans = 1;
1952 
1953 		ETHER_BPF_MTAP(ifp, m_head);
1954 	}
1955 
1956 	if (!need_trans)
1957 		return;
1958 
1959 	/* Transmit */
1960 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
1961 
1962 	/*
1963 	 * Set a timeout in case the chip goes out to lunch.
1964 	 */
1965 	ifp->if_timer = 5;
1966 }
1967 
1968 static void
1969 ti_init(void *xsc)
1970 {
1971 	struct ti_softc *sc = xsc;
1972 
1973 	/* Cancel pending I/O and flush buffers. */
1974 	ti_stop(sc);
1975 
1976 	/* Init the gen info block, ring control blocks and firmware. */
1977 	if (ti_gibinit(sc)) {
1978 		if_printf(&sc->arpcom.ac_if, "initialization failure\n");
1979 		return;
1980 	}
1981 }
1982 
1983 static void
1984 ti_init2(struct ti_softc *sc)
1985 {
1986 	struct ifnet *ifp = &sc->arpcom.ac_if;
1987 	struct ti_cmd_desc cmd;
1988 	uint16_t *m;
1989 	struct ifmedia *ifm;
1990 	int tmp;
1991 
1992 	/* Specify MTU and interface index. */
1993 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_dunit);
1994 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
1995 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
1996 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
1997 
1998 	/* Load our MAC address. */
1999 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2000 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2001 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2002 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2003 
2004 	/* Enable or disable promiscuous mode as needed. */
2005 	if (ifp->if_flags & IFF_PROMISC)
2006 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2007 	else
2008 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2009 
2010 	/* Program multicast filter. */
2011 	ti_setmulti(sc);
2012 
2013 	/*
2014 	 * If this is a Tigon 1, we should tell the
2015 	 * firmware to use software packet filtering.
2016 	 */
2017 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2018 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2019 
2020 	/* Init RX ring. */
2021 	ti_init_rx_ring_std(sc);
2022 
2023 	/* Init jumbo RX ring. */
2024 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2025 		ti_init_rx_ring_jumbo(sc);
2026 
2027 	/*
2028 	 * If this is a Tigon 2, we can also configure the
2029 	 * mini ring.
2030 	 */
2031 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2032 		ti_init_rx_ring_mini(sc);
2033 
2034 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2035 	sc->ti_rx_saved_considx = 0;
2036 
2037 	/* Init TX ring. */
2038 	ti_init_tx_ring(sc);
2039 
2040 	/* Tell firmware we're alive. */
2041 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2042 
2043 	/* Enable host interrupts. */
2044 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2045 
2046 	ifp->if_flags |= IFF_RUNNING;
2047 	ifq_clr_oactive(&ifp->if_snd);
2048 
2049 	/*
2050 	 * Make sure to set media properly. We have to do this
2051 	 * here since we have to issue commands in order to set
2052 	 * the link negotiation and we can't issue commands until
2053 	 * the firmware is running.
2054 	 */
2055 	ifm = &sc->ifmedia;
2056 	tmp = ifm->ifm_media;
2057 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2058 	ti_ifmedia_upd(ifp);
2059 	ifm->ifm_media = tmp;
2060 }
2061 
2062 /*
2063  * Set media options.
2064  */
2065 static int
2066 ti_ifmedia_upd(struct ifnet *ifp)
2067 {
2068 	struct ti_softc *sc = ifp->if_softc;
2069 	struct ifmedia *ifm = &sc->ifmedia;
2070 	struct ti_cmd_desc cmd;
2071 
2072 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2073 		return(EINVAL);
2074 
2075 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2076 	case IFM_AUTO:
2077 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB |
2078 		    TI_GLNK_FULL_DUPLEX | TI_GLNK_RX_FLOWCTL_Y |
2079 		    TI_GLNK_AUTONEGENB | TI_GLNK_ENB);
2080 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB | TI_LNK_10MB |
2081 		    TI_LNK_FULL_DUPLEX | TI_LNK_HALF_DUPLEX |
2082 		    TI_LNK_AUTONEGENB | TI_LNK_ENB);
2083 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2084 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2085 		break;
2086 	case IFM_1000_SX:
2087 	case IFM_1000_T:
2088 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB |
2089 		    TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2090 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2091 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2092 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2093 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2094 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2095 		break;
2096 	case IFM_100_FX:
2097 	case IFM_10_FL:
2098 	case IFM_100_TX:
2099 	case IFM_10_T:
2100 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2101 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB | TI_LNK_PREF);
2102 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2103 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
2104 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2105 		else
2106 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2107 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2108 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2109 		else
2110 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2111 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2112 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2113 		break;
2114 	}
2115 
2116 	return(0);
2117 }
2118 
2119 /*
2120  * Report current media status.
2121  */
2122 static void
2123 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2124 {
2125 	struct ti_softc *sc = ifp->if_softc;
2126 	uint32_t media = 0;
2127 
2128 	ifmr->ifm_status = IFM_AVALID;
2129 	ifmr->ifm_active = IFM_ETHER;
2130 
2131 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2132 		return;
2133 
2134 	ifmr->ifm_status |= IFM_ACTIVE;
2135 
2136 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2137 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2138 		if (sc->ti_copper)
2139 			ifmr->ifm_active |= IFM_1000_T;
2140 		else
2141 			ifmr->ifm_active |= IFM_1000_SX;
2142 		if (media & TI_GLNK_FULL_DUPLEX)
2143 			ifmr->ifm_active |= IFM_FDX;
2144 		else
2145 			ifmr->ifm_active |= IFM_HDX;
2146 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2147 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2148 		if (sc->ti_copper) {
2149 			if (media & TI_LNK_100MB)
2150 				ifmr->ifm_active |= IFM_100_TX;
2151 			if (media & TI_LNK_10MB)
2152 				ifmr->ifm_active |= IFM_10_T;
2153 		} else {
2154 			if (media & TI_LNK_100MB)
2155 				ifmr->ifm_active |= IFM_100_FX;
2156 			if (media & TI_LNK_10MB)
2157 				ifmr->ifm_active |= IFM_10_FL;
2158 		}
2159 		if (media & TI_LNK_FULL_DUPLEX)
2160 			ifmr->ifm_active |= IFM_FDX;
2161 		if (media & TI_LNK_HALF_DUPLEX)
2162 			ifmr->ifm_active |= IFM_HDX;
2163 	}
2164 }
2165 
2166 static int
2167 ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2168 {
2169 	struct ti_softc *sc = ifp->if_softc;
2170 	struct ifreq *ifr = (struct ifreq *) data;
2171 	struct ti_cmd_desc cmd;
2172 	int error = 0, mask;
2173 
2174 	switch(command) {
2175 	case SIOCSIFMTU:
2176 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2177 			error = EINVAL;
2178 		else {
2179 			ifp->if_mtu = ifr->ifr_mtu;
2180 			ti_init(sc);
2181 		}
2182 		break;
2183 	case SIOCSIFFLAGS:
2184 		if (ifp->if_flags & IFF_UP) {
2185 			/*
2186 			 * If only the state of the PROMISC flag changed,
2187 			 * then just use the 'set promisc mode' command
2188 			 * instead of reinitializing the entire NIC. Doing
2189 			 * a full re-init means reloading the firmware and
2190 			 * waiting for it to start up, which may take a
2191 			 * second or two.
2192 			 */
2193 			if (ifp->if_flags & IFF_RUNNING &&
2194 			    ifp->if_flags & IFF_PROMISC &&
2195 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2196 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2197 				    TI_CMD_CODE_PROMISC_ENB, 0);
2198 			} else if (ifp->if_flags & IFF_RUNNING &&
2199 			    !(ifp->if_flags & IFF_PROMISC) &&
2200 			    sc->ti_if_flags & IFF_PROMISC) {
2201 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2202 				    TI_CMD_CODE_PROMISC_DIS, 0);
2203 			} else
2204 				ti_init(sc);
2205 		} else if (ifp->if_flags & IFF_RUNNING) {
2206 			ti_stop(sc);
2207 		}
2208 		sc->ti_if_flags = ifp->if_flags;
2209 		error = 0;
2210 		break;
2211 	case SIOCADDMULTI:
2212 	case SIOCDELMULTI:
2213 		if (ifp->if_flags & IFF_RUNNING) {
2214 			ti_setmulti(sc);
2215 			error = 0;
2216 		}
2217 		break;
2218 	case SIOCSIFMEDIA:
2219 	case SIOCGIFMEDIA:
2220 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2221 		break;
2222 	case SIOCSIFCAP:
2223 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2224 		if (mask & IFCAP_HWCSUM) {
2225 			if (IFCAP_HWCSUM & ifp->if_capenable)
2226 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2227                         else
2228                                 ifp->if_capenable |= IFCAP_HWCSUM;
2229 			if (ifp->if_flags & IFF_RUNNING)
2230 				ti_init(sc);
2231                 }
2232 		error = 0;
2233 		break;
2234 	default:
2235 		error = ether_ioctl(ifp, command, data);
2236 		break;
2237 	}
2238 	return(error);
2239 }
2240 
2241 static void
2242 ti_watchdog(struct ifnet *ifp)
2243 {
2244 	struct ti_softc *sc = ifp->if_softc;
2245 
2246 	if_printf(ifp, "watchdog timeout -- resetting\n");
2247 	ti_stop(sc);
2248 	ti_init(sc);
2249 
2250 	IFNET_STAT_INC(ifp, oerrors, 1);
2251 
2252 	if (!ifq_is_empty(&ifp->if_snd))
2253 		if_devstart(ifp);
2254 }
2255 
2256 /*
2257  * Stop the adapter and free any mbufs allocated to the
2258  * RX and TX lists.
2259  */
2260 static void
2261 ti_stop(struct ti_softc *sc)
2262 {
2263 	struct ifnet *ifp = &sc->arpcom.ac_if;
2264 	struct ti_cmd_desc cmd;
2265 
2266 	/* Disable host interrupts. */
2267 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2268 	/*
2269 	 * Tell firmware we're shutting down.
2270 	 */
2271 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2272 
2273 	/* Halt and reinitialize. */
2274 	ti_chipinit(sc);
2275 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2276 	ti_chipinit(sc);
2277 
2278 	/* Free the RX lists. */
2279 	ti_free_rx_ring_std(sc);
2280 
2281 	/* Free jumbo RX list. */
2282 	ti_free_rx_ring_jumbo(sc);
2283 
2284 	/* Free mini RX list. */
2285 	ti_free_rx_ring_mini(sc);
2286 
2287 	/* Free TX buffers. */
2288 	ti_free_tx_ring(sc);
2289 
2290 	sc->ti_ev_prodidx.ti_idx = 0;
2291 	sc->ti_return_prodidx.ti_idx = 0;
2292 	sc->ti_tx_considx.ti_idx = 0;
2293 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2294 
2295 	ifp->if_flags &= ~IFF_RUNNING;
2296 	ifq_clr_oactive(&ifp->if_snd);
2297 }
2298 
2299 /*
2300  * Stop all chip I/O so that the kernel's probe routines don't
2301  * get confused by errant DMAs when rebooting.
2302  */
2303 static void
2304 ti_shutdown(device_t dev)
2305 {
2306 	struct ti_softc *sc = device_get_softc(dev);
2307 
2308 	ti_chipinit(sc);
2309 }
2310