xref: /dragonfly/sys/dev/netif/ti/if_ti.c (revision 49781055)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ti.c,v 1.25.2.14 2002/02/15 04:20:20 silby Exp $
33  * $DragonFly: src/sys/dev/netif/ti/if_ti.c,v 1.40 2005/12/31 14:08:00 sephe Exp $
34  */
35 
36 /*
37  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
38  * Manuals, sample driver and firmware source kits are available
39  * from http://www.alteon.com/support/openkits.
40  *
41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
42  * Electrical Engineering Department
43  * Columbia University, New York City
44  */
45 
46 /*
47  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
48  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
49  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
50  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
51  * filtering and jumbo (9014 byte) frames. The hardware is largely
52  * controlled by firmware, which must be loaded into the NIC during
53  * initialization.
54  *
55  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
56  * revision, which supports new features such as extended commands,
57  * extended jumbo receive ring desciptors and a mini receive ring.
58  *
59  * Alteon Networks is to be commended for releasing such a vast amount
60  * of development material for the Tigon NIC without requiring an NDA
61  * (although they really should have done it a long time ago). With
62  * any luck, the other vendors will finally wise up and follow Alteon's
63  * stellar example.
64  *
65  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
66  * this driver by #including it as a C header file. This bloats the
67  * driver somewhat, but it's the easiest method considering that the
68  * driver code and firmware code need to be kept in sync. The source
69  * for the firmware is not provided with the FreeBSD distribution since
70  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
71  *
72  * The following people deserve special thanks:
73  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
74  *   for testing
75  * - Raymond Lee of Netgear, for providing a pair of Netgear
76  *   GA620 Tigon 2 boards for testing
77  * - Ulf Zimmermann, for bringing the GA260 to my attention and
78  *   convincing me to write this driver.
79  * - Andrew Gallatin for providing FreeBSD/Alpha support.
80  */
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/sockio.h>
85 #include <sys/mbuf.h>
86 #include <sys/malloc.h>
87 #include <sys/kernel.h>
88 #include <sys/socket.h>
89 #include <sys/queue.h>
90 #include <sys/serialize.h>
91 #include <sys/thread2.h>
92 
93 #include <net/if.h>
94 #include <net/ifq_var.h>
95 #include <net/if_arp.h>
96 #include <net/ethernet.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_types.h>
100 #include <net/vlan/if_vlan_var.h>
101 
102 #include <net/bpf.h>
103 
104 #include <netinet/in_systm.h>
105 #include <netinet/in.h>
106 #include <netinet/ip.h>
107 
108 #include <vm/vm.h>              /* for vtophys */
109 #include <vm/pmap.h>            /* for vtophys */
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114 
115 #include <bus/pci/pcireg.h>
116 #include <bus/pci/pcivar.h>
117 
118 #include "if_tireg.h"
119 #include "ti_fw.h"
120 #include "ti_fw2.h"
121 
122 /*
123  * Temporarily disable the checksum offload support for now.
124  * Tests with ftp.freesoftware.com show that after about 12 hours,
125  * the firmware will begin calculating completely bogus TX checksums
126  * and refuse to stop until the interface is reset. Unfortunately,
127  * there isn't enough time to fully debug this before the 4.1
128  * release, so this will need to stay off for now.
129  */
130 #ifdef notdef
131 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
132 #else
133 #define TI_CSUM_FEATURES	0
134 #endif
135 
136 /*
137  * Various supported device vendors/types and their names.
138  */
139 
140 static struct ti_type ti_devs[] = {
141 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
142 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
143 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
144 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
145 	{ TC_VENDORID,	TC_DEVICEID_3C985,
146 		"3Com 3c985-SX Gigabit Ethernet" },
147 	{ NG_VENDORID, NG_DEVICEID_GA620,
148 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
149 	{ NG_VENDORID, NG_DEVICEID_GA620T,
150 		"Netgear GA620 1000baseT Gigabit Ethernet" },
151 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
152 		"Silicon Graphics Gigabit Ethernet" },
153 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
154 		"Farallon PN9000SX Gigabit Ethernet" },
155 	{ 0, 0, NULL }
156 };
157 
158 static int	ti_probe(device_t);
159 static int	ti_attach(device_t);
160 static int	ti_detach(device_t);
161 static void	ti_txeof(struct ti_softc *);
162 static void	ti_rxeof(struct ti_softc *);
163 
164 static void	ti_stats_update(struct ti_softc *);
165 static int	ti_encap(struct ti_softc *, struct mbuf *, uint32_t *);
166 
167 static void	ti_intr(void *);
168 static void	ti_start(struct ifnet *);
169 static int	ti_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
170 static void	ti_init(void *);
171 static void	ti_init2(struct ti_softc *);
172 static void	ti_stop(struct ti_softc *);
173 static void	ti_watchdog(struct ifnet *);
174 static void	ti_shutdown(device_t);
175 static int	ti_ifmedia_upd(struct ifnet *);
176 static void	ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177 
178 static uint32_t	ti_eeprom_putbyte(struct ti_softc *, int);
179 static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
180 static int	ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
181 
182 static void	ti_add_mcast(struct ti_softc *, struct ether_addr *);
183 static void	ti_del_mcast(struct ti_softc *, struct ether_addr *);
184 static void	ti_setmulti(struct ti_softc *);
185 
186 static void	ti_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t);
187 static void	ti_loadfw(struct ti_softc *);
188 static void	ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
189 static void	ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *,
190 			   caddr_t, int);
191 static void	ti_handle_events(struct ti_softc *);
192 static int	ti_alloc_jumbo_mem(struct ti_softc *);
193 static struct ti_jslot *
194 		ti_jalloc(struct ti_softc *);
195 static void	ti_jfree(void *);
196 static void	ti_jref(void *);
197 static int	ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
198 static int	ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
199 static int	ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
200 static int	ti_init_rx_ring_std(struct ti_softc *);
201 static void	ti_free_rx_ring_std(struct ti_softc *);
202 static int	ti_init_rx_ring_jumbo(struct ti_softc *);
203 static void	ti_free_rx_ring_jumbo(struct ti_softc *);
204 static int	ti_init_rx_ring_mini(struct ti_softc *);
205 static void	ti_free_rx_ring_mini(struct ti_softc *);
206 static void	ti_free_tx_ring(struct ti_softc *);
207 static int	ti_init_tx_ring(struct ti_softc *);
208 
209 static int	ti_64bitslot_war(struct ti_softc *);
210 static int	ti_chipinit(struct ti_softc *);
211 static int	ti_gibinit(struct ti_softc *);
212 
213 static device_method_t ti_methods[] = {
214 	/* Device interface */
215 	DEVMETHOD(device_probe,		ti_probe),
216 	DEVMETHOD(device_attach,	ti_attach),
217 	DEVMETHOD(device_detach,	ti_detach),
218 	DEVMETHOD(device_shutdown,	ti_shutdown),
219 	{ 0, 0 }
220 };
221 
222 
223 static DEFINE_CLASS_0(ti, ti_driver, ti_methods, sizeof(struct ti_softc));
224 static devclass_t ti_devclass;
225 
226 DECLARE_DUMMY_MODULE(if_ti);
227 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
228 
229 /*
230  * Send an instruction or address to the EEPROM, check for ACK.
231  */
232 static uint32_t
233 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
234 {
235 	int ack = 0, i;
236 
237 	/*
238 	 * Make sure we're in TX mode.
239 	 */
240 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
241 
242 	/*
243 	 * Feed in each bit and stobe the clock.
244 	 */
245 	for (i = 0x80; i; i >>= 1) {
246 		if (byte & i)
247 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
248 		else
249 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
250 		DELAY(1);
251 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
252 		DELAY(1);
253 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
254 	}
255 
256 	/*
257 	 * Turn off TX mode.
258 	 */
259 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
260 
261 	/*
262 	 * Check for ack.
263 	 */
264 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
265 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
266 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
267 
268 	return(ack);
269 }
270 
271 /*
272  * Read a byte of data stored in the EEPROM at address 'addr.'
273  * We have to send two address bytes since the EEPROM can hold
274  * more than 256 bytes of data.
275  */
276 static uint8_t
277 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
278 {
279 	struct ifnet *ifp = &sc->arpcom.ac_if;
280 	int i;
281 	uint8_t byte = 0;
282 
283 	EEPROM_START;
284 
285 	/*
286 	 * Send write control code to EEPROM.
287 	 */
288 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
289 		if_printf(ifp, "failed to send write command, status: %x\n",
290 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
291 		return(1);
292 	}
293 
294 	/*
295 	 * Send first byte of address of byte we want to read.
296 	 */
297 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
298 		if_printf(ifp, "failed to send address, status: %x\n",
299 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
300 		return(1);
301 	}
302 	/*
303 	 * Send second byte address of byte we want to read.
304 	 */
305 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
306 		if_printf(ifp, "failed to send address, status: %x\n",
307 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
308 		return(1);
309 	}
310 
311 	EEPROM_STOP;
312 	EEPROM_START;
313 	/*
314 	 * Send read control code to EEPROM.
315 	 */
316 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
317 		if_printf(ifp, "failed to send read command, status: %x\n",
318 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
319 		return(1);
320 	}
321 
322 	/*
323 	 * Start reading bits from EEPROM.
324 	 */
325 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
326 	for (i = 0x80; i; i >>= 1) {
327 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
328 		DELAY(1);
329 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
330 			byte |= i;
331 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
332 		DELAY(1);
333 	}
334 
335 	EEPROM_STOP;
336 
337 	/*
338 	 * No ACK generated for read, so just return byte.
339 	 */
340 
341 	*dest = byte;
342 
343 	return(0);
344 }
345 
346 /*
347  * Read a sequence of bytes from the EEPROM.
348  */
349 static int
350 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
351 {
352 	int err = 0, i;
353 	uint8_t byte = 0;
354 
355 	for (i = 0; i < cnt; i++) {
356 		err = ti_eeprom_getbyte(sc, off + i, &byte);
357 		if (err)
358 			break;
359 		*(dest + i) = byte;
360 	}
361 
362 	return(err ? 1 : 0);
363 }
364 
365 /*
366  * NIC memory access function. Can be used to either clear a section
367  * of NIC local memory or (if buf is non-NULL) copy data into it.
368  */
369 static void
370 ti_mem(struct ti_softc *sc, uint32_t addr, uint32_t len, caddr_t buf)
371 {
372 	int cnt, segptr, segsize;
373 	caddr_t ti_winbase, ptr;
374 
375 	segptr = addr;
376 	cnt = len;
377 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
378 	ptr = buf;
379 
380 	while(cnt) {
381 		if (cnt < TI_WINLEN)
382 			segsize = cnt;
383 		else
384 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
385 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
386 		if (buf == NULL)
387 			bzero((char *)ti_winbase + (segptr &
388 			    (TI_WINLEN - 1)), segsize);
389 		else {
390 			bcopy((char *)ptr, (char *)ti_winbase +
391 			    (segptr & (TI_WINLEN - 1)), segsize);
392 			ptr += segsize;
393 		}
394 		segptr += segsize;
395 		cnt -= segsize;
396 	}
397 }
398 
399 /*
400  * Load firmware image into the NIC. Check that the firmware revision
401  * is acceptable and see if we want the firmware for the Tigon 1 or
402  * Tigon 2.
403  */
404 static void
405 ti_loadfw(struct ti_softc *sc)
406 {
407 	struct ifnet *ifp = &sc->arpcom.ac_if;
408 
409 	switch(sc->ti_hwrev) {
410 	case TI_HWREV_TIGON:
411 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
412 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
413 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
414 			if_printf(ifp, "firmware revision mismatch; want "
415 				  "%d.%d.%d, got %d.%d.%d\n",
416 				  TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
417 				  TI_FIRMWARE_FIX, tigonFwReleaseMajor,
418 				  tigonFwReleaseMinor, tigonFwReleaseFix);
419 			return;
420 		}
421 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
422 		    (caddr_t)tigonFwText);
423 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
424 		    (caddr_t)tigonFwData);
425 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
426 		    (caddr_t)tigonFwRodata);
427 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
428 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
429 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
430 		break;
431 	case TI_HWREV_TIGON_II:
432 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
433 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
434 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
435 			if_printf(ifp, "firmware revision mismatch; want "
436 				  "%d.%d.%d, got %d.%d.%d\n",
437 				  TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
438 				  TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
439 				  tigon2FwReleaseMinor, tigon2FwReleaseFix);
440 			return;
441 		}
442 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
443 		    (caddr_t)tigon2FwText);
444 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
445 		    (caddr_t)tigon2FwData);
446 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
447 		    (caddr_t)tigon2FwRodata);
448 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
449 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
450 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
451 		break;
452 	default:
453 		if_printf(ifp, "can't load firmware: unknown hardware rev\n");
454 		break;
455 	}
456 }
457 
458 /*
459  * Send the NIC a command via the command ring.
460  */
461 static void
462 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
463 {
464 	uint32_t index;
465 
466 	if (sc->ti_rdata->ti_cmd_ring == NULL)
467 		return;
468 
469 	index = sc->ti_cmd_saved_prodidx;
470 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
471 	TI_INC(index, TI_CMD_RING_CNT);
472 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
473 	sc->ti_cmd_saved_prodidx = index;
474 }
475 
476 /*
477  * Send the NIC an extended command. The 'len' parameter specifies the
478  * number of command slots to include after the initial command.
479  */
480 static void
481 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
482 {
483 	uint32_t index;
484 	int i;
485 
486 	if (sc->ti_rdata->ti_cmd_ring == NULL)
487 		return;
488 
489 	index = sc->ti_cmd_saved_prodidx;
490 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
491 	TI_INC(index, TI_CMD_RING_CNT);
492 	for (i = 0; i < len; i++) {
493 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
494 		    *(uint32_t *)(&arg[i * 4]));
495 		TI_INC(index, TI_CMD_RING_CNT);
496 	}
497 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
498 	sc->ti_cmd_saved_prodidx = index;
499 }
500 
501 /*
502  * Handle events that have triggered interrupts.
503  */
504 static void
505 ti_handle_events(struct ti_softc *sc)
506 {
507 	struct ifnet *ifp = &sc->arpcom.ac_if;
508 	struct ti_event_desc *e;
509 
510 	if (sc->ti_rdata->ti_event_ring == NULL)
511 		return;
512 
513 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
514 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
515 		switch(e->ti_event) {
516 		case TI_EV_LINKSTAT_CHANGED:
517 			sc->ti_linkstat = e->ti_code;
518 			if (e->ti_code == TI_EV_CODE_LINK_UP) {
519 				if_printf(ifp, "10/100 link up\n");
520 			} else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP) {
521 				if_printf(ifp, "gigabit link up\n");
522 			} else if (e->ti_code == TI_EV_CODE_LINK_DOWN) {
523 				if_printf(ifp, "link down\n");
524 			}
525 			break;
526 		case TI_EV_ERROR:
527 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD) {
528 				if_printf(ifp, "invalid command\n");
529 			} else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD) {
530 				if_printf(ifp, "unknown command\n");
531 			} else if (e->ti_code == TI_EV_CODE_ERR_BADCFG) {
532 				if_printf(ifp, "bad config data\n");
533 			}
534 			break;
535 		case TI_EV_FIRMWARE_UP:
536 			ti_init2(sc);
537 			break;
538 		case TI_EV_STATS_UPDATED:
539 			ti_stats_update(sc);
540 			break;
541 		case TI_EV_RESET_JUMBO_RING:
542 		case TI_EV_MCAST_UPDATED:
543 			/* Who cares. */
544 			break;
545 		default:
546 			if_printf(ifp, "unknown event: %d\n", e->ti_event);
547 			break;
548 		}
549 		/* Advance the consumer index. */
550 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
551 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
552 	}
553 }
554 
555 /*
556  * Memory management for the jumbo receive ring is a pain in the
557  * butt. We need to allocate at least 9018 bytes of space per frame,
558  * _and_ it has to be contiguous (unless you use the extended
559  * jumbo descriptor format). Using malloc() all the time won't
560  * work: malloc() allocates memory in powers of two, which means we
561  * would end up wasting a considerable amount of space by allocating
562  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
563  * to do our own memory management.
564  *
565  * The driver needs to allocate a contiguous chunk of memory at boot
566  * time. We then chop this up ourselves into 9K pieces and use them
567  * as external mbuf storage.
568  *
569  * One issue here is how much memory to allocate. The jumbo ring has
570  * 256 slots in it, but at 9K per slot than can consume over 2MB of
571  * RAM. This is a bit much, especially considering we also need
572  * RAM for the standard ring and mini ring (on the Tigon 2). To
573  * save space, we only actually allocate enough memory for 64 slots
574  * by default, which works out to between 500 and 600K. This can
575  * be tuned by changing a #define in if_tireg.h.
576  */
577 
578 static int
579 ti_alloc_jumbo_mem(struct ti_softc *sc)
580 {
581 	struct ti_jslot *entry;
582 	caddr_t ptr;
583 	int i;
584 
585 	/* Grab a big chunk o' storage. */
586 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
587 		M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
588 
589 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
590 		if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
591 		return(ENOBUFS);
592 	}
593 
594 	SLIST_INIT(&sc->ti_jfree_listhead);
595 
596 	/*
597 	 * Now divide it up into 9K pieces and save the addresses
598 	 * in an array. Note that we play an evil trick here by using
599 	 * the first few bytes in the buffer to hold the the address
600 	 * of the softc structure for this interface. This is because
601 	 * ti_jfree() needs it, but it is called by the mbuf management
602 	 * code which will not pass it to us explicitly.
603 	 */
604 	ptr = sc->ti_cdata.ti_jumbo_buf;
605 	for (i = 0; i < TI_JSLOTS; i++) {
606 		entry = &sc->ti_cdata.ti_jslots[i];
607 		entry->ti_sc = sc;
608 		entry->ti_buf = ptr;
609 		entry->ti_inuse = 0;
610 		entry->ti_slot = i;
611 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jslot_link);
612 		ptr += TI_JLEN;
613 	}
614 
615 	return(0);
616 }
617 
618 /*
619  * Allocate a jumbo buffer.
620  */
621 static struct ti_jslot *
622 ti_jalloc(struct ti_softc *sc)
623 {
624 	struct ti_jslot *entry;
625 
626 	lwkt_serialize_enter(&sc->ti_jslot_serializer);
627 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
628 	if (entry) {
629 		SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jslot_link);
630 		entry->ti_inuse = 1;
631 	} else {
632 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
633 	}
634 	lwkt_serialize_exit(&sc->ti_jslot_serializer);
635 	return(entry);
636 }
637 
638 /*
639  * Adjust usage count on a jumbo buffer. In general this doesn't
640  * get used much because our jumbo buffers don't get passed around
641  * too much, but it's implemented for correctness.
642  */
643 static void
644 ti_jref(void *arg)
645 {
646 	struct ti_jslot *entry = (struct ti_jslot *)arg;
647 	struct ti_softc *sc = entry->ti_sc;
648 
649 	if (sc == NULL)
650 		panic("ti_jref: can't find softc pointer!");
651 
652 	if (&sc->ti_cdata.ti_jslots[entry->ti_slot] != entry)
653 		panic("ti_jref: asked to reference buffer "
654 		    "that we don't manage!");
655 	if (entry->ti_inuse == 0)
656 		panic("ti_jref: buffer already free!");
657 	atomic_add_int(&entry->ti_inuse, 1);
658 }
659 
660 /*
661  * Release a jumbo buffer.
662  */
663 static void
664 ti_jfree(void *arg)
665 {
666 	struct ti_jslot *entry = (struct ti_jslot *)arg;
667 	struct ti_softc *sc = entry->ti_sc;
668 
669 	if (sc == NULL)
670 		panic("ti_jref: can't find softc pointer!");
671 
672 	if (&sc->ti_cdata.ti_jslots[entry->ti_slot] != entry)
673 		panic("ti_jref: asked to reference buffer "
674 		    "that we don't manage!");
675 	if (entry->ti_inuse == 0)
676 		panic("ti_jref: buffer already free!");
677 	lwkt_serialize_enter(&sc->ti_jslot_serializer);
678 	atomic_subtract_int(&entry->ti_inuse, 1);
679 	if (entry->ti_inuse == 0)
680 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jslot_link);
681 	lwkt_serialize_exit(&sc->ti_jslot_serializer);
682 }
683 
684 
685 /*
686  * Intialize a standard receive ring descriptor.
687  */
688 static int
689 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m)
690 {
691 	struct mbuf *m_new;
692 	struct ti_rx_desc *r;
693 
694 	if (m == NULL) {
695 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
696 		if (m_new == NULL)
697 			return (ENOBUFS);
698 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
699 	} else {
700 		m_new = m;
701 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
702 		m_new->m_data = m_new->m_ext.ext_buf;
703 	}
704 
705 
706 	m_adj(m_new, ETHER_ALIGN);
707 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
708 	r = &sc->ti_rdata->ti_rx_std_ring[i];
709 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
710 	r->ti_type = TI_BDTYPE_RECV_BD;
711 	r->ti_flags = 0;
712 	if (sc->arpcom.ac_if.if_hwassist)
713 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
714 	r->ti_len = m_new->m_len;
715 	r->ti_idx = i;
716 
717 	return(0);
718 }
719 
720 /*
721  * Intialize a mini receive ring descriptor. This only applies to
722  * the Tigon 2.
723  */
724 static int
725 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m)
726 {
727 	struct mbuf *m_new;
728 	struct ti_rx_desc *r;
729 
730 	if (m == NULL) {
731 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
732 		if (m_new == NULL) {
733 			return(ENOBUFS);
734 		}
735 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
736 	} else {
737 		m_new = m;
738 		m_new->m_data = m_new->m_pktdat;
739 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
740 	}
741 
742 	m_adj(m_new, ETHER_ALIGN);
743 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
744 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
745 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
746 	r->ti_type = TI_BDTYPE_RECV_BD;
747 	r->ti_flags = TI_BDFLAG_MINI_RING;
748 	if (sc->arpcom.ac_if.if_hwassist)
749 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
750 	r->ti_len = m_new->m_len;
751 	r->ti_idx = i;
752 
753 	return(0);
754 }
755 
756 /*
757  * Initialize a jumbo receive ring descriptor. This allocates
758  * a jumbo buffer from the pool managed internally by the driver.
759  */
760 static int
761 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
762 {
763 	struct mbuf *m_new;
764 	struct ti_rx_desc *r;
765 	struct ti_jslot *buf;
766 
767 	if (m == NULL) {
768 		/* Allocate the mbuf. */
769 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
770 		if (m_new == NULL) {
771 			return(ENOBUFS);
772 		}
773 
774 		/* Allocate the jumbo buffer */
775 		buf = ti_jalloc(sc);
776 		if (buf == NULL) {
777 			m_freem(m_new);
778 			if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
779 				  "-- packet dropped!\n");
780 			return(ENOBUFS);
781 		}
782 
783 		/* Attach the buffer to the mbuf. */
784 		m_new->m_ext.ext_arg = buf;
785 		m_new->m_ext.ext_free = ti_jfree;
786 		m_new->m_ext.ext_ref = ti_jref;
787 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
788 
789 		m_new->m_data = m_new->m_ext.ext_buf;
790 		m_new->m_flags |= M_EXT;
791 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
792 	} else {
793 		m_new = m;
794 		m_new->m_data = m_new->m_ext.ext_buf;
795 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
796 	}
797 
798 	m_adj(m_new, ETHER_ALIGN);
799 	/* Set up the descriptor. */
800 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
801 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
802 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
803 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
804 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
805 	if (sc->arpcom.ac_if.if_hwassist)
806 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
807 	r->ti_len = m_new->m_len;
808 	r->ti_idx = i;
809 
810 	return(0);
811 }
812 
813 /*
814  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
815  * that's 1MB or memory, which is a lot. For now, we fill only the first
816  * 256 ring entries and hope that our CPU is fast enough to keep up with
817  * the NIC.
818  */
819 static int
820 ti_init_rx_ring_std(struct ti_softc *sc)
821 {
822 	int i;
823 	struct ti_cmd_desc cmd;
824 
825 	for (i = 0; i < TI_SSLOTS; i++) {
826 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
827 			return(ENOBUFS);
828 	};
829 
830 	TI_UPDATE_STDPROD(sc, i - 1);
831 	sc->ti_std = i - 1;
832 
833 	return(0);
834 }
835 
836 static void
837 ti_free_rx_ring_std(struct ti_softc *sc)
838 {
839 	int i;
840 
841 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
842 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
843 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
844 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
845 		}
846 		bzero(&sc->ti_rdata->ti_rx_std_ring[i],
847 		    sizeof(struct ti_rx_desc));
848 	}
849 }
850 
851 static int
852 ti_init_rx_ring_jumbo(struct ti_softc *sc)
853 {
854 	int i;
855 	struct ti_cmd_desc cmd;
856 
857 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
858 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
859 			return(ENOBUFS);
860 	}
861 
862 	TI_UPDATE_JUMBOPROD(sc, i - 1);
863 	sc->ti_jumbo = i - 1;
864 
865 	return(0);
866 }
867 
868 static void
869 ti_free_rx_ring_jumbo(struct ti_softc *sc)
870 {
871 	int i;
872 
873 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
874 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
875 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
876 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
877 		}
878 		bzero(&sc->ti_rdata->ti_rx_jumbo_ring[i],
879 		    sizeof(struct ti_rx_desc));
880 	}
881 }
882 
883 static int
884 ti_init_rx_ring_mini(struct ti_softc *sc)
885 {
886 	int i;
887 
888 	for (i = 0; i < TI_MSLOTS; i++) {
889 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
890 			return(ENOBUFS);
891 	}
892 
893 	TI_UPDATE_MINIPROD(sc, i - 1);
894 	sc->ti_mini = i - 1;
895 
896 	return(0);
897 }
898 
899 static void
900 ti_free_rx_ring_mini(struct ti_softc *sc)
901 {
902 	int i;
903 
904 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
905 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
906 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
907 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
908 		}
909 		bzero(&sc->ti_rdata->ti_rx_mini_ring[i],
910 		    sizeof(struct ti_rx_desc));
911 	}
912 }
913 
914 static void
915 ti_free_tx_ring(struct ti_softc *sc)
916 {
917 	int i;
918 
919 	if (sc->ti_rdata->ti_tx_ring == NULL)
920 		return;
921 
922 	for (i = 0; i < TI_TX_RING_CNT; i++) {
923 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
924 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
925 			sc->ti_cdata.ti_tx_chain[i] = NULL;
926 		}
927 		bzero(&sc->ti_rdata->ti_tx_ring[i],
928 		    sizeof(struct ti_tx_desc));
929 	}
930 }
931 
932 static int
933 ti_init_tx_ring(struct ti_softc *sc)
934 {
935 	sc->ti_txcnt = 0;
936 	sc->ti_tx_saved_considx = 0;
937 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
938 	return(0);
939 }
940 
941 /*
942  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
943  * but we have to support the old way too so that Tigon 1 cards will
944  * work.
945  */
946 static void
947 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
948 {
949 	struct ti_cmd_desc cmd;
950 	uint16_t *m;
951 	uint32_t ext[2] = {0, 0};
952 
953 	m = (uint16_t *)&addr->octet[0];
954 
955 	switch(sc->ti_hwrev) {
956 	case TI_HWREV_TIGON:
957 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
958 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
959 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
960 		break;
961 	case TI_HWREV_TIGON_II:
962 		ext[0] = htons(m[0]);
963 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
964 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
965 		break;
966 	default:
967 		if_printf(&sc->arpcom.ac_if, "unknown hwrev\n");
968 		break;
969 	}
970 }
971 
972 static void
973 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
974 {
975 	struct ti_cmd_desc cmd;
976 	uint16_t *m;
977 	uint32_t ext[2] = {0, 0};
978 
979 	m = (uint16_t *)&addr->octet[0];
980 
981 	switch(sc->ti_hwrev) {
982 	case TI_HWREV_TIGON:
983 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
984 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
985 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
986 		break;
987 	case TI_HWREV_TIGON_II:
988 		ext[0] = htons(m[0]);
989 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
990 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
991 		break;
992 	default:
993 		if_printf(&sc->arpcom.ac_if, "unknown hwrev\n");
994 		break;
995 	}
996 }
997 
998 /*
999  * Configure the Tigon's multicast address filter.
1000  *
1001  * The actual multicast table management is a bit of a pain, thanks to
1002  * slight brain damage on the part of both Alteon and us. With our
1003  * multicast code, we are only alerted when the multicast address table
1004  * changes and at that point we only have the current list of addresses:
1005  * we only know the current state, not the previous state, so we don't
1006  * actually know what addresses were removed or added. The firmware has
1007  * state, but we can't get our grubby mits on it, and there is no 'delete
1008  * all multicast addresses' command. Hence, we have to maintain our own
1009  * state so we know what addresses have been programmed into the NIC at
1010  * any given time.
1011  */
1012 static void
1013 ti_setmulti(struct ti_softc *sc)
1014 {
1015 	struct ifnet *ifp = &sc->arpcom.ac_if;
1016 	struct ifmultiaddr *ifma;
1017 	struct ti_cmd_desc cmd;
1018 	struct ti_mc_entry *mc;
1019 	uint32_t intrs;
1020 
1021 	if (ifp->if_flags & IFF_ALLMULTI) {
1022 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1023 		return;
1024 	}
1025 
1026 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1027 
1028 	/* Disable interrupts. */
1029 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1030 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1031 
1032 	/* First, zot all the existing filters. */
1033 	while (sc->ti_mc_listhead.slh_first != NULL) {
1034 		mc = sc->ti_mc_listhead.slh_first;
1035 		ti_del_mcast(sc, &mc->mc_addr);
1036 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1037 		free(mc, M_DEVBUF);
1038 	}
1039 
1040 	/* Now program new ones. */
1041 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1042 		if (ifma->ifma_addr->sa_family != AF_LINK)
1043 			continue;
1044 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_INTWAIT);
1045 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1046 		    &mc->mc_addr, ETHER_ADDR_LEN);
1047 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1048 		ti_add_mcast(sc, &mc->mc_addr);
1049 	}
1050 
1051 	/* Re-enable interrupts. */
1052 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1053 }
1054 
1055 /*
1056  * Check to see if the BIOS has configured us for a 64 bit slot when
1057  * we aren't actually in one. If we detect this condition, we can work
1058  * around it on the Tigon 2 by setting a bit in the PCI state register,
1059  * but for the Tigon 1 we must give up and abort the interface attach.
1060  */
1061 static int
1062 ti_64bitslot_war(struct ti_softc *sc)
1063 {
1064 	if ((CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS) == 0) {
1065 		CSR_WRITE_4(sc, 0x600, 0);
1066 		CSR_WRITE_4(sc, 0x604, 0);
1067 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1068 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1069 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1070 				return(EINVAL);
1071 			TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_32BIT_BUS);
1072 			return(0);
1073 		}
1074 	}
1075 
1076 	return(0);
1077 }
1078 
1079 /*
1080  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1081  * self-test results.
1082  */
1083 static int
1084 ti_chipinit(struct ti_softc *sc)
1085 {
1086 	struct ifnet *ifp = &sc->arpcom.ac_if;
1087 	uint32_t cacheline;
1088 	uint32_t pci_writemax = 0;
1089 
1090 	/* Initialize link to down state. */
1091 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1092 
1093 	if (ifp->if_capenable & IFCAP_HWCSUM)
1094 		ifp->if_hwassist = TI_CSUM_FEATURES;
1095 	else
1096 		ifp->if_hwassist = 0;
1097 
1098 	/* Set endianness before we access any non-PCI registers. */
1099 #if BYTE_ORDER == BIG_ENDIAN
1100 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1101 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1102 #else
1103 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1104 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1105 #endif
1106 
1107 	/* Check the ROM failed bit to see if self-tests passed. */
1108 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1109 		if_printf(ifp, "board self-diagnostics failed!\n");
1110 		return(ENODEV);
1111 	}
1112 
1113 	/* Halt the CPU. */
1114 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1115 
1116 	/* Figure out the hardware revision. */
1117 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1118 	case TI_REV_TIGON_I:
1119 		sc->ti_hwrev = TI_HWREV_TIGON;
1120 		break;
1121 	case TI_REV_TIGON_II:
1122 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1123 		break;
1124 	default:
1125 		if_printf(ifp, "unsupported chip revision\n");
1126 		return(ENODEV);
1127 	}
1128 
1129 	/* Do special setup for Tigon 2. */
1130 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1131 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1132 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1133 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1134 	}
1135 
1136 	/* Set up the PCI state register. */
1137 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1138 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1139 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1140 	}
1141 
1142 	/* Clear the read/write max DMA parameters. */
1143 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1144 	    TI_PCISTATE_READ_MAXDMA));
1145 
1146 	/* Get cache line size. */
1147 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1148 
1149 	/*
1150 	 * If the system has set enabled the PCI memory write
1151 	 * and invalidate command in the command register, set
1152 	 * the write max parameter accordingly. This is necessary
1153 	 * to use MWI with the Tigon 2.
1154 	 */
1155 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1156 		switch(cacheline) {
1157 		case 1:
1158 		case 4:
1159 		case 8:
1160 		case 16:
1161 		case 32:
1162 		case 64:
1163 			break;
1164 		default:
1165 		/* Disable PCI memory write and invalidate. */
1166 			if (bootverbose) {
1167 				if_printf(ifp, "cache line size %d not "
1168 					  "supported; disabling PCI MWI\n",
1169 					  cacheline);
1170 			}
1171 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1172 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1173 			break;
1174 		}
1175 	}
1176 
1177 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1178 
1179 	/* This sets the min dma param all the way up (0xff). */
1180 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1181 
1182 	/* Configure DMA variables. */
1183 #if BYTE_ORDER == BIG_ENDIAN
1184 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1185 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1186 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1187 	    TI_OPMODE_DONT_FRAG_JUMBO);
1188 #else
1189 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1190 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1191 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1192 #endif
1193 
1194 	/*
1195 	 * Only allow 1 DMA channel to be active at a time.
1196 	 * I don't think this is a good idea, but without it
1197 	 * the firmware racks up lots of nicDmaReadRingFull
1198 	 * errors.  This is not compatible with hardware checksums.
1199 	 */
1200 	if (ifp->if_hwassist == 0)
1201 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1202 
1203 	/* Recommended settings from Tigon manual. */
1204 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1205 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1206 
1207 	if (ti_64bitslot_war(sc)) {
1208 		if_printf(ifp, "bios thinks we're in a 64 bit slot, "
1209 			  "but we aren't");
1210 		return(EINVAL);
1211 	}
1212 
1213 	return(0);
1214 }
1215 
1216 /*
1217  * Initialize the general information block and firmware, and
1218  * start the CPU(s) running.
1219  */
1220 static int
1221 ti_gibinit(struct ti_softc *sc)
1222 {
1223 	struct ifnet *ifp = &sc->arpcom.ac_if;
1224 	struct ti_rcb *rcb;
1225 	int i;
1226 
1227 	/* Disable interrupts for now. */
1228 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1229 
1230 	/* Tell the chip where to find the general information block. */
1231 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1232 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1233 
1234 	/* Load the firmware into SRAM. */
1235 	ti_loadfw(sc);
1236 
1237 	/* Set up the contents of the general info and ring control blocks. */
1238 
1239 	/* Set up the event ring and producer pointer. */
1240 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1241 
1242 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1243 	rcb->ti_flags = 0;
1244 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1245 	    vtophys(&sc->ti_ev_prodidx);
1246 	sc->ti_ev_prodidx.ti_idx = 0;
1247 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1248 	sc->ti_ev_saved_considx = 0;
1249 
1250 	/* Set up the command ring and producer mailbox. */
1251 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1252 
1253 	sc->ti_rdata->ti_cmd_ring =
1254 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1255 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1256 	rcb->ti_flags = 0;
1257 	rcb->ti_max_len = 0;
1258 	for (i = 0; i < TI_CMD_RING_CNT; i++)
1259 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1260 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1261 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1262 	sc->ti_cmd_saved_prodidx = 0;
1263 
1264 	/*
1265 	 * Assign the address of the stats refresh buffer.
1266 	 * We re-use the current stats buffer for this to
1267 	 * conserve memory.
1268 	 */
1269 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1270 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1271 
1272 	/* Set up the standard receive ring. */
1273 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1274 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1275 	rcb->ti_max_len = TI_FRAMELEN;
1276 	rcb->ti_flags = 0;
1277 	if (ifp->if_hwassist)
1278 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1279 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1280 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1281 
1282 	/* Set up the jumbo receive ring. */
1283 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1284 	TI_HOSTADDR(rcb->ti_hostaddr) =
1285 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1286 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1287 	rcb->ti_flags = 0;
1288 	if (ifp->if_hwassist)
1289 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1290 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1291 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1292 
1293 	/*
1294 	 * Set up the mini ring. Only activated on the
1295 	 * Tigon 2 but the slot in the config block is
1296 	 * still there on the Tigon 1.
1297 	 */
1298 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1299 	TI_HOSTADDR(rcb->ti_hostaddr) =
1300 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1301 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1302 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1303 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1304 	else
1305 		rcb->ti_flags = 0;
1306 	if (ifp->if_hwassist)
1307 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1308 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1309 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1310 
1311 	/*
1312 	 * Set up the receive return ring.
1313 	 */
1314 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1315 	TI_HOSTADDR(rcb->ti_hostaddr) =
1316 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1317 	rcb->ti_flags = 0;
1318 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1319 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1320 	    vtophys(&sc->ti_return_prodidx);
1321 
1322 	/*
1323 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1324 	 * of putting the transmit ring in the host's address space and
1325 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1326 	 * memory and accessing it through the shared memory region. We
1327 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1328 	 * so we have to revert to the shared memory scheme if we detect
1329 	 * a Tigon 1 chip.
1330 	 */
1331 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1332 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1333 		sc->ti_rdata->ti_tx_ring_nic =
1334 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1335 	}
1336 	bzero(sc->ti_rdata->ti_tx_ring,
1337 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1338 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1339 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1340 		rcb->ti_flags = 0;
1341 	else
1342 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1343 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1344 	if (ifp->if_hwassist)
1345 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1346 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1347 	rcb->ti_max_len = TI_TX_RING_CNT;
1348 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1349 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1350 	else
1351 		TI_HOSTADDR(rcb->ti_hostaddr) =
1352 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1353 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1354 	    vtophys(&sc->ti_tx_considx);
1355 
1356 	/* Set up tuneables */
1357 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1358 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1359 		    (sc->ti_rx_coal_ticks / 10));
1360 	else
1361 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1362 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1363 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1364 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1365 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1366 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1367 
1368 	/* Turn interrupts on. */
1369 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1370 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1371 
1372 	/* Start CPU. */
1373 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1374 
1375 	return(0);
1376 }
1377 
1378 /*
1379  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1380  * against our list and return its name if we find a match.
1381  */
1382 static int
1383 ti_probe(device_t dev)
1384 {
1385 	struct ti_type *t;
1386 	uint16_t vendor, product;
1387 
1388 	vendor = pci_get_vendor(dev);
1389 	product = pci_get_device(dev);
1390 
1391 	for (t = ti_devs; t->ti_name != NULL; t++) {
1392 		if (vendor == t->ti_vid && product == t->ti_did) {
1393 			device_set_desc(dev, t->ti_name);
1394 			return(0);
1395 		}
1396 	}
1397 
1398 	return(ENXIO);
1399 }
1400 
1401 static int
1402 ti_attach(device_t dev)
1403 {
1404 	struct ti_softc *sc;
1405 	struct ifnet *ifp;
1406 	int error = 0, rid;
1407 	uint8_t eaddr[ETHER_ADDR_LEN];
1408 
1409 	sc = device_get_softc(dev);
1410 	ifp = &sc->arpcom.ac_if;
1411 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1412 	ifp->if_capabilities = IFCAP_HWCSUM;
1413 	ifp->if_capenable = ifp->if_capabilities;
1414 
1415 	pci_enable_busmaster(dev);
1416 
1417 	/*
1418 	 * Initialize media before any possible error may occur,
1419 	 * so we can destroy it unconditionally, if an error occurs later on.
1420 	 */
1421 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1422 
1423 	rid = TI_PCI_LOMEM;
1424 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1425 	    RF_ACTIVE);
1426 
1427 	if (sc->ti_res == NULL) {
1428 		device_printf(dev, "couldn't map memory\n");
1429 		error = ENXIO;
1430 		goto fail;
1431 	}
1432 
1433 	sc->ti_btag = rman_get_bustag(sc->ti_res);
1434 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1435 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1436 
1437 	/* Allocate interrupt */
1438 	rid = 0;
1439 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1440 	    RF_SHAREABLE | RF_ACTIVE);
1441 	if (sc->ti_irq == NULL) {
1442 		device_printf(dev, "couldn't map interrupt\n");
1443 		error = ENXIO;
1444 		goto fail;
1445 	}
1446 
1447 	if (ti_chipinit(sc)) {
1448 		device_printf(dev, "chip initialization failed\n");
1449 		error = ENXIO;
1450 		goto fail;
1451 	}
1452 
1453 	/* Zero out the NIC's on-board SRAM. */
1454 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1455 
1456 	/* Init again -- zeroing memory may have clobbered some registers. */
1457 	if (ti_chipinit(sc)) {
1458 		device_printf(dev, "chip initialization failed\n");
1459 		error = ENXIO;
1460 		goto fail;
1461 	}
1462 
1463 	/*
1464 	 * Get station address from the EEPROM. Note: the manual states
1465 	 * that the MAC address is at offset 0x8c, however the data is
1466 	 * stored as two longwords (since that's how it's loaded into
1467 	 * the NIC). This means the MAC address is actually preceeded
1468 	 * by two zero bytes. We need to skip over those.
1469 	 */
1470 	if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1471 		device_printf(dev, "failed to read station address\n");
1472 		error = ENXIO;
1473 		goto fail;
1474 	}
1475 
1476 	/* Allocate the general information block and ring buffers. */
1477 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1478 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1479 
1480 	if (sc->ti_rdata == NULL) {
1481 		device_printf(dev, "no memory for list buffers!\n");
1482 		error = ENXIO;
1483 		goto fail;
1484 	}
1485 
1486 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1487 
1488 	/* Try to allocate memory for jumbo buffers. */
1489 	if (ti_alloc_jumbo_mem(sc)) {
1490 		device_printf(dev, "jumbo buffer allocation failed\n");
1491 		error = ENXIO;
1492 		goto fail;
1493 	}
1494 
1495 	/*
1496 	 * We really need a better way to tell a 1000baseTX card
1497 	 * from a 1000baseSX one, since in theory there could be
1498 	 * OEMed 1000baseTX cards from lame vendors who aren't
1499 	 * clever enough to change the PCI ID. For the moment
1500 	 * though, the AceNIC is the only copper card available.
1501 	 */
1502 	if (pci_get_vendor(dev) == ALT_VENDORID &&
1503 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1504 		sc->ti_copper = 1;
1505 	/* Ok, it's not the only copper card available. */
1506 	if (pci_get_vendor(dev) == NG_VENDORID &&
1507 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1508 		sc->ti_copper = 1;
1509 
1510 	/* Set default tuneable values. */
1511 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1512 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1513 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1514 	sc->ti_rx_max_coal_bds = 64;
1515 	sc->ti_tx_max_coal_bds = 128;
1516 	sc->ti_tx_buf_ratio = 21;
1517 
1518 	/* Set up ifnet structure */
1519 	ifp->if_softc = sc;
1520 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1521 	ifp->if_ioctl = ti_ioctl;
1522 	ifp->if_start = ti_start;
1523 	ifp->if_watchdog = ti_watchdog;
1524 	ifp->if_init = ti_init;
1525 	ifp->if_mtu = ETHERMTU;
1526 	ifq_set_maxlen(&ifp->if_snd, TI_TX_RING_CNT - 1);
1527 	ifq_set_ready(&ifp->if_snd);
1528 
1529 	/* Set up ifmedia support. */
1530 	if (sc->ti_copper) {
1531 		/*
1532 		 * Copper cards allow manual 10/100 mode selection,
1533 		 * but not manual 1000baseTX mode selection. Why?
1534 		 * Becuase currently there's no way to specify the
1535 		 * master/slave setting through the firmware interface,
1536 		 * so Alteon decided to just bag it and handle it
1537 		 * via autonegotiation.
1538 		 */
1539 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1540 		ifmedia_add(&sc->ifmedia,
1541 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1542 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1543 		ifmedia_add(&sc->ifmedia,
1544 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1545 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
1546 		ifmedia_add(&sc->ifmedia,
1547 		    IFM_ETHER|IFM_1000_T | IFM_FDX, 0, NULL);
1548 	} else {
1549 		/* Fiber cards don't support 10/100 modes. */
1550 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1551 		ifmedia_add(&sc->ifmedia,
1552 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1553 	}
1554 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1555 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1556 
1557 	/*
1558 	 * Call MI attach routine.
1559 	 */
1560 	ether_ifattach(ifp, eaddr, NULL);
1561 
1562 	error = bus_setup_intr(dev, sc->ti_irq, INTR_NETSAFE,
1563 			       ti_intr, sc, &sc->ti_intrhand,
1564 			       ifp->if_serializer);
1565 	if (error) {
1566 		device_printf(dev, "couldn't set up irq\n");
1567 		ether_ifdetach(ifp);
1568 		goto fail;
1569 	}
1570 	return 0;
1571 
1572 fail:
1573 	ti_detach(dev);
1574 	return(error);
1575 }
1576 
1577 static int
1578 ti_detach(device_t dev)
1579 {
1580 	struct ti_softc *sc = device_get_softc(dev);
1581 	struct ifnet *ifp = &sc->arpcom.ac_if;
1582 
1583 	if (device_is_attached(dev)) {
1584 		lwkt_serialize_enter(ifp->if_serializer);
1585 		ti_stop(sc);
1586 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1587 		lwkt_serialize_exit(ifp->if_serializer);
1588 
1589 		ether_ifdetach(ifp);
1590 	}
1591 
1592 	if (sc->ti_irq != NULL)
1593 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1594 	if (sc->ti_res != NULL) {
1595 		bus_release_resource(dev, SYS_RES_MEMORY,
1596 				     TI_PCI_LOMEM, sc->ti_res);
1597 	}
1598 	if (sc->ti_cdata.ti_jumbo_buf != NULL)
1599 		contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1600 	if (sc->ti_rdata != NULL)
1601 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1602 	ifmedia_removeall(&sc->ifmedia);
1603 
1604 
1605 	return(0);
1606 }
1607 
1608 /*
1609  * Frame reception handling. This is called if there's a frame
1610  * on the receive return list.
1611  *
1612  * Note: we have to be able to handle three possibilities here:
1613  * 1) the frame is from the mini receive ring (can only happen)
1614  *    on Tigon 2 boards)
1615  * 2) the frame is from the jumbo recieve ring
1616  * 3) the frame is from the standard receive ring
1617  */
1618 static void
1619 ti_rxeof(struct ti_softc *sc)
1620 {
1621 	struct ifnet *ifp = &sc->arpcom.ac_if;
1622 	struct ti_cmd_desc cmd;
1623 
1624 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1625 		struct ti_rx_desc *cur_rx;
1626 		uint32_t rxidx;
1627 		struct mbuf *m;
1628 		uint16_t vlan_tag = 0;
1629 		int have_tag = 0;
1630 
1631 		cur_rx =
1632 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1633 		rxidx = cur_rx->ti_idx;
1634 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1635 
1636 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1637 			have_tag = 1;
1638 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
1639 		}
1640 
1641 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1642 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1643 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1644 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1645 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1646 				ifp->if_ierrors++;
1647 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1648 				continue;
1649 			}
1650 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1651 				ifp->if_ierrors++;
1652 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1653 				continue;
1654 			}
1655 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1656 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1657 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1658 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1659 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1660 				ifp->if_ierrors++;
1661 				ti_newbuf_mini(sc, sc->ti_mini, m);
1662 				continue;
1663 			}
1664 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1665 				ifp->if_ierrors++;
1666 				ti_newbuf_mini(sc, sc->ti_mini, m);
1667 				continue;
1668 			}
1669 		} else {
1670 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1671 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1672 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1673 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1674 				ifp->if_ierrors++;
1675 				ti_newbuf_std(sc, sc->ti_std, m);
1676 				continue;
1677 			}
1678 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1679 				ifp->if_ierrors++;
1680 				ti_newbuf_std(sc, sc->ti_std, m);
1681 				continue;
1682 			}
1683 		}
1684 
1685 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1686 		ifp->if_ipackets++;
1687 		m->m_pkthdr.rcvif = ifp;
1688 
1689 		if (ifp->if_hwassist) {
1690 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1691 			    CSUM_DATA_VALID;
1692 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1693 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1694 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1695 		}
1696 
1697 		/*
1698 		 * If we received a packet with a vlan tag, pass it
1699 		 * to vlan_input() instead of ether_input().
1700 		 */
1701 		lwkt_serialize_enter(ifp->if_serializer);
1702 		if (have_tag)
1703 			VLAN_INPUT_TAG(m, vlan_tag);
1704 		else
1705 			ifp->if_input(ifp, m);
1706 		lwkt_serialize_exit(ifp->if_serializer);
1707 	}
1708 
1709 	/* Only necessary on the Tigon 1. */
1710 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1711 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1712 		    sc->ti_rx_saved_considx);
1713 
1714 	TI_UPDATE_STDPROD(sc, sc->ti_std);
1715 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1716 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1717 }
1718 
1719 static void
1720 ti_txeof(struct ti_softc *sc)
1721 {
1722 	struct ifnet *ifp = &sc->arpcom.ac_if;
1723 	struct ti_tx_desc *cur_tx = NULL;
1724 
1725 	/*
1726 	 * Go through our tx ring and free mbufs for those
1727 	 * frames that have been sent.
1728 	 */
1729 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1730 		uint32_t idx = 0;
1731 
1732 		idx = sc->ti_tx_saved_considx;
1733 		if (sc->ti_hwrev != TI_HWREV_TIGON) {
1734 			if (idx > 383)
1735 				CSR_WRITE_4(sc, TI_WINBASE,
1736 				    TI_TX_RING_BASE + 6144);
1737 			else if (idx > 255)
1738 				CSR_WRITE_4(sc, TI_WINBASE,
1739 				    TI_TX_RING_BASE + 4096);
1740 			else if (idx > 127)
1741 				CSR_WRITE_4(sc, TI_WINBASE,
1742 				    TI_TX_RING_BASE + 2048);
1743 			else
1744 				CSR_WRITE_4(sc, TI_WINBASE,
1745 				    TI_TX_RING_BASE);
1746 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1747 		} else
1748 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1749 		if (cur_tx->ti_flags & TI_BDFLAG_END)
1750 			ifp->if_opackets++;
1751 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1752 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1753 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1754 		}
1755 		sc->ti_txcnt--;
1756 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1757 		ifp->if_timer = 0;
1758 	}
1759 
1760 	if (cur_tx != NULL)
1761 		ifp->if_flags &= ~IFF_OACTIVE;
1762 }
1763 
1764 static void
1765 ti_intr(void *xsc)
1766 {
1767 	struct ti_softc *sc = xsc;
1768 	struct ifnet *ifp = &sc->arpcom.ac_if;
1769 
1770 #ifdef notdef
1771 	/* Avoid this for now -- checking this register is expensive. */
1772 	/* Make sure this is really our interrupt. */
1773 	if ((CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE) == 0)
1774 		return;
1775 #endif
1776 
1777 	/* Ack interrupt and stop others from occuring. */
1778 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1779 
1780 	if (ifp->if_flags & IFF_RUNNING) {
1781 		/* Check RX return ring producer/consumer */
1782 		ti_rxeof(sc);
1783 
1784 		/* Check TX ring producer/consumer */
1785 		ti_txeof(sc);
1786 	}
1787 
1788 	ti_handle_events(sc);
1789 
1790 	/* Re-enable interrupts. */
1791 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1792 
1793 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1794 		ti_start(ifp);
1795 }
1796 
1797 static void
1798 ti_stats_update(struct ti_softc *sc)
1799 {
1800 	struct ifnet *ifp = &sc->arpcom.ac_if;
1801 
1802 	ifp->if_collisions +=
1803 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1804 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1805 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1806 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1807 	   ifp->if_collisions;
1808 }
1809 
1810 /*
1811  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1812  * pointers to descriptors.
1813  */
1814 static int
1815 ti_encap(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1816 {
1817 	struct ti_tx_desc *f = NULL;
1818 	struct mbuf *m;
1819 	struct ifvlan *ifv = NULL;
1820 	uint32_t cnt = 0, cur, frag;
1821 	uint16_t csum_flags = 0;
1822 
1823 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1824 	    m_head->m_pkthdr.rcvif != NULL &&
1825 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1826 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1827 
1828 	m = m_head;
1829 	cur = frag = *txidx;
1830 
1831 	if (m_head->m_pkthdr.csum_flags) {
1832 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1833 			csum_flags |= TI_BDFLAG_IP_CKSUM;
1834 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1835 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1836 		if (m_head->m_flags & M_LASTFRAG)
1837 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1838 		else if (m_head->m_flags & M_FRAG)
1839 			csum_flags |= TI_BDFLAG_IP_FRAG;
1840 	}
1841 	/*
1842  	 * Start packing the mbufs in this chain into
1843 	 * the fragment pointers. Stop when we run out
1844  	 * of fragments or hit the end of the mbuf chain.
1845 	 */
1846 	for (m = m_head; m != NULL; m = m->m_next) {
1847 		if (m->m_len != 0) {
1848 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
1849 				if (frag > 383)
1850 					CSR_WRITE_4(sc, TI_WINBASE,
1851 					    TI_TX_RING_BASE + 6144);
1852 				else if (frag > 255)
1853 					CSR_WRITE_4(sc, TI_WINBASE,
1854 					    TI_TX_RING_BASE + 4096);
1855 				else if (frag > 127)
1856 					CSR_WRITE_4(sc, TI_WINBASE,
1857 					    TI_TX_RING_BASE + 2048);
1858 				else
1859 					CSR_WRITE_4(sc, TI_WINBASE,
1860 					    TI_TX_RING_BASE);
1861 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
1862 			} else
1863 				f = &sc->ti_rdata->ti_tx_ring[frag];
1864 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1865 				break;
1866 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
1867 			f->ti_len = m->m_len;
1868 			f->ti_flags = csum_flags;
1869 
1870 			if (ifv != NULL) {
1871 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
1872 				f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
1873 			} else {
1874 				f->ti_vlan_tag = 0;
1875 			}
1876 
1877 			/*
1878 			 * Sanity check: avoid coming within 16 descriptors
1879 			 * of the end of the ring.
1880 			 */
1881 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
1882 				return(ENOBUFS);
1883 			cur = frag;
1884 			TI_INC(frag, TI_TX_RING_CNT);
1885 			cnt++;
1886 		}
1887 	}
1888 
1889 	if (m != NULL)
1890 		return(ENOBUFS);
1891 
1892 	if (frag == sc->ti_tx_saved_considx)
1893 		return(ENOBUFS);
1894 
1895 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1896 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
1897 		    TI_BDFLAG_END;
1898 	else
1899 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
1900 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
1901 	sc->ti_txcnt += cnt;
1902 
1903 	*txidx = frag;
1904 
1905 	return(0);
1906 }
1907 
1908 /*
1909  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1910  * to the mbuf data regions directly in the transmit descriptors.
1911  */
1912 static void
1913 ti_start(struct ifnet *ifp)
1914 {
1915 	struct ti_softc *sc = ifp->if_softc;
1916 	struct mbuf *m_head = NULL;
1917 	uint32_t prodidx = 0;
1918 	int need_trans;
1919 
1920 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
1921 
1922 	need_trans = 0;
1923 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
1924 		m_head = ifq_poll(&ifp->if_snd);
1925 		if (m_head == NULL)
1926 			break;
1927 
1928 		/*
1929 		 * XXX
1930 		 * safety overkill.  If this is a fragmented packet chain
1931 		 * with delayed TCP/UDP checksums, then only encapsulate
1932 		 * it if we have enough descriptors to handle the entire
1933 		 * chain at once.
1934 		 * (paranoia -- may not actually be needed)
1935 		 */
1936 		if (m_head->m_flags & M_FIRSTFRAG &&
1937 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
1938 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
1939 			    m_head->m_pkthdr.csum_data + 16) {
1940 				ifp->if_flags |= IFF_OACTIVE;
1941 				break;
1942 			}
1943 		}
1944 
1945 		/*
1946 		 * Pack the data into the transmit ring. If we
1947 		 * don't have room, set the OACTIVE flag and wait
1948 		 * for the NIC to drain the ring.
1949 		 */
1950 		if (ti_encap(sc, m_head, &prodidx)) {
1951 			ifp->if_flags |= IFF_OACTIVE;
1952 			break;
1953 		}
1954 		ifq_dequeue(&ifp->if_snd, m_head);
1955 		need_trans = 1;
1956 
1957 		BPF_MTAP(ifp, m_head);
1958 	}
1959 
1960 	if (!need_trans)
1961 		return;
1962 
1963 	/* Transmit */
1964 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
1965 
1966 	/*
1967 	 * Set a timeout in case the chip goes out to lunch.
1968 	 */
1969 	ifp->if_timer = 5;
1970 }
1971 
1972 static void
1973 ti_init(void *xsc)
1974 {
1975 	struct ti_softc *sc = xsc;
1976 
1977 	/* Cancel pending I/O and flush buffers. */
1978 	ti_stop(sc);
1979 
1980 	/* Init the gen info block, ring control blocks and firmware. */
1981 	if (ti_gibinit(sc)) {
1982 		if_printf(&sc->arpcom.ac_if, "initialization failure\n");
1983 		return;
1984 	}
1985 }
1986 
1987 static void
1988 ti_init2(struct ti_softc *sc)
1989 {
1990 	struct ifnet *ifp = &sc->arpcom.ac_if;
1991 	struct ti_cmd_desc cmd;
1992 	uint16_t *m;
1993 	struct ifmedia *ifm;
1994 	int tmp;
1995 
1996 	/* Specify MTU and interface index. */
1997 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_dunit);
1998 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
1999 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2000 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2001 
2002 	/* Load our MAC address. */
2003 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2004 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2005 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2006 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2007 
2008 	/* Enable or disable promiscuous mode as needed. */
2009 	if (ifp->if_flags & IFF_PROMISC)
2010 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2011 	else
2012 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2013 
2014 	/* Program multicast filter. */
2015 	ti_setmulti(sc);
2016 
2017 	/*
2018 	 * If this is a Tigon 1, we should tell the
2019 	 * firmware to use software packet filtering.
2020 	 */
2021 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2022 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2023 
2024 	/* Init RX ring. */
2025 	ti_init_rx_ring_std(sc);
2026 
2027 	/* Init jumbo RX ring. */
2028 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2029 		ti_init_rx_ring_jumbo(sc);
2030 
2031 	/*
2032 	 * If this is a Tigon 2, we can also configure the
2033 	 * mini ring.
2034 	 */
2035 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2036 		ti_init_rx_ring_mini(sc);
2037 
2038 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2039 	sc->ti_rx_saved_considx = 0;
2040 
2041 	/* Init TX ring. */
2042 	ti_init_tx_ring(sc);
2043 
2044 	/* Tell firmware we're alive. */
2045 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2046 
2047 	/* Enable host interrupts. */
2048 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2049 
2050 	ifp->if_flags |= IFF_RUNNING;
2051 	ifp->if_flags &= ~IFF_OACTIVE;
2052 
2053 	/*
2054 	 * Make sure to set media properly. We have to do this
2055 	 * here since we have to issue commands in order to set
2056 	 * the link negotiation and we can't issue commands until
2057 	 * the firmware is running.
2058 	 */
2059 	ifm = &sc->ifmedia;
2060 	tmp = ifm->ifm_media;
2061 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2062 	ti_ifmedia_upd(ifp);
2063 	ifm->ifm_media = tmp;
2064 }
2065 
2066 /*
2067  * Set media options.
2068  */
2069 static int
2070 ti_ifmedia_upd(struct ifnet *ifp)
2071 {
2072 	struct ti_softc *sc = ifp->if_softc;
2073 	struct ifmedia *ifm = &sc->ifmedia;
2074 	struct ti_cmd_desc cmd;
2075 
2076 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2077 		return(EINVAL);
2078 
2079 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2080 	case IFM_AUTO:
2081 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB |
2082 		    TI_GLNK_FULL_DUPLEX | TI_GLNK_RX_FLOWCTL_Y |
2083 		    TI_GLNK_AUTONEGENB | TI_GLNK_ENB);
2084 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB | TI_LNK_10MB |
2085 		    TI_LNK_FULL_DUPLEX | TI_LNK_HALF_DUPLEX |
2086 		    TI_LNK_AUTONEGENB | TI_LNK_ENB);
2087 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2088 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2089 		break;
2090 	case IFM_1000_SX:
2091 	case IFM_1000_T:
2092 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB |
2093 		    TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2094 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2095 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2096 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2097 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2098 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2099 		break;
2100 	case IFM_100_FX:
2101 	case IFM_10_FL:
2102 	case IFM_100_TX:
2103 	case IFM_10_T:
2104 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2105 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB | TI_LNK_PREF);
2106 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2107 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
2108 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2109 		else
2110 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2111 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2112 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2113 		else
2114 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2115 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2116 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2117 		break;
2118 	}
2119 
2120 	return(0);
2121 }
2122 
2123 /*
2124  * Report current media status.
2125  */
2126 static void
2127 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2128 {
2129 	struct ti_softc *sc = ifp->if_softc;
2130 	uint32_t media = 0;
2131 
2132 	ifmr->ifm_status = IFM_AVALID;
2133 	ifmr->ifm_active = IFM_ETHER;
2134 
2135 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2136 		return;
2137 
2138 	ifmr->ifm_status |= IFM_ACTIVE;
2139 
2140 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2141 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2142 		if (sc->ti_copper)
2143 			ifmr->ifm_active |= IFM_1000_T;
2144 		else
2145 			ifmr->ifm_active |= IFM_1000_SX;
2146 		if (media & TI_GLNK_FULL_DUPLEX)
2147 			ifmr->ifm_active |= IFM_FDX;
2148 		else
2149 			ifmr->ifm_active |= IFM_HDX;
2150 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2151 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2152 		if (sc->ti_copper) {
2153 			if (media & TI_LNK_100MB)
2154 				ifmr->ifm_active |= IFM_100_TX;
2155 			if (media & TI_LNK_10MB)
2156 				ifmr->ifm_active |= IFM_10_T;
2157 		} else {
2158 			if (media & TI_LNK_100MB)
2159 				ifmr->ifm_active |= IFM_100_FX;
2160 			if (media & TI_LNK_10MB)
2161 				ifmr->ifm_active |= IFM_10_FL;
2162 		}
2163 		if (media & TI_LNK_FULL_DUPLEX)
2164 			ifmr->ifm_active |= IFM_FDX;
2165 		if (media & TI_LNK_HALF_DUPLEX)
2166 			ifmr->ifm_active |= IFM_HDX;
2167 	}
2168 }
2169 
2170 static int
2171 ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2172 {
2173 	struct ti_softc *sc = ifp->if_softc;
2174 	struct ifreq *ifr = (struct ifreq *) data;
2175 	struct ti_cmd_desc cmd;
2176 	int error = 0, mask;
2177 
2178 	switch(command) {
2179 	case SIOCSIFMTU:
2180 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2181 			error = EINVAL;
2182 		else {
2183 			ifp->if_mtu = ifr->ifr_mtu;
2184 			ti_init(sc);
2185 		}
2186 		break;
2187 	case SIOCSIFFLAGS:
2188 		if (ifp->if_flags & IFF_UP) {
2189 			/*
2190 			 * If only the state of the PROMISC flag changed,
2191 			 * then just use the 'set promisc mode' command
2192 			 * instead of reinitializing the entire NIC. Doing
2193 			 * a full re-init means reloading the firmware and
2194 			 * waiting for it to start up, which may take a
2195 			 * second or two.
2196 			 */
2197 			if (ifp->if_flags & IFF_RUNNING &&
2198 			    ifp->if_flags & IFF_PROMISC &&
2199 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2200 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2201 				    TI_CMD_CODE_PROMISC_ENB, 0);
2202 			} else if (ifp->if_flags & IFF_RUNNING &&
2203 			    !(ifp->if_flags & IFF_PROMISC) &&
2204 			    sc->ti_if_flags & IFF_PROMISC) {
2205 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2206 				    TI_CMD_CODE_PROMISC_DIS, 0);
2207 			} else
2208 				ti_init(sc);
2209 		} else if (ifp->if_flags & IFF_RUNNING) {
2210 			ti_stop(sc);
2211 		}
2212 		sc->ti_if_flags = ifp->if_flags;
2213 		error = 0;
2214 		break;
2215 	case SIOCADDMULTI:
2216 	case SIOCDELMULTI:
2217 		if (ifp->if_flags & IFF_RUNNING) {
2218 			ti_setmulti(sc);
2219 			error = 0;
2220 		}
2221 		break;
2222 	case SIOCSIFMEDIA:
2223 	case SIOCGIFMEDIA:
2224 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2225 		break;
2226 	case SIOCSIFCAP:
2227 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2228 		if (mask & IFCAP_HWCSUM) {
2229 			if (IFCAP_HWCSUM & ifp->if_capenable)
2230 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2231                         else
2232                                 ifp->if_capenable |= IFCAP_HWCSUM;
2233 			if (ifp->if_flags & IFF_RUNNING)
2234 				ti_init(sc);
2235                 }
2236 		error = 0;
2237 		break;
2238 	default:
2239 		error = ether_ioctl(ifp, command, data);
2240 		break;
2241 	}
2242 	return(error);
2243 }
2244 
2245 static void
2246 ti_watchdog(struct ifnet *ifp)
2247 {
2248 	struct ti_softc *sc = ifp->if_softc;
2249 
2250 	if_printf(ifp, "watchdog timeout -- resetting\n");
2251 	ti_stop(sc);
2252 	ti_init(sc);
2253 
2254 	ifp->if_oerrors++;
2255 
2256 	if (!ifq_is_empty(&ifp->if_snd))
2257 		ifp->if_start(ifp);
2258 }
2259 
2260 /*
2261  * Stop the adapter and free any mbufs allocated to the
2262  * RX and TX lists.
2263  */
2264 static void
2265 ti_stop(struct ti_softc *sc)
2266 {
2267 	struct ifnet *ifp = &sc->arpcom.ac_if;
2268 	struct ti_cmd_desc cmd;
2269 
2270 	/* Disable host interrupts. */
2271 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2272 	/*
2273 	 * Tell firmware we're shutting down.
2274 	 */
2275 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2276 
2277 	/* Halt and reinitialize. */
2278 	ti_chipinit(sc);
2279 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2280 	ti_chipinit(sc);
2281 
2282 	/* Free the RX lists. */
2283 	ti_free_rx_ring_std(sc);
2284 
2285 	/* Free jumbo RX list. */
2286 	ti_free_rx_ring_jumbo(sc);
2287 
2288 	/* Free mini RX list. */
2289 	ti_free_rx_ring_mini(sc);
2290 
2291 	/* Free TX buffers. */
2292 	ti_free_tx_ring(sc);
2293 
2294 	sc->ti_ev_prodidx.ti_idx = 0;
2295 	sc->ti_return_prodidx.ti_idx = 0;
2296 	sc->ti_tx_considx.ti_idx = 0;
2297 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2298 
2299 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2300 }
2301 
2302 /*
2303  * Stop all chip I/O so that the kernel's probe routines don't
2304  * get confused by errant DMAs when rebooting.
2305  */
2306 static void
2307 ti_shutdown(device_t dev)
2308 {
2309 	struct ti_softc *sc = device_get_softc(dev);
2310 
2311 	ti_chipinit(sc);
2312 }
2313