xref: /dragonfly/sys/dev/netif/ti/if_ti.c (revision 606a6e92)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ti.c,v 1.25.2.14 2002/02/15 04:20:20 silby Exp $
33  * $DragonFly: src/sys/dev/netif/ti/if_ti.c,v 1.14 2004/07/29 08:46:23 dillon Exp $
34  *
35  * $FreeBSD: src/sys/pci/if_ti.c,v 1.25.2.14 2002/02/15 04:20:20 silby Exp $
36  */
37 
38 /*
39  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
40  * Manuals, sample driver and firmware source kits are available
41  * from http://www.alteon.com/support/openkits.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
50  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
51  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
52  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
53  * filtering and jumbo (9014 byte) frames. The hardware is largely
54  * controlled by firmware, which must be loaded into the NIC during
55  * initialization.
56  *
57  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
58  * revision, which supports new features such as extended commands,
59  * extended jumbo receive ring desciptors and a mini receive ring.
60  *
61  * Alteon Networks is to be commended for releasing such a vast amount
62  * of development material for the Tigon NIC without requiring an NDA
63  * (although they really should have done it a long time ago). With
64  * any luck, the other vendors will finally wise up and follow Alteon's
65  * stellar example.
66  *
67  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
68  * this driver by #including it as a C header file. This bloats the
69  * driver somewhat, but it's the easiest method considering that the
70  * driver code and firmware code need to be kept in sync. The source
71  * for the firmware is not provided with the FreeBSD distribution since
72  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
73  *
74  * The following people deserve special thanks:
75  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
76  *   for testing
77  * - Raymond Lee of Netgear, for providing a pair of Netgear
78  *   GA620 Tigon 2 boards for testing
79  * - Ulf Zimmermann, for bringing the GA260 to my attention and
80  *   convincing me to write this driver.
81  * - Andrew Gallatin for providing FreeBSD/Alpha support.
82  */
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/socket.h>
91 #include <sys/queue.h>
92 
93 #include <net/if.h>
94 #include <net/if_arp.h>
95 #include <net/ethernet.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_types.h>
99 #include <net/vlan/if_vlan_var.h>
100 
101 #include <net/bpf.h>
102 
103 #include <netinet/in_systm.h>
104 #include <netinet/in.h>
105 #include <netinet/ip.h>
106 
107 #include <vm/vm.h>              /* for vtophys */
108 #include <vm/pmap.h>            /* for vtophys */
109 #include <machine/clock.h>      /* for DELAY */
110 #include <machine/bus_memio.h>
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #include <bus/pci/pcireg.h>
117 #include <bus/pci/pcivar.h>
118 
119 #include "if_tireg.h"
120 #include "ti_fw.h"
121 #include "ti_fw2.h"
122 
123 /*
124  * Temporarily disable the checksum offload support for now.
125  * Tests with ftp.freesoftware.com show that after about 12 hours,
126  * the firmware will begin calculating completely bogus TX checksums
127  * and refuse to stop until the interface is reset. Unfortunately,
128  * there isn't enough time to fully debug this before the 4.1
129  * release, so this will need to stay off for now.
130  */
131 #ifdef notdef
132 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
133 #else
134 #define TI_CSUM_FEATURES	0
135 #endif
136 
137 /*
138  * Various supported device vendors/types and their names.
139  */
140 
141 static struct ti_type ti_devs[] = {
142 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
143 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
144 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
145 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
146 	{ TC_VENDORID,	TC_DEVICEID_3C985,
147 		"3Com 3c985-SX Gigabit Ethernet" },
148 	{ NG_VENDORID, NG_DEVICEID_GA620,
149 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
150 	{ NG_VENDORID, NG_DEVICEID_GA620T,
151 		"Netgear GA620 1000baseT Gigabit Ethernet" },
152 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
153 		"Silicon Graphics Gigabit Ethernet" },
154 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
155 		"Farallon PN9000SX Gigabit Ethernet" },
156 	{ 0, 0, NULL }
157 };
158 
159 static int ti_probe		(device_t);
160 static int ti_attach		(device_t);
161 static int ti_detach		(device_t);
162 static void ti_txeof		(struct ti_softc *);
163 static void ti_rxeof		(struct ti_softc *);
164 
165 static void ti_stats_update	(struct ti_softc *);
166 static int ti_encap		(struct ti_softc *, struct mbuf *,
167 					u_int32_t *);
168 
169 static void ti_intr		(void *);
170 static void ti_start		(struct ifnet *);
171 static int ti_ioctl		(struct ifnet *, u_long, caddr_t,
172 					struct ucred *);
173 static void ti_init		(void *);
174 static void ti_init2		(struct ti_softc *);
175 static void ti_stop		(struct ti_softc *);
176 static void ti_watchdog		(struct ifnet *);
177 static void ti_shutdown		(device_t);
178 static int ti_ifmedia_upd	(struct ifnet *);
179 static void ti_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
180 
181 static u_int32_t ti_eeprom_putbyte	(struct ti_softc *, int);
182 static u_int8_t	ti_eeprom_getbyte	(struct ti_softc *,
183 						int, u_int8_t *);
184 static int ti_read_eeprom	(struct ti_softc *, caddr_t, int, int);
185 
186 static void ti_add_mcast	(struct ti_softc *, struct ether_addr *);
187 static void ti_del_mcast	(struct ti_softc *, struct ether_addr *);
188 static void ti_setmulti		(struct ti_softc *);
189 
190 static void ti_mem		(struct ti_softc *, u_int32_t,
191 					u_int32_t, caddr_t);
192 static void ti_loadfw		(struct ti_softc *);
193 static void ti_cmd		(struct ti_softc *, struct ti_cmd_desc *);
194 static void ti_cmd_ext		(struct ti_softc *, struct ti_cmd_desc *,
195 					caddr_t, int);
196 static void ti_handle_events	(struct ti_softc *);
197 static int ti_alloc_jumbo_mem	(struct ti_softc *);
198 static void *ti_jalloc		(struct ti_softc *);
199 static void ti_jfree		(caddr_t, u_int);
200 static void ti_jref		(caddr_t, u_int);
201 static int ti_newbuf_std	(struct ti_softc *, int, struct mbuf *);
202 static int ti_newbuf_mini	(struct ti_softc *, int, struct mbuf *);
203 static int ti_newbuf_jumbo	(struct ti_softc *, int, struct mbuf *);
204 static int ti_init_rx_ring_std	(struct ti_softc *);
205 static void ti_free_rx_ring_std	(struct ti_softc *);
206 static int ti_init_rx_ring_jumbo	(struct ti_softc *);
207 static void ti_free_rx_ring_jumbo	(struct ti_softc *);
208 static int ti_init_rx_ring_mini	(struct ti_softc *);
209 static void ti_free_rx_ring_mini	(struct ti_softc *);
210 static void ti_free_tx_ring	(struct ti_softc *);
211 static int ti_init_tx_ring	(struct ti_softc *);
212 
213 static int ti_64bitslot_war	(struct ti_softc *);
214 static int ti_chipinit		(struct ti_softc *);
215 static int ti_gibinit		(struct ti_softc *);
216 
217 static device_method_t ti_methods[] = {
218 	/* Device interface */
219 	DEVMETHOD(device_probe,		ti_probe),
220 	DEVMETHOD(device_attach,	ti_attach),
221 	DEVMETHOD(device_detach,	ti_detach),
222 	DEVMETHOD(device_shutdown,	ti_shutdown),
223 	{ 0, 0 }
224 };
225 
226 static driver_t ti_driver = {
227 	"ti",
228 	ti_methods,
229 	sizeof(struct ti_softc)
230 };
231 
232 static devclass_t ti_devclass;
233 
234 DECLARE_DUMMY_MODULE(if_ti);
235 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
236 
237 /*
238  * Send an instruction or address to the EEPROM, check for ACK.
239  */
240 static u_int32_t ti_eeprom_putbyte(sc, byte)
241 	struct ti_softc		*sc;
242 	int			byte;
243 {
244 	int		i, ack = 0;
245 
246 	/*
247 	 * Make sure we're in TX mode.
248 	 */
249 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
250 
251 	/*
252 	 * Feed in each bit and stobe the clock.
253 	 */
254 	for (i = 0x80; i; i >>= 1) {
255 		if (byte & i) {
256 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
257 		} else {
258 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
259 		}
260 		DELAY(1);
261 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
262 		DELAY(1);
263 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
264 	}
265 
266 	/*
267 	 * Turn off TX mode.
268 	 */
269 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
270 
271 	/*
272 	 * Check for ack.
273 	 */
274 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
275 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
276 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
277 
278 	return(ack);
279 }
280 
281 /*
282  * Read a byte of data stored in the EEPROM at address 'addr.'
283  * We have to send two address bytes since the EEPROM can hold
284  * more than 256 bytes of data.
285  */
286 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
287 	struct ti_softc		*sc;
288 	int			addr;
289 	u_int8_t		*dest;
290 {
291 	int		i;
292 	u_int8_t		byte = 0;
293 
294 	EEPROM_START;
295 
296 	/*
297 	 * Send write control code to EEPROM.
298 	 */
299 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
300 		printf("ti%d: failed to send write command, status: %x\n",
301 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
302 		return(1);
303 	}
304 
305 	/*
306 	 * Send first byte of address of byte we want to read.
307 	 */
308 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
309 		printf("ti%d: failed to send address, status: %x\n",
310 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
311 		return(1);
312 	}
313 	/*
314 	 * Send second byte address of byte we want to read.
315 	 */
316 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
317 		printf("ti%d: failed to send address, status: %x\n",
318 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
319 		return(1);
320 	}
321 
322 	EEPROM_STOP;
323 	EEPROM_START;
324 	/*
325 	 * Send read control code to EEPROM.
326 	 */
327 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
328 		printf("ti%d: failed to send read command, status: %x\n",
329 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
330 		return(1);
331 	}
332 
333 	/*
334 	 * Start reading bits from EEPROM.
335 	 */
336 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
337 	for (i = 0x80; i; i >>= 1) {
338 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
339 		DELAY(1);
340 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
341 			byte |= i;
342 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
343 		DELAY(1);
344 	}
345 
346 	EEPROM_STOP;
347 
348 	/*
349 	 * No ACK generated for read, so just return byte.
350 	 */
351 
352 	*dest = byte;
353 
354 	return(0);
355 }
356 
357 /*
358  * Read a sequence of bytes from the EEPROM.
359  */
360 static int ti_read_eeprom(sc, dest, off, cnt)
361 	struct ti_softc		*sc;
362 	caddr_t			dest;
363 	int			off;
364 	int			cnt;
365 {
366 	int			err = 0, i;
367 	u_int8_t		byte = 0;
368 
369 	for (i = 0; i < cnt; i++) {
370 		err = ti_eeprom_getbyte(sc, off + i, &byte);
371 		if (err)
372 			break;
373 		*(dest + i) = byte;
374 	}
375 
376 	return(err ? 1 : 0);
377 }
378 
379 /*
380  * NIC memory access function. Can be used to either clear a section
381  * of NIC local memory or (if buf is non-NULL) copy data into it.
382  */
383 static void ti_mem(sc, addr, len, buf)
384 	struct ti_softc		*sc;
385 	u_int32_t		addr, len;
386 	caddr_t			buf;
387 {
388 	int			segptr, segsize, cnt;
389 	caddr_t			ti_winbase, ptr;
390 
391 	segptr = addr;
392 	cnt = len;
393 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
394 	ptr = buf;
395 
396 	while(cnt) {
397 		if (cnt < TI_WINLEN)
398 			segsize = cnt;
399 		else
400 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
401 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
402 		if (buf == NULL)
403 			bzero((char *)ti_winbase + (segptr &
404 			    (TI_WINLEN - 1)), segsize);
405 		else {
406 			bcopy((char *)ptr, (char *)ti_winbase +
407 			    (segptr & (TI_WINLEN - 1)), segsize);
408 			ptr += segsize;
409 		}
410 		segptr += segsize;
411 		cnt -= segsize;
412 	}
413 
414 	return;
415 }
416 
417 /*
418  * Load firmware image into the NIC. Check that the firmware revision
419  * is acceptable and see if we want the firmware for the Tigon 1 or
420  * Tigon 2.
421  */
422 static void ti_loadfw(sc)
423 	struct ti_softc		*sc;
424 {
425 	switch(sc->ti_hwrev) {
426 	case TI_HWREV_TIGON:
427 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
428 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
429 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
430 			printf("ti%d: firmware revision mismatch; want "
431 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
432 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
433 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
434 			    tigonFwReleaseMinor, tigonFwReleaseFix);
435 			return;
436 		}
437 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
438 		    (caddr_t)tigonFwText);
439 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
440 		    (caddr_t)tigonFwData);
441 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
442 		    (caddr_t)tigonFwRodata);
443 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
444 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
445 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
446 		break;
447 	case TI_HWREV_TIGON_II:
448 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
449 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
450 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
451 			printf("ti%d: firmware revision mismatch; want "
452 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
453 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
454 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
455 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
456 			return;
457 		}
458 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
459 		    (caddr_t)tigon2FwText);
460 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
461 		    (caddr_t)tigon2FwData);
462 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
463 		    (caddr_t)tigon2FwRodata);
464 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
465 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
466 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
467 		break;
468 	default:
469 		printf("ti%d: can't load firmware: unknown hardware rev\n",
470 		    sc->ti_unit);
471 		break;
472 	}
473 
474 	return;
475 }
476 
477 /*
478  * Send the NIC a command via the command ring.
479  */
480 static void ti_cmd(sc, cmd)
481 	struct ti_softc		*sc;
482 	struct ti_cmd_desc	*cmd;
483 {
484 	u_int32_t		index;
485 
486 	if (sc->ti_rdata->ti_cmd_ring == NULL)
487 		return;
488 
489 	index = sc->ti_cmd_saved_prodidx;
490 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
491 	TI_INC(index, TI_CMD_RING_CNT);
492 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
493 	sc->ti_cmd_saved_prodidx = index;
494 
495 	return;
496 }
497 
498 /*
499  * Send the NIC an extended command. The 'len' parameter specifies the
500  * number of command slots to include after the initial command.
501  */
502 static void ti_cmd_ext(sc, cmd, arg, len)
503 	struct ti_softc		*sc;
504 	struct ti_cmd_desc	*cmd;
505 	caddr_t			arg;
506 	int			len;
507 {
508 	u_int32_t		index;
509 	int		i;
510 
511 	if (sc->ti_rdata->ti_cmd_ring == NULL)
512 		return;
513 
514 	index = sc->ti_cmd_saved_prodidx;
515 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
516 	TI_INC(index, TI_CMD_RING_CNT);
517 	for (i = 0; i < len; i++) {
518 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
519 		    *(u_int32_t *)(&arg[i * 4]));
520 		TI_INC(index, TI_CMD_RING_CNT);
521 	}
522 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
523 	sc->ti_cmd_saved_prodidx = index;
524 
525 	return;
526 }
527 
528 /*
529  * Handle events that have triggered interrupts.
530  */
531 static void ti_handle_events(sc)
532 	struct ti_softc		*sc;
533 {
534 	struct ti_event_desc	*e;
535 
536 	if (sc->ti_rdata->ti_event_ring == NULL)
537 		return;
538 
539 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
540 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
541 		switch(e->ti_event) {
542 		case TI_EV_LINKSTAT_CHANGED:
543 			sc->ti_linkstat = e->ti_code;
544 			if (e->ti_code == TI_EV_CODE_LINK_UP)
545 				printf("ti%d: 10/100 link up\n", sc->ti_unit);
546 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
547 				printf("ti%d: gigabit link up\n", sc->ti_unit);
548 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
549 				printf("ti%d: link down\n", sc->ti_unit);
550 			break;
551 		case TI_EV_ERROR:
552 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
553 				printf("ti%d: invalid command\n", sc->ti_unit);
554 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
555 				printf("ti%d: unknown command\n", sc->ti_unit);
556 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
557 				printf("ti%d: bad config data\n", sc->ti_unit);
558 			break;
559 		case TI_EV_FIRMWARE_UP:
560 			ti_init2(sc);
561 			break;
562 		case TI_EV_STATS_UPDATED:
563 			ti_stats_update(sc);
564 			break;
565 		case TI_EV_RESET_JUMBO_RING:
566 		case TI_EV_MCAST_UPDATED:
567 			/* Who cares. */
568 			break;
569 		default:
570 			printf("ti%d: unknown event: %d\n",
571 			    sc->ti_unit, e->ti_event);
572 			break;
573 		}
574 		/* Advance the consumer index. */
575 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
576 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
577 	}
578 
579 	return;
580 }
581 
582 /*
583  * Memory management for the jumbo receive ring is a pain in the
584  * butt. We need to allocate at least 9018 bytes of space per frame,
585  * _and_ it has to be contiguous (unless you use the extended
586  * jumbo descriptor format). Using malloc() all the time won't
587  * work: malloc() allocates memory in powers of two, which means we
588  * would end up wasting a considerable amount of space by allocating
589  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
590  * to do our own memory management.
591  *
592  * The driver needs to allocate a contiguous chunk of memory at boot
593  * time. We then chop this up ourselves into 9K pieces and use them
594  * as external mbuf storage.
595  *
596  * One issue here is how much memory to allocate. The jumbo ring has
597  * 256 slots in it, but at 9K per slot than can consume over 2MB of
598  * RAM. This is a bit much, especially considering we also need
599  * RAM for the standard ring and mini ring (on the Tigon 2). To
600  * save space, we only actually allocate enough memory for 64 slots
601  * by default, which works out to between 500 and 600K. This can
602  * be tuned by changing a #define in if_tireg.h.
603  */
604 
605 static int ti_alloc_jumbo_mem(sc)
606 	struct ti_softc		*sc;
607 {
608 	caddr_t			ptr;
609 	int		i;
610 	struct ti_jpool_entry   *entry;
611 
612 	/* Grab a big chunk o' storage. */
613 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
614 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
615 
616 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
617 		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
618 		return(ENOBUFS);
619 	}
620 
621 	SLIST_INIT(&sc->ti_jfree_listhead);
622 	SLIST_INIT(&sc->ti_jinuse_listhead);
623 
624 	/*
625 	 * Now divide it up into 9K pieces and save the addresses
626 	 * in an array. Note that we play an evil trick here by using
627 	 * the first few bytes in the buffer to hold the the address
628 	 * of the softc structure for this interface. This is because
629 	 * ti_jfree() needs it, but it is called by the mbuf management
630 	 * code which will not pass it to us explicitly.
631 	 */
632 	ptr = sc->ti_cdata.ti_jumbo_buf;
633 	for (i = 0; i < TI_JSLOTS; i++) {
634 		u_int64_t		**aptr;
635 		aptr = (u_int64_t **)ptr;
636 		aptr[0] = (u_int64_t *)sc;
637 		ptr += sizeof(u_int64_t);
638 		sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
639 		sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
640 		ptr += (TI_JLEN - sizeof(u_int64_t));
641 		entry = malloc(sizeof(struct ti_jpool_entry),
642 			       M_DEVBUF, M_WAITOK);
643 		if (entry == NULL) {
644 			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
645 			           M_DEVBUF);
646 			sc->ti_cdata.ti_jumbo_buf = NULL;
647 			printf("ti%d: no memory for jumbo "
648 			    "buffer queue!\n", sc->ti_unit);
649 			return(ENOBUFS);
650 		}
651 		entry->slot = i;
652 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
653 	}
654 
655 	return(0);
656 }
657 
658 /*
659  * Allocate a jumbo buffer.
660  */
661 static void *ti_jalloc(sc)
662 	struct ti_softc		*sc;
663 {
664 	struct ti_jpool_entry   *entry;
665 
666 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
667 
668 	if (entry == NULL) {
669 		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
670 		return(NULL);
671 	}
672 
673 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
674 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
675 	sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
676 	return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
677 }
678 
679 /*
680  * Adjust usage count on a jumbo buffer. In general this doesn't
681  * get used much because our jumbo buffers don't get passed around
682  * too much, but it's implemented for correctness.
683  */
684 static void ti_jref(buf, size)
685 	caddr_t			buf;
686 	u_int			size;
687 {
688 	struct ti_softc		*sc;
689 	u_int64_t		**aptr;
690 	int		i;
691 
692 	/* Extract the softc struct pointer. */
693 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
694 	sc = (struct ti_softc *)(aptr[0]);
695 
696 	if (sc == NULL)
697 		panic("ti_jref: can't find softc pointer!");
698 
699 	if (size != TI_JUMBO_FRAMELEN)
700 		panic("ti_jref: adjusting refcount of buf of wrong size!");
701 
702 	/* calculate the slot this buffer belongs to */
703 
704 	i = ((vm_offset_t)aptr
705 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
706 
707 	if ((i < 0) || (i >= TI_JSLOTS))
708 		panic("ti_jref: asked to reference buffer "
709 		    "that we don't manage!");
710 	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
711 		panic("ti_jref: buffer already free!");
712 	else
713 		sc->ti_cdata.ti_jslots[i].ti_inuse++;
714 
715 	return;
716 }
717 
718 /*
719  * Release a jumbo buffer.
720  */
721 static void ti_jfree(buf, size)
722 	caddr_t			buf;
723 	u_int			size;
724 {
725 	struct ti_softc		*sc;
726 	u_int64_t		**aptr;
727 	int		        i;
728 	struct ti_jpool_entry   *entry;
729 
730 	/* Extract the softc struct pointer. */
731 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
732 	sc = (struct ti_softc *)(aptr[0]);
733 
734 	if (sc == NULL)
735 		panic("ti_jfree: can't find softc pointer!");
736 
737 	if (size != TI_JUMBO_FRAMELEN)
738 		panic("ti_jfree: freeing buffer of wrong size!");
739 
740 	/* calculate the slot this buffer belongs to */
741 
742 	i = ((vm_offset_t)aptr
743 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
744 
745 	if ((i < 0) || (i >= TI_JSLOTS))
746 		panic("ti_jfree: asked to free buffer that we don't manage!");
747 	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
748 		panic("ti_jfree: buffer already free!");
749 	else {
750 		sc->ti_cdata.ti_jslots[i].ti_inuse--;
751 		if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
752 			entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
753 			if (entry == NULL)
754 				panic("ti_jfree: buffer not in use!");
755 			entry->slot = i;
756 			SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead,
757 					  jpool_entries);
758 			SLIST_INSERT_HEAD(&sc->ti_jfree_listhead,
759 					  entry, jpool_entries);
760 		}
761 	}
762 
763 	return;
764 }
765 
766 
767 /*
768  * Intialize a standard receive ring descriptor.
769  */
770 static int ti_newbuf_std(sc, i, m)
771 	struct ti_softc		*sc;
772 	int			i;
773 	struct mbuf		*m;
774 {
775 	struct mbuf		*m_new = NULL;
776 	struct ti_rx_desc	*r;
777 
778 	if (m == NULL) {
779 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
780 		if (m_new == NULL)
781 			return(ENOBUFS);
782 
783 		MCLGET(m_new, MB_DONTWAIT);
784 		if (!(m_new->m_flags & M_EXT)) {
785 			m_freem(m_new);
786 			return(ENOBUFS);
787 		}
788 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
789 	} else {
790 		m_new = m;
791 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
792 		m_new->m_data = m_new->m_ext.ext_buf;
793 	}
794 
795 	m_adj(m_new, ETHER_ALIGN);
796 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
797 	r = &sc->ti_rdata->ti_rx_std_ring[i];
798 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
799 	r->ti_type = TI_BDTYPE_RECV_BD;
800 	r->ti_flags = 0;
801 	if (sc->arpcom.ac_if.if_hwassist)
802 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
803 	r->ti_len = m_new->m_len;
804 	r->ti_idx = i;
805 
806 	return(0);
807 }
808 
809 /*
810  * Intialize a mini receive ring descriptor. This only applies to
811  * the Tigon 2.
812  */
813 static int ti_newbuf_mini(sc, i, m)
814 	struct ti_softc		*sc;
815 	int			i;
816 	struct mbuf		*m;
817 {
818 	struct mbuf		*m_new = NULL;
819 	struct ti_rx_desc	*r;
820 
821 	if (m == NULL) {
822 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
823 		if (m_new == NULL) {
824 			return(ENOBUFS);
825 		}
826 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
827 	} else {
828 		m_new = m;
829 		m_new->m_data = m_new->m_pktdat;
830 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
831 	}
832 
833 	m_adj(m_new, ETHER_ALIGN);
834 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
835 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
836 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
837 	r->ti_type = TI_BDTYPE_RECV_BD;
838 	r->ti_flags = TI_BDFLAG_MINI_RING;
839 	if (sc->arpcom.ac_if.if_hwassist)
840 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
841 	r->ti_len = m_new->m_len;
842 	r->ti_idx = i;
843 
844 	return(0);
845 }
846 
847 /*
848  * Initialize a jumbo receive ring descriptor. This allocates
849  * a jumbo buffer from the pool managed internally by the driver.
850  */
851 static int ti_newbuf_jumbo(sc, i, m)
852 	struct ti_softc		*sc;
853 	int			i;
854 	struct mbuf		*m;
855 {
856 	struct mbuf		*m_new = NULL;
857 	struct ti_rx_desc	*r;
858 
859 	if (m == NULL) {
860 		caddr_t			*buf = NULL;
861 
862 		/* Allocate the mbuf. */
863 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
864 		if (m_new == NULL) {
865 			return(ENOBUFS);
866 		}
867 
868 		/* Allocate the jumbo buffer */
869 		buf = ti_jalloc(sc);
870 		if (buf == NULL) {
871 			m_freem(m_new);
872 			printf("ti%d: jumbo allocation failed "
873 			    "-- packet dropped!\n", sc->ti_unit);
874 			return(ENOBUFS);
875 		}
876 
877 		/* Attach the buffer to the mbuf. */
878 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
879 		m_new->m_flags |= M_EXT | M_EXT_OLD;
880 		m_new->m_len = m_new->m_pkthdr.len =
881 		    m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
882 		m_new->m_ext.ext_nfree.old = ti_jfree;
883 		m_new->m_ext.ext_nref.old = ti_jref;
884 	} else {
885 		m_new = m;
886 		m_new->m_data = m_new->m_ext.ext_buf;
887 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
888 	}
889 
890 	m_adj(m_new, ETHER_ALIGN);
891 	/* Set up the descriptor. */
892 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
893 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
894 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
895 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
896 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
897 	if (sc->arpcom.ac_if.if_hwassist)
898 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
899 	r->ti_len = m_new->m_len;
900 	r->ti_idx = i;
901 
902 	return(0);
903 }
904 
905 /*
906  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
907  * that's 1MB or memory, which is a lot. For now, we fill only the first
908  * 256 ring entries and hope that our CPU is fast enough to keep up with
909  * the NIC.
910  */
911 static int ti_init_rx_ring_std(sc)
912 	struct ti_softc		*sc;
913 {
914 	int		i;
915 	struct ti_cmd_desc	cmd;
916 
917 	for (i = 0; i < TI_SSLOTS; i++) {
918 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
919 			return(ENOBUFS);
920 	};
921 
922 	TI_UPDATE_STDPROD(sc, i - 1);
923 	sc->ti_std = i - 1;
924 
925 	return(0);
926 }
927 
928 static void ti_free_rx_ring_std(sc)
929 	struct ti_softc		*sc;
930 {
931 	int		i;
932 
933 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
934 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
935 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
936 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
937 		}
938 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
939 		    sizeof(struct ti_rx_desc));
940 	}
941 
942 	return;
943 }
944 
945 static int ti_init_rx_ring_jumbo(sc)
946 	struct ti_softc		*sc;
947 {
948 	int		i;
949 	struct ti_cmd_desc	cmd;
950 
951 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
952 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
953 			return(ENOBUFS);
954 	};
955 
956 	TI_UPDATE_JUMBOPROD(sc, i - 1);
957 	sc->ti_jumbo = i - 1;
958 
959 	return(0);
960 }
961 
962 static void ti_free_rx_ring_jumbo(sc)
963 	struct ti_softc		*sc;
964 {
965 	int		i;
966 
967 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
968 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
969 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
970 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
971 		}
972 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
973 		    sizeof(struct ti_rx_desc));
974 	}
975 
976 	return;
977 }
978 
979 static int ti_init_rx_ring_mini(sc)
980 	struct ti_softc		*sc;
981 {
982 	int		i;
983 
984 	for (i = 0; i < TI_MSLOTS; i++) {
985 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
986 			return(ENOBUFS);
987 	};
988 
989 	TI_UPDATE_MINIPROD(sc, i - 1);
990 	sc->ti_mini = i - 1;
991 
992 	return(0);
993 }
994 
995 static void ti_free_rx_ring_mini(sc)
996 	struct ti_softc		*sc;
997 {
998 	int		i;
999 
1000 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1001 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1002 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1003 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1004 		}
1005 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1006 		    sizeof(struct ti_rx_desc));
1007 	}
1008 
1009 	return;
1010 }
1011 
1012 static void ti_free_tx_ring(sc)
1013 	struct ti_softc		*sc;
1014 {
1015 	int		i;
1016 
1017 	if (sc->ti_rdata->ti_tx_ring == NULL)
1018 		return;
1019 
1020 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1021 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1022 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1023 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1024 		}
1025 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1026 		    sizeof(struct ti_tx_desc));
1027 	}
1028 
1029 	return;
1030 }
1031 
1032 static int ti_init_tx_ring(sc)
1033 	struct ti_softc		*sc;
1034 {
1035 	sc->ti_txcnt = 0;
1036 	sc->ti_tx_saved_considx = 0;
1037 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1038 	return(0);
1039 }
1040 
1041 /*
1042  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1043  * but we have to support the old way too so that Tigon 1 cards will
1044  * work.
1045  */
1046 void ti_add_mcast(sc, addr)
1047 	struct ti_softc		*sc;
1048 	struct ether_addr	*addr;
1049 {
1050 	struct ti_cmd_desc	cmd;
1051 	u_int16_t		*m;
1052 	u_int32_t		ext[2] = {0, 0};
1053 
1054 	m = (u_int16_t *)&addr->octet[0];
1055 
1056 	switch(sc->ti_hwrev) {
1057 	case TI_HWREV_TIGON:
1058 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1059 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1060 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1061 		break;
1062 	case TI_HWREV_TIGON_II:
1063 		ext[0] = htons(m[0]);
1064 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1065 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1066 		break;
1067 	default:
1068 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1069 		break;
1070 	}
1071 
1072 	return;
1073 }
1074 
1075 void ti_del_mcast(sc, addr)
1076 	struct ti_softc		*sc;
1077 	struct ether_addr	*addr;
1078 {
1079 	struct ti_cmd_desc	cmd;
1080 	u_int16_t		*m;
1081 	u_int32_t		ext[2] = {0, 0};
1082 
1083 	m = (u_int16_t *)&addr->octet[0];
1084 
1085 	switch(sc->ti_hwrev) {
1086 	case TI_HWREV_TIGON:
1087 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1088 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1089 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1090 		break;
1091 	case TI_HWREV_TIGON_II:
1092 		ext[0] = htons(m[0]);
1093 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1094 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1095 		break;
1096 	default:
1097 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1098 		break;
1099 	}
1100 
1101 	return;
1102 }
1103 
1104 /*
1105  * Configure the Tigon's multicast address filter.
1106  *
1107  * The actual multicast table management is a bit of a pain, thanks to
1108  * slight brain damage on the part of both Alteon and us. With our
1109  * multicast code, we are only alerted when the multicast address table
1110  * changes and at that point we only have the current list of addresses:
1111  * we only know the current state, not the previous state, so we don't
1112  * actually know what addresses were removed or added. The firmware has
1113  * state, but we can't get our grubby mits on it, and there is no 'delete
1114  * all multicast addresses' command. Hence, we have to maintain our own
1115  * state so we know what addresses have been programmed into the NIC at
1116  * any given time.
1117  */
1118 static void ti_setmulti(sc)
1119 	struct ti_softc		*sc;
1120 {
1121 	struct ifnet		*ifp;
1122 	struct ifmultiaddr	*ifma;
1123 	struct ti_cmd_desc	cmd;
1124 	struct ti_mc_entry	*mc;
1125 	u_int32_t		intrs;
1126 
1127 	ifp = &sc->arpcom.ac_if;
1128 
1129 	if (ifp->if_flags & IFF_ALLMULTI) {
1130 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1131 		return;
1132 	} else {
1133 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1134 	}
1135 
1136 	/* Disable interrupts. */
1137 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1138 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1139 
1140 	/* First, zot all the existing filters. */
1141 	while (sc->ti_mc_listhead.slh_first != NULL) {
1142 		mc = sc->ti_mc_listhead.slh_first;
1143 		ti_del_mcast(sc, &mc->mc_addr);
1144 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1145 		free(mc, M_DEVBUF);
1146 	}
1147 
1148 	/* Now program new ones. */
1149 	for (ifma = ifp->if_multiaddrs.lh_first;
1150 	    ifma != NULL; ifma = ifma->ifma_link.le_next) {
1151 		if (ifma->ifma_addr->sa_family != AF_LINK)
1152 			continue;
1153 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_INTWAIT);
1154 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1155 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1156 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1157 		ti_add_mcast(sc, &mc->mc_addr);
1158 	}
1159 
1160 	/* Re-enable interrupts. */
1161 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1162 
1163 	return;
1164 }
1165 
1166 /*
1167  * Check to see if the BIOS has configured us for a 64 bit slot when
1168  * we aren't actually in one. If we detect this condition, we can work
1169  * around it on the Tigon 2 by setting a bit in the PCI state register,
1170  * but for the Tigon 1 we must give up and abort the interface attach.
1171  */
1172 static int ti_64bitslot_war(sc)
1173 	struct ti_softc		*sc;
1174 {
1175 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1176 		CSR_WRITE_4(sc, 0x600, 0);
1177 		CSR_WRITE_4(sc, 0x604, 0);
1178 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1179 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1180 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1181 				return(EINVAL);
1182 			else {
1183 				TI_SETBIT(sc, TI_PCI_STATE,
1184 				    TI_PCISTATE_32BIT_BUS);
1185 				return(0);
1186 			}
1187 		}
1188 	}
1189 
1190 	return(0);
1191 }
1192 
1193 /*
1194  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1195  * self-test results.
1196  */
1197 static int ti_chipinit(sc)
1198 	struct ti_softc		*sc;
1199 {
1200 	u_int32_t		cacheline;
1201 	u_int32_t		pci_writemax = 0;
1202 
1203 	/* Initialize link to down state. */
1204 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1205 
1206 	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1207 		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1208 	else
1209 		sc->arpcom.ac_if.if_hwassist = 0;
1210 
1211 	/* Set endianness before we access any non-PCI registers. */
1212 #if BYTE_ORDER == BIG_ENDIAN
1213 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1214 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1215 #else
1216 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1217 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1218 #endif
1219 
1220 	/* Check the ROM failed bit to see if self-tests passed. */
1221 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1222 		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1223 		return(ENODEV);
1224 	}
1225 
1226 	/* Halt the CPU. */
1227 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1228 
1229 	/* Figure out the hardware revision. */
1230 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1231 	case TI_REV_TIGON_I:
1232 		sc->ti_hwrev = TI_HWREV_TIGON;
1233 		break;
1234 	case TI_REV_TIGON_II:
1235 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1236 		break;
1237 	default:
1238 		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1239 		return(ENODEV);
1240 	}
1241 
1242 	/* Do special setup for Tigon 2. */
1243 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1244 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1245 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1246 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1247 	}
1248 
1249 	/* Set up the PCI state register. */
1250 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1251 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1252 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1253 	}
1254 
1255 	/* Clear the read/write max DMA parameters. */
1256 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1257 	    TI_PCISTATE_READ_MAXDMA));
1258 
1259 	/* Get cache line size. */
1260 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1261 
1262 	/*
1263 	 * If the system has set enabled the PCI memory write
1264 	 * and invalidate command in the command register, set
1265 	 * the write max parameter accordingly. This is necessary
1266 	 * to use MWI with the Tigon 2.
1267 	 */
1268 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1269 		switch(cacheline) {
1270 		case 1:
1271 		case 4:
1272 		case 8:
1273 		case 16:
1274 		case 32:
1275 		case 64:
1276 			break;
1277 		default:
1278 		/* Disable PCI memory write and invalidate. */
1279 			if (bootverbose)
1280 				printf("ti%d: cache line size %d not "
1281 				    "supported; disabling PCI MWI\n",
1282 				    sc->ti_unit, cacheline);
1283 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1284 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1285 			break;
1286 		}
1287 	}
1288 
1289 #ifdef __brokenalpha__
1290 	/*
1291 	 * From the Alteon sample driver:
1292 	 * Must insure that we do not cross an 8K (bytes) boundary
1293 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1294 	 * restriction on some ALPHA platforms with early revision
1295 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1296 	 */
1297 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1298 #else
1299 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1300 #endif
1301 
1302 	/* This sets the min dma param all the way up (0xff). */
1303 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1304 
1305 	/* Configure DMA variables. */
1306 #if BYTE_ORDER == BIG_ENDIAN
1307 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1308 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1309 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1310 	    TI_OPMODE_DONT_FRAG_JUMBO);
1311 #else
1312 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1313 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1314 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1315 #endif
1316 
1317 	/*
1318 	 * Only allow 1 DMA channel to be active at a time.
1319 	 * I don't think this is a good idea, but without it
1320 	 * the firmware racks up lots of nicDmaReadRingFull
1321 	 * errors.  This is not compatible with hardware checksums.
1322 	 */
1323 	if (sc->arpcom.ac_if.if_hwassist == 0)
1324 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1325 
1326 	/* Recommended settings from Tigon manual. */
1327 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1328 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1329 
1330 	if (ti_64bitslot_war(sc)) {
1331 		printf("ti%d: bios thinks we're in a 64 bit slot, "
1332 		    "but we aren't", sc->ti_unit);
1333 		return(EINVAL);
1334 	}
1335 
1336 	return(0);
1337 }
1338 
1339 /*
1340  * Initialize the general information block and firmware, and
1341  * start the CPU(s) running.
1342  */
1343 static int ti_gibinit(sc)
1344 	struct ti_softc		*sc;
1345 {
1346 	struct ti_rcb		*rcb;
1347 	int			i;
1348 	struct ifnet		*ifp;
1349 
1350 	ifp = &sc->arpcom.ac_if;
1351 
1352 	/* Disable interrupts for now. */
1353 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1354 
1355 	/* Tell the chip where to find the general information block. */
1356 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1357 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1358 
1359 	/* Load the firmware into SRAM. */
1360 	ti_loadfw(sc);
1361 
1362 	/* Set up the contents of the general info and ring control blocks. */
1363 
1364 	/* Set up the event ring and producer pointer. */
1365 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1366 
1367 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1368 	rcb->ti_flags = 0;
1369 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1370 	    vtophys(&sc->ti_ev_prodidx);
1371 	sc->ti_ev_prodidx.ti_idx = 0;
1372 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1373 	sc->ti_ev_saved_considx = 0;
1374 
1375 	/* Set up the command ring and producer mailbox. */
1376 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1377 
1378 	sc->ti_rdata->ti_cmd_ring =
1379 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1380 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1381 	rcb->ti_flags = 0;
1382 	rcb->ti_max_len = 0;
1383 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1384 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1385 	}
1386 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1387 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1388 	sc->ti_cmd_saved_prodidx = 0;
1389 
1390 	/*
1391 	 * Assign the address of the stats refresh buffer.
1392 	 * We re-use the current stats buffer for this to
1393 	 * conserve memory.
1394 	 */
1395 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1396 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1397 
1398 	/* Set up the standard receive ring. */
1399 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1400 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1401 	rcb->ti_max_len = TI_FRAMELEN;
1402 	rcb->ti_flags = 0;
1403 	if (sc->arpcom.ac_if.if_hwassist)
1404 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1405 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1406 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1407 
1408 	/* Set up the jumbo receive ring. */
1409 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1410 	TI_HOSTADDR(rcb->ti_hostaddr) =
1411 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1412 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1413 	rcb->ti_flags = 0;
1414 	if (sc->arpcom.ac_if.if_hwassist)
1415 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1416 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1417 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1418 
1419 	/*
1420 	 * Set up the mini ring. Only activated on the
1421 	 * Tigon 2 but the slot in the config block is
1422 	 * still there on the Tigon 1.
1423 	 */
1424 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1425 	TI_HOSTADDR(rcb->ti_hostaddr) =
1426 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1427 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1428 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1429 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1430 	else
1431 		rcb->ti_flags = 0;
1432 	if (sc->arpcom.ac_if.if_hwassist)
1433 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1434 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1435 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1436 
1437 	/*
1438 	 * Set up the receive return ring.
1439 	 */
1440 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1441 	TI_HOSTADDR(rcb->ti_hostaddr) =
1442 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1443 	rcb->ti_flags = 0;
1444 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1445 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1446 	    vtophys(&sc->ti_return_prodidx);
1447 
1448 	/*
1449 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1450 	 * of putting the transmit ring in the host's address space and
1451 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1452 	 * memory and accessing it through the shared memory region. We
1453 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1454 	 * so we have to revert to the shared memory scheme if we detect
1455 	 * a Tigon 1 chip.
1456 	 */
1457 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1458 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1459 		sc->ti_rdata->ti_tx_ring_nic =
1460 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1461 	}
1462 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1463 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1464 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1465 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1466 		rcb->ti_flags = 0;
1467 	else
1468 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1469 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1470 	if (sc->arpcom.ac_if.if_hwassist)
1471 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1472 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1473 	rcb->ti_max_len = TI_TX_RING_CNT;
1474 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1475 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1476 	else
1477 		TI_HOSTADDR(rcb->ti_hostaddr) =
1478 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1479 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1480 	    vtophys(&sc->ti_tx_considx);
1481 
1482 	/* Set up tuneables */
1483 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1484 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1485 		    (sc->ti_rx_coal_ticks / 10));
1486 	else
1487 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1488 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1489 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1490 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1491 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1492 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1493 
1494 	/* Turn interrupts on. */
1495 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1496 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1497 
1498 	/* Start CPU. */
1499 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1500 
1501 	return(0);
1502 }
1503 
1504 /*
1505  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1506  * against our list and return its name if we find a match.
1507  */
1508 static int ti_probe(dev)
1509 	device_t		dev;
1510 {
1511 	struct ti_type		*t;
1512 
1513 	t = ti_devs;
1514 
1515 	while(t->ti_name != NULL) {
1516 		if ((pci_get_vendor(dev) == t->ti_vid) &&
1517 		    (pci_get_device(dev) == t->ti_did)) {
1518 			device_set_desc(dev, t->ti_name);
1519 			return(0);
1520 		}
1521 		t++;
1522 	}
1523 
1524 	return(ENXIO);
1525 }
1526 
1527 static int ti_attach(dev)
1528 	device_t		dev;
1529 {
1530 	int			s;
1531 	u_int32_t		command;
1532 	struct ifnet		*ifp;
1533 	struct ti_softc		*sc;
1534 	int			unit, error = 0, rid;
1535 
1536 	s = splimp();
1537 
1538 	sc = device_get_softc(dev);
1539 	unit = device_get_unit(dev);
1540 	bzero(sc, sizeof(struct ti_softc));
1541 	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM;
1542 	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
1543 
1544 	/*
1545 	 * Map control/status registers.
1546 	 */
1547 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1548 	command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1549 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1550 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1551 
1552 	if (!(command & PCIM_CMD_MEMEN)) {
1553 		printf("ti%d: failed to enable memory mapping!\n", unit);
1554 		error = ENXIO;
1555 		goto fail;
1556 	}
1557 
1558 	rid = TI_PCI_LOMEM;
1559 	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1560 	    0, ~0, 1, RF_ACTIVE);
1561 
1562 	if (sc->ti_res == NULL) {
1563 		printf ("ti%d: couldn't map memory\n", unit);
1564 		error = ENXIO;
1565 		goto fail;
1566 	}
1567 
1568 	sc->ti_btag = rman_get_bustag(sc->ti_res);
1569 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1570 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1571 
1572 	/*
1573 	 * XXX FIXME: rman_get_virtual() on the alpha is currently
1574 	 * broken and returns a physical address instead of a kernel
1575 	 * virtual address. Consequently, we need to do a little
1576 	 * extra mangling of the vhandle on the alpha. This should
1577 	 * eventually be fixed! The whole idea here is to get rid
1578 	 * of platform dependencies.
1579 	 */
1580 #ifdef __alpha__
1581 	if (pci_cvt_to_bwx(sc->ti_vhandle))
1582 		sc->ti_vhandle = pci_cvt_to_bwx(sc->ti_vhandle);
1583 	else
1584 		sc->ti_vhandle = pci_cvt_to_dense(sc->ti_vhandle);
1585 	sc->ti_vhandle = ALPHA_PHYS_TO_K0SEG(sc->ti_vhandle);
1586 #endif
1587 
1588 	/* Allocate interrupt */
1589 	rid = 0;
1590 
1591 	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1592 	    RF_SHAREABLE | RF_ACTIVE);
1593 
1594 	if (sc->ti_irq == NULL) {
1595 		printf("ti%d: couldn't map interrupt\n", unit);
1596 		error = ENXIO;
1597 		goto fail;
1598 	}
1599 
1600 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1601 	   ti_intr, sc, &sc->ti_intrhand);
1602 
1603 	if (error) {
1604 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1605 		bus_release_resource(dev, SYS_RES_MEMORY,
1606 		    TI_PCI_LOMEM, sc->ti_res);
1607 		printf("ti%d: couldn't set up irq\n", unit);
1608 		goto fail;
1609 	}
1610 
1611 	sc->ti_unit = unit;
1612 
1613 	if (ti_chipinit(sc)) {
1614 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1615 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1616 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1617 		bus_release_resource(dev, SYS_RES_MEMORY,
1618 		    TI_PCI_LOMEM, sc->ti_res);
1619 		error = ENXIO;
1620 		goto fail;
1621 	}
1622 
1623 	/* Zero out the NIC's on-board SRAM. */
1624 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1625 
1626 	/* Init again -- zeroing memory may have clobbered some registers. */
1627 	if (ti_chipinit(sc)) {
1628 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1629 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1630 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1631 		bus_release_resource(dev, SYS_RES_MEMORY,
1632 		    TI_PCI_LOMEM, sc->ti_res);
1633 		error = ENXIO;
1634 		goto fail;
1635 	}
1636 
1637 	/*
1638 	 * Get station address from the EEPROM. Note: the manual states
1639 	 * that the MAC address is at offset 0x8c, however the data is
1640 	 * stored as two longwords (since that's how it's loaded into
1641 	 * the NIC). This means the MAC address is actually preceeded
1642 	 * by two zero bytes. We need to skip over those.
1643 	 */
1644 	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1645 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1646 		printf("ti%d: failed to read station address\n", unit);
1647 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1648 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1649 		bus_release_resource(dev, SYS_RES_MEMORY,
1650 		    TI_PCI_LOMEM, sc->ti_res);
1651 		error = ENXIO;
1652 		goto fail;
1653 	}
1654 
1655 	/* Allocate the general information block and ring buffers. */
1656 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1657 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1658 
1659 	if (sc->ti_rdata == NULL) {
1660 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1661 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1662 		bus_release_resource(dev, SYS_RES_MEMORY,
1663 		    TI_PCI_LOMEM, sc->ti_res);
1664 		error = ENXIO;
1665 		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1666 		goto fail;
1667 	}
1668 
1669 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1670 
1671 	/* Try to allocate memory for jumbo buffers. */
1672 	if (ti_alloc_jumbo_mem(sc)) {
1673 		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1674 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1675 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1676 		bus_release_resource(dev, SYS_RES_MEMORY,
1677 		    TI_PCI_LOMEM, sc->ti_res);
1678 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
1679 		    M_DEVBUF);
1680 		error = ENXIO;
1681 		goto fail;
1682 	}
1683 
1684 	/*
1685 	 * We really need a better way to tell a 1000baseTX card
1686 	 * from a 1000baseSX one, since in theory there could be
1687 	 * OEMed 1000baseTX cards from lame vendors who aren't
1688 	 * clever enough to change the PCI ID. For the moment
1689 	 * though, the AceNIC is the only copper card available.
1690 	 */
1691 	if (pci_get_vendor(dev) == ALT_VENDORID &&
1692 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1693 		sc->ti_copper = 1;
1694 	/* Ok, it's not the only copper card available. */
1695 	if (pci_get_vendor(dev) == NG_VENDORID &&
1696 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1697 		sc->ti_copper = 1;
1698 
1699 	/* Set default tuneable values. */
1700 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1701 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1702 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1703 	sc->ti_rx_max_coal_bds = 64;
1704 	sc->ti_tx_max_coal_bds = 128;
1705 	sc->ti_tx_buf_ratio = 21;
1706 
1707 	/* Set up ifnet structure */
1708 	ifp = &sc->arpcom.ac_if;
1709 	ifp->if_softc = sc;
1710 	if_initname(ifp, "ti", sc->ti_unit);
1711 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1712 	ifp->if_ioctl = ti_ioctl;
1713 	ifp->if_start = ti_start;
1714 	ifp->if_watchdog = ti_watchdog;
1715 	ifp->if_init = ti_init;
1716 	ifp->if_mtu = ETHERMTU;
1717 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1718 
1719 	/* Set up ifmedia support. */
1720 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1721 	if (sc->ti_copper) {
1722 		/*
1723 		 * Copper cards allow manual 10/100 mode selection,
1724 		 * but not manual 1000baseTX mode selection. Why?
1725 		 * Becuase currently there's no way to specify the
1726 		 * master/slave setting through the firmware interface,
1727 		 * so Alteon decided to just bag it and handle it
1728 		 * via autonegotiation.
1729 		 */
1730 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1731 		ifmedia_add(&sc->ifmedia,
1732 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1733 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1734 		ifmedia_add(&sc->ifmedia,
1735 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1736 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1737 		ifmedia_add(&sc->ifmedia,
1738 		    IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1739 	} else {
1740 		/* Fiber cards don't support 10/100 modes. */
1741 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1742 		ifmedia_add(&sc->ifmedia,
1743 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1744 	}
1745 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1746 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1747 
1748 	/*
1749 	 * Call MI attach routine.
1750 	 */
1751 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
1752 
1753 fail:
1754 	splx(s);
1755 
1756 	return(error);
1757 }
1758 
1759 static int ti_detach(dev)
1760 	device_t		dev;
1761 {
1762 	struct ti_softc		*sc;
1763 	struct ifnet		*ifp;
1764 	int			s;
1765 
1766 	s = splimp();
1767 
1768 	sc = device_get_softc(dev);
1769 	ifp = &sc->arpcom.ac_if;
1770 
1771 	ether_ifdetach(ifp);
1772 	ti_stop(sc);
1773 
1774 	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1775 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1776 	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1777 
1778 	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1779 	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1780 	ifmedia_removeall(&sc->ifmedia);
1781 
1782 	splx(s);
1783 
1784 	return(0);
1785 }
1786 
1787 /*
1788  * Frame reception handling. This is called if there's a frame
1789  * on the receive return list.
1790  *
1791  * Note: we have to be able to handle three possibilities here:
1792  * 1) the frame is from the mini receive ring (can only happen)
1793  *    on Tigon 2 boards)
1794  * 2) the frame is from the jumbo recieve ring
1795  * 3) the frame is from the standard receive ring
1796  */
1797 
1798 static void ti_rxeof(sc)
1799 	struct ti_softc		*sc;
1800 {
1801 	struct ifnet		*ifp;
1802 	struct ti_cmd_desc	cmd;
1803 
1804 	ifp = &sc->arpcom.ac_if;
1805 
1806 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1807 		struct ti_rx_desc	*cur_rx;
1808 		u_int32_t		rxidx;
1809 		struct mbuf		*m = NULL;
1810 		u_int16_t		vlan_tag = 0;
1811 		int			have_tag = 0;
1812 
1813 		cur_rx =
1814 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1815 		rxidx = cur_rx->ti_idx;
1816 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1817 
1818 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1819 			have_tag = 1;
1820 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
1821 		}
1822 
1823 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1824 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1825 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1826 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1827 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1828 				ifp->if_ierrors++;
1829 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1830 				continue;
1831 			}
1832 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1833 				ifp->if_ierrors++;
1834 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1835 				continue;
1836 			}
1837 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1838 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1839 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1840 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1841 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1842 				ifp->if_ierrors++;
1843 				ti_newbuf_mini(sc, sc->ti_mini, m);
1844 				continue;
1845 			}
1846 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1847 				ifp->if_ierrors++;
1848 				ti_newbuf_mini(sc, sc->ti_mini, m);
1849 				continue;
1850 			}
1851 		} else {
1852 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1853 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1854 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1855 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1856 				ifp->if_ierrors++;
1857 				ti_newbuf_std(sc, sc->ti_std, m);
1858 				continue;
1859 			}
1860 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1861 				ifp->if_ierrors++;
1862 				ti_newbuf_std(sc, sc->ti_std, m);
1863 				continue;
1864 			}
1865 		}
1866 
1867 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1868 		ifp->if_ipackets++;
1869 		m->m_pkthdr.rcvif = ifp;
1870 
1871 		if (ifp->if_hwassist) {
1872 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1873 			    CSUM_DATA_VALID;
1874 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1875 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1876 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1877 		}
1878 
1879 		/*
1880 		 * If we received a packet with a vlan tag, pass it
1881 		 * to vlan_input() instead of ether_input().
1882 		 */
1883 		if (have_tag) {
1884 			VLAN_INPUT_TAG(m, vlan_tag);
1885 			have_tag = vlan_tag = 0;
1886 		} else {
1887 			(*ifp->if_input)(ifp, m);
1888 		}
1889 	}
1890 
1891 	/* Only necessary on the Tigon 1. */
1892 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1893 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1894 		    sc->ti_rx_saved_considx);
1895 
1896 	TI_UPDATE_STDPROD(sc, sc->ti_std);
1897 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1898 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1899 
1900 	return;
1901 }
1902 
1903 static void ti_txeof(sc)
1904 	struct ti_softc		*sc;
1905 {
1906 	struct ti_tx_desc	*cur_tx = NULL;
1907 	struct ifnet		*ifp;
1908 
1909 	ifp = &sc->arpcom.ac_if;
1910 
1911 	/*
1912 	 * Go through our tx ring and free mbufs for those
1913 	 * frames that have been sent.
1914 	 */
1915 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1916 		u_int32_t		idx = 0;
1917 
1918 		idx = sc->ti_tx_saved_considx;
1919 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1920 			if (idx > 383)
1921 				CSR_WRITE_4(sc, TI_WINBASE,
1922 				    TI_TX_RING_BASE + 6144);
1923 			else if (idx > 255)
1924 				CSR_WRITE_4(sc, TI_WINBASE,
1925 				    TI_TX_RING_BASE + 4096);
1926 			else if (idx > 127)
1927 				CSR_WRITE_4(sc, TI_WINBASE,
1928 				    TI_TX_RING_BASE + 2048);
1929 			else
1930 				CSR_WRITE_4(sc, TI_WINBASE,
1931 				    TI_TX_RING_BASE);
1932 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1933 		} else
1934 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1935 		if (cur_tx->ti_flags & TI_BDFLAG_END)
1936 			ifp->if_opackets++;
1937 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1938 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1939 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1940 		}
1941 		sc->ti_txcnt--;
1942 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1943 		ifp->if_timer = 0;
1944 	}
1945 
1946 	if (cur_tx != NULL)
1947 		ifp->if_flags &= ~IFF_OACTIVE;
1948 
1949 	return;
1950 }
1951 
1952 static void ti_intr(xsc)
1953 	void			*xsc;
1954 {
1955 	struct ti_softc		*sc;
1956 	struct ifnet		*ifp;
1957 
1958 	sc = xsc;
1959 	ifp = &sc->arpcom.ac_if;
1960 
1961 #ifdef notdef
1962 	/* Avoid this for now -- checking this register is expensive. */
1963 	/* Make sure this is really our interrupt. */
1964 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
1965 		return;
1966 #endif
1967 
1968 	/* Ack interrupt and stop others from occuring. */
1969 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1970 
1971 	if (ifp->if_flags & IFF_RUNNING) {
1972 		/* Check RX return ring producer/consumer */
1973 		ti_rxeof(sc);
1974 
1975 		/* Check TX ring producer/consumer */
1976 		ti_txeof(sc);
1977 	}
1978 
1979 	ti_handle_events(sc);
1980 
1981 	/* Re-enable interrupts. */
1982 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1983 
1984 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1985 		ti_start(ifp);
1986 
1987 	return;
1988 }
1989 
1990 static void ti_stats_update(sc)
1991 	struct ti_softc		*sc;
1992 {
1993 	struct ifnet		*ifp;
1994 
1995 	ifp = &sc->arpcom.ac_if;
1996 
1997 	ifp->if_collisions +=
1998 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1999 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2000 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2001 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2002 	   ifp->if_collisions;
2003 
2004 	return;
2005 }
2006 
2007 /*
2008  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2009  * pointers to descriptors.
2010  */
2011 static int ti_encap(sc, m_head, txidx)
2012 	struct ti_softc		*sc;
2013 	struct mbuf		*m_head;
2014 	u_int32_t		*txidx;
2015 {
2016 	struct ti_tx_desc	*f = NULL;
2017 	struct mbuf		*m;
2018 	u_int32_t		frag, cur, cnt = 0;
2019 	u_int16_t		csum_flags = 0;
2020 	struct ifvlan		*ifv = NULL;
2021 
2022 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2023 	    m_head->m_pkthdr.rcvif != NULL &&
2024 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2025 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2026 
2027 	m = m_head;
2028 	cur = frag = *txidx;
2029 
2030 	if (m_head->m_pkthdr.csum_flags) {
2031 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2032 			csum_flags |= TI_BDFLAG_IP_CKSUM;
2033 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2034 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2035 		if (m_head->m_flags & M_LASTFRAG)
2036 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2037 		else if (m_head->m_flags & M_FRAG)
2038 			csum_flags |= TI_BDFLAG_IP_FRAG;
2039 	}
2040 	/*
2041  	 * Start packing the mbufs in this chain into
2042 	 * the fragment pointers. Stop when we run out
2043  	 * of fragments or hit the end of the mbuf chain.
2044 	 */
2045 	for (m = m_head; m != NULL; m = m->m_next) {
2046 		if (m->m_len != 0) {
2047 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2048 				if (frag > 383)
2049 					CSR_WRITE_4(sc, TI_WINBASE,
2050 					    TI_TX_RING_BASE + 6144);
2051 				else if (frag > 255)
2052 					CSR_WRITE_4(sc, TI_WINBASE,
2053 					    TI_TX_RING_BASE + 4096);
2054 				else if (frag > 127)
2055 					CSR_WRITE_4(sc, TI_WINBASE,
2056 					    TI_TX_RING_BASE + 2048);
2057 				else
2058 					CSR_WRITE_4(sc, TI_WINBASE,
2059 					    TI_TX_RING_BASE);
2060 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2061 			} else
2062 				f = &sc->ti_rdata->ti_tx_ring[frag];
2063 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2064 				break;
2065 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2066 			f->ti_len = m->m_len;
2067 			f->ti_flags = csum_flags;
2068 
2069 			if (ifv != NULL) {
2070 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2071 				f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
2072 			} else {
2073 				f->ti_vlan_tag = 0;
2074 			}
2075 
2076 			/*
2077 			 * Sanity check: avoid coming within 16 descriptors
2078 			 * of the end of the ring.
2079 			 */
2080 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2081 				return(ENOBUFS);
2082 			cur = frag;
2083 			TI_INC(frag, TI_TX_RING_CNT);
2084 			cnt++;
2085 		}
2086 	}
2087 
2088 	if (m != NULL)
2089 		return(ENOBUFS);
2090 
2091 	if (frag == sc->ti_tx_saved_considx)
2092 		return(ENOBUFS);
2093 
2094 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2095 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2096 		    TI_BDFLAG_END;
2097 	else
2098 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2099 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2100 	sc->ti_txcnt += cnt;
2101 
2102 	*txidx = frag;
2103 
2104 	return(0);
2105 }
2106 
2107 /*
2108  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2109  * to the mbuf data regions directly in the transmit descriptors.
2110  */
2111 static void ti_start(ifp)
2112 	struct ifnet		*ifp;
2113 {
2114 	struct ti_softc		*sc;
2115 	struct mbuf		*m_head = NULL;
2116 	u_int32_t		prodidx = 0;
2117 
2118 	sc = ifp->if_softc;
2119 
2120 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2121 
2122 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2123 		IF_DEQUEUE(&ifp->if_snd, m_head);
2124 		if (m_head == NULL)
2125 			break;
2126 
2127 		/*
2128 		 * XXX
2129 		 * safety overkill.  If this is a fragmented packet chain
2130 		 * with delayed TCP/UDP checksums, then only encapsulate
2131 		 * it if we have enough descriptors to handle the entire
2132 		 * chain at once.
2133 		 * (paranoia -- may not actually be needed)
2134 		 */
2135 		if (m_head->m_flags & M_FIRSTFRAG &&
2136 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2137 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2138 			    m_head->m_pkthdr.csum_data + 16) {
2139 				IF_PREPEND(&ifp->if_snd, m_head);
2140 				ifp->if_flags |= IFF_OACTIVE;
2141 				break;
2142 			}
2143 		}
2144 
2145 		/*
2146 		 * Pack the data into the transmit ring. If we
2147 		 * don't have room, set the OACTIVE flag and wait
2148 		 * for the NIC to drain the ring.
2149 		 */
2150 		if (ti_encap(sc, m_head, &prodidx)) {
2151 			IF_PREPEND(&ifp->if_snd, m_head);
2152 			ifp->if_flags |= IFF_OACTIVE;
2153 			break;
2154 		}
2155 
2156 		/*
2157 		 * If there's a BPF listener, bounce a copy of this frame
2158 		 * to him.
2159 		 */
2160 		if (ifp->if_bpf)
2161 			bpf_mtap(ifp, m_head);
2162 	}
2163 
2164 	/* Transmit */
2165 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2166 
2167 	/*
2168 	 * Set a timeout in case the chip goes out to lunch.
2169 	 */
2170 	ifp->if_timer = 5;
2171 
2172 	return;
2173 }
2174 
2175 static void ti_init(xsc)
2176 	void			*xsc;
2177 {
2178 	struct ti_softc		*sc = xsc;
2179         int			s;
2180 
2181 	s = splimp();
2182 
2183 	/* Cancel pending I/O and flush buffers. */
2184 	ti_stop(sc);
2185 
2186 	/* Init the gen info block, ring control blocks and firmware. */
2187 	if (ti_gibinit(sc)) {
2188 		printf("ti%d: initialization failure\n", sc->ti_unit);
2189 		splx(s);
2190 		return;
2191 	}
2192 
2193 	splx(s);
2194 
2195 	return;
2196 }
2197 
2198 static void ti_init2(sc)
2199 	struct ti_softc		*sc;
2200 {
2201 	struct ti_cmd_desc	cmd;
2202 	struct ifnet		*ifp;
2203 	u_int16_t		*m;
2204 	struct ifmedia		*ifm;
2205 	int			tmp;
2206 
2207 	ifp = &sc->arpcom.ac_if;
2208 
2209 	/* Specify MTU and interface index. */
2210 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_dunit);
2211 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2212 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2213 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2214 
2215 	/* Load our MAC address. */
2216 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2217 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2218 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2219 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2220 
2221 	/* Enable or disable promiscuous mode as needed. */
2222 	if (ifp->if_flags & IFF_PROMISC) {
2223 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2224 	} else {
2225 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2226 	}
2227 
2228 	/* Program multicast filter. */
2229 	ti_setmulti(sc);
2230 
2231 	/*
2232 	 * If this is a Tigon 1, we should tell the
2233 	 * firmware to use software packet filtering.
2234 	 */
2235 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2236 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2237 	}
2238 
2239 	/* Init RX ring. */
2240 	ti_init_rx_ring_std(sc);
2241 
2242 	/* Init jumbo RX ring. */
2243 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2244 		ti_init_rx_ring_jumbo(sc);
2245 
2246 	/*
2247 	 * If this is a Tigon 2, we can also configure the
2248 	 * mini ring.
2249 	 */
2250 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2251 		ti_init_rx_ring_mini(sc);
2252 
2253 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2254 	sc->ti_rx_saved_considx = 0;
2255 
2256 	/* Init TX ring. */
2257 	ti_init_tx_ring(sc);
2258 
2259 	/* Tell firmware we're alive. */
2260 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2261 
2262 	/* Enable host interrupts. */
2263 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2264 
2265 	ifp->if_flags |= IFF_RUNNING;
2266 	ifp->if_flags &= ~IFF_OACTIVE;
2267 
2268 	/*
2269 	 * Make sure to set media properly. We have to do this
2270 	 * here since we have to issue commands in order to set
2271 	 * the link negotiation and we can't issue commands until
2272 	 * the firmware is running.
2273 	 */
2274 	ifm = &sc->ifmedia;
2275 	tmp = ifm->ifm_media;
2276 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2277 	ti_ifmedia_upd(ifp);
2278 	ifm->ifm_media = tmp;
2279 
2280 	return;
2281 }
2282 
2283 /*
2284  * Set media options.
2285  */
2286 static int ti_ifmedia_upd(ifp)
2287 	struct ifnet		*ifp;
2288 {
2289 	struct ti_softc		*sc;
2290 	struct ifmedia		*ifm;
2291 	struct ti_cmd_desc	cmd;
2292 
2293 	sc = ifp->if_softc;
2294 	ifm = &sc->ifmedia;
2295 
2296 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2297 		return(EINVAL);
2298 
2299 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2300 	case IFM_AUTO:
2301 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2302 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2303 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2304 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2305 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2306 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2307 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2308 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2309 		break;
2310 	case IFM_1000_SX:
2311 	case IFM_1000_TX:
2312 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2313 		    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2314 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2315 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2316 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2317 		}
2318 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2319 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2320 		break;
2321 	case IFM_100_FX:
2322 	case IFM_10_FL:
2323 	case IFM_100_TX:
2324 	case IFM_10_T:
2325 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2326 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2327 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2328 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2329 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2330 		} else {
2331 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2332 		}
2333 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2334 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2335 		} else {
2336 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2337 		}
2338 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2339 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2340 		break;
2341 	}
2342 
2343 	return(0);
2344 }
2345 
2346 /*
2347  * Report current media status.
2348  */
2349 static void ti_ifmedia_sts(ifp, ifmr)
2350 	struct ifnet		*ifp;
2351 	struct ifmediareq	*ifmr;
2352 {
2353 	struct ti_softc		*sc;
2354 	u_int32_t		media = 0;
2355 
2356 	sc = ifp->if_softc;
2357 
2358 	ifmr->ifm_status = IFM_AVALID;
2359 	ifmr->ifm_active = IFM_ETHER;
2360 
2361 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2362 		return;
2363 
2364 	ifmr->ifm_status |= IFM_ACTIVE;
2365 
2366 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2367 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2368 		if (sc->ti_copper)
2369 			ifmr->ifm_active |= IFM_1000_TX;
2370 		else
2371 			ifmr->ifm_active |= IFM_1000_SX;
2372 		if (media & TI_GLNK_FULL_DUPLEX)
2373 			ifmr->ifm_active |= IFM_FDX;
2374 		else
2375 			ifmr->ifm_active |= IFM_HDX;
2376 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2377 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2378 		if (sc->ti_copper) {
2379 			if (media & TI_LNK_100MB)
2380 				ifmr->ifm_active |= IFM_100_TX;
2381 			if (media & TI_LNK_10MB)
2382 				ifmr->ifm_active |= IFM_10_T;
2383 		} else {
2384 			if (media & TI_LNK_100MB)
2385 				ifmr->ifm_active |= IFM_100_FX;
2386 			if (media & TI_LNK_10MB)
2387 				ifmr->ifm_active |= IFM_10_FL;
2388 		}
2389 		if (media & TI_LNK_FULL_DUPLEX)
2390 			ifmr->ifm_active |= IFM_FDX;
2391 		if (media & TI_LNK_HALF_DUPLEX)
2392 			ifmr->ifm_active |= IFM_HDX;
2393 	}
2394 
2395 	return;
2396 }
2397 
2398 static int ti_ioctl(ifp, command, data, cr)
2399 	struct ifnet		*ifp;
2400 	u_long			command;
2401 	caddr_t			data;
2402 	struct ucred		*cr;
2403 {
2404 	struct ti_softc		*sc = ifp->if_softc;
2405 	struct ifreq		*ifr = (struct ifreq *) data;
2406 	int			s, mask, error = 0;
2407 	struct ti_cmd_desc	cmd;
2408 
2409 	s = splimp();
2410 
2411 	switch(command) {
2412 	case SIOCSIFADDR:
2413 	case SIOCGIFADDR:
2414 		error = ether_ioctl(ifp, command, data);
2415 		break;
2416 	case SIOCSIFMTU:
2417 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2418 			error = EINVAL;
2419 		else {
2420 			ifp->if_mtu = ifr->ifr_mtu;
2421 			ti_init(sc);
2422 		}
2423 		break;
2424 	case SIOCSIFFLAGS:
2425 		if (ifp->if_flags & IFF_UP) {
2426 			/*
2427 			 * If only the state of the PROMISC flag changed,
2428 			 * then just use the 'set promisc mode' command
2429 			 * instead of reinitializing the entire NIC. Doing
2430 			 * a full re-init means reloading the firmware and
2431 			 * waiting for it to start up, which may take a
2432 			 * second or two.
2433 			 */
2434 			if (ifp->if_flags & IFF_RUNNING &&
2435 			    ifp->if_flags & IFF_PROMISC &&
2436 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2437 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2438 				    TI_CMD_CODE_PROMISC_ENB, 0);
2439 			} else if (ifp->if_flags & IFF_RUNNING &&
2440 			    !(ifp->if_flags & IFF_PROMISC) &&
2441 			    sc->ti_if_flags & IFF_PROMISC) {
2442 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2443 				    TI_CMD_CODE_PROMISC_DIS, 0);
2444 			} else
2445 				ti_init(sc);
2446 		} else {
2447 			if (ifp->if_flags & IFF_RUNNING) {
2448 				ti_stop(sc);
2449 			}
2450 		}
2451 		sc->ti_if_flags = ifp->if_flags;
2452 		error = 0;
2453 		break;
2454 	case SIOCADDMULTI:
2455 	case SIOCDELMULTI:
2456 		if (ifp->if_flags & IFF_RUNNING) {
2457 			ti_setmulti(sc);
2458 			error = 0;
2459 		}
2460 		break;
2461 	case SIOCSIFMEDIA:
2462 	case SIOCGIFMEDIA:
2463 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2464 		break;
2465 	case SIOCSIFCAP:
2466 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2467 		if (mask & IFCAP_HWCSUM) {
2468 			if (IFCAP_HWCSUM & ifp->if_capenable)
2469 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2470                         else
2471                                 ifp->if_capenable |= IFCAP_HWCSUM;
2472 			if (ifp->if_flags & IFF_RUNNING)
2473 				ti_init(sc);
2474                 }
2475 		error = 0;
2476 		break;
2477 	default:
2478 		error = EINVAL;
2479 		break;
2480 	}
2481 
2482 	(void)splx(s);
2483 
2484 	return(error);
2485 }
2486 
2487 static void ti_watchdog(ifp)
2488 	struct ifnet		*ifp;
2489 {
2490 	struct ti_softc		*sc;
2491 
2492 	sc = ifp->if_softc;
2493 
2494 	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2495 	ti_stop(sc);
2496 	ti_init(sc);
2497 
2498 	ifp->if_oerrors++;
2499 
2500 	return;
2501 }
2502 
2503 /*
2504  * Stop the adapter and free any mbufs allocated to the
2505  * RX and TX lists.
2506  */
2507 static void ti_stop(sc)
2508 	struct ti_softc		*sc;
2509 {
2510 	struct ifnet		*ifp;
2511 	struct ti_cmd_desc	cmd;
2512 
2513 	ifp = &sc->arpcom.ac_if;
2514 
2515 	/* Disable host interrupts. */
2516 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2517 	/*
2518 	 * Tell firmware we're shutting down.
2519 	 */
2520 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2521 
2522 	/* Halt and reinitialize. */
2523 	ti_chipinit(sc);
2524 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2525 	ti_chipinit(sc);
2526 
2527 	/* Free the RX lists. */
2528 	ti_free_rx_ring_std(sc);
2529 
2530 	/* Free jumbo RX list. */
2531 	ti_free_rx_ring_jumbo(sc);
2532 
2533 	/* Free mini RX list. */
2534 	ti_free_rx_ring_mini(sc);
2535 
2536 	/* Free TX buffers. */
2537 	ti_free_tx_ring(sc);
2538 
2539 	sc->ti_ev_prodidx.ti_idx = 0;
2540 	sc->ti_return_prodidx.ti_idx = 0;
2541 	sc->ti_tx_considx.ti_idx = 0;
2542 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2543 
2544 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2545 
2546 	return;
2547 }
2548 
2549 /*
2550  * Stop all chip I/O so that the kernel's probe routines don't
2551  * get confused by errant DMAs when rebooting.
2552  */
2553 static void ti_shutdown(dev)
2554 	device_t		dev;
2555 {
2556 	struct ti_softc		*sc;
2557 
2558 	sc = device_get_softc(dev);
2559 
2560 	ti_chipinit(sc);
2561 
2562 	return;
2563 }
2564