xref: /dragonfly/sys/dev/netif/ti/if_ti.c (revision 6bd457ed)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ti.c,v 1.25.2.14 2002/02/15 04:20:20 silby Exp $
33  * $DragonFly: src/sys/dev/netif/ti/if_ti.c,v 1.34 2005/06/14 14:19:22 joerg Exp $
34  */
35 
36 /*
37  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
38  * Manuals, sample driver and firmware source kits are available
39  * from http://www.alteon.com/support/openkits.
40  *
41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
42  * Electrical Engineering Department
43  * Columbia University, New York City
44  */
45 
46 /*
47  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
48  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
49  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
50  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
51  * filtering and jumbo (9014 byte) frames. The hardware is largely
52  * controlled by firmware, which must be loaded into the NIC during
53  * initialization.
54  *
55  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
56  * revision, which supports new features such as extended commands,
57  * extended jumbo receive ring desciptors and a mini receive ring.
58  *
59  * Alteon Networks is to be commended for releasing such a vast amount
60  * of development material for the Tigon NIC without requiring an NDA
61  * (although they really should have done it a long time ago). With
62  * any luck, the other vendors will finally wise up and follow Alteon's
63  * stellar example.
64  *
65  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
66  * this driver by #including it as a C header file. This bloats the
67  * driver somewhat, but it's the easiest method considering that the
68  * driver code and firmware code need to be kept in sync. The source
69  * for the firmware is not provided with the FreeBSD distribution since
70  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
71  *
72  * The following people deserve special thanks:
73  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
74  *   for testing
75  * - Raymond Lee of Netgear, for providing a pair of Netgear
76  *   GA620 Tigon 2 boards for testing
77  * - Ulf Zimmermann, for bringing the GA260 to my attention and
78  *   convincing me to write this driver.
79  * - Andrew Gallatin for providing FreeBSD/Alpha support.
80  */
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/sockio.h>
85 #include <sys/mbuf.h>
86 #include <sys/malloc.h>
87 #include <sys/kernel.h>
88 #include <sys/socket.h>
89 #include <sys/queue.h>
90 #include <sys/thread2.h>
91 
92 #include <net/if.h>
93 #include <net/ifq_var.h>
94 #include <net/if_arp.h>
95 #include <net/ethernet.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_types.h>
99 #include <net/vlan/if_vlan_var.h>
100 
101 #include <net/bpf.h>
102 
103 #include <netinet/in_systm.h>
104 #include <netinet/in.h>
105 #include <netinet/ip.h>
106 
107 #include <vm/vm.h>              /* for vtophys */
108 #include <vm/pmap.h>            /* for vtophys */
109 #include <machine/bus.h>
110 #include <machine/resource.h>
111 #include <sys/bus.h>
112 #include <sys/rman.h>
113 
114 #include <bus/pci/pcireg.h>
115 #include <bus/pci/pcivar.h>
116 
117 #include "if_tireg.h"
118 #include "ti_fw.h"
119 #include "ti_fw2.h"
120 
121 /*
122  * Temporarily disable the checksum offload support for now.
123  * Tests with ftp.freesoftware.com show that after about 12 hours,
124  * the firmware will begin calculating completely bogus TX checksums
125  * and refuse to stop until the interface is reset. Unfortunately,
126  * there isn't enough time to fully debug this before the 4.1
127  * release, so this will need to stay off for now.
128  */
129 #ifdef notdef
130 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
131 #else
132 #define TI_CSUM_FEATURES	0
133 #endif
134 
135 /*
136  * Various supported device vendors/types and their names.
137  */
138 
139 static struct ti_type ti_devs[] = {
140 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
141 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
142 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
143 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
144 	{ TC_VENDORID,	TC_DEVICEID_3C985,
145 		"3Com 3c985-SX Gigabit Ethernet" },
146 	{ NG_VENDORID, NG_DEVICEID_GA620,
147 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
148 	{ NG_VENDORID, NG_DEVICEID_GA620T,
149 		"Netgear GA620 1000baseT Gigabit Ethernet" },
150 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
151 		"Silicon Graphics Gigabit Ethernet" },
152 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
153 		"Farallon PN9000SX Gigabit Ethernet" },
154 	{ 0, 0, NULL }
155 };
156 
157 static int	ti_probe(device_t);
158 static int	ti_attach(device_t);
159 static int	ti_detach(device_t);
160 static void	ti_txeof(struct ti_softc *);
161 static void	ti_rxeof(struct ti_softc *);
162 
163 static void	ti_stats_update(struct ti_softc *);
164 static int	ti_encap(struct ti_softc *, struct mbuf *, uint32_t *);
165 
166 static void	ti_intr(void *);
167 static void	ti_start(struct ifnet *);
168 static int	ti_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
169 static void	ti_init(void *);
170 static void	ti_init2(struct ti_softc *);
171 static void	ti_stop(struct ti_softc *);
172 static void	ti_watchdog(struct ifnet *);
173 static void	ti_shutdown(device_t);
174 static int	ti_ifmedia_upd(struct ifnet *);
175 static void	ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176 
177 static uint32_t	ti_eeprom_putbyte(struct ti_softc *, int);
178 static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
179 static int	ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
180 
181 static void	ti_add_mcast(struct ti_softc *, struct ether_addr *);
182 static void	ti_del_mcast(struct ti_softc *, struct ether_addr *);
183 static void	ti_setmulti(struct ti_softc *);
184 
185 static void	ti_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t);
186 static void	ti_loadfw(struct ti_softc *);
187 static void	ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
188 static void	ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *,
189 			   caddr_t, int);
190 static void	ti_handle_events(struct ti_softc *);
191 static int	ti_alloc_jumbo_mem(struct ti_softc *);
192 static struct ti_jslot *
193 		ti_jalloc(struct ti_softc *);
194 static void	ti_jfree(void *);
195 static void	ti_jref(void *);
196 static int	ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
197 static int	ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
198 static int	ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
199 static int	ti_init_rx_ring_std(struct ti_softc *);
200 static void	ti_free_rx_ring_std(struct ti_softc *);
201 static int	ti_init_rx_ring_jumbo(struct ti_softc *);
202 static void	ti_free_rx_ring_jumbo(struct ti_softc *);
203 static int	ti_init_rx_ring_mini(struct ti_softc *);
204 static void	ti_free_rx_ring_mini(struct ti_softc *);
205 static void	ti_free_tx_ring(struct ti_softc *);
206 static int	ti_init_tx_ring(struct ti_softc *);
207 
208 static int	ti_64bitslot_war(struct ti_softc *);
209 static int	ti_chipinit(struct ti_softc *);
210 static int	ti_gibinit(struct ti_softc *);
211 
212 static device_method_t ti_methods[] = {
213 	/* Device interface */
214 	DEVMETHOD(device_probe,		ti_probe),
215 	DEVMETHOD(device_attach,	ti_attach),
216 	DEVMETHOD(device_detach,	ti_detach),
217 	DEVMETHOD(device_shutdown,	ti_shutdown),
218 	{ 0, 0 }
219 };
220 
221 
222 static DEFINE_CLASS_0(ti, ti_driver, ti_methods, sizeof(struct ti_softc));
223 static devclass_t ti_devclass;
224 
225 DECLARE_DUMMY_MODULE(if_ti);
226 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
227 
228 /*
229  * Send an instruction or address to the EEPROM, check for ACK.
230  */
231 static uint32_t
232 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
233 {
234 	int ack = 0, i;
235 
236 	/*
237 	 * Make sure we're in TX mode.
238 	 */
239 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
240 
241 	/*
242 	 * Feed in each bit and stobe the clock.
243 	 */
244 	for (i = 0x80; i; i >>= 1) {
245 		if (byte & i)
246 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
247 		else
248 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
249 		DELAY(1);
250 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
251 		DELAY(1);
252 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
253 	}
254 
255 	/*
256 	 * Turn off TX mode.
257 	 */
258 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
259 
260 	/*
261 	 * Check for ack.
262 	 */
263 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
264 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
265 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
266 
267 	return(ack);
268 }
269 
270 /*
271  * Read a byte of data stored in the EEPROM at address 'addr.'
272  * We have to send two address bytes since the EEPROM can hold
273  * more than 256 bytes of data.
274  */
275 static uint8_t
276 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
277 {
278 	struct ifnet *ifp = &sc->arpcom.ac_if;
279 	int i;
280 	uint8_t byte = 0;
281 
282 	EEPROM_START;
283 
284 	/*
285 	 * Send write control code to EEPROM.
286 	 */
287 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
288 		if_printf(ifp, "failed to send write command, status: %x\n",
289 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
290 		return(1);
291 	}
292 
293 	/*
294 	 * Send first byte of address of byte we want to read.
295 	 */
296 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
297 		if_printf(ifp, "failed to send address, status: %x\n",
298 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
299 		return(1);
300 	}
301 	/*
302 	 * Send second byte address of byte we want to read.
303 	 */
304 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
305 		if_printf(ifp, "failed to send address, status: %x\n",
306 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
307 		return(1);
308 	}
309 
310 	EEPROM_STOP;
311 	EEPROM_START;
312 	/*
313 	 * Send read control code to EEPROM.
314 	 */
315 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
316 		if_printf(ifp, "failed to send read command, status: %x\n",
317 			  CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
318 		return(1);
319 	}
320 
321 	/*
322 	 * Start reading bits from EEPROM.
323 	 */
324 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
325 	for (i = 0x80; i; i >>= 1) {
326 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
327 		DELAY(1);
328 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
329 			byte |= i;
330 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
331 		DELAY(1);
332 	}
333 
334 	EEPROM_STOP;
335 
336 	/*
337 	 * No ACK generated for read, so just return byte.
338 	 */
339 
340 	*dest = byte;
341 
342 	return(0);
343 }
344 
345 /*
346  * Read a sequence of bytes from the EEPROM.
347  */
348 static int
349 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
350 {
351 	int err = 0, i;
352 	uint8_t byte = 0;
353 
354 	for (i = 0; i < cnt; i++) {
355 		err = ti_eeprom_getbyte(sc, off + i, &byte);
356 		if (err)
357 			break;
358 		*(dest + i) = byte;
359 	}
360 
361 	return(err ? 1 : 0);
362 }
363 
364 /*
365  * NIC memory access function. Can be used to either clear a section
366  * of NIC local memory or (if buf is non-NULL) copy data into it.
367  */
368 static void
369 ti_mem(struct ti_softc *sc, uint32_t addr, uint32_t len, caddr_t buf)
370 {
371 	int cnt, segptr, segsize;
372 	caddr_t ti_winbase, ptr;
373 
374 	segptr = addr;
375 	cnt = len;
376 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
377 	ptr = buf;
378 
379 	while(cnt) {
380 		if (cnt < TI_WINLEN)
381 			segsize = cnt;
382 		else
383 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
384 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
385 		if (buf == NULL)
386 			bzero((char *)ti_winbase + (segptr &
387 			    (TI_WINLEN - 1)), segsize);
388 		else {
389 			bcopy((char *)ptr, (char *)ti_winbase +
390 			    (segptr & (TI_WINLEN - 1)), segsize);
391 			ptr += segsize;
392 		}
393 		segptr += segsize;
394 		cnt -= segsize;
395 	}
396 }
397 
398 /*
399  * Load firmware image into the NIC. Check that the firmware revision
400  * is acceptable and see if we want the firmware for the Tigon 1 or
401  * Tigon 2.
402  */
403 static void
404 ti_loadfw(struct ti_softc *sc)
405 {
406 	struct ifnet *ifp = &sc->arpcom.ac_if;
407 
408 	switch(sc->ti_hwrev) {
409 	case TI_HWREV_TIGON:
410 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
411 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
412 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
413 			if_printf(ifp, "firmware revision mismatch; want "
414 				  "%d.%d.%d, got %d.%d.%d\n",
415 				  TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
416 				  TI_FIRMWARE_FIX, tigonFwReleaseMajor,
417 				  tigonFwReleaseMinor, tigonFwReleaseFix);
418 			return;
419 		}
420 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
421 		    (caddr_t)tigonFwText);
422 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
423 		    (caddr_t)tigonFwData);
424 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
425 		    (caddr_t)tigonFwRodata);
426 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
427 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
428 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
429 		break;
430 	case TI_HWREV_TIGON_II:
431 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
432 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
433 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
434 			if_printf(ifp, "firmware revision mismatch; want "
435 				  "%d.%d.%d, got %d.%d.%d\n",
436 				  TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
437 				  TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
438 				  tigon2FwReleaseMinor, tigon2FwReleaseFix);
439 			return;
440 		}
441 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
442 		    (caddr_t)tigon2FwText);
443 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
444 		    (caddr_t)tigon2FwData);
445 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
446 		    (caddr_t)tigon2FwRodata);
447 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
448 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
449 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
450 		break;
451 	default:
452 		if_printf(ifp, "can't load firmware: unknown hardware rev\n");
453 		break;
454 	}
455 }
456 
457 /*
458  * Send the NIC a command via the command ring.
459  */
460 static void
461 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
462 {
463 	uint32_t index;
464 
465 	if (sc->ti_rdata->ti_cmd_ring == NULL)
466 		return;
467 
468 	index = sc->ti_cmd_saved_prodidx;
469 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
470 	TI_INC(index, TI_CMD_RING_CNT);
471 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
472 	sc->ti_cmd_saved_prodidx = index;
473 }
474 
475 /*
476  * Send the NIC an extended command. The 'len' parameter specifies the
477  * number of command slots to include after the initial command.
478  */
479 static void
480 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
481 {
482 	uint32_t index;
483 	int i;
484 
485 	if (sc->ti_rdata->ti_cmd_ring == NULL)
486 		return;
487 
488 	index = sc->ti_cmd_saved_prodidx;
489 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
490 	TI_INC(index, TI_CMD_RING_CNT);
491 	for (i = 0; i < len; i++) {
492 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
493 		    *(uint32_t *)(&arg[i * 4]));
494 		TI_INC(index, TI_CMD_RING_CNT);
495 	}
496 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
497 	sc->ti_cmd_saved_prodidx = index;
498 }
499 
500 /*
501  * Handle events that have triggered interrupts.
502  */
503 static void
504 ti_handle_events(struct ti_softc *sc)
505 {
506 	struct ifnet *ifp = &sc->arpcom.ac_if;
507 	struct ti_event_desc *e;
508 
509 	if (sc->ti_rdata->ti_event_ring == NULL)
510 		return;
511 
512 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
513 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
514 		switch(e->ti_event) {
515 		case TI_EV_LINKSTAT_CHANGED:
516 			sc->ti_linkstat = e->ti_code;
517 			if (e->ti_code == TI_EV_CODE_LINK_UP) {
518 				if_printf(ifp, "10/100 link up\n");
519 			} else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP) {
520 				if_printf(ifp, "gigabit link up\n");
521 			} else if (e->ti_code == TI_EV_CODE_LINK_DOWN) {
522 				if_printf(ifp, "link down\n");
523 			}
524 			break;
525 		case TI_EV_ERROR:
526 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD) {
527 				if_printf(ifp, "invalid command\n");
528 			} else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD) {
529 				if_printf(ifp, "unknown command\n");
530 			} else if (e->ti_code == TI_EV_CODE_ERR_BADCFG) {
531 				if_printf(ifp, "bad config data\n");
532 			}
533 			break;
534 		case TI_EV_FIRMWARE_UP:
535 			ti_init2(sc);
536 			break;
537 		case TI_EV_STATS_UPDATED:
538 			ti_stats_update(sc);
539 			break;
540 		case TI_EV_RESET_JUMBO_RING:
541 		case TI_EV_MCAST_UPDATED:
542 			/* Who cares. */
543 			break;
544 		default:
545 			if_printf(ifp, "unknown event: %d\n", e->ti_event);
546 			break;
547 		}
548 		/* Advance the consumer index. */
549 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
550 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
551 	}
552 }
553 
554 /*
555  * Memory management for the jumbo receive ring is a pain in the
556  * butt. We need to allocate at least 9018 bytes of space per frame,
557  * _and_ it has to be contiguous (unless you use the extended
558  * jumbo descriptor format). Using malloc() all the time won't
559  * work: malloc() allocates memory in powers of two, which means we
560  * would end up wasting a considerable amount of space by allocating
561  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
562  * to do our own memory management.
563  *
564  * The driver needs to allocate a contiguous chunk of memory at boot
565  * time. We then chop this up ourselves into 9K pieces and use them
566  * as external mbuf storage.
567  *
568  * One issue here is how much memory to allocate. The jumbo ring has
569  * 256 slots in it, but at 9K per slot than can consume over 2MB of
570  * RAM. This is a bit much, especially considering we also need
571  * RAM for the standard ring and mini ring (on the Tigon 2). To
572  * save space, we only actually allocate enough memory for 64 slots
573  * by default, which works out to between 500 and 600K. This can
574  * be tuned by changing a #define in if_tireg.h.
575  */
576 
577 static int
578 ti_alloc_jumbo_mem(struct ti_softc *sc)
579 {
580 	struct ti_jslot *entry;
581 	caddr_t ptr;
582 	int i;
583 
584 	/* Grab a big chunk o' storage. */
585 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
586 		M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
587 
588 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
589 		if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
590 		return(ENOBUFS);
591 	}
592 
593 	SLIST_INIT(&sc->ti_jfree_listhead);
594 
595 	/*
596 	 * Now divide it up into 9K pieces and save the addresses
597 	 * in an array. Note that we play an evil trick here by using
598 	 * the first few bytes in the buffer to hold the the address
599 	 * of the softc structure for this interface. This is because
600 	 * ti_jfree() needs it, but it is called by the mbuf management
601 	 * code which will not pass it to us explicitly.
602 	 */
603 	ptr = sc->ti_cdata.ti_jumbo_buf;
604 	for (i = 0; i < TI_JSLOTS; i++) {
605 		entry = &sc->ti_cdata.ti_jslots[i];
606 		entry->ti_sc = sc;
607 		entry->ti_buf = ptr;
608 		entry->ti_inuse = 0;
609 		entry->ti_slot = i;
610 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jslot_link);
611 		ptr += TI_JLEN;
612 	}
613 
614 	return(0);
615 }
616 
617 /*
618  * Allocate a jumbo buffer.
619  */
620 static struct ti_jslot *
621 ti_jalloc(struct ti_softc *sc)
622 {
623 	struct ti_jslot *entry;
624 
625 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
626 
627 	if (entry == NULL) {
628 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
629 		return(NULL);
630 	}
631 
632 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jslot_link);
633 	entry->ti_inuse = 1;
634 	return(entry);
635 }
636 
637 /*
638  * Adjust usage count on a jumbo buffer. In general this doesn't
639  * get used much because our jumbo buffers don't get passed around
640  * too much, but it's implemented for correctness.
641  */
642 static void
643 ti_jref(void *arg)
644 {
645 	struct ti_jslot *entry = (struct ti_jslot *)arg;
646 	struct ti_softc *sc = entry->ti_sc;
647 
648 	if (sc == NULL)
649 		panic("ti_jref: can't find softc pointer!");
650 
651 	if (&sc->ti_cdata.ti_jslots[entry->ti_slot] != entry)
652 		panic("ti_jref: asked to reference buffer "
653 		    "that we don't manage!");
654 	if (entry->ti_inuse == 0)
655 		panic("ti_jref: buffer already free!");
656 	entry->ti_inuse++;
657 }
658 
659 /*
660  * Release a jumbo buffer.
661  */
662 static void
663 ti_jfree(void *arg)
664 {
665 	struct ti_jslot *entry = (struct ti_jslot *)arg;
666 	struct ti_softc *sc = entry->ti_sc;
667 
668 	if (sc == NULL)
669 		panic("ti_jref: can't find softc pointer!");
670 
671 	if (&sc->ti_cdata.ti_jslots[entry->ti_slot] != entry)
672 		panic("ti_jref: asked to reference buffer "
673 		    "that we don't manage!");
674 	if (entry->ti_inuse == 0)
675 		panic("ti_jref: buffer already free!");
676 	if (--entry->ti_inuse == 0)
677 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jslot_link);
678 }
679 
680 
681 /*
682  * Intialize a standard receive ring descriptor.
683  */
684 static int
685 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m)
686 {
687 	struct mbuf *m_new;
688 	struct ti_rx_desc *r;
689 
690 	if (m == NULL) {
691 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
692 		if (m_new == NULL)
693 			return (ENOBUFS);
694 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
695 	} else {
696 		m_new = m;
697 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
698 		m_new->m_data = m_new->m_ext.ext_buf;
699 	}
700 
701 
702 	m_adj(m_new, ETHER_ALIGN);
703 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
704 	r = &sc->ti_rdata->ti_rx_std_ring[i];
705 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
706 	r->ti_type = TI_BDTYPE_RECV_BD;
707 	r->ti_flags = 0;
708 	if (sc->arpcom.ac_if.if_hwassist)
709 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
710 	r->ti_len = m_new->m_len;
711 	r->ti_idx = i;
712 
713 	return(0);
714 }
715 
716 /*
717  * Intialize a mini receive ring descriptor. This only applies to
718  * the Tigon 2.
719  */
720 static int
721 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m)
722 {
723 	struct mbuf *m_new;
724 	struct ti_rx_desc *r;
725 
726 	if (m == NULL) {
727 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
728 		if (m_new == NULL) {
729 			return(ENOBUFS);
730 		}
731 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
732 	} else {
733 		m_new = m;
734 		m_new->m_data = m_new->m_pktdat;
735 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
736 	}
737 
738 	m_adj(m_new, ETHER_ALIGN);
739 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
740 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
741 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
742 	r->ti_type = TI_BDTYPE_RECV_BD;
743 	r->ti_flags = TI_BDFLAG_MINI_RING;
744 	if (sc->arpcom.ac_if.if_hwassist)
745 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
746 	r->ti_len = m_new->m_len;
747 	r->ti_idx = i;
748 
749 	return(0);
750 }
751 
752 /*
753  * Initialize a jumbo receive ring descriptor. This allocates
754  * a jumbo buffer from the pool managed internally by the driver.
755  */
756 static int
757 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
758 {
759 	struct mbuf *m_new;
760 	struct ti_rx_desc *r;
761 	struct ti_jslot *buf;
762 
763 	if (m == NULL) {
764 		/* Allocate the mbuf. */
765 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
766 		if (m_new == NULL) {
767 			return(ENOBUFS);
768 		}
769 
770 		/* Allocate the jumbo buffer */
771 		buf = ti_jalloc(sc);
772 		if (buf == NULL) {
773 			m_freem(m_new);
774 			if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
775 				  "-- packet dropped!\n");
776 			return(ENOBUFS);
777 		}
778 
779 		/* Attach the buffer to the mbuf. */
780 		m_new->m_ext.ext_arg = buf;
781 		m_new->m_ext.ext_free = ti_jfree;
782 		m_new->m_ext.ext_ref = ti_jref;
783 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
784 
785 		m_new->m_data = m_new->m_ext.ext_buf;
786 		m_new->m_flags |= M_EXT;
787 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
788 	} else {
789 		m_new = m;
790 		m_new->m_data = m_new->m_ext.ext_buf;
791 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
792 	}
793 
794 	m_adj(m_new, ETHER_ALIGN);
795 	/* Set up the descriptor. */
796 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
797 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
798 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
799 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
800 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
801 	if (sc->arpcom.ac_if.if_hwassist)
802 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
803 	r->ti_len = m_new->m_len;
804 	r->ti_idx = i;
805 
806 	return(0);
807 }
808 
809 /*
810  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
811  * that's 1MB or memory, which is a lot. For now, we fill only the first
812  * 256 ring entries and hope that our CPU is fast enough to keep up with
813  * the NIC.
814  */
815 static int
816 ti_init_rx_ring_std(struct ti_softc *sc)
817 {
818 	int i;
819 	struct ti_cmd_desc cmd;
820 
821 	for (i = 0; i < TI_SSLOTS; i++) {
822 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
823 			return(ENOBUFS);
824 	};
825 
826 	TI_UPDATE_STDPROD(sc, i - 1);
827 	sc->ti_std = i - 1;
828 
829 	return(0);
830 }
831 
832 static void
833 ti_free_rx_ring_std(struct ti_softc *sc)
834 {
835 	int i;
836 
837 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
838 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
839 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
840 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
841 		}
842 		bzero(&sc->ti_rdata->ti_rx_std_ring[i],
843 		    sizeof(struct ti_rx_desc));
844 	}
845 }
846 
847 static int
848 ti_init_rx_ring_jumbo(struct ti_softc *sc)
849 {
850 	int i;
851 	struct ti_cmd_desc cmd;
852 
853 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
854 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
855 			return(ENOBUFS);
856 	}
857 
858 	TI_UPDATE_JUMBOPROD(sc, i - 1);
859 	sc->ti_jumbo = i - 1;
860 
861 	return(0);
862 }
863 
864 static void
865 ti_free_rx_ring_jumbo(struct ti_softc *sc)
866 {
867 	int i;
868 
869 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
870 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
871 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
872 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
873 		}
874 		bzero(&sc->ti_rdata->ti_rx_jumbo_ring[i],
875 		    sizeof(struct ti_rx_desc));
876 	}
877 }
878 
879 static int
880 ti_init_rx_ring_mini(struct ti_softc *sc)
881 {
882 	int i;
883 
884 	for (i = 0; i < TI_MSLOTS; i++) {
885 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
886 			return(ENOBUFS);
887 	}
888 
889 	TI_UPDATE_MINIPROD(sc, i - 1);
890 	sc->ti_mini = i - 1;
891 
892 	return(0);
893 }
894 
895 static void
896 ti_free_rx_ring_mini(struct ti_softc *sc)
897 {
898 	int i;
899 
900 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
901 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
902 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
903 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
904 		}
905 		bzero(&sc->ti_rdata->ti_rx_mini_ring[i],
906 		    sizeof(struct ti_rx_desc));
907 	}
908 }
909 
910 static void
911 ti_free_tx_ring(struct ti_softc *sc)
912 {
913 	int i;
914 
915 	if (sc->ti_rdata->ti_tx_ring == NULL)
916 		return;
917 
918 	for (i = 0; i < TI_TX_RING_CNT; i++) {
919 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
920 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
921 			sc->ti_cdata.ti_tx_chain[i] = NULL;
922 		}
923 		bzero(&sc->ti_rdata->ti_tx_ring[i],
924 		    sizeof(struct ti_tx_desc));
925 	}
926 }
927 
928 static int
929 ti_init_tx_ring(struct ti_softc *sc)
930 {
931 	sc->ti_txcnt = 0;
932 	sc->ti_tx_saved_considx = 0;
933 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
934 	return(0);
935 }
936 
937 /*
938  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
939  * but we have to support the old way too so that Tigon 1 cards will
940  * work.
941  */
942 static void
943 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
944 {
945 	struct ti_cmd_desc cmd;
946 	uint16_t *m;
947 	uint32_t ext[2] = {0, 0};
948 
949 	m = (uint16_t *)&addr->octet[0];
950 
951 	switch(sc->ti_hwrev) {
952 	case TI_HWREV_TIGON:
953 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
954 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
955 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
956 		break;
957 	case TI_HWREV_TIGON_II:
958 		ext[0] = htons(m[0]);
959 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
960 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
961 		break;
962 	default:
963 		if_printf(&sc->arpcom.ac_if, "unknown hwrev\n");
964 		break;
965 	}
966 }
967 
968 static void
969 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
970 {
971 	struct ti_cmd_desc cmd;
972 	uint16_t *m;
973 	uint32_t ext[2] = {0, 0};
974 
975 	m = (uint16_t *)&addr->octet[0];
976 
977 	switch(sc->ti_hwrev) {
978 	case TI_HWREV_TIGON:
979 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
980 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
981 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
982 		break;
983 	case TI_HWREV_TIGON_II:
984 		ext[0] = htons(m[0]);
985 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
986 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
987 		break;
988 	default:
989 		if_printf(&sc->arpcom.ac_if, "unknown hwrev\n");
990 		break;
991 	}
992 }
993 
994 /*
995  * Configure the Tigon's multicast address filter.
996  *
997  * The actual multicast table management is a bit of a pain, thanks to
998  * slight brain damage on the part of both Alteon and us. With our
999  * multicast code, we are only alerted when the multicast address table
1000  * changes and at that point we only have the current list of addresses:
1001  * we only know the current state, not the previous state, so we don't
1002  * actually know what addresses were removed or added. The firmware has
1003  * state, but we can't get our grubby mits on it, and there is no 'delete
1004  * all multicast addresses' command. Hence, we have to maintain our own
1005  * state so we know what addresses have been programmed into the NIC at
1006  * any given time.
1007  */
1008 static void
1009 ti_setmulti(struct ti_softc *sc)
1010 {
1011 	struct ifnet *ifp = &sc->arpcom.ac_if;
1012 	struct ifmultiaddr *ifma;
1013 	struct ti_cmd_desc cmd;
1014 	struct ti_mc_entry *mc;
1015 	uint32_t intrs;
1016 
1017 	if (ifp->if_flags & IFF_ALLMULTI) {
1018 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1019 		return;
1020 	}
1021 
1022 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1023 
1024 	/* Disable interrupts. */
1025 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1026 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1027 
1028 	/* First, zot all the existing filters. */
1029 	while (sc->ti_mc_listhead.slh_first != NULL) {
1030 		mc = sc->ti_mc_listhead.slh_first;
1031 		ti_del_mcast(sc, &mc->mc_addr);
1032 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1033 		free(mc, M_DEVBUF);
1034 	}
1035 
1036 	/* Now program new ones. */
1037 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1038 		if (ifma->ifma_addr->sa_family != AF_LINK)
1039 			continue;
1040 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_INTWAIT);
1041 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1042 		    &mc->mc_addr, ETHER_ADDR_LEN);
1043 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1044 		ti_add_mcast(sc, &mc->mc_addr);
1045 	}
1046 
1047 	/* Re-enable interrupts. */
1048 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1049 }
1050 
1051 /*
1052  * Check to see if the BIOS has configured us for a 64 bit slot when
1053  * we aren't actually in one. If we detect this condition, we can work
1054  * around it on the Tigon 2 by setting a bit in the PCI state register,
1055  * but for the Tigon 1 we must give up and abort the interface attach.
1056  */
1057 static int
1058 ti_64bitslot_war(struct ti_softc *sc)
1059 {
1060 	if ((CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS) == 0) {
1061 		CSR_WRITE_4(sc, 0x600, 0);
1062 		CSR_WRITE_4(sc, 0x604, 0);
1063 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1064 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1065 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1066 				return(EINVAL);
1067 			TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_32BIT_BUS);
1068 			return(0);
1069 		}
1070 	}
1071 
1072 	return(0);
1073 }
1074 
1075 /*
1076  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1077  * self-test results.
1078  */
1079 static int
1080 ti_chipinit(struct ti_softc *sc)
1081 {
1082 	struct ifnet *ifp = &sc->arpcom.ac_if;
1083 	uint32_t cacheline;
1084 	uint32_t pci_writemax = 0;
1085 
1086 	/* Initialize link to down state. */
1087 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1088 
1089 	if (ifp->if_capenable & IFCAP_HWCSUM)
1090 		ifp->if_hwassist = TI_CSUM_FEATURES;
1091 	else
1092 		ifp->if_hwassist = 0;
1093 
1094 	/* Set endianness before we access any non-PCI registers. */
1095 #if BYTE_ORDER == BIG_ENDIAN
1096 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1097 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1098 #else
1099 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1100 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1101 #endif
1102 
1103 	/* Check the ROM failed bit to see if self-tests passed. */
1104 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1105 		if_printf(ifp, "board self-diagnostics failed!\n");
1106 		return(ENODEV);
1107 	}
1108 
1109 	/* Halt the CPU. */
1110 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1111 
1112 	/* Figure out the hardware revision. */
1113 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1114 	case TI_REV_TIGON_I:
1115 		sc->ti_hwrev = TI_HWREV_TIGON;
1116 		break;
1117 	case TI_REV_TIGON_II:
1118 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1119 		break;
1120 	default:
1121 		if_printf(ifp, "unsupported chip revision\n");
1122 		return(ENODEV);
1123 	}
1124 
1125 	/* Do special setup for Tigon 2. */
1126 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1127 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1128 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1129 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1130 	}
1131 
1132 	/* Set up the PCI state register. */
1133 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1134 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1135 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1136 	}
1137 
1138 	/* Clear the read/write max DMA parameters. */
1139 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1140 	    TI_PCISTATE_READ_MAXDMA));
1141 
1142 	/* Get cache line size. */
1143 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1144 
1145 	/*
1146 	 * If the system has set enabled the PCI memory write
1147 	 * and invalidate command in the command register, set
1148 	 * the write max parameter accordingly. This is necessary
1149 	 * to use MWI with the Tigon 2.
1150 	 */
1151 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1152 		switch(cacheline) {
1153 		case 1:
1154 		case 4:
1155 		case 8:
1156 		case 16:
1157 		case 32:
1158 		case 64:
1159 			break;
1160 		default:
1161 		/* Disable PCI memory write and invalidate. */
1162 			if (bootverbose) {
1163 				if_printf(ifp, "cache line size %d not "
1164 					  "supported; disabling PCI MWI\n",
1165 					  cacheline);
1166 			}
1167 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1168 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1169 			break;
1170 		}
1171 	}
1172 
1173 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1174 
1175 	/* This sets the min dma param all the way up (0xff). */
1176 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1177 
1178 	/* Configure DMA variables. */
1179 #if BYTE_ORDER == BIG_ENDIAN
1180 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1181 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1182 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1183 	    TI_OPMODE_DONT_FRAG_JUMBO);
1184 #else
1185 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1186 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1187 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1188 #endif
1189 
1190 	/*
1191 	 * Only allow 1 DMA channel to be active at a time.
1192 	 * I don't think this is a good idea, but without it
1193 	 * the firmware racks up lots of nicDmaReadRingFull
1194 	 * errors.  This is not compatible with hardware checksums.
1195 	 */
1196 	if (ifp->if_hwassist == 0)
1197 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1198 
1199 	/* Recommended settings from Tigon manual. */
1200 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1201 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1202 
1203 	if (ti_64bitslot_war(sc)) {
1204 		if_printf(ifp, "bios thinks we're in a 64 bit slot, "
1205 			  "but we aren't");
1206 		return(EINVAL);
1207 	}
1208 
1209 	return(0);
1210 }
1211 
1212 /*
1213  * Initialize the general information block and firmware, and
1214  * start the CPU(s) running.
1215  */
1216 static int
1217 ti_gibinit(struct ti_softc *sc)
1218 {
1219 	struct ifnet *ifp = &sc->arpcom.ac_if;
1220 	struct ti_rcb *rcb;
1221 	int i;
1222 
1223 	/* Disable interrupts for now. */
1224 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1225 
1226 	/* Tell the chip where to find the general information block. */
1227 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1228 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1229 
1230 	/* Load the firmware into SRAM. */
1231 	ti_loadfw(sc);
1232 
1233 	/* Set up the contents of the general info and ring control blocks. */
1234 
1235 	/* Set up the event ring and producer pointer. */
1236 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1237 
1238 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1239 	rcb->ti_flags = 0;
1240 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1241 	    vtophys(&sc->ti_ev_prodidx);
1242 	sc->ti_ev_prodidx.ti_idx = 0;
1243 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1244 	sc->ti_ev_saved_considx = 0;
1245 
1246 	/* Set up the command ring and producer mailbox. */
1247 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1248 
1249 	sc->ti_rdata->ti_cmd_ring =
1250 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1251 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1252 	rcb->ti_flags = 0;
1253 	rcb->ti_max_len = 0;
1254 	for (i = 0; i < TI_CMD_RING_CNT; i++)
1255 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1256 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1257 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1258 	sc->ti_cmd_saved_prodidx = 0;
1259 
1260 	/*
1261 	 * Assign the address of the stats refresh buffer.
1262 	 * We re-use the current stats buffer for this to
1263 	 * conserve memory.
1264 	 */
1265 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1266 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1267 
1268 	/* Set up the standard receive ring. */
1269 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1270 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1271 	rcb->ti_max_len = TI_FRAMELEN;
1272 	rcb->ti_flags = 0;
1273 	if (ifp->if_hwassist)
1274 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1275 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1276 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1277 
1278 	/* Set up the jumbo receive ring. */
1279 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1280 	TI_HOSTADDR(rcb->ti_hostaddr) =
1281 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1282 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1283 	rcb->ti_flags = 0;
1284 	if (ifp->if_hwassist)
1285 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1286 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1287 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1288 
1289 	/*
1290 	 * Set up the mini ring. Only activated on the
1291 	 * Tigon 2 but the slot in the config block is
1292 	 * still there on the Tigon 1.
1293 	 */
1294 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1295 	TI_HOSTADDR(rcb->ti_hostaddr) =
1296 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1297 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1298 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1299 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1300 	else
1301 		rcb->ti_flags = 0;
1302 	if (ifp->if_hwassist)
1303 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1304 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1305 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1306 
1307 	/*
1308 	 * Set up the receive return ring.
1309 	 */
1310 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1311 	TI_HOSTADDR(rcb->ti_hostaddr) =
1312 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1313 	rcb->ti_flags = 0;
1314 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1315 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1316 	    vtophys(&sc->ti_return_prodidx);
1317 
1318 	/*
1319 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1320 	 * of putting the transmit ring in the host's address space and
1321 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1322 	 * memory and accessing it through the shared memory region. We
1323 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1324 	 * so we have to revert to the shared memory scheme if we detect
1325 	 * a Tigon 1 chip.
1326 	 */
1327 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1328 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1329 		sc->ti_rdata->ti_tx_ring_nic =
1330 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1331 	}
1332 	bzero(sc->ti_rdata->ti_tx_ring,
1333 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1334 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1335 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1336 		rcb->ti_flags = 0;
1337 	else
1338 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1339 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1340 	if (ifp->if_hwassist)
1341 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1342 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1343 	rcb->ti_max_len = TI_TX_RING_CNT;
1344 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1345 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1346 	else
1347 		TI_HOSTADDR(rcb->ti_hostaddr) =
1348 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1349 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1350 	    vtophys(&sc->ti_tx_considx);
1351 
1352 	/* Set up tuneables */
1353 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1354 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1355 		    (sc->ti_rx_coal_ticks / 10));
1356 	else
1357 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1358 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1359 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1360 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1361 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1362 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1363 
1364 	/* Turn interrupts on. */
1365 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1366 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1367 
1368 	/* Start CPU. */
1369 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1370 
1371 	return(0);
1372 }
1373 
1374 /*
1375  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1376  * against our list and return its name if we find a match.
1377  */
1378 static int
1379 ti_probe(device_t dev)
1380 {
1381 	struct ti_type *t;
1382 	uint16_t vendor, product;
1383 
1384 	vendor = pci_get_vendor(dev);
1385 	product = pci_get_device(dev);
1386 
1387 	for (t = ti_devs; t->ti_name != NULL; t++) {
1388 		if (vendor == t->ti_vid && product == t->ti_did) {
1389 			device_set_desc(dev, t->ti_name);
1390 			return(0);
1391 		}
1392 	}
1393 
1394 	return(ENXIO);
1395 }
1396 
1397 static int
1398 ti_attach(device_t dev)
1399 {
1400 	struct ti_softc *sc;
1401 	struct ifnet *ifp;
1402 	int error = 0, rid;
1403 	uint8_t eaddr[ETHER_ADDR_LEN];
1404 
1405 	sc = device_get_softc(dev);
1406 	ifp = &sc->arpcom.ac_if;
1407 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1408 	ifp->if_capabilities = IFCAP_HWCSUM;
1409 	ifp->if_capenable = ifp->if_capabilities;
1410 
1411 	pci_enable_busmaster(dev);
1412 
1413 	/*
1414 	 * Initialize media before any possible error may occur,
1415 	 * so we can destroy it unconditionally, if an error occurs later on.
1416 	 */
1417 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1418 
1419 	rid = TI_PCI_LOMEM;
1420 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1421 	    RF_ACTIVE);
1422 
1423 	if (sc->ti_res == NULL) {
1424 		device_printf(dev, "couldn't map memory\n");
1425 		error = ENXIO;
1426 		goto fail;
1427 	}
1428 
1429 	sc->ti_btag = rman_get_bustag(sc->ti_res);
1430 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1431 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1432 
1433 	/* Allocate interrupt */
1434 	rid = 0;
1435 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1436 	    RF_SHAREABLE | RF_ACTIVE);
1437 	if (sc->ti_irq == NULL) {
1438 		device_printf(dev, "couldn't map interrupt\n");
1439 		error = ENXIO;
1440 		goto fail;
1441 	}
1442 
1443 	if (ti_chipinit(sc)) {
1444 		device_printf(dev, "chip initialization failed\n");
1445 		error = ENXIO;
1446 		goto fail;
1447 	}
1448 
1449 	/* Zero out the NIC's on-board SRAM. */
1450 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1451 
1452 	/* Init again -- zeroing memory may have clobbered some registers. */
1453 	if (ti_chipinit(sc)) {
1454 		device_printf(dev, "chip initialization failed\n");
1455 		error = ENXIO;
1456 		goto fail;
1457 	}
1458 
1459 	/*
1460 	 * Get station address from the EEPROM. Note: the manual states
1461 	 * that the MAC address is at offset 0x8c, however the data is
1462 	 * stored as two longwords (since that's how it's loaded into
1463 	 * the NIC). This means the MAC address is actually preceeded
1464 	 * by two zero bytes. We need to skip over those.
1465 	 */
1466 	if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1467 		device_printf(dev, "failed to read station address\n");
1468 		error = ENXIO;
1469 		goto fail;
1470 	}
1471 
1472 	/* Allocate the general information block and ring buffers. */
1473 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1474 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1475 
1476 	if (sc->ti_rdata == NULL) {
1477 		device_printf(dev, "no memory for list buffers!\n");
1478 		error = ENXIO;
1479 		goto fail;
1480 	}
1481 
1482 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1483 
1484 	/* Try to allocate memory for jumbo buffers. */
1485 	if (ti_alloc_jumbo_mem(sc)) {
1486 		device_printf(dev, "jumbo buffer allocation failed\n");
1487 		error = ENXIO;
1488 		goto fail;
1489 	}
1490 
1491 	/*
1492 	 * We really need a better way to tell a 1000baseTX card
1493 	 * from a 1000baseSX one, since in theory there could be
1494 	 * OEMed 1000baseTX cards from lame vendors who aren't
1495 	 * clever enough to change the PCI ID. For the moment
1496 	 * though, the AceNIC is the only copper card available.
1497 	 */
1498 	if (pci_get_vendor(dev) == ALT_VENDORID &&
1499 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1500 		sc->ti_copper = 1;
1501 	/* Ok, it's not the only copper card available. */
1502 	if (pci_get_vendor(dev) == NG_VENDORID &&
1503 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1504 		sc->ti_copper = 1;
1505 
1506 	/* Set default tuneable values. */
1507 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1508 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1509 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1510 	sc->ti_rx_max_coal_bds = 64;
1511 	sc->ti_tx_max_coal_bds = 128;
1512 	sc->ti_tx_buf_ratio = 21;
1513 
1514 	/* Set up ifnet structure */
1515 	ifp->if_softc = sc;
1516 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1517 	ifp->if_ioctl = ti_ioctl;
1518 	ifp->if_start = ti_start;
1519 	ifp->if_watchdog = ti_watchdog;
1520 	ifp->if_init = ti_init;
1521 	ifp->if_mtu = ETHERMTU;
1522 	ifq_set_maxlen(&ifp->if_snd, TI_TX_RING_CNT - 1);
1523 	ifq_set_ready(&ifp->if_snd);
1524 
1525 	/* Set up ifmedia support. */
1526 	if (sc->ti_copper) {
1527 		/*
1528 		 * Copper cards allow manual 10/100 mode selection,
1529 		 * but not manual 1000baseTX mode selection. Why?
1530 		 * Becuase currently there's no way to specify the
1531 		 * master/slave setting through the firmware interface,
1532 		 * so Alteon decided to just bag it and handle it
1533 		 * via autonegotiation.
1534 		 */
1535 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1536 		ifmedia_add(&sc->ifmedia,
1537 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1538 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1539 		ifmedia_add(&sc->ifmedia,
1540 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1541 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
1542 		ifmedia_add(&sc->ifmedia,
1543 		    IFM_ETHER|IFM_1000_T | IFM_FDX, 0, NULL);
1544 	} else {
1545 		/* Fiber cards don't support 10/100 modes. */
1546 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1547 		ifmedia_add(&sc->ifmedia,
1548 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1549 	}
1550 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1551 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1552 
1553 	/*
1554 	 * Call MI attach routine.
1555 	 */
1556 	ether_ifattach(ifp, eaddr);
1557 
1558 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1559 			       ti_intr, sc, &sc->ti_intrhand, NULL);
1560 	if (error) {
1561 		device_printf(dev, "couldn't set up irq\n");
1562 		ether_ifdetach(ifp);
1563 		goto fail;
1564 	}
1565 	return 0;
1566 
1567 fail:
1568 	ti_detach(dev);
1569 	return(error);
1570 }
1571 
1572 static int
1573 ti_detach(device_t dev)
1574 {
1575 	struct ti_softc *sc = device_get_softc(dev);
1576 	struct ifnet *ifp = &sc->arpcom.ac_if;
1577 
1578 	crit_enter();
1579 
1580 	if (device_is_attached(dev)) {
1581 		if (bus_child_present(dev))
1582 			ti_stop(sc);
1583 		ether_ifdetach(ifp);
1584 	}
1585 
1586 	if (sc->ti_intrhand != NULL)
1587 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1588 
1589 	crit_exit();
1590 
1591 	if (sc->ti_irq != NULL)
1592 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1593 	if (sc->ti_res != NULL) {
1594 		bus_release_resource(dev, SYS_RES_MEMORY,
1595 				     TI_PCI_LOMEM, sc->ti_res);
1596 	}
1597 	if (sc->ti_cdata.ti_jumbo_buf != NULL)
1598 		contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1599 	if (sc->ti_rdata != NULL)
1600 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1601 	ifmedia_removeall(&sc->ifmedia);
1602 
1603 	return(0);
1604 }
1605 
1606 /*
1607  * Frame reception handling. This is called if there's a frame
1608  * on the receive return list.
1609  *
1610  * Note: we have to be able to handle three possibilities here:
1611  * 1) the frame is from the mini receive ring (can only happen)
1612  *    on Tigon 2 boards)
1613  * 2) the frame is from the jumbo recieve ring
1614  * 3) the frame is from the standard receive ring
1615  */
1616 static void
1617 ti_rxeof(struct ti_softc *sc)
1618 {
1619 	struct ifnet *ifp = &sc->arpcom.ac_if;
1620 	struct ti_cmd_desc cmd;
1621 
1622 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1623 		struct ti_rx_desc *cur_rx;
1624 		uint32_t rxidx;
1625 		struct mbuf *m;
1626 		uint16_t vlan_tag = 0;
1627 		int have_tag = 0;
1628 
1629 		cur_rx =
1630 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1631 		rxidx = cur_rx->ti_idx;
1632 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1633 
1634 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1635 			have_tag = 1;
1636 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
1637 		}
1638 
1639 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1640 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1641 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1642 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1643 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1644 				ifp->if_ierrors++;
1645 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1646 				continue;
1647 			}
1648 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1649 				ifp->if_ierrors++;
1650 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1651 				continue;
1652 			}
1653 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1654 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1655 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1656 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1657 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1658 				ifp->if_ierrors++;
1659 				ti_newbuf_mini(sc, sc->ti_mini, m);
1660 				continue;
1661 			}
1662 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1663 				ifp->if_ierrors++;
1664 				ti_newbuf_mini(sc, sc->ti_mini, m);
1665 				continue;
1666 			}
1667 		} else {
1668 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1669 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1670 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1671 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1672 				ifp->if_ierrors++;
1673 				ti_newbuf_std(sc, sc->ti_std, m);
1674 				continue;
1675 			}
1676 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1677 				ifp->if_ierrors++;
1678 				ti_newbuf_std(sc, sc->ti_std, m);
1679 				continue;
1680 			}
1681 		}
1682 
1683 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1684 		ifp->if_ipackets++;
1685 		m->m_pkthdr.rcvif = ifp;
1686 
1687 		if (ifp->if_hwassist) {
1688 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1689 			    CSUM_DATA_VALID;
1690 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1691 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1692 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1693 		}
1694 
1695 		/*
1696 		 * If we received a packet with a vlan tag, pass it
1697 		 * to vlan_input() instead of ether_input().
1698 		 */
1699 		if (have_tag)
1700 			VLAN_INPUT_TAG(m, vlan_tag);
1701 		else
1702 			(*ifp->if_input)(ifp, m);
1703 	}
1704 
1705 	/* Only necessary on the Tigon 1. */
1706 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1707 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1708 		    sc->ti_rx_saved_considx);
1709 
1710 	TI_UPDATE_STDPROD(sc, sc->ti_std);
1711 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1712 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1713 }
1714 
1715 static void
1716 ti_txeof(struct ti_softc *sc)
1717 {
1718 	struct ifnet *ifp = &sc->arpcom.ac_if;
1719 	struct ti_tx_desc *cur_tx = NULL;
1720 
1721 	/*
1722 	 * Go through our tx ring and free mbufs for those
1723 	 * frames that have been sent.
1724 	 */
1725 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1726 		uint32_t idx = 0;
1727 
1728 		idx = sc->ti_tx_saved_considx;
1729 		if (sc->ti_hwrev != TI_HWREV_TIGON) {
1730 			if (idx > 383)
1731 				CSR_WRITE_4(sc, TI_WINBASE,
1732 				    TI_TX_RING_BASE + 6144);
1733 			else if (idx > 255)
1734 				CSR_WRITE_4(sc, TI_WINBASE,
1735 				    TI_TX_RING_BASE + 4096);
1736 			else if (idx > 127)
1737 				CSR_WRITE_4(sc, TI_WINBASE,
1738 				    TI_TX_RING_BASE + 2048);
1739 			else
1740 				CSR_WRITE_4(sc, TI_WINBASE,
1741 				    TI_TX_RING_BASE);
1742 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1743 		} else
1744 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1745 		if (cur_tx->ti_flags & TI_BDFLAG_END)
1746 			ifp->if_opackets++;
1747 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1748 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1749 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1750 		}
1751 		sc->ti_txcnt--;
1752 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1753 		ifp->if_timer = 0;
1754 	}
1755 
1756 	if (cur_tx != NULL)
1757 		ifp->if_flags &= ~IFF_OACTIVE;
1758 }
1759 
1760 static void
1761 ti_intr(void *xsc)
1762 {
1763 	struct ti_softc *sc = xsc;
1764 	struct ifnet *ifp = &sc->arpcom.ac_if;
1765 
1766 #ifdef notdef
1767 	/* Avoid this for now -- checking this register is expensive. */
1768 	/* Make sure this is really our interrupt. */
1769 	if ((CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE) == 0)
1770 		return;
1771 #endif
1772 
1773 	/* Ack interrupt and stop others from occuring. */
1774 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1775 
1776 	if (ifp->if_flags & IFF_RUNNING) {
1777 		/* Check RX return ring producer/consumer */
1778 		ti_rxeof(sc);
1779 
1780 		/* Check TX ring producer/consumer */
1781 		ti_txeof(sc);
1782 	}
1783 
1784 	ti_handle_events(sc);
1785 
1786 	/* Re-enable interrupts. */
1787 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1788 
1789 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1790 		ti_start(ifp);
1791 }
1792 
1793 static void
1794 ti_stats_update(struct ti_softc *sc)
1795 {
1796 	struct ifnet *ifp = &sc->arpcom.ac_if;
1797 
1798 	ifp->if_collisions +=
1799 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1800 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1801 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1802 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1803 	   ifp->if_collisions;
1804 }
1805 
1806 /*
1807  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1808  * pointers to descriptors.
1809  */
1810 static int
1811 ti_encap(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1812 {
1813 	struct ti_tx_desc *f = NULL;
1814 	struct mbuf *m;
1815 	struct ifvlan *ifv = NULL;
1816 	uint32_t cnt = 0, cur, frag;
1817 	uint16_t csum_flags = 0;
1818 
1819 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1820 	    m_head->m_pkthdr.rcvif != NULL &&
1821 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1822 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1823 
1824 	m = m_head;
1825 	cur = frag = *txidx;
1826 
1827 	if (m_head->m_pkthdr.csum_flags) {
1828 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1829 			csum_flags |= TI_BDFLAG_IP_CKSUM;
1830 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1831 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1832 		if (m_head->m_flags & M_LASTFRAG)
1833 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1834 		else if (m_head->m_flags & M_FRAG)
1835 			csum_flags |= TI_BDFLAG_IP_FRAG;
1836 	}
1837 	/*
1838  	 * Start packing the mbufs in this chain into
1839 	 * the fragment pointers. Stop when we run out
1840  	 * of fragments or hit the end of the mbuf chain.
1841 	 */
1842 	for (m = m_head; m != NULL; m = m->m_next) {
1843 		if (m->m_len != 0) {
1844 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
1845 				if (frag > 383)
1846 					CSR_WRITE_4(sc, TI_WINBASE,
1847 					    TI_TX_RING_BASE + 6144);
1848 				else if (frag > 255)
1849 					CSR_WRITE_4(sc, TI_WINBASE,
1850 					    TI_TX_RING_BASE + 4096);
1851 				else if (frag > 127)
1852 					CSR_WRITE_4(sc, TI_WINBASE,
1853 					    TI_TX_RING_BASE + 2048);
1854 				else
1855 					CSR_WRITE_4(sc, TI_WINBASE,
1856 					    TI_TX_RING_BASE);
1857 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
1858 			} else
1859 				f = &sc->ti_rdata->ti_tx_ring[frag];
1860 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1861 				break;
1862 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
1863 			f->ti_len = m->m_len;
1864 			f->ti_flags = csum_flags;
1865 
1866 			if (ifv != NULL) {
1867 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
1868 				f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
1869 			} else {
1870 				f->ti_vlan_tag = 0;
1871 			}
1872 
1873 			/*
1874 			 * Sanity check: avoid coming within 16 descriptors
1875 			 * of the end of the ring.
1876 			 */
1877 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
1878 				return(ENOBUFS);
1879 			cur = frag;
1880 			TI_INC(frag, TI_TX_RING_CNT);
1881 			cnt++;
1882 		}
1883 	}
1884 
1885 	if (m != NULL)
1886 		return(ENOBUFS);
1887 
1888 	if (frag == sc->ti_tx_saved_considx)
1889 		return(ENOBUFS);
1890 
1891 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1892 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
1893 		    TI_BDFLAG_END;
1894 	else
1895 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
1896 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
1897 	sc->ti_txcnt += cnt;
1898 
1899 	*txidx = frag;
1900 
1901 	return(0);
1902 }
1903 
1904 /*
1905  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1906  * to the mbuf data regions directly in the transmit descriptors.
1907  */
1908 static void
1909 ti_start(struct ifnet *ifp)
1910 {
1911 	struct ti_softc *sc = ifp->if_softc;
1912 	struct mbuf *m_head = NULL;
1913 	uint32_t prodidx = 0;
1914 
1915 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
1916 
1917 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
1918 		m_head = ifq_poll(&ifp->if_snd);
1919 		if (m_head == NULL)
1920 			break;
1921 
1922 		/*
1923 		 * XXX
1924 		 * safety overkill.  If this is a fragmented packet chain
1925 		 * with delayed TCP/UDP checksums, then only encapsulate
1926 		 * it if we have enough descriptors to handle the entire
1927 		 * chain at once.
1928 		 * (paranoia -- may not actually be needed)
1929 		 */
1930 		if (m_head->m_flags & M_FIRSTFRAG &&
1931 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
1932 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
1933 			    m_head->m_pkthdr.csum_data + 16) {
1934 				ifp->if_flags |= IFF_OACTIVE;
1935 				break;
1936 			}
1937 		}
1938 
1939 		/*
1940 		 * Pack the data into the transmit ring. If we
1941 		 * don't have room, set the OACTIVE flag and wait
1942 		 * for the NIC to drain the ring.
1943 		 */
1944 		if (ti_encap(sc, m_head, &prodidx)) {
1945 			ifp->if_flags |= IFF_OACTIVE;
1946 			break;
1947 		}
1948 
1949 		m_head = ifq_dequeue(&ifp->if_snd);
1950 		BPF_MTAP(ifp, m_head);
1951 	}
1952 
1953 	/* Transmit */
1954 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
1955 
1956 	/*
1957 	 * Set a timeout in case the chip goes out to lunch.
1958 	 */
1959 	ifp->if_timer = 5;
1960 }
1961 
1962 static void
1963 ti_init(void *xsc)
1964 {
1965 	struct ti_softc *sc = xsc;
1966 
1967 	crit_enter();
1968 
1969 	/* Cancel pending I/O and flush buffers. */
1970 	ti_stop(sc);
1971 
1972 	/* Init the gen info block, ring control blocks and firmware. */
1973 	if (ti_gibinit(sc)) {
1974 		if_printf(&sc->arpcom.ac_if, "initialization failure\n");
1975 		crit_exit();
1976 		return;
1977 	}
1978 
1979 	crit_exit();
1980 }
1981 
1982 static void
1983 ti_init2(struct ti_softc *sc)
1984 {
1985 	struct ifnet *ifp = &sc->arpcom.ac_if;
1986 	struct ti_cmd_desc cmd;
1987 	uint16_t *m;
1988 	struct ifmedia *ifm;
1989 	int tmp;
1990 
1991 	/* Specify MTU and interface index. */
1992 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_dunit);
1993 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
1994 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
1995 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
1996 
1997 	/* Load our MAC address. */
1998 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
1999 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2000 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2001 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2002 
2003 	/* Enable or disable promiscuous mode as needed. */
2004 	if (ifp->if_flags & IFF_PROMISC)
2005 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2006 	else
2007 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2008 
2009 	/* Program multicast filter. */
2010 	ti_setmulti(sc);
2011 
2012 	/*
2013 	 * If this is a Tigon 1, we should tell the
2014 	 * firmware to use software packet filtering.
2015 	 */
2016 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2017 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2018 
2019 	/* Init RX ring. */
2020 	ti_init_rx_ring_std(sc);
2021 
2022 	/* Init jumbo RX ring. */
2023 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2024 		ti_init_rx_ring_jumbo(sc);
2025 
2026 	/*
2027 	 * If this is a Tigon 2, we can also configure the
2028 	 * mini ring.
2029 	 */
2030 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2031 		ti_init_rx_ring_mini(sc);
2032 
2033 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2034 	sc->ti_rx_saved_considx = 0;
2035 
2036 	/* Init TX ring. */
2037 	ti_init_tx_ring(sc);
2038 
2039 	/* Tell firmware we're alive. */
2040 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2041 
2042 	/* Enable host interrupts. */
2043 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2044 
2045 	ifp->if_flags |= IFF_RUNNING;
2046 	ifp->if_flags &= ~IFF_OACTIVE;
2047 
2048 	/*
2049 	 * Make sure to set media properly. We have to do this
2050 	 * here since we have to issue commands in order to set
2051 	 * the link negotiation and we can't issue commands until
2052 	 * the firmware is running.
2053 	 */
2054 	ifm = &sc->ifmedia;
2055 	tmp = ifm->ifm_media;
2056 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2057 	ti_ifmedia_upd(ifp);
2058 	ifm->ifm_media = tmp;
2059 }
2060 
2061 /*
2062  * Set media options.
2063  */
2064 static int
2065 ti_ifmedia_upd(struct ifnet *ifp)
2066 {
2067 	struct ti_softc *sc = ifp->if_softc;
2068 	struct ifmedia *ifm = &sc->ifmedia;
2069 	struct ti_cmd_desc cmd;
2070 
2071 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2072 		return(EINVAL);
2073 
2074 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2075 	case IFM_AUTO:
2076 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB |
2077 		    TI_GLNK_FULL_DUPLEX | TI_GLNK_RX_FLOWCTL_Y |
2078 		    TI_GLNK_AUTONEGENB | TI_GLNK_ENB);
2079 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB | TI_LNK_10MB |
2080 		    TI_LNK_FULL_DUPLEX | TI_LNK_HALF_DUPLEX |
2081 		    TI_LNK_AUTONEGENB | TI_LNK_ENB);
2082 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2083 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2084 		break;
2085 	case IFM_1000_SX:
2086 	case IFM_1000_T:
2087 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB |
2088 		    TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2089 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2090 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2091 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2092 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2093 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2094 		break;
2095 	case IFM_100_FX:
2096 	case IFM_10_FL:
2097 	case IFM_100_TX:
2098 	case IFM_10_T:
2099 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2100 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB | TI_LNK_PREF);
2101 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2102 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
2103 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2104 		else
2105 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2106 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2107 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2108 		else
2109 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2110 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2111 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2112 		break;
2113 	}
2114 
2115 	return(0);
2116 }
2117 
2118 /*
2119  * Report current media status.
2120  */
2121 static void
2122 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2123 {
2124 	struct ti_softc *sc = ifp->if_softc;
2125 	uint32_t media = 0;
2126 
2127 	ifmr->ifm_status = IFM_AVALID;
2128 	ifmr->ifm_active = IFM_ETHER;
2129 
2130 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2131 		return;
2132 
2133 	ifmr->ifm_status |= IFM_ACTIVE;
2134 
2135 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2136 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2137 		if (sc->ti_copper)
2138 			ifmr->ifm_active |= IFM_1000_T;
2139 		else
2140 			ifmr->ifm_active |= IFM_1000_SX;
2141 		if (media & TI_GLNK_FULL_DUPLEX)
2142 			ifmr->ifm_active |= IFM_FDX;
2143 		else
2144 			ifmr->ifm_active |= IFM_HDX;
2145 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2146 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2147 		if (sc->ti_copper) {
2148 			if (media & TI_LNK_100MB)
2149 				ifmr->ifm_active |= IFM_100_TX;
2150 			if (media & TI_LNK_10MB)
2151 				ifmr->ifm_active |= IFM_10_T;
2152 		} else {
2153 			if (media & TI_LNK_100MB)
2154 				ifmr->ifm_active |= IFM_100_FX;
2155 			if (media & TI_LNK_10MB)
2156 				ifmr->ifm_active |= IFM_10_FL;
2157 		}
2158 		if (media & TI_LNK_FULL_DUPLEX)
2159 			ifmr->ifm_active |= IFM_FDX;
2160 		if (media & TI_LNK_HALF_DUPLEX)
2161 			ifmr->ifm_active |= IFM_HDX;
2162 	}
2163 }
2164 
2165 static int
2166 ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2167 {
2168 	struct ti_softc *sc = ifp->if_softc;
2169 	struct ifreq *ifr = (struct ifreq *) data;
2170 	struct ti_cmd_desc cmd;
2171 	int error = 0, mask;
2172 
2173 	crit_enter();
2174 
2175 	switch(command) {
2176 	case SIOCSIFMTU:
2177 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2178 			error = EINVAL;
2179 		else {
2180 			ifp->if_mtu = ifr->ifr_mtu;
2181 			ti_init(sc);
2182 		}
2183 		break;
2184 	case SIOCSIFFLAGS:
2185 		if (ifp->if_flags & IFF_UP) {
2186 			/*
2187 			 * If only the state of the PROMISC flag changed,
2188 			 * then just use the 'set promisc mode' command
2189 			 * instead of reinitializing the entire NIC. Doing
2190 			 * a full re-init means reloading the firmware and
2191 			 * waiting for it to start up, which may take a
2192 			 * second or two.
2193 			 */
2194 			if (ifp->if_flags & IFF_RUNNING &&
2195 			    ifp->if_flags & IFF_PROMISC &&
2196 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2197 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2198 				    TI_CMD_CODE_PROMISC_ENB, 0);
2199 			} else if (ifp->if_flags & IFF_RUNNING &&
2200 			    !(ifp->if_flags & IFF_PROMISC) &&
2201 			    sc->ti_if_flags & IFF_PROMISC) {
2202 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2203 				    TI_CMD_CODE_PROMISC_DIS, 0);
2204 			} else
2205 				ti_init(sc);
2206 		} else if (ifp->if_flags & IFF_RUNNING) {
2207 			ti_stop(sc);
2208 		}
2209 		sc->ti_if_flags = ifp->if_flags;
2210 		error = 0;
2211 		break;
2212 	case SIOCADDMULTI:
2213 	case SIOCDELMULTI:
2214 		if (ifp->if_flags & IFF_RUNNING) {
2215 			ti_setmulti(sc);
2216 			error = 0;
2217 		}
2218 		break;
2219 	case SIOCSIFMEDIA:
2220 	case SIOCGIFMEDIA:
2221 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2222 		break;
2223 	case SIOCSIFCAP:
2224 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2225 		if (mask & IFCAP_HWCSUM) {
2226 			if (IFCAP_HWCSUM & ifp->if_capenable)
2227 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2228                         else
2229                                 ifp->if_capenable |= IFCAP_HWCSUM;
2230 			if (ifp->if_flags & IFF_RUNNING)
2231 				ti_init(sc);
2232                 }
2233 		error = 0;
2234 		break;
2235 	default:
2236 		error = ether_ioctl(ifp, command, data);
2237 		break;
2238 	}
2239 
2240 	crit_exit();
2241 
2242 	return(error);
2243 }
2244 
2245 static void
2246 ti_watchdog(struct ifnet *ifp)
2247 {
2248 	struct ti_softc *sc = ifp->if_softc;
2249 
2250 	if_printf(ifp, "watchdog timeout -- resetting\n");
2251 	ti_stop(sc);
2252 	ti_init(sc);
2253 
2254 	ifp->if_oerrors++;
2255 }
2256 
2257 /*
2258  * Stop the adapter and free any mbufs allocated to the
2259  * RX and TX lists.
2260  */
2261 static void
2262 ti_stop(struct ti_softc *sc)
2263 {
2264 	struct ifnet *ifp = &sc->arpcom.ac_if;
2265 	struct ti_cmd_desc cmd;
2266 
2267 	/* Disable host interrupts. */
2268 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2269 	/*
2270 	 * Tell firmware we're shutting down.
2271 	 */
2272 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2273 
2274 	/* Halt and reinitialize. */
2275 	ti_chipinit(sc);
2276 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2277 	ti_chipinit(sc);
2278 
2279 	/* Free the RX lists. */
2280 	ti_free_rx_ring_std(sc);
2281 
2282 	/* Free jumbo RX list. */
2283 	ti_free_rx_ring_jumbo(sc);
2284 
2285 	/* Free mini RX list. */
2286 	ti_free_rx_ring_mini(sc);
2287 
2288 	/* Free TX buffers. */
2289 	ti_free_tx_ring(sc);
2290 
2291 	sc->ti_ev_prodidx.ti_idx = 0;
2292 	sc->ti_return_prodidx.ti_idx = 0;
2293 	sc->ti_tx_considx.ti_idx = 0;
2294 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2295 
2296 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2297 }
2298 
2299 /*
2300  * Stop all chip I/O so that the kernel's probe routines don't
2301  * get confused by errant DMAs when rebooting.
2302  */
2303 static void
2304 ti_shutdown(device_t dev)
2305 {
2306 	struct ti_softc *sc = device_get_softc(dev);
2307 
2308 	ti_chipinit(sc);
2309 }
2310