xref: /dragonfly/sys/dev/netif/ti/if_ti.c (revision af79c6e5)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ti.c,v 1.25.2.14 2002/02/15 04:20:20 silby Exp $
33  * $DragonFly: src/sys/dev/netif/ti/if_ti.c,v 1.6 2003/11/20 22:07:31 dillon Exp $
34  *
35  * $FreeBSD: src/sys/pci/if_ti.c,v 1.25.2.14 2002/02/15 04:20:20 silby Exp $
36  */
37 
38 /*
39  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
40  * Manuals, sample driver and firmware source kits are available
41  * from http://www.alteon.com/support/openkits.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
50  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
51  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
52  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
53  * filtering and jumbo (9014 byte) frames. The hardware is largely
54  * controlled by firmware, which must be loaded into the NIC during
55  * initialization.
56  *
57  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
58  * revision, which supports new features such as extended commands,
59  * extended jumbo receive ring desciptors and a mini receive ring.
60  *
61  * Alteon Networks is to be commended for releasing such a vast amount
62  * of development material for the Tigon NIC without requiring an NDA
63  * (although they really should have done it a long time ago). With
64  * any luck, the other vendors will finally wise up and follow Alteon's
65  * stellar example.
66  *
67  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
68  * this driver by #including it as a C header file. This bloats the
69  * driver somewhat, but it's the easiest method considering that the
70  * driver code and firmware code need to be kept in sync. The source
71  * for the firmware is not provided with the FreeBSD distribution since
72  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
73  *
74  * The following people deserve special thanks:
75  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
76  *   for testing
77  * - Raymond Lee of Netgear, for providing a pair of Netgear
78  *   GA620 Tigon 2 boards for testing
79  * - Ulf Zimmermann, for bringing the GA260 to my attention and
80  *   convincing me to write this driver.
81  * - Andrew Gallatin for providing FreeBSD/Alpha support.
82  */
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/socket.h>
91 #include <sys/queue.h>
92 
93 #include <net/if.h>
94 #include <net/if_arp.h>
95 #include <net/ethernet.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_types.h>
99 #include <net/vlan/if_vlan_var.h>
100 
101 #include <net/bpf.h>
102 
103 #include <netinet/in_systm.h>
104 #include <netinet/in.h>
105 #include <netinet/ip.h>
106 
107 #include <vm/vm.h>              /* for vtophys */
108 #include <vm/pmap.h>            /* for vtophys */
109 #include <machine/clock.h>      /* for DELAY */
110 #include <machine/bus_memio.h>
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #include <bus/pci/pcireg.h>
117 #include <bus/pci/pcivar.h>
118 
119 #include "if_tireg.h"
120 #include "ti_fw.h"
121 #include "ti_fw2.h"
122 
123 /*
124  * Temporarily disable the checksum offload support for now.
125  * Tests with ftp.freesoftware.com show that after about 12 hours,
126  * the firmware will begin calculating completely bogus TX checksums
127  * and refuse to stop until the interface is reset. Unfortunately,
128  * there isn't enough time to fully debug this before the 4.1
129  * release, so this will need to stay off for now.
130  */
131 #ifdef notdef
132 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
133 #else
134 #define TI_CSUM_FEATURES	0
135 #endif
136 
137 /*
138  * Various supported device vendors/types and their names.
139  */
140 
141 static struct ti_type ti_devs[] = {
142 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
143 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
144 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
145 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
146 	{ TC_VENDORID,	TC_DEVICEID_3C985,
147 		"3Com 3c985-SX Gigabit Ethernet" },
148 	{ NG_VENDORID, NG_DEVICEID_GA620,
149 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
150 	{ NG_VENDORID, NG_DEVICEID_GA620T,
151 		"Netgear GA620 1000baseT Gigabit Ethernet" },
152 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
153 		"Silicon Graphics Gigabit Ethernet" },
154 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
155 		"Farallon PN9000SX Gigabit Ethernet" },
156 	{ 0, 0, NULL }
157 };
158 
159 static int ti_probe		(device_t);
160 static int ti_attach		(device_t);
161 static int ti_detach		(device_t);
162 static void ti_txeof		(struct ti_softc *);
163 static void ti_rxeof		(struct ti_softc *);
164 
165 static void ti_stats_update	(struct ti_softc *);
166 static int ti_encap		(struct ti_softc *, struct mbuf *,
167 					u_int32_t *);
168 
169 static void ti_intr		(void *);
170 static void ti_start		(struct ifnet *);
171 static int ti_ioctl		(struct ifnet *, u_long, caddr_t);
172 static void ti_init		(void *);
173 static void ti_init2		(struct ti_softc *);
174 static void ti_stop		(struct ti_softc *);
175 static void ti_watchdog		(struct ifnet *);
176 static void ti_shutdown		(device_t);
177 static int ti_ifmedia_upd	(struct ifnet *);
178 static void ti_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
179 
180 static u_int32_t ti_eeprom_putbyte	(struct ti_softc *, int);
181 static u_int8_t	ti_eeprom_getbyte	(struct ti_softc *,
182 						int, u_int8_t *);
183 static int ti_read_eeprom	(struct ti_softc *, caddr_t, int, int);
184 
185 static void ti_add_mcast	(struct ti_softc *, struct ether_addr *);
186 static void ti_del_mcast	(struct ti_softc *, struct ether_addr *);
187 static void ti_setmulti		(struct ti_softc *);
188 
189 static void ti_mem		(struct ti_softc *, u_int32_t,
190 					u_int32_t, caddr_t);
191 static void ti_loadfw		(struct ti_softc *);
192 static void ti_cmd		(struct ti_softc *, struct ti_cmd_desc *);
193 static void ti_cmd_ext		(struct ti_softc *, struct ti_cmd_desc *,
194 					caddr_t, int);
195 static void ti_handle_events	(struct ti_softc *);
196 static int ti_alloc_jumbo_mem	(struct ti_softc *);
197 static void *ti_jalloc		(struct ti_softc *);
198 static void ti_jfree		(caddr_t, u_int);
199 static void ti_jref		(caddr_t, u_int);
200 static int ti_newbuf_std	(struct ti_softc *, int, struct mbuf *);
201 static int ti_newbuf_mini	(struct ti_softc *, int, struct mbuf *);
202 static int ti_newbuf_jumbo	(struct ti_softc *, int, struct mbuf *);
203 static int ti_init_rx_ring_std	(struct ti_softc *);
204 static void ti_free_rx_ring_std	(struct ti_softc *);
205 static int ti_init_rx_ring_jumbo	(struct ti_softc *);
206 static void ti_free_rx_ring_jumbo	(struct ti_softc *);
207 static int ti_init_rx_ring_mini	(struct ti_softc *);
208 static void ti_free_rx_ring_mini	(struct ti_softc *);
209 static void ti_free_tx_ring	(struct ti_softc *);
210 static int ti_init_tx_ring	(struct ti_softc *);
211 
212 static int ti_64bitslot_war	(struct ti_softc *);
213 static int ti_chipinit		(struct ti_softc *);
214 static int ti_gibinit		(struct ti_softc *);
215 
216 static device_method_t ti_methods[] = {
217 	/* Device interface */
218 	DEVMETHOD(device_probe,		ti_probe),
219 	DEVMETHOD(device_attach,	ti_attach),
220 	DEVMETHOD(device_detach,	ti_detach),
221 	DEVMETHOD(device_shutdown,	ti_shutdown),
222 	{ 0, 0 }
223 };
224 
225 static driver_t ti_driver = {
226 	"ti",
227 	ti_methods,
228 	sizeof(struct ti_softc)
229 };
230 
231 static devclass_t ti_devclass;
232 
233 DECLARE_DUMMY_MODULE(if_ti);
234 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
235 
236 /*
237  * Send an instruction or address to the EEPROM, check for ACK.
238  */
239 static u_int32_t ti_eeprom_putbyte(sc, byte)
240 	struct ti_softc		*sc;
241 	int			byte;
242 {
243 	int		i, ack = 0;
244 
245 	/*
246 	 * Make sure we're in TX mode.
247 	 */
248 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
249 
250 	/*
251 	 * Feed in each bit and stobe the clock.
252 	 */
253 	for (i = 0x80; i; i >>= 1) {
254 		if (byte & i) {
255 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
256 		} else {
257 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
258 		}
259 		DELAY(1);
260 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
261 		DELAY(1);
262 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
263 	}
264 
265 	/*
266 	 * Turn off TX mode.
267 	 */
268 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
269 
270 	/*
271 	 * Check for ack.
272 	 */
273 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
274 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
275 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
276 
277 	return(ack);
278 }
279 
280 /*
281  * Read a byte of data stored in the EEPROM at address 'addr.'
282  * We have to send two address bytes since the EEPROM can hold
283  * more than 256 bytes of data.
284  */
285 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
286 	struct ti_softc		*sc;
287 	int			addr;
288 	u_int8_t		*dest;
289 {
290 	int		i;
291 	u_int8_t		byte = 0;
292 
293 	EEPROM_START;
294 
295 	/*
296 	 * Send write control code to EEPROM.
297 	 */
298 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
299 		printf("ti%d: failed to send write command, status: %x\n",
300 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
301 		return(1);
302 	}
303 
304 	/*
305 	 * Send first byte of address of byte we want to read.
306 	 */
307 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
308 		printf("ti%d: failed to send address, status: %x\n",
309 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
310 		return(1);
311 	}
312 	/*
313 	 * Send second byte address of byte we want to read.
314 	 */
315 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
316 		printf("ti%d: failed to send address, status: %x\n",
317 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
318 		return(1);
319 	}
320 
321 	EEPROM_STOP;
322 	EEPROM_START;
323 	/*
324 	 * Send read control code to EEPROM.
325 	 */
326 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
327 		printf("ti%d: failed to send read command, status: %x\n",
328 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
329 		return(1);
330 	}
331 
332 	/*
333 	 * Start reading bits from EEPROM.
334 	 */
335 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
336 	for (i = 0x80; i; i >>= 1) {
337 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
338 		DELAY(1);
339 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
340 			byte |= i;
341 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
342 		DELAY(1);
343 	}
344 
345 	EEPROM_STOP;
346 
347 	/*
348 	 * No ACK generated for read, so just return byte.
349 	 */
350 
351 	*dest = byte;
352 
353 	return(0);
354 }
355 
356 /*
357  * Read a sequence of bytes from the EEPROM.
358  */
359 static int ti_read_eeprom(sc, dest, off, cnt)
360 	struct ti_softc		*sc;
361 	caddr_t			dest;
362 	int			off;
363 	int			cnt;
364 {
365 	int			err = 0, i;
366 	u_int8_t		byte = 0;
367 
368 	for (i = 0; i < cnt; i++) {
369 		err = ti_eeprom_getbyte(sc, off + i, &byte);
370 		if (err)
371 			break;
372 		*(dest + i) = byte;
373 	}
374 
375 	return(err ? 1 : 0);
376 }
377 
378 /*
379  * NIC memory access function. Can be used to either clear a section
380  * of NIC local memory or (if buf is non-NULL) copy data into it.
381  */
382 static void ti_mem(sc, addr, len, buf)
383 	struct ti_softc		*sc;
384 	u_int32_t		addr, len;
385 	caddr_t			buf;
386 {
387 	int			segptr, segsize, cnt;
388 	caddr_t			ti_winbase, ptr;
389 
390 	segptr = addr;
391 	cnt = len;
392 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
393 	ptr = buf;
394 
395 	while(cnt) {
396 		if (cnt < TI_WINLEN)
397 			segsize = cnt;
398 		else
399 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
400 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
401 		if (buf == NULL)
402 			bzero((char *)ti_winbase + (segptr &
403 			    (TI_WINLEN - 1)), segsize);
404 		else {
405 			bcopy((char *)ptr, (char *)ti_winbase +
406 			    (segptr & (TI_WINLEN - 1)), segsize);
407 			ptr += segsize;
408 		}
409 		segptr += segsize;
410 		cnt -= segsize;
411 	}
412 
413 	return;
414 }
415 
416 /*
417  * Load firmware image into the NIC. Check that the firmware revision
418  * is acceptable and see if we want the firmware for the Tigon 1 or
419  * Tigon 2.
420  */
421 static void ti_loadfw(sc)
422 	struct ti_softc		*sc;
423 {
424 	switch(sc->ti_hwrev) {
425 	case TI_HWREV_TIGON:
426 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
427 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
428 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
429 			printf("ti%d: firmware revision mismatch; want "
430 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
431 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
432 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
433 			    tigonFwReleaseMinor, tigonFwReleaseFix);
434 			return;
435 		}
436 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
437 		    (caddr_t)tigonFwText);
438 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
439 		    (caddr_t)tigonFwData);
440 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
441 		    (caddr_t)tigonFwRodata);
442 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
443 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
444 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
445 		break;
446 	case TI_HWREV_TIGON_II:
447 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
448 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
449 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
450 			printf("ti%d: firmware revision mismatch; want "
451 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
452 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
453 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
454 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
455 			return;
456 		}
457 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
458 		    (caddr_t)tigon2FwText);
459 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
460 		    (caddr_t)tigon2FwData);
461 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
462 		    (caddr_t)tigon2FwRodata);
463 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
464 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
465 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
466 		break;
467 	default:
468 		printf("ti%d: can't load firmware: unknown hardware rev\n",
469 		    sc->ti_unit);
470 		break;
471 	}
472 
473 	return;
474 }
475 
476 /*
477  * Send the NIC a command via the command ring.
478  */
479 static void ti_cmd(sc, cmd)
480 	struct ti_softc		*sc;
481 	struct ti_cmd_desc	*cmd;
482 {
483 	u_int32_t		index;
484 
485 	if (sc->ti_rdata->ti_cmd_ring == NULL)
486 		return;
487 
488 	index = sc->ti_cmd_saved_prodidx;
489 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
490 	TI_INC(index, TI_CMD_RING_CNT);
491 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
492 	sc->ti_cmd_saved_prodidx = index;
493 
494 	return;
495 }
496 
497 /*
498  * Send the NIC an extended command. The 'len' parameter specifies the
499  * number of command slots to include after the initial command.
500  */
501 static void ti_cmd_ext(sc, cmd, arg, len)
502 	struct ti_softc		*sc;
503 	struct ti_cmd_desc	*cmd;
504 	caddr_t			arg;
505 	int			len;
506 {
507 	u_int32_t		index;
508 	int		i;
509 
510 	if (sc->ti_rdata->ti_cmd_ring == NULL)
511 		return;
512 
513 	index = sc->ti_cmd_saved_prodidx;
514 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
515 	TI_INC(index, TI_CMD_RING_CNT);
516 	for (i = 0; i < len; i++) {
517 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
518 		    *(u_int32_t *)(&arg[i * 4]));
519 		TI_INC(index, TI_CMD_RING_CNT);
520 	}
521 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
522 	sc->ti_cmd_saved_prodidx = index;
523 
524 	return;
525 }
526 
527 /*
528  * Handle events that have triggered interrupts.
529  */
530 static void ti_handle_events(sc)
531 	struct ti_softc		*sc;
532 {
533 	struct ti_event_desc	*e;
534 
535 	if (sc->ti_rdata->ti_event_ring == NULL)
536 		return;
537 
538 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
539 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
540 		switch(e->ti_event) {
541 		case TI_EV_LINKSTAT_CHANGED:
542 			sc->ti_linkstat = e->ti_code;
543 			if (e->ti_code == TI_EV_CODE_LINK_UP)
544 				printf("ti%d: 10/100 link up\n", sc->ti_unit);
545 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
546 				printf("ti%d: gigabit link up\n", sc->ti_unit);
547 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
548 				printf("ti%d: link down\n", sc->ti_unit);
549 			break;
550 		case TI_EV_ERROR:
551 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
552 				printf("ti%d: invalid command\n", sc->ti_unit);
553 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
554 				printf("ti%d: unknown command\n", sc->ti_unit);
555 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
556 				printf("ti%d: bad config data\n", sc->ti_unit);
557 			break;
558 		case TI_EV_FIRMWARE_UP:
559 			ti_init2(sc);
560 			break;
561 		case TI_EV_STATS_UPDATED:
562 			ti_stats_update(sc);
563 			break;
564 		case TI_EV_RESET_JUMBO_RING:
565 		case TI_EV_MCAST_UPDATED:
566 			/* Who cares. */
567 			break;
568 		default:
569 			printf("ti%d: unknown event: %d\n",
570 			    sc->ti_unit, e->ti_event);
571 			break;
572 		}
573 		/* Advance the consumer index. */
574 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
575 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
576 	}
577 
578 	return;
579 }
580 
581 /*
582  * Memory management for the jumbo receive ring is a pain in the
583  * butt. We need to allocate at least 9018 bytes of space per frame,
584  * _and_ it has to be contiguous (unless you use the extended
585  * jumbo descriptor format). Using malloc() all the time won't
586  * work: malloc() allocates memory in powers of two, which means we
587  * would end up wasting a considerable amount of space by allocating
588  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
589  * to do our own memory management.
590  *
591  * The driver needs to allocate a contiguous chunk of memory at boot
592  * time. We then chop this up ourselves into 9K pieces and use them
593  * as external mbuf storage.
594  *
595  * One issue here is how much memory to allocate. The jumbo ring has
596  * 256 slots in it, but at 9K per slot than can consume over 2MB of
597  * RAM. This is a bit much, especially considering we also need
598  * RAM for the standard ring and mini ring (on the Tigon 2). To
599  * save space, we only actually allocate enough memory for 64 slots
600  * by default, which works out to between 500 and 600K. This can
601  * be tuned by changing a #define in if_tireg.h.
602  */
603 
604 static int ti_alloc_jumbo_mem(sc)
605 	struct ti_softc		*sc;
606 {
607 	caddr_t			ptr;
608 	int		i;
609 	struct ti_jpool_entry   *entry;
610 
611 	/* Grab a big chunk o' storage. */
612 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
613 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
614 
615 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
616 		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
617 		return(ENOBUFS);
618 	}
619 
620 	SLIST_INIT(&sc->ti_jfree_listhead);
621 	SLIST_INIT(&sc->ti_jinuse_listhead);
622 
623 	/*
624 	 * Now divide it up into 9K pieces and save the addresses
625 	 * in an array. Note that we play an evil trick here by using
626 	 * the first few bytes in the buffer to hold the the address
627 	 * of the softc structure for this interface. This is because
628 	 * ti_jfree() needs it, but it is called by the mbuf management
629 	 * code which will not pass it to us explicitly.
630 	 */
631 	ptr = sc->ti_cdata.ti_jumbo_buf;
632 	for (i = 0; i < TI_JSLOTS; i++) {
633 		u_int64_t		**aptr;
634 		aptr = (u_int64_t **)ptr;
635 		aptr[0] = (u_int64_t *)sc;
636 		ptr += sizeof(u_int64_t);
637 		sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
638 		sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
639 		ptr += (TI_JLEN - sizeof(u_int64_t));
640 		entry = malloc(sizeof(struct ti_jpool_entry),
641 			       M_DEVBUF, M_NOWAIT);
642 		if (entry == NULL) {
643 			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
644 			           M_DEVBUF);
645 			sc->ti_cdata.ti_jumbo_buf = NULL;
646 			printf("ti%d: no memory for jumbo "
647 			    "buffer queue!\n", sc->ti_unit);
648 			return(ENOBUFS);
649 		}
650 		entry->slot = i;
651 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
652 	}
653 
654 	return(0);
655 }
656 
657 /*
658  * Allocate a jumbo buffer.
659  */
660 static void *ti_jalloc(sc)
661 	struct ti_softc		*sc;
662 {
663 	struct ti_jpool_entry   *entry;
664 
665 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
666 
667 	if (entry == NULL) {
668 		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
669 		return(NULL);
670 	}
671 
672 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
673 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
674 	sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
675 	return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
676 }
677 
678 /*
679  * Adjust usage count on a jumbo buffer. In general this doesn't
680  * get used much because our jumbo buffers don't get passed around
681  * too much, but it's implemented for correctness.
682  */
683 static void ti_jref(buf, size)
684 	caddr_t			buf;
685 	u_int			size;
686 {
687 	struct ti_softc		*sc;
688 	u_int64_t		**aptr;
689 	int		i;
690 
691 	/* Extract the softc struct pointer. */
692 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
693 	sc = (struct ti_softc *)(aptr[0]);
694 
695 	if (sc == NULL)
696 		panic("ti_jref: can't find softc pointer!");
697 
698 	if (size != TI_JUMBO_FRAMELEN)
699 		panic("ti_jref: adjusting refcount of buf of wrong size!");
700 
701 	/* calculate the slot this buffer belongs to */
702 
703 	i = ((vm_offset_t)aptr
704 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
705 
706 	if ((i < 0) || (i >= TI_JSLOTS))
707 		panic("ti_jref: asked to reference buffer "
708 		    "that we don't manage!");
709 	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
710 		panic("ti_jref: buffer already free!");
711 	else
712 		sc->ti_cdata.ti_jslots[i].ti_inuse++;
713 
714 	return;
715 }
716 
717 /*
718  * Release a jumbo buffer.
719  */
720 static void ti_jfree(buf, size)
721 	caddr_t			buf;
722 	u_int			size;
723 {
724 	struct ti_softc		*sc;
725 	u_int64_t		**aptr;
726 	int		        i;
727 	struct ti_jpool_entry   *entry;
728 
729 	/* Extract the softc struct pointer. */
730 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
731 	sc = (struct ti_softc *)(aptr[0]);
732 
733 	if (sc == NULL)
734 		panic("ti_jfree: can't find softc pointer!");
735 
736 	if (size != TI_JUMBO_FRAMELEN)
737 		panic("ti_jfree: freeing buffer of wrong size!");
738 
739 	/* calculate the slot this buffer belongs to */
740 
741 	i = ((vm_offset_t)aptr
742 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
743 
744 	if ((i < 0) || (i >= TI_JSLOTS))
745 		panic("ti_jfree: asked to free buffer that we don't manage!");
746 	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
747 		panic("ti_jfree: buffer already free!");
748 	else {
749 		sc->ti_cdata.ti_jslots[i].ti_inuse--;
750 		if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
751 			entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
752 			if (entry == NULL)
753 				panic("ti_jfree: buffer not in use!");
754 			entry->slot = i;
755 			SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead,
756 					  jpool_entries);
757 			SLIST_INSERT_HEAD(&sc->ti_jfree_listhead,
758 					  entry, jpool_entries);
759 		}
760 	}
761 
762 	return;
763 }
764 
765 
766 /*
767  * Intialize a standard receive ring descriptor.
768  */
769 static int ti_newbuf_std(sc, i, m)
770 	struct ti_softc		*sc;
771 	int			i;
772 	struct mbuf		*m;
773 {
774 	struct mbuf		*m_new = NULL;
775 	struct ti_rx_desc	*r;
776 
777 	if (m == NULL) {
778 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
779 		if (m_new == NULL)
780 			return(ENOBUFS);
781 
782 		MCLGET(m_new, M_DONTWAIT);
783 		if (!(m_new->m_flags & M_EXT)) {
784 			m_freem(m_new);
785 			return(ENOBUFS);
786 		}
787 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
788 	} else {
789 		m_new = m;
790 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
791 		m_new->m_data = m_new->m_ext.ext_buf;
792 	}
793 
794 	m_adj(m_new, ETHER_ALIGN);
795 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
796 	r = &sc->ti_rdata->ti_rx_std_ring[i];
797 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
798 	r->ti_type = TI_BDTYPE_RECV_BD;
799 	r->ti_flags = 0;
800 	if (sc->arpcom.ac_if.if_hwassist)
801 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
802 	r->ti_len = m_new->m_len;
803 	r->ti_idx = i;
804 
805 	return(0);
806 }
807 
808 /*
809  * Intialize a mini receive ring descriptor. This only applies to
810  * the Tigon 2.
811  */
812 static int ti_newbuf_mini(sc, i, m)
813 	struct ti_softc		*sc;
814 	int			i;
815 	struct mbuf		*m;
816 {
817 	struct mbuf		*m_new = NULL;
818 	struct ti_rx_desc	*r;
819 
820 	if (m == NULL) {
821 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
822 		if (m_new == NULL) {
823 			return(ENOBUFS);
824 		}
825 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
826 	} else {
827 		m_new = m;
828 		m_new->m_data = m_new->m_pktdat;
829 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
830 	}
831 
832 	m_adj(m_new, ETHER_ALIGN);
833 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
834 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
835 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
836 	r->ti_type = TI_BDTYPE_RECV_BD;
837 	r->ti_flags = TI_BDFLAG_MINI_RING;
838 	if (sc->arpcom.ac_if.if_hwassist)
839 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
840 	r->ti_len = m_new->m_len;
841 	r->ti_idx = i;
842 
843 	return(0);
844 }
845 
846 /*
847  * Initialize a jumbo receive ring descriptor. This allocates
848  * a jumbo buffer from the pool managed internally by the driver.
849  */
850 static int ti_newbuf_jumbo(sc, i, m)
851 	struct ti_softc		*sc;
852 	int			i;
853 	struct mbuf		*m;
854 {
855 	struct mbuf		*m_new = NULL;
856 	struct ti_rx_desc	*r;
857 
858 	if (m == NULL) {
859 		caddr_t			*buf = NULL;
860 
861 		/* Allocate the mbuf. */
862 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
863 		if (m_new == NULL) {
864 			return(ENOBUFS);
865 		}
866 
867 		/* Allocate the jumbo buffer */
868 		buf = ti_jalloc(sc);
869 		if (buf == NULL) {
870 			m_freem(m_new);
871 			printf("ti%d: jumbo allocation failed "
872 			    "-- packet dropped!\n", sc->ti_unit);
873 			return(ENOBUFS);
874 		}
875 
876 		/* Attach the buffer to the mbuf. */
877 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
878 		m_new->m_flags |= M_EXT;
879 		m_new->m_len = m_new->m_pkthdr.len =
880 		    m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
881 		m_new->m_ext.ext_free = ti_jfree;
882 		m_new->m_ext.ext_ref = ti_jref;
883 	} else {
884 		m_new = m;
885 		m_new->m_data = m_new->m_ext.ext_buf;
886 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
887 	}
888 
889 	m_adj(m_new, ETHER_ALIGN);
890 	/* Set up the descriptor. */
891 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
892 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
893 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
894 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
895 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
896 	if (sc->arpcom.ac_if.if_hwassist)
897 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
898 	r->ti_len = m_new->m_len;
899 	r->ti_idx = i;
900 
901 	return(0);
902 }
903 
904 /*
905  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
906  * that's 1MB or memory, which is a lot. For now, we fill only the first
907  * 256 ring entries and hope that our CPU is fast enough to keep up with
908  * the NIC.
909  */
910 static int ti_init_rx_ring_std(sc)
911 	struct ti_softc		*sc;
912 {
913 	int		i;
914 	struct ti_cmd_desc	cmd;
915 
916 	for (i = 0; i < TI_SSLOTS; i++) {
917 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
918 			return(ENOBUFS);
919 	};
920 
921 	TI_UPDATE_STDPROD(sc, i - 1);
922 	sc->ti_std = i - 1;
923 
924 	return(0);
925 }
926 
927 static void ti_free_rx_ring_std(sc)
928 	struct ti_softc		*sc;
929 {
930 	int		i;
931 
932 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
933 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
934 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
935 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
936 		}
937 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
938 		    sizeof(struct ti_rx_desc));
939 	}
940 
941 	return;
942 }
943 
944 static int ti_init_rx_ring_jumbo(sc)
945 	struct ti_softc		*sc;
946 {
947 	int		i;
948 	struct ti_cmd_desc	cmd;
949 
950 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
951 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
952 			return(ENOBUFS);
953 	};
954 
955 	TI_UPDATE_JUMBOPROD(sc, i - 1);
956 	sc->ti_jumbo = i - 1;
957 
958 	return(0);
959 }
960 
961 static void ti_free_rx_ring_jumbo(sc)
962 	struct ti_softc		*sc;
963 {
964 	int		i;
965 
966 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
967 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
968 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
969 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
970 		}
971 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
972 		    sizeof(struct ti_rx_desc));
973 	}
974 
975 	return;
976 }
977 
978 static int ti_init_rx_ring_mini(sc)
979 	struct ti_softc		*sc;
980 {
981 	int		i;
982 
983 	for (i = 0; i < TI_MSLOTS; i++) {
984 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
985 			return(ENOBUFS);
986 	};
987 
988 	TI_UPDATE_MINIPROD(sc, i - 1);
989 	sc->ti_mini = i - 1;
990 
991 	return(0);
992 }
993 
994 static void ti_free_rx_ring_mini(sc)
995 	struct ti_softc		*sc;
996 {
997 	int		i;
998 
999 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1000 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1001 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1002 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1003 		}
1004 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1005 		    sizeof(struct ti_rx_desc));
1006 	}
1007 
1008 	return;
1009 }
1010 
1011 static void ti_free_tx_ring(sc)
1012 	struct ti_softc		*sc;
1013 {
1014 	int		i;
1015 
1016 	if (sc->ti_rdata->ti_tx_ring == NULL)
1017 		return;
1018 
1019 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1020 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1021 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1022 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1023 		}
1024 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1025 		    sizeof(struct ti_tx_desc));
1026 	}
1027 
1028 	return;
1029 }
1030 
1031 static int ti_init_tx_ring(sc)
1032 	struct ti_softc		*sc;
1033 {
1034 	sc->ti_txcnt = 0;
1035 	sc->ti_tx_saved_considx = 0;
1036 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1037 	return(0);
1038 }
1039 
1040 /*
1041  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1042  * but we have to support the old way too so that Tigon 1 cards will
1043  * work.
1044  */
1045 void ti_add_mcast(sc, addr)
1046 	struct ti_softc		*sc;
1047 	struct ether_addr	*addr;
1048 {
1049 	struct ti_cmd_desc	cmd;
1050 	u_int16_t		*m;
1051 	u_int32_t		ext[2] = {0, 0};
1052 
1053 	m = (u_int16_t *)&addr->octet[0];
1054 
1055 	switch(sc->ti_hwrev) {
1056 	case TI_HWREV_TIGON:
1057 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1058 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1059 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1060 		break;
1061 	case TI_HWREV_TIGON_II:
1062 		ext[0] = htons(m[0]);
1063 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1064 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1065 		break;
1066 	default:
1067 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1068 		break;
1069 	}
1070 
1071 	return;
1072 }
1073 
1074 void ti_del_mcast(sc, addr)
1075 	struct ti_softc		*sc;
1076 	struct ether_addr	*addr;
1077 {
1078 	struct ti_cmd_desc	cmd;
1079 	u_int16_t		*m;
1080 	u_int32_t		ext[2] = {0, 0};
1081 
1082 	m = (u_int16_t *)&addr->octet[0];
1083 
1084 	switch(sc->ti_hwrev) {
1085 	case TI_HWREV_TIGON:
1086 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1087 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1088 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1089 		break;
1090 	case TI_HWREV_TIGON_II:
1091 		ext[0] = htons(m[0]);
1092 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1093 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1094 		break;
1095 	default:
1096 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1097 		break;
1098 	}
1099 
1100 	return;
1101 }
1102 
1103 /*
1104  * Configure the Tigon's multicast address filter.
1105  *
1106  * The actual multicast table management is a bit of a pain, thanks to
1107  * slight brain damage on the part of both Alteon and us. With our
1108  * multicast code, we are only alerted when the multicast address table
1109  * changes and at that point we only have the current list of addresses:
1110  * we only know the current state, not the previous state, so we don't
1111  * actually know what addresses were removed or added. The firmware has
1112  * state, but we can't get our grubby mits on it, and there is no 'delete
1113  * all multicast addresses' command. Hence, we have to maintain our own
1114  * state so we know what addresses have been programmed into the NIC at
1115  * any given time.
1116  */
1117 static void ti_setmulti(sc)
1118 	struct ti_softc		*sc;
1119 {
1120 	struct ifnet		*ifp;
1121 	struct ifmultiaddr	*ifma;
1122 	struct ti_cmd_desc	cmd;
1123 	struct ti_mc_entry	*mc;
1124 	u_int32_t		intrs;
1125 
1126 	ifp = &sc->arpcom.ac_if;
1127 
1128 	if (ifp->if_flags & IFF_ALLMULTI) {
1129 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1130 		return;
1131 	} else {
1132 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1133 	}
1134 
1135 	/* Disable interrupts. */
1136 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1137 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1138 
1139 	/* First, zot all the existing filters. */
1140 	while (sc->ti_mc_listhead.slh_first != NULL) {
1141 		mc = sc->ti_mc_listhead.slh_first;
1142 		ti_del_mcast(sc, &mc->mc_addr);
1143 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1144 		free(mc, M_DEVBUF);
1145 	}
1146 
1147 	/* Now program new ones. */
1148 	for (ifma = ifp->if_multiaddrs.lh_first;
1149 	    ifma != NULL; ifma = ifma->ifma_link.le_next) {
1150 		if (ifma->ifma_addr->sa_family != AF_LINK)
1151 			continue;
1152 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1153 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1154 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1155 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1156 		ti_add_mcast(sc, &mc->mc_addr);
1157 	}
1158 
1159 	/* Re-enable interrupts. */
1160 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1161 
1162 	return;
1163 }
1164 
1165 /*
1166  * Check to see if the BIOS has configured us for a 64 bit slot when
1167  * we aren't actually in one. If we detect this condition, we can work
1168  * around it on the Tigon 2 by setting a bit in the PCI state register,
1169  * but for the Tigon 1 we must give up and abort the interface attach.
1170  */
1171 static int ti_64bitslot_war(sc)
1172 	struct ti_softc		*sc;
1173 {
1174 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1175 		CSR_WRITE_4(sc, 0x600, 0);
1176 		CSR_WRITE_4(sc, 0x604, 0);
1177 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1178 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1179 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1180 				return(EINVAL);
1181 			else {
1182 				TI_SETBIT(sc, TI_PCI_STATE,
1183 				    TI_PCISTATE_32BIT_BUS);
1184 				return(0);
1185 			}
1186 		}
1187 	}
1188 
1189 	return(0);
1190 }
1191 
1192 /*
1193  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1194  * self-test results.
1195  */
1196 static int ti_chipinit(sc)
1197 	struct ti_softc		*sc;
1198 {
1199 	u_int32_t		cacheline;
1200 	u_int32_t		pci_writemax = 0;
1201 
1202 	/* Initialize link to down state. */
1203 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1204 
1205 	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1206 		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1207 	else
1208 		sc->arpcom.ac_if.if_hwassist = 0;
1209 
1210 	/* Set endianness before we access any non-PCI registers. */
1211 #if BYTE_ORDER == BIG_ENDIAN
1212 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1213 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1214 #else
1215 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1216 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1217 #endif
1218 
1219 	/* Check the ROM failed bit to see if self-tests passed. */
1220 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1221 		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1222 		return(ENODEV);
1223 	}
1224 
1225 	/* Halt the CPU. */
1226 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1227 
1228 	/* Figure out the hardware revision. */
1229 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1230 	case TI_REV_TIGON_I:
1231 		sc->ti_hwrev = TI_HWREV_TIGON;
1232 		break;
1233 	case TI_REV_TIGON_II:
1234 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1235 		break;
1236 	default:
1237 		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1238 		return(ENODEV);
1239 	}
1240 
1241 	/* Do special setup for Tigon 2. */
1242 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1243 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1244 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1245 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1246 	}
1247 
1248 	/* Set up the PCI state register. */
1249 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1250 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1251 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1252 	}
1253 
1254 	/* Clear the read/write max DMA parameters. */
1255 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1256 	    TI_PCISTATE_READ_MAXDMA));
1257 
1258 	/* Get cache line size. */
1259 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1260 
1261 	/*
1262 	 * If the system has set enabled the PCI memory write
1263 	 * and invalidate command in the command register, set
1264 	 * the write max parameter accordingly. This is necessary
1265 	 * to use MWI with the Tigon 2.
1266 	 */
1267 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1268 		switch(cacheline) {
1269 		case 1:
1270 		case 4:
1271 		case 8:
1272 		case 16:
1273 		case 32:
1274 		case 64:
1275 			break;
1276 		default:
1277 		/* Disable PCI memory write and invalidate. */
1278 			if (bootverbose)
1279 				printf("ti%d: cache line size %d not "
1280 				    "supported; disabling PCI MWI\n",
1281 				    sc->ti_unit, cacheline);
1282 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1283 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1284 			break;
1285 		}
1286 	}
1287 
1288 #ifdef __brokenalpha__
1289 	/*
1290 	 * From the Alteon sample driver:
1291 	 * Must insure that we do not cross an 8K (bytes) boundary
1292 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1293 	 * restriction on some ALPHA platforms with early revision
1294 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1295 	 */
1296 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1297 #else
1298 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1299 #endif
1300 
1301 	/* This sets the min dma param all the way up (0xff). */
1302 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1303 
1304 	/* Configure DMA variables. */
1305 #if BYTE_ORDER == BIG_ENDIAN
1306 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1307 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1308 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1309 	    TI_OPMODE_DONT_FRAG_JUMBO);
1310 #else
1311 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1312 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1313 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1314 #endif
1315 
1316 	/*
1317 	 * Only allow 1 DMA channel to be active at a time.
1318 	 * I don't think this is a good idea, but without it
1319 	 * the firmware racks up lots of nicDmaReadRingFull
1320 	 * errors.  This is not compatible with hardware checksums.
1321 	 */
1322 	if (sc->arpcom.ac_if.if_hwassist == 0)
1323 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1324 
1325 	/* Recommended settings from Tigon manual. */
1326 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1327 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1328 
1329 	if (ti_64bitslot_war(sc)) {
1330 		printf("ti%d: bios thinks we're in a 64 bit slot, "
1331 		    "but we aren't", sc->ti_unit);
1332 		return(EINVAL);
1333 	}
1334 
1335 	return(0);
1336 }
1337 
1338 /*
1339  * Initialize the general information block and firmware, and
1340  * start the CPU(s) running.
1341  */
1342 static int ti_gibinit(sc)
1343 	struct ti_softc		*sc;
1344 {
1345 	struct ti_rcb		*rcb;
1346 	int			i;
1347 	struct ifnet		*ifp;
1348 
1349 	ifp = &sc->arpcom.ac_if;
1350 
1351 	/* Disable interrupts for now. */
1352 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1353 
1354 	/* Tell the chip where to find the general information block. */
1355 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1356 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1357 
1358 	/* Load the firmware into SRAM. */
1359 	ti_loadfw(sc);
1360 
1361 	/* Set up the contents of the general info and ring control blocks. */
1362 
1363 	/* Set up the event ring and producer pointer. */
1364 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1365 
1366 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1367 	rcb->ti_flags = 0;
1368 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1369 	    vtophys(&sc->ti_ev_prodidx);
1370 	sc->ti_ev_prodidx.ti_idx = 0;
1371 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1372 	sc->ti_ev_saved_considx = 0;
1373 
1374 	/* Set up the command ring and producer mailbox. */
1375 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1376 
1377 	sc->ti_rdata->ti_cmd_ring =
1378 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1379 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1380 	rcb->ti_flags = 0;
1381 	rcb->ti_max_len = 0;
1382 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1383 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1384 	}
1385 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1386 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1387 	sc->ti_cmd_saved_prodidx = 0;
1388 
1389 	/*
1390 	 * Assign the address of the stats refresh buffer.
1391 	 * We re-use the current stats buffer for this to
1392 	 * conserve memory.
1393 	 */
1394 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1395 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1396 
1397 	/* Set up the standard receive ring. */
1398 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1399 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1400 	rcb->ti_max_len = TI_FRAMELEN;
1401 	rcb->ti_flags = 0;
1402 	if (sc->arpcom.ac_if.if_hwassist)
1403 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1404 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1405 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1406 
1407 	/* Set up the jumbo receive ring. */
1408 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1409 	TI_HOSTADDR(rcb->ti_hostaddr) =
1410 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1411 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1412 	rcb->ti_flags = 0;
1413 	if (sc->arpcom.ac_if.if_hwassist)
1414 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1415 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1416 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1417 
1418 	/*
1419 	 * Set up the mini ring. Only activated on the
1420 	 * Tigon 2 but the slot in the config block is
1421 	 * still there on the Tigon 1.
1422 	 */
1423 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1424 	TI_HOSTADDR(rcb->ti_hostaddr) =
1425 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1426 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1427 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1428 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1429 	else
1430 		rcb->ti_flags = 0;
1431 	if (sc->arpcom.ac_if.if_hwassist)
1432 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1433 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1434 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1435 
1436 	/*
1437 	 * Set up the receive return ring.
1438 	 */
1439 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1440 	TI_HOSTADDR(rcb->ti_hostaddr) =
1441 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1442 	rcb->ti_flags = 0;
1443 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1444 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1445 	    vtophys(&sc->ti_return_prodidx);
1446 
1447 	/*
1448 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1449 	 * of putting the transmit ring in the host's address space and
1450 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1451 	 * memory and accessing it through the shared memory region. We
1452 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1453 	 * so we have to revert to the shared memory scheme if we detect
1454 	 * a Tigon 1 chip.
1455 	 */
1456 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1457 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1458 		sc->ti_rdata->ti_tx_ring_nic =
1459 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1460 	}
1461 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1462 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1463 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1464 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1465 		rcb->ti_flags = 0;
1466 	else
1467 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1468 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1469 	if (sc->arpcom.ac_if.if_hwassist)
1470 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1471 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1472 	rcb->ti_max_len = TI_TX_RING_CNT;
1473 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1474 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1475 	else
1476 		TI_HOSTADDR(rcb->ti_hostaddr) =
1477 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1478 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1479 	    vtophys(&sc->ti_tx_considx);
1480 
1481 	/* Set up tuneables */
1482 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1483 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1484 		    (sc->ti_rx_coal_ticks / 10));
1485 	else
1486 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1487 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1488 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1489 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1490 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1491 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1492 
1493 	/* Turn interrupts on. */
1494 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1495 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1496 
1497 	/* Start CPU. */
1498 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1499 
1500 	return(0);
1501 }
1502 
1503 /*
1504  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1505  * against our list and return its name if we find a match.
1506  */
1507 static int ti_probe(dev)
1508 	device_t		dev;
1509 {
1510 	struct ti_type		*t;
1511 
1512 	t = ti_devs;
1513 
1514 	while(t->ti_name != NULL) {
1515 		if ((pci_get_vendor(dev) == t->ti_vid) &&
1516 		    (pci_get_device(dev) == t->ti_did)) {
1517 			device_set_desc(dev, t->ti_name);
1518 			return(0);
1519 		}
1520 		t++;
1521 	}
1522 
1523 	return(ENXIO);
1524 }
1525 
1526 static int ti_attach(dev)
1527 	device_t		dev;
1528 {
1529 	int			s;
1530 	u_int32_t		command;
1531 	struct ifnet		*ifp;
1532 	struct ti_softc		*sc;
1533 	int			unit, error = 0, rid;
1534 
1535 	s = splimp();
1536 
1537 	sc = device_get_softc(dev);
1538 	unit = device_get_unit(dev);
1539 	bzero(sc, sizeof(struct ti_softc));
1540 	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM;
1541 	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
1542 
1543 	/*
1544 	 * Map control/status registers.
1545 	 */
1546 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1547 	command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1548 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1549 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1550 
1551 	if (!(command & PCIM_CMD_MEMEN)) {
1552 		printf("ti%d: failed to enable memory mapping!\n", unit);
1553 		error = ENXIO;
1554 		goto fail;
1555 	}
1556 
1557 	rid = TI_PCI_LOMEM;
1558 	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1559 	    0, ~0, 1, RF_ACTIVE);
1560 
1561 	if (sc->ti_res == NULL) {
1562 		printf ("ti%d: couldn't map memory\n", unit);
1563 		error = ENXIO;
1564 		goto fail;
1565 	}
1566 
1567 	sc->ti_btag = rman_get_bustag(sc->ti_res);
1568 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1569 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1570 
1571 	/*
1572 	 * XXX FIXME: rman_get_virtual() on the alpha is currently
1573 	 * broken and returns a physical address instead of a kernel
1574 	 * virtual address. Consequently, we need to do a little
1575 	 * extra mangling of the vhandle on the alpha. This should
1576 	 * eventually be fixed! The whole idea here is to get rid
1577 	 * of platform dependencies.
1578 	 */
1579 #ifdef __alpha__
1580 	if (pci_cvt_to_bwx(sc->ti_vhandle))
1581 		sc->ti_vhandle = pci_cvt_to_bwx(sc->ti_vhandle);
1582 	else
1583 		sc->ti_vhandle = pci_cvt_to_dense(sc->ti_vhandle);
1584 	sc->ti_vhandle = ALPHA_PHYS_TO_K0SEG(sc->ti_vhandle);
1585 #endif
1586 
1587 	/* Allocate interrupt */
1588 	rid = 0;
1589 
1590 	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1591 	    RF_SHAREABLE | RF_ACTIVE);
1592 
1593 	if (sc->ti_irq == NULL) {
1594 		printf("ti%d: couldn't map interrupt\n", unit);
1595 		error = ENXIO;
1596 		goto fail;
1597 	}
1598 
1599 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1600 	   ti_intr, sc, &sc->ti_intrhand);
1601 
1602 	if (error) {
1603 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1604 		bus_release_resource(dev, SYS_RES_MEMORY,
1605 		    TI_PCI_LOMEM, sc->ti_res);
1606 		printf("ti%d: couldn't set up irq\n", unit);
1607 		goto fail;
1608 	}
1609 
1610 	sc->ti_unit = unit;
1611 
1612 	if (ti_chipinit(sc)) {
1613 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1614 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1615 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1616 		bus_release_resource(dev, SYS_RES_MEMORY,
1617 		    TI_PCI_LOMEM, sc->ti_res);
1618 		error = ENXIO;
1619 		goto fail;
1620 	}
1621 
1622 	/* Zero out the NIC's on-board SRAM. */
1623 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1624 
1625 	/* Init again -- zeroing memory may have clobbered some registers. */
1626 	if (ti_chipinit(sc)) {
1627 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1628 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1629 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1630 		bus_release_resource(dev, SYS_RES_MEMORY,
1631 		    TI_PCI_LOMEM, sc->ti_res);
1632 		error = ENXIO;
1633 		goto fail;
1634 	}
1635 
1636 	/*
1637 	 * Get station address from the EEPROM. Note: the manual states
1638 	 * that the MAC address is at offset 0x8c, however the data is
1639 	 * stored as two longwords (since that's how it's loaded into
1640 	 * the NIC). This means the MAC address is actually preceeded
1641 	 * by two zero bytes. We need to skip over those.
1642 	 */
1643 	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1644 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1645 		printf("ti%d: failed to read station address\n", unit);
1646 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1647 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1648 		bus_release_resource(dev, SYS_RES_MEMORY,
1649 		    TI_PCI_LOMEM, sc->ti_res);
1650 		error = ENXIO;
1651 		goto fail;
1652 	}
1653 
1654 	/*
1655 	 * A Tigon chip was detected. Inform the world.
1656 	 */
1657 	printf("ti%d: Ethernet address: %6D\n", unit,
1658 				sc->arpcom.ac_enaddr, ":");
1659 
1660 	/* Allocate the general information block and ring buffers. */
1661 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1662 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1663 
1664 	if (sc->ti_rdata == NULL) {
1665 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1666 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1667 		bus_release_resource(dev, SYS_RES_MEMORY,
1668 		    TI_PCI_LOMEM, sc->ti_res);
1669 		error = ENXIO;
1670 		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1671 		goto fail;
1672 	}
1673 
1674 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1675 
1676 	/* Try to allocate memory for jumbo buffers. */
1677 	if (ti_alloc_jumbo_mem(sc)) {
1678 		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1679 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1680 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1681 		bus_release_resource(dev, SYS_RES_MEMORY,
1682 		    TI_PCI_LOMEM, sc->ti_res);
1683 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
1684 		    M_DEVBUF);
1685 		error = ENXIO;
1686 		goto fail;
1687 	}
1688 
1689 	/*
1690 	 * We really need a better way to tell a 1000baseTX card
1691 	 * from a 1000baseSX one, since in theory there could be
1692 	 * OEMed 1000baseTX cards from lame vendors who aren't
1693 	 * clever enough to change the PCI ID. For the moment
1694 	 * though, the AceNIC is the only copper card available.
1695 	 */
1696 	if (pci_get_vendor(dev) == ALT_VENDORID &&
1697 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1698 		sc->ti_copper = 1;
1699 	/* Ok, it's not the only copper card available. */
1700 	if (pci_get_vendor(dev) == NG_VENDORID &&
1701 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1702 		sc->ti_copper = 1;
1703 
1704 	/* Set default tuneable values. */
1705 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1706 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1707 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1708 	sc->ti_rx_max_coal_bds = 64;
1709 	sc->ti_tx_max_coal_bds = 128;
1710 	sc->ti_tx_buf_ratio = 21;
1711 
1712 	/* Set up ifnet structure */
1713 	ifp = &sc->arpcom.ac_if;
1714 	ifp->if_softc = sc;
1715 	ifp->if_unit = sc->ti_unit;
1716 	ifp->if_name = "ti";
1717 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1718 	ifp->if_ioctl = ti_ioctl;
1719 	ifp->if_output = ether_output;
1720 	ifp->if_start = ti_start;
1721 	ifp->if_watchdog = ti_watchdog;
1722 	ifp->if_init = ti_init;
1723 	ifp->if_mtu = ETHERMTU;
1724 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1725 
1726 	/* Set up ifmedia support. */
1727 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1728 	if (sc->ti_copper) {
1729 		/*
1730 		 * Copper cards allow manual 10/100 mode selection,
1731 		 * but not manual 1000baseTX mode selection. Why?
1732 		 * Becuase currently there's no way to specify the
1733 		 * master/slave setting through the firmware interface,
1734 		 * so Alteon decided to just bag it and handle it
1735 		 * via autonegotiation.
1736 		 */
1737 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1738 		ifmedia_add(&sc->ifmedia,
1739 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1740 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1741 		ifmedia_add(&sc->ifmedia,
1742 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1743 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1744 		ifmedia_add(&sc->ifmedia,
1745 		    IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1746 	} else {
1747 		/* Fiber cards don't support 10/100 modes. */
1748 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1749 		ifmedia_add(&sc->ifmedia,
1750 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1751 	}
1752 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1753 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1754 
1755 	/*
1756 	 * Call MI attach routine.
1757 	 */
1758 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1759 
1760 fail:
1761 	splx(s);
1762 
1763 	return(error);
1764 }
1765 
1766 static int ti_detach(dev)
1767 	device_t		dev;
1768 {
1769 	struct ti_softc		*sc;
1770 	struct ifnet		*ifp;
1771 	int			s;
1772 
1773 	s = splimp();
1774 
1775 	sc = device_get_softc(dev);
1776 	ifp = &sc->arpcom.ac_if;
1777 
1778 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1779 	ti_stop(sc);
1780 
1781 	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1782 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1783 	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1784 
1785 	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1786 	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1787 	ifmedia_removeall(&sc->ifmedia);
1788 
1789 	splx(s);
1790 
1791 	return(0);
1792 }
1793 
1794 /*
1795  * Frame reception handling. This is called if there's a frame
1796  * on the receive return list.
1797  *
1798  * Note: we have to be able to handle three possibilities here:
1799  * 1) the frame is from the mini receive ring (can only happen)
1800  *    on Tigon 2 boards)
1801  * 2) the frame is from the jumbo recieve ring
1802  * 3) the frame is from the standard receive ring
1803  */
1804 
1805 static void ti_rxeof(sc)
1806 	struct ti_softc		*sc;
1807 {
1808 	struct ifnet		*ifp;
1809 	struct ti_cmd_desc	cmd;
1810 
1811 	ifp = &sc->arpcom.ac_if;
1812 
1813 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1814 		struct ti_rx_desc	*cur_rx;
1815 		u_int32_t		rxidx;
1816 		struct ether_header	*eh;
1817 		struct mbuf		*m = NULL;
1818 		u_int16_t		vlan_tag = 0;
1819 		int			have_tag = 0;
1820 
1821 		cur_rx =
1822 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1823 		rxidx = cur_rx->ti_idx;
1824 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1825 
1826 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1827 			have_tag = 1;
1828 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
1829 		}
1830 
1831 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1832 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1833 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1834 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1835 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1836 				ifp->if_ierrors++;
1837 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1838 				continue;
1839 			}
1840 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1841 				ifp->if_ierrors++;
1842 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1843 				continue;
1844 			}
1845 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1846 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1847 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1848 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1849 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1850 				ifp->if_ierrors++;
1851 				ti_newbuf_mini(sc, sc->ti_mini, m);
1852 				continue;
1853 			}
1854 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1855 				ifp->if_ierrors++;
1856 				ti_newbuf_mini(sc, sc->ti_mini, m);
1857 				continue;
1858 			}
1859 		} else {
1860 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1861 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1862 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1863 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1864 				ifp->if_ierrors++;
1865 				ti_newbuf_std(sc, sc->ti_std, m);
1866 				continue;
1867 			}
1868 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1869 				ifp->if_ierrors++;
1870 				ti_newbuf_std(sc, sc->ti_std, m);
1871 				continue;
1872 			}
1873 		}
1874 
1875 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1876 		ifp->if_ipackets++;
1877 		eh = mtod(m, struct ether_header *);
1878 		m->m_pkthdr.rcvif = ifp;
1879 
1880 		/* Remove header from mbuf and pass it on. */
1881 		m_adj(m, sizeof(struct ether_header));
1882 
1883 		if (ifp->if_hwassist) {
1884 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1885 			    CSUM_DATA_VALID;
1886 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1887 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1888 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1889 		}
1890 
1891 		/*
1892 		 * If we received a packet with a vlan tag, pass it
1893 		 * to vlan_input() instead of ether_input().
1894 		 */
1895 		if (have_tag) {
1896 			VLAN_INPUT_TAG(eh, m, vlan_tag);
1897 			have_tag = vlan_tag = 0;
1898 			continue;
1899 		}
1900 		ether_input(ifp, eh, m);
1901 	}
1902 
1903 	/* Only necessary on the Tigon 1. */
1904 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1905 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1906 		    sc->ti_rx_saved_considx);
1907 
1908 	TI_UPDATE_STDPROD(sc, sc->ti_std);
1909 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1910 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1911 
1912 	return;
1913 }
1914 
1915 static void ti_txeof(sc)
1916 	struct ti_softc		*sc;
1917 {
1918 	struct ti_tx_desc	*cur_tx = NULL;
1919 	struct ifnet		*ifp;
1920 
1921 	ifp = &sc->arpcom.ac_if;
1922 
1923 	/*
1924 	 * Go through our tx ring and free mbufs for those
1925 	 * frames that have been sent.
1926 	 */
1927 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1928 		u_int32_t		idx = 0;
1929 
1930 		idx = sc->ti_tx_saved_considx;
1931 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1932 			if (idx > 383)
1933 				CSR_WRITE_4(sc, TI_WINBASE,
1934 				    TI_TX_RING_BASE + 6144);
1935 			else if (idx > 255)
1936 				CSR_WRITE_4(sc, TI_WINBASE,
1937 				    TI_TX_RING_BASE + 4096);
1938 			else if (idx > 127)
1939 				CSR_WRITE_4(sc, TI_WINBASE,
1940 				    TI_TX_RING_BASE + 2048);
1941 			else
1942 				CSR_WRITE_4(sc, TI_WINBASE,
1943 				    TI_TX_RING_BASE);
1944 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1945 		} else
1946 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1947 		if (cur_tx->ti_flags & TI_BDFLAG_END)
1948 			ifp->if_opackets++;
1949 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1950 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1951 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1952 		}
1953 		sc->ti_txcnt--;
1954 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1955 		ifp->if_timer = 0;
1956 	}
1957 
1958 	if (cur_tx != NULL)
1959 		ifp->if_flags &= ~IFF_OACTIVE;
1960 
1961 	return;
1962 }
1963 
1964 static void ti_intr(xsc)
1965 	void			*xsc;
1966 {
1967 	struct ti_softc		*sc;
1968 	struct ifnet		*ifp;
1969 
1970 	sc = xsc;
1971 	ifp = &sc->arpcom.ac_if;
1972 
1973 #ifdef notdef
1974 	/* Avoid this for now -- checking this register is expensive. */
1975 	/* Make sure this is really our interrupt. */
1976 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
1977 		return;
1978 #endif
1979 
1980 	/* Ack interrupt and stop others from occuring. */
1981 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1982 
1983 	if (ifp->if_flags & IFF_RUNNING) {
1984 		/* Check RX return ring producer/consumer */
1985 		ti_rxeof(sc);
1986 
1987 		/* Check TX ring producer/consumer */
1988 		ti_txeof(sc);
1989 	}
1990 
1991 	ti_handle_events(sc);
1992 
1993 	/* Re-enable interrupts. */
1994 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1995 
1996 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1997 		ti_start(ifp);
1998 
1999 	return;
2000 }
2001 
2002 static void ti_stats_update(sc)
2003 	struct ti_softc		*sc;
2004 {
2005 	struct ifnet		*ifp;
2006 
2007 	ifp = &sc->arpcom.ac_if;
2008 
2009 	ifp->if_collisions +=
2010 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2011 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2012 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2013 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2014 	   ifp->if_collisions;
2015 
2016 	return;
2017 }
2018 
2019 /*
2020  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2021  * pointers to descriptors.
2022  */
2023 static int ti_encap(sc, m_head, txidx)
2024 	struct ti_softc		*sc;
2025 	struct mbuf		*m_head;
2026 	u_int32_t		*txidx;
2027 {
2028 	struct ti_tx_desc	*f = NULL;
2029 	struct mbuf		*m;
2030 	u_int32_t		frag, cur, cnt = 0;
2031 	u_int16_t		csum_flags = 0;
2032 	struct ifvlan		*ifv = NULL;
2033 
2034 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2035 	    m_head->m_pkthdr.rcvif != NULL &&
2036 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2037 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2038 
2039 	m = m_head;
2040 	cur = frag = *txidx;
2041 
2042 	if (m_head->m_pkthdr.csum_flags) {
2043 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2044 			csum_flags |= TI_BDFLAG_IP_CKSUM;
2045 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2046 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2047 		if (m_head->m_flags & M_LASTFRAG)
2048 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2049 		else if (m_head->m_flags & M_FRAG)
2050 			csum_flags |= TI_BDFLAG_IP_FRAG;
2051 	}
2052 	/*
2053  	 * Start packing the mbufs in this chain into
2054 	 * the fragment pointers. Stop when we run out
2055  	 * of fragments or hit the end of the mbuf chain.
2056 	 */
2057 	for (m = m_head; m != NULL; m = m->m_next) {
2058 		if (m->m_len != 0) {
2059 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2060 				if (frag > 383)
2061 					CSR_WRITE_4(sc, TI_WINBASE,
2062 					    TI_TX_RING_BASE + 6144);
2063 				else if (frag > 255)
2064 					CSR_WRITE_4(sc, TI_WINBASE,
2065 					    TI_TX_RING_BASE + 4096);
2066 				else if (frag > 127)
2067 					CSR_WRITE_4(sc, TI_WINBASE,
2068 					    TI_TX_RING_BASE + 2048);
2069 				else
2070 					CSR_WRITE_4(sc, TI_WINBASE,
2071 					    TI_TX_RING_BASE);
2072 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2073 			} else
2074 				f = &sc->ti_rdata->ti_tx_ring[frag];
2075 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2076 				break;
2077 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2078 			f->ti_len = m->m_len;
2079 			f->ti_flags = csum_flags;
2080 
2081 			if (ifv != NULL) {
2082 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2083 				f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
2084 			} else {
2085 				f->ti_vlan_tag = 0;
2086 			}
2087 
2088 			/*
2089 			 * Sanity check: avoid coming within 16 descriptors
2090 			 * of the end of the ring.
2091 			 */
2092 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2093 				return(ENOBUFS);
2094 			cur = frag;
2095 			TI_INC(frag, TI_TX_RING_CNT);
2096 			cnt++;
2097 		}
2098 	}
2099 
2100 	if (m != NULL)
2101 		return(ENOBUFS);
2102 
2103 	if (frag == sc->ti_tx_saved_considx)
2104 		return(ENOBUFS);
2105 
2106 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2107 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2108 		    TI_BDFLAG_END;
2109 	else
2110 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2111 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2112 	sc->ti_txcnt += cnt;
2113 
2114 	*txidx = frag;
2115 
2116 	return(0);
2117 }
2118 
2119 /*
2120  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2121  * to the mbuf data regions directly in the transmit descriptors.
2122  */
2123 static void ti_start(ifp)
2124 	struct ifnet		*ifp;
2125 {
2126 	struct ti_softc		*sc;
2127 	struct mbuf		*m_head = NULL;
2128 	u_int32_t		prodidx = 0;
2129 
2130 	sc = ifp->if_softc;
2131 
2132 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2133 
2134 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2135 		IF_DEQUEUE(&ifp->if_snd, m_head);
2136 		if (m_head == NULL)
2137 			break;
2138 
2139 		/*
2140 		 * XXX
2141 		 * safety overkill.  If this is a fragmented packet chain
2142 		 * with delayed TCP/UDP checksums, then only encapsulate
2143 		 * it if we have enough descriptors to handle the entire
2144 		 * chain at once.
2145 		 * (paranoia -- may not actually be needed)
2146 		 */
2147 		if (m_head->m_flags & M_FIRSTFRAG &&
2148 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2149 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2150 			    m_head->m_pkthdr.csum_data + 16) {
2151 				IF_PREPEND(&ifp->if_snd, m_head);
2152 				ifp->if_flags |= IFF_OACTIVE;
2153 				break;
2154 			}
2155 		}
2156 
2157 		/*
2158 		 * Pack the data into the transmit ring. If we
2159 		 * don't have room, set the OACTIVE flag and wait
2160 		 * for the NIC to drain the ring.
2161 		 */
2162 		if (ti_encap(sc, m_head, &prodidx)) {
2163 			IF_PREPEND(&ifp->if_snd, m_head);
2164 			ifp->if_flags |= IFF_OACTIVE;
2165 			break;
2166 		}
2167 
2168 		/*
2169 		 * If there's a BPF listener, bounce a copy of this frame
2170 		 * to him.
2171 		 */
2172 		if (ifp->if_bpf)
2173 			bpf_mtap(ifp, m_head);
2174 	}
2175 
2176 	/* Transmit */
2177 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2178 
2179 	/*
2180 	 * Set a timeout in case the chip goes out to lunch.
2181 	 */
2182 	ifp->if_timer = 5;
2183 
2184 	return;
2185 }
2186 
2187 static void ti_init(xsc)
2188 	void			*xsc;
2189 {
2190 	struct ti_softc		*sc = xsc;
2191         int			s;
2192 
2193 	s = splimp();
2194 
2195 	/* Cancel pending I/O and flush buffers. */
2196 	ti_stop(sc);
2197 
2198 	/* Init the gen info block, ring control blocks and firmware. */
2199 	if (ti_gibinit(sc)) {
2200 		printf("ti%d: initialization failure\n", sc->ti_unit);
2201 		splx(s);
2202 		return;
2203 	}
2204 
2205 	splx(s);
2206 
2207 	return;
2208 }
2209 
2210 static void ti_init2(sc)
2211 	struct ti_softc		*sc;
2212 {
2213 	struct ti_cmd_desc	cmd;
2214 	struct ifnet		*ifp;
2215 	u_int16_t		*m;
2216 	struct ifmedia		*ifm;
2217 	int			tmp;
2218 
2219 	ifp = &sc->arpcom.ac_if;
2220 
2221 	/* Specify MTU and interface index. */
2222 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2223 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2224 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2225 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2226 
2227 	/* Load our MAC address. */
2228 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2229 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2230 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2231 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2232 
2233 	/* Enable or disable promiscuous mode as needed. */
2234 	if (ifp->if_flags & IFF_PROMISC) {
2235 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2236 	} else {
2237 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2238 	}
2239 
2240 	/* Program multicast filter. */
2241 	ti_setmulti(sc);
2242 
2243 	/*
2244 	 * If this is a Tigon 1, we should tell the
2245 	 * firmware to use software packet filtering.
2246 	 */
2247 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2248 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2249 	}
2250 
2251 	/* Init RX ring. */
2252 	ti_init_rx_ring_std(sc);
2253 
2254 	/* Init jumbo RX ring. */
2255 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2256 		ti_init_rx_ring_jumbo(sc);
2257 
2258 	/*
2259 	 * If this is a Tigon 2, we can also configure the
2260 	 * mini ring.
2261 	 */
2262 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2263 		ti_init_rx_ring_mini(sc);
2264 
2265 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2266 	sc->ti_rx_saved_considx = 0;
2267 
2268 	/* Init TX ring. */
2269 	ti_init_tx_ring(sc);
2270 
2271 	/* Tell firmware we're alive. */
2272 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2273 
2274 	/* Enable host interrupts. */
2275 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2276 
2277 	ifp->if_flags |= IFF_RUNNING;
2278 	ifp->if_flags &= ~IFF_OACTIVE;
2279 
2280 	/*
2281 	 * Make sure to set media properly. We have to do this
2282 	 * here since we have to issue commands in order to set
2283 	 * the link negotiation and we can't issue commands until
2284 	 * the firmware is running.
2285 	 */
2286 	ifm = &sc->ifmedia;
2287 	tmp = ifm->ifm_media;
2288 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2289 	ti_ifmedia_upd(ifp);
2290 	ifm->ifm_media = tmp;
2291 
2292 	return;
2293 }
2294 
2295 /*
2296  * Set media options.
2297  */
2298 static int ti_ifmedia_upd(ifp)
2299 	struct ifnet		*ifp;
2300 {
2301 	struct ti_softc		*sc;
2302 	struct ifmedia		*ifm;
2303 	struct ti_cmd_desc	cmd;
2304 
2305 	sc = ifp->if_softc;
2306 	ifm = &sc->ifmedia;
2307 
2308 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2309 		return(EINVAL);
2310 
2311 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2312 	case IFM_AUTO:
2313 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2314 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2315 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2316 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2317 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2318 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2319 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2320 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2321 		break;
2322 	case IFM_1000_SX:
2323 	case IFM_1000_TX:
2324 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2325 		    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2326 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2327 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2328 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2329 		}
2330 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2331 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2332 		break;
2333 	case IFM_100_FX:
2334 	case IFM_10_FL:
2335 	case IFM_100_TX:
2336 	case IFM_10_T:
2337 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2338 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2339 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2340 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2341 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2342 		} else {
2343 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2344 		}
2345 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2346 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2347 		} else {
2348 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2349 		}
2350 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2351 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2352 		break;
2353 	}
2354 
2355 	return(0);
2356 }
2357 
2358 /*
2359  * Report current media status.
2360  */
2361 static void ti_ifmedia_sts(ifp, ifmr)
2362 	struct ifnet		*ifp;
2363 	struct ifmediareq	*ifmr;
2364 {
2365 	struct ti_softc		*sc;
2366 	u_int32_t		media = 0;
2367 
2368 	sc = ifp->if_softc;
2369 
2370 	ifmr->ifm_status = IFM_AVALID;
2371 	ifmr->ifm_active = IFM_ETHER;
2372 
2373 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2374 		return;
2375 
2376 	ifmr->ifm_status |= IFM_ACTIVE;
2377 
2378 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2379 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2380 		if (sc->ti_copper)
2381 			ifmr->ifm_active |= IFM_1000_TX;
2382 		else
2383 			ifmr->ifm_active |= IFM_1000_SX;
2384 		if (media & TI_GLNK_FULL_DUPLEX)
2385 			ifmr->ifm_active |= IFM_FDX;
2386 		else
2387 			ifmr->ifm_active |= IFM_HDX;
2388 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2389 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2390 		if (sc->ti_copper) {
2391 			if (media & TI_LNK_100MB)
2392 				ifmr->ifm_active |= IFM_100_TX;
2393 			if (media & TI_LNK_10MB)
2394 				ifmr->ifm_active |= IFM_10_T;
2395 		} else {
2396 			if (media & TI_LNK_100MB)
2397 				ifmr->ifm_active |= IFM_100_FX;
2398 			if (media & TI_LNK_10MB)
2399 				ifmr->ifm_active |= IFM_10_FL;
2400 		}
2401 		if (media & TI_LNK_FULL_DUPLEX)
2402 			ifmr->ifm_active |= IFM_FDX;
2403 		if (media & TI_LNK_HALF_DUPLEX)
2404 			ifmr->ifm_active |= IFM_HDX;
2405 	}
2406 
2407 	return;
2408 }
2409 
2410 static int ti_ioctl(ifp, command, data)
2411 	struct ifnet		*ifp;
2412 	u_long			command;
2413 	caddr_t			data;
2414 {
2415 	struct ti_softc		*sc = ifp->if_softc;
2416 	struct ifreq		*ifr = (struct ifreq *) data;
2417 	int			s, mask, error = 0;
2418 	struct ti_cmd_desc	cmd;
2419 
2420 	s = splimp();
2421 
2422 	switch(command) {
2423 	case SIOCSIFADDR:
2424 	case SIOCGIFADDR:
2425 		error = ether_ioctl(ifp, command, data);
2426 		break;
2427 	case SIOCSIFMTU:
2428 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2429 			error = EINVAL;
2430 		else {
2431 			ifp->if_mtu = ifr->ifr_mtu;
2432 			ti_init(sc);
2433 		}
2434 		break;
2435 	case SIOCSIFFLAGS:
2436 		if (ifp->if_flags & IFF_UP) {
2437 			/*
2438 			 * If only the state of the PROMISC flag changed,
2439 			 * then just use the 'set promisc mode' command
2440 			 * instead of reinitializing the entire NIC. Doing
2441 			 * a full re-init means reloading the firmware and
2442 			 * waiting for it to start up, which may take a
2443 			 * second or two.
2444 			 */
2445 			if (ifp->if_flags & IFF_RUNNING &&
2446 			    ifp->if_flags & IFF_PROMISC &&
2447 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2448 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2449 				    TI_CMD_CODE_PROMISC_ENB, 0);
2450 			} else if (ifp->if_flags & IFF_RUNNING &&
2451 			    !(ifp->if_flags & IFF_PROMISC) &&
2452 			    sc->ti_if_flags & IFF_PROMISC) {
2453 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2454 				    TI_CMD_CODE_PROMISC_DIS, 0);
2455 			} else
2456 				ti_init(sc);
2457 		} else {
2458 			if (ifp->if_flags & IFF_RUNNING) {
2459 				ti_stop(sc);
2460 			}
2461 		}
2462 		sc->ti_if_flags = ifp->if_flags;
2463 		error = 0;
2464 		break;
2465 	case SIOCADDMULTI:
2466 	case SIOCDELMULTI:
2467 		if (ifp->if_flags & IFF_RUNNING) {
2468 			ti_setmulti(sc);
2469 			error = 0;
2470 		}
2471 		break;
2472 	case SIOCSIFMEDIA:
2473 	case SIOCGIFMEDIA:
2474 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2475 		break;
2476 	case SIOCSIFCAP:
2477 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2478 		if (mask & IFCAP_HWCSUM) {
2479 			if (IFCAP_HWCSUM & ifp->if_capenable)
2480 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2481                         else
2482                                 ifp->if_capenable |= IFCAP_HWCSUM;
2483 			if (ifp->if_flags & IFF_RUNNING)
2484 				ti_init(sc);
2485                 }
2486 		error = 0;
2487 		break;
2488 	default:
2489 		error = EINVAL;
2490 		break;
2491 	}
2492 
2493 	(void)splx(s);
2494 
2495 	return(error);
2496 }
2497 
2498 static void ti_watchdog(ifp)
2499 	struct ifnet		*ifp;
2500 {
2501 	struct ti_softc		*sc;
2502 
2503 	sc = ifp->if_softc;
2504 
2505 	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2506 	ti_stop(sc);
2507 	ti_init(sc);
2508 
2509 	ifp->if_oerrors++;
2510 
2511 	return;
2512 }
2513 
2514 /*
2515  * Stop the adapter and free any mbufs allocated to the
2516  * RX and TX lists.
2517  */
2518 static void ti_stop(sc)
2519 	struct ti_softc		*sc;
2520 {
2521 	struct ifnet		*ifp;
2522 	struct ti_cmd_desc	cmd;
2523 
2524 	ifp = &sc->arpcom.ac_if;
2525 
2526 	/* Disable host interrupts. */
2527 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2528 	/*
2529 	 * Tell firmware we're shutting down.
2530 	 */
2531 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2532 
2533 	/* Halt and reinitialize. */
2534 	ti_chipinit(sc);
2535 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2536 	ti_chipinit(sc);
2537 
2538 	/* Free the RX lists. */
2539 	ti_free_rx_ring_std(sc);
2540 
2541 	/* Free jumbo RX list. */
2542 	ti_free_rx_ring_jumbo(sc);
2543 
2544 	/* Free mini RX list. */
2545 	ti_free_rx_ring_mini(sc);
2546 
2547 	/* Free TX buffers. */
2548 	ti_free_tx_ring(sc);
2549 
2550 	sc->ti_ev_prodidx.ti_idx = 0;
2551 	sc->ti_return_prodidx.ti_idx = 0;
2552 	sc->ti_tx_considx.ti_idx = 0;
2553 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2554 
2555 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2556 
2557 	return;
2558 }
2559 
2560 /*
2561  * Stop all chip I/O so that the kernel's probe routines don't
2562  * get confused by errant DMAs when rebooting.
2563  */
2564 static void ti_shutdown(dev)
2565 	device_t		dev;
2566 {
2567 	struct ti_softc		*sc;
2568 
2569 	sc = device_get_softc(dev);
2570 
2571 	ti_chipinit(sc);
2572 
2573 	return;
2574 }
2575