xref: /dragonfly/sys/dev/netif/tl/if_tl.c (revision 1bf4b486)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_tl.c,v 1.51.2.5 2001/12/16 15:46:08 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/tl/if_tl.c,v 1.30 2005/06/14 14:19:22 joerg Exp $
34  */
35 
36 /*
37  * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
38  * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
39  * the National Semiconductor DP83840A physical interface and the
40  * Microchip Technology 24Cxx series serial EEPROM.
41  *
42  * Written using the following four documents:
43  *
44  * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
45  * National Semiconductor DP83840A data sheet (www.national.com)
46  * Microchip Technology 24C02C data sheet (www.microchip.com)
47  * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
48  *
49  * Written by Bill Paul <wpaul@ctr.columbia.edu>
50  * Electrical Engineering Department
51  * Columbia University, New York City
52  */
53 
54 /*
55  * Some notes about the ThunderLAN:
56  *
57  * The ThunderLAN controller is a single chip containing PCI controller
58  * logic, approximately 3K of on-board SRAM, a LAN controller, and media
59  * independent interface (MII) bus. The MII allows the ThunderLAN chip to
60  * control up to 32 different physical interfaces (PHYs). The ThunderLAN
61  * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
62  * to act as a complete ethernet interface.
63  *
64  * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
65  * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
66  * in full or half duplex. Some of the Compaq Deskpro machines use a
67  * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
68  * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
69  * concert with the ThunderLAN's internal PHY to provide full 10/100
70  * support. This is cheaper than using a standalone external PHY for both
71  * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
72  * A serial EEPROM is also attached to the ThunderLAN chip to provide
73  * power-up default register settings and for storing the adapter's
74  * station address. Although not supported by this driver, the ThunderLAN
75  * chip can also be connected to token ring PHYs.
76  *
77  * The ThunderLAN has a set of registers which can be used to issue
78  * commands, acknowledge interrupts, and to manipulate other internal
79  * registers on its DIO bus. The primary registers can be accessed
80  * using either programmed I/O (inb/outb) or via PCI memory mapping,
81  * depending on how the card is configured during the PCI probing
82  * phase. It is even possible to have both PIO and memory mapped
83  * access turned on at the same time.
84  *
85  * Frame reception and transmission with the ThunderLAN chip is done
86  * using frame 'lists.' A list structure looks more or less like this:
87  *
88  * struct tl_frag {
89  *	u_int32_t		fragment_address;
90  *	u_int32_t		fragment_size;
91  * };
92  * struct tl_list {
93  *	u_int32_t		forward_pointer;
94  *	u_int16_t		cstat;
95  *	u_int16_t		frame_size;
96  *	struct tl_frag		fragments[10];
97  * };
98  *
99  * The forward pointer in the list header can be either a 0 or the address
100  * of another list, which allows several lists to be linked together. Each
101  * list contains up to 10 fragment descriptors. This means the chip allows
102  * ethernet frames to be broken up into up to 10 chunks for transfer to
103  * and from the SRAM. Note that the forward pointer and fragment buffer
104  * addresses are physical memory addresses, not virtual. Note also that
105  * a single ethernet frame can not span lists: if the host wants to
106  * transmit a frame and the frame data is split up over more than 10
107  * buffers, the frame has to collapsed before it can be transmitted.
108  *
109  * To receive frames, the driver sets up a number of lists and populates
110  * the fragment descriptors, then it sends an RX GO command to the chip.
111  * When a frame is received, the chip will DMA it into the memory regions
112  * specified by the fragment descriptors and then trigger an RX 'end of
113  * frame interrupt' when done. The driver may choose to use only one
114  * fragment per list; this may result is slighltly less efficient use
115  * of memory in exchange for improving performance.
116  *
117  * To transmit frames, the driver again sets up lists and fragment
118  * descriptors, only this time the buffers contain frame data that
119  * is to be DMA'ed into the chip instead of out of it. Once the chip
120  * has transfered the data into its on-board SRAM, it will trigger a
121  * TX 'end of frame' interrupt. It will also generate an 'end of channel'
122  * interrupt when it reaches the end of the list.
123  */
124 
125 /*
126  * Some notes about this driver:
127  *
128  * The ThunderLAN chip provides a couple of different ways to organize
129  * reception, transmission and interrupt handling. The simplest approach
130  * is to use one list each for transmission and reception. In this mode,
131  * the ThunderLAN will generate two interrupts for every received frame
132  * (one RX EOF and one RX EOC) and two for each transmitted frame (one
133  * TX EOF and one TX EOC). This may make the driver simpler but it hurts
134  * performance to have to handle so many interrupts.
135  *
136  * Initially I wanted to create a circular list of receive buffers so
137  * that the ThunderLAN chip would think there was an infinitely long
138  * receive channel and never deliver an RXEOC interrupt. However this
139  * doesn't work correctly under heavy load: while the manual says the
140  * chip will trigger an RXEOF interrupt each time a frame is copied into
141  * memory, you can't count on the chip waiting around for you to acknowledge
142  * the interrupt before it starts trying to DMA the next frame. The result
143  * is that the chip might traverse the entire circular list and then wrap
144  * around before you have a chance to do anything about it. Consequently,
145  * the receive list is terminated (with a 0 in the forward pointer in the
146  * last element). Each time an RXEOF interrupt arrives, the used list
147  * is shifted to the end of the list. This gives the appearance of an
148  * infinitely large RX chain so long as the driver doesn't fall behind
149  * the chip and allow all of the lists to be filled up.
150  *
151  * If all the lists are filled, the adapter will deliver an RX 'end of
152  * channel' interrupt when it hits the 0 forward pointer at the end of
153  * the chain. The RXEOC handler then cleans out the RX chain and resets
154  * the list head pointer in the ch_parm register and restarts the receiver.
155  *
156  * For frame transmission, it is possible to program the ThunderLAN's
157  * transmit interrupt threshold so that the chip can acknowledge multiple
158  * lists with only a single TX EOF interrupt. This allows the driver to
159  * queue several frames in one shot, and only have to handle a total
160  * two interrupts (one TX EOF and one TX EOC) no matter how many frames
161  * are transmitted. Frame transmission is done directly out of the
162  * mbufs passed to the tl_start() routine via the interface send queue.
163  * The driver simply sets up the fragment descriptors in the transmit
164  * lists to point to the mbuf data regions and sends a TX GO command.
165  *
166  * Note that since the RX and TX lists themselves are always used
167  * only by the driver, the are malloc()ed once at driver initialization
168  * time and never free()ed.
169  *
170  * Also, in order to remain as platform independent as possible, this
171  * driver uses memory mapped register access to manipulate the card
172  * as opposed to programmed I/O. This avoids the use of the inb/outb
173  * (and related) instructions which are specific to the i386 platform.
174  *
175  * Using these techniques, this driver achieves very high performance
176  * by minimizing the amount of interrupts generated during large
177  * transfers and by completely avoiding buffer copies. Frame transfer
178  * to and from the ThunderLAN chip is performed entirely by the chip
179  * itself thereby reducing the load on the host CPU.
180  */
181 
182 #include <sys/param.h>
183 #include <sys/systm.h>
184 #include <sys/sockio.h>
185 #include <sys/mbuf.h>
186 #include <sys/malloc.h>
187 #include <sys/kernel.h>
188 #include <sys/socket.h>
189 #include <sys/thread2.h>
190 
191 #include <net/if.h>
192 #include <net/ifq_var.h>
193 #include <net/if_arp.h>
194 #include <net/ethernet.h>
195 #include <net/if_dl.h>
196 #include <net/if_media.h>
197 
198 #include <net/bpf.h>
199 
200 #include <vm/vm.h>              /* for vtophys */
201 #include <vm/pmap.h>            /* for vtophys */
202 #include <machine/bus_memio.h>
203 #include <machine/bus_pio.h>
204 #include <machine/bus.h>
205 #include <machine/resource.h>
206 #include <sys/bus.h>
207 #include <sys/rman.h>
208 
209 #include "../mii_layer/mii.h"
210 #include "../mii_layer/miivar.h"
211 
212 #include <bus/pci/pcireg.h>
213 #include <bus/pci/pcivar.h>
214 
215 /*
216  * Default to using PIO register access mode to pacify certain
217  * laptop docking stations with built-in ThunderLAN chips that
218  * don't seem to handle memory mapped mode properly.
219  */
220 #define TL_USEIOSPACE
221 
222 #include "if_tlreg.h"
223 
224 /* "controller miibus0" required.  See GENERIC if you get errors here. */
225 #include "miibus_if.h"
226 
227 /*
228  * Various supported device vendors/types and their names.
229  */
230 
231 static struct tl_type tl_devs[] = {
232 	{ TI_VENDORID,	TI_DEVICEID_THUNDERLAN,
233 		"Texas Instruments ThunderLAN" },
234 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
235 		"Compaq Netelligent 10" },
236 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
237 		"Compaq Netelligent 10/100" },
238 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
239 		"Compaq Netelligent 10/100 Proliant" },
240 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
241 		"Compaq Netelligent 10/100 Dual Port" },
242 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
243 		"Compaq NetFlex-3/P Integrated" },
244 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
245 		"Compaq NetFlex-3/P" },
246 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
247 		"Compaq NetFlex 3/P w/ BNC" },
248 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
249 		"Compaq Netelligent 10/100 TX Embedded UTP" },
250 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
251 		"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
252 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
253 		"Compaq Netelligent 10/100 TX UTP" },
254 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
255 		"Olicom OC-2183/2185" },
256 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
257 		"Olicom OC-2325" },
258 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
259 		"Olicom OC-2326 10/100 TX UTP" },
260 	{ 0, 0, NULL }
261 };
262 
263 static int tl_probe		(device_t);
264 static int tl_attach		(device_t);
265 static int tl_detach		(device_t);
266 static int tl_intvec_rxeoc	(void *, u_int32_t);
267 static int tl_intvec_txeoc	(void *, u_int32_t);
268 static int tl_intvec_txeof	(void *, u_int32_t);
269 static int tl_intvec_rxeof	(void *, u_int32_t);
270 static int tl_intvec_adchk	(void *, u_int32_t);
271 static int tl_intvec_netsts	(void *, u_int32_t);
272 
273 static int tl_newbuf		(struct tl_softc *,
274 					struct tl_chain_onefrag *);
275 static void tl_stats_update	(void *);
276 static int tl_encap		(struct tl_softc *, struct tl_chain *,
277 						struct mbuf *);
278 
279 static void tl_intr		(void *);
280 static void tl_start		(struct ifnet *);
281 static int tl_ioctl		(struct ifnet *, u_long, caddr_t,
282 						struct ucred *);
283 static void tl_init		(void *);
284 static void tl_stop		(struct tl_softc *);
285 static void tl_watchdog		(struct ifnet *);
286 static void tl_shutdown		(device_t);
287 static int tl_ifmedia_upd	(struct ifnet *);
288 static void tl_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
289 
290 static u_int8_t tl_eeprom_putbyte	(struct tl_softc *, int);
291 static u_int8_t	tl_eeprom_getbyte	(struct tl_softc *,
292 						int, u_int8_t *);
293 static int tl_read_eeprom	(struct tl_softc *, caddr_t, int, int);
294 
295 static void tl_mii_sync		(struct tl_softc *);
296 static void tl_mii_send		(struct tl_softc *, u_int32_t, int);
297 static int tl_mii_readreg	(struct tl_softc *, struct tl_mii_frame *);
298 static int tl_mii_writereg	(struct tl_softc *, struct tl_mii_frame *);
299 static int tl_miibus_readreg	(device_t, int, int);
300 static int tl_miibus_writereg	(device_t, int, int, int);
301 static void tl_miibus_statchg	(device_t);
302 
303 static void tl_setmode		(struct tl_softc *, int);
304 static int tl_calchash		(caddr_t);
305 static void tl_setmulti		(struct tl_softc *);
306 static void tl_setfilt		(struct tl_softc *, caddr_t, int);
307 static void tl_softreset	(struct tl_softc *, int);
308 static void tl_hardreset	(device_t);
309 static int tl_list_rx_init	(struct tl_softc *);
310 static int tl_list_tx_init	(struct tl_softc *);
311 
312 static u_int8_t tl_dio_read8	(struct tl_softc *, int);
313 static u_int16_t tl_dio_read16	(struct tl_softc *, int);
314 static u_int32_t tl_dio_read32	(struct tl_softc *, int);
315 static void tl_dio_write8	(struct tl_softc *, int, int);
316 static void tl_dio_write16	(struct tl_softc *, int, int);
317 static void tl_dio_write32	(struct tl_softc *, int, int);
318 static void tl_dio_setbit	(struct tl_softc *, int, int);
319 static void tl_dio_clrbit	(struct tl_softc *, int, int);
320 static void tl_dio_setbit16	(struct tl_softc *, int, int);
321 static void tl_dio_clrbit16	(struct tl_softc *, int, int);
322 
323 #ifdef TL_USEIOSPACE
324 #define TL_RES		SYS_RES_IOPORT
325 #define TL_RID		TL_PCI_LOIO
326 #else
327 #define TL_RES		SYS_RES_MEMORY
328 #define TL_RID		TL_PCI_LOMEM
329 #endif
330 
331 static device_method_t tl_methods[] = {
332 	/* Device interface */
333 	DEVMETHOD(device_probe,		tl_probe),
334 	DEVMETHOD(device_attach,	tl_attach),
335 	DEVMETHOD(device_detach,	tl_detach),
336 	DEVMETHOD(device_shutdown,	tl_shutdown),
337 
338 	/* bus interface */
339 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
340 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
341 
342 	/* MII interface */
343 	DEVMETHOD(miibus_readreg,	tl_miibus_readreg),
344 	DEVMETHOD(miibus_writereg,	tl_miibus_writereg),
345 	DEVMETHOD(miibus_statchg,	tl_miibus_statchg),
346 
347 	{ 0, 0 }
348 };
349 
350 static driver_t tl_driver = {
351 	"tl",
352 	tl_methods,
353 	sizeof(struct tl_softc)
354 };
355 
356 static devclass_t tl_devclass;
357 
358 DECLARE_DUMMY_MODULE(if_tl);
359 DRIVER_MODULE(if_tl, pci, tl_driver, tl_devclass, 0, 0);
360 DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
361 
362 static u_int8_t tl_dio_read8(sc, reg)
363 	struct tl_softc		*sc;
364 	int			reg;
365 {
366 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
367 	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
368 }
369 
370 static u_int16_t tl_dio_read16(sc, reg)
371 	struct tl_softc		*sc;
372 	int			reg;
373 {
374 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
375 	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
376 }
377 
378 static u_int32_t tl_dio_read32(sc, reg)
379 	struct tl_softc		*sc;
380 	int			reg;
381 {
382 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
383 	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
384 }
385 
386 static void tl_dio_write8(sc, reg, val)
387 	struct tl_softc		*sc;
388 	int			reg;
389 	int			val;
390 {
391 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
392 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
393 	return;
394 }
395 
396 static void tl_dio_write16(sc, reg, val)
397 	struct tl_softc		*sc;
398 	int			reg;
399 	int			val;
400 {
401 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
402 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
403 	return;
404 }
405 
406 static void tl_dio_write32(sc, reg, val)
407 	struct tl_softc		*sc;
408 	int			reg;
409 	int			val;
410 {
411 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
412 	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
413 	return;
414 }
415 
416 static void tl_dio_setbit(sc, reg, bit)
417 	struct tl_softc		*sc;
418 	int			reg;
419 	int			bit;
420 {
421 	u_int8_t			f;
422 
423 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
424 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
425 	f |= bit;
426 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
427 
428 	return;
429 }
430 
431 static void tl_dio_clrbit(sc, reg, bit)
432 	struct tl_softc		*sc;
433 	int			reg;
434 	int			bit;
435 {
436 	u_int8_t			f;
437 
438 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
439 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
440 	f &= ~bit;
441 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
442 
443 	return;
444 }
445 
446 static void tl_dio_setbit16(sc, reg, bit)
447 	struct tl_softc		*sc;
448 	int			reg;
449 	int			bit;
450 {
451 	u_int16_t			f;
452 
453 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
454 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
455 	f |= bit;
456 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
457 
458 	return;
459 }
460 
461 static void tl_dio_clrbit16(sc, reg, bit)
462 	struct tl_softc		*sc;
463 	int			reg;
464 	int			bit;
465 {
466 	u_int16_t			f;
467 
468 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
469 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
470 	f &= ~bit;
471 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
472 
473 	return;
474 }
475 
476 /*
477  * Send an instruction or address to the EEPROM, check for ACK.
478  */
479 static u_int8_t tl_eeprom_putbyte(sc, byte)
480 	struct tl_softc		*sc;
481 	int			byte;
482 {
483 	int		i, ack = 0;
484 
485 	/*
486 	 * Make sure we're in TX mode.
487 	 */
488 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
489 
490 	/*
491 	 * Feed in each bit and stobe the clock.
492 	 */
493 	for (i = 0x80; i; i >>= 1) {
494 		if (byte & i) {
495 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
496 		} else {
497 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
498 		}
499 		DELAY(1);
500 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
501 		DELAY(1);
502 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
503 	}
504 
505 	/*
506 	 * Turn off TX mode.
507 	 */
508 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
509 
510 	/*
511 	 * Check for ack.
512 	 */
513 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
514 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
515 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
516 
517 	return(ack);
518 }
519 
520 /*
521  * Read a byte of data stored in the EEPROM at address 'addr.'
522  */
523 static u_int8_t tl_eeprom_getbyte(sc, addr, dest)
524 	struct tl_softc		*sc;
525 	int			addr;
526 	u_int8_t		*dest;
527 {
528 	int		i;
529 	u_int8_t		byte = 0;
530 
531 	tl_dio_write8(sc, TL_NETSIO, 0);
532 
533 	EEPROM_START;
534 
535 	/*
536 	 * Send write control code to EEPROM.
537 	 */
538 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
539 		if_printf(&sc->arpcom.ac_if, "failed to send write command, "
540 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
541 		return(1);
542 	}
543 
544 	/*
545 	 * Send address of byte we want to read.
546 	 */
547 	if (tl_eeprom_putbyte(sc, addr)) {
548 		if_printf(&sc->arpcom.ac_if, "failed to send address, "
549 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
550 		return(1);
551 	}
552 
553 	EEPROM_STOP;
554 	EEPROM_START;
555 	/*
556 	 * Send read control code to EEPROM.
557 	 */
558 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
559 		if_printf(&sc->arpcom.ac_if, "failed to send write command, "
560 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
561 		return(1);
562 	}
563 
564 	/*
565 	 * Start reading bits from EEPROM.
566 	 */
567 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
568 	for (i = 0x80; i; i >>= 1) {
569 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
570 		DELAY(1);
571 		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
572 			byte |= i;
573 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
574 		DELAY(1);
575 	}
576 
577 	EEPROM_STOP;
578 
579 	/*
580 	 * No ACK generated for read, so just return byte.
581 	 */
582 
583 	*dest = byte;
584 
585 	return(0);
586 }
587 
588 /*
589  * Read a sequence of bytes from the EEPROM.
590  */
591 static int tl_read_eeprom(sc, dest, off, cnt)
592 	struct tl_softc		*sc;
593 	caddr_t			dest;
594 	int			off;
595 	int			cnt;
596 {
597 	int			err = 0, i;
598 	u_int8_t		byte = 0;
599 
600 	for (i = 0; i < cnt; i++) {
601 		err = tl_eeprom_getbyte(sc, off + i, &byte);
602 		if (err)
603 			break;
604 		*(dest + i) = byte;
605 	}
606 
607 	return(err ? 1 : 0);
608 }
609 
610 static void tl_mii_sync(sc)
611 	struct tl_softc		*sc;
612 {
613 	int		i;
614 
615 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
616 
617 	for (i = 0; i < 32; i++) {
618 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
619 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
620 	}
621 
622 	return;
623 }
624 
625 static void tl_mii_send(sc, bits, cnt)
626 	struct tl_softc		*sc;
627 	u_int32_t		bits;
628 	int			cnt;
629 {
630 	int			i;
631 
632 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
633 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
634 		if (bits & i) {
635 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
636 		} else {
637 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
638 		}
639 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
640 	}
641 }
642 
643 static int tl_mii_readreg(sc, frame)
644 	struct tl_softc		*sc;
645 	struct tl_mii_frame	*frame;
646 
647 {
648 	int			i, ack;
649 	int			minten = 0;
650 
651 	crit_enter();
652 
653 	tl_mii_sync(sc);
654 
655 	/*
656 	 * Set up frame for RX.
657 	 */
658 	frame->mii_stdelim = TL_MII_STARTDELIM;
659 	frame->mii_opcode = TL_MII_READOP;
660 	frame->mii_turnaround = 0;
661 	frame->mii_data = 0;
662 
663 	/*
664 	 * Turn off MII interrupt by forcing MINTEN low.
665 	 */
666 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
667 	if (minten) {
668 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
669 	}
670 
671 	/*
672  	 * Turn on data xmit.
673 	 */
674 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
675 
676 	/*
677 	 * Send command/address info.
678 	 */
679 	tl_mii_send(sc, frame->mii_stdelim, 2);
680 	tl_mii_send(sc, frame->mii_opcode, 2);
681 	tl_mii_send(sc, frame->mii_phyaddr, 5);
682 	tl_mii_send(sc, frame->mii_regaddr, 5);
683 
684 	/*
685 	 * Turn off xmit.
686 	 */
687 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
688 
689 	/* Idle bit */
690 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
691 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
692 
693 	/* Check for ack */
694 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
695 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
696 
697 	/* Complete the cycle */
698 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
699 
700 	/*
701 	 * Now try reading data bits. If the ack failed, we still
702 	 * need to clock through 16 cycles to keep the PHYs in sync.
703 	 */
704 	if (ack) {
705 		for(i = 0; i < 16; i++) {
706 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
707 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
708 		}
709 		goto fail;
710 	}
711 
712 	for (i = 0x8000; i; i >>= 1) {
713 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
714 		if (!ack) {
715 			if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
716 				frame->mii_data |= i;
717 		}
718 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
719 	}
720 
721 fail:
722 
723 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
724 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
725 
726 	/* Reenable interrupts */
727 	if (minten) {
728 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
729 	}
730 
731 	crit_exit();
732 
733 	if (ack)
734 		return(1);
735 	return(0);
736 }
737 
738 static int tl_mii_writereg(sc, frame)
739 	struct tl_softc		*sc;
740 	struct tl_mii_frame	*frame;
741 
742 {
743 	int			minten;
744 
745 	tl_mii_sync(sc);
746 
747 	crit_enter();
748 	/*
749 	 * Set up frame for TX.
750 	 */
751 
752 	frame->mii_stdelim = TL_MII_STARTDELIM;
753 	frame->mii_opcode = TL_MII_WRITEOP;
754 	frame->mii_turnaround = TL_MII_TURNAROUND;
755 
756 	/*
757 	 * Turn off MII interrupt by forcing MINTEN low.
758 	 */
759 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
760 	if (minten) {
761 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
762 	}
763 
764 	/*
765  	 * Turn on data output.
766 	 */
767 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
768 
769 	tl_mii_send(sc, frame->mii_stdelim, 2);
770 	tl_mii_send(sc, frame->mii_opcode, 2);
771 	tl_mii_send(sc, frame->mii_phyaddr, 5);
772 	tl_mii_send(sc, frame->mii_regaddr, 5);
773 	tl_mii_send(sc, frame->mii_turnaround, 2);
774 	tl_mii_send(sc, frame->mii_data, 16);
775 
776 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
777 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
778 
779 	/*
780 	 * Turn off xmit.
781 	 */
782 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
783 
784 	/* Reenable interrupts */
785 	if (minten)
786 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
787 
788 	crit_exit();
789 
790 	return(0);
791 }
792 
793 static int tl_miibus_readreg(dev, phy, reg)
794 	device_t		dev;
795 	int			phy, reg;
796 {
797 	struct tl_softc		*sc;
798 	struct tl_mii_frame	frame;
799 
800 	sc = device_get_softc(dev);
801 	bzero((char *)&frame, sizeof(frame));
802 
803 	frame.mii_phyaddr = phy;
804 	frame.mii_regaddr = reg;
805 	tl_mii_readreg(sc, &frame);
806 
807 	return(frame.mii_data);
808 }
809 
810 static int tl_miibus_writereg(dev, phy, reg, data)
811 	device_t		dev;
812 	int			phy, reg, data;
813 {
814 	struct tl_softc		*sc;
815 	struct tl_mii_frame	frame;
816 
817 	sc = device_get_softc(dev);
818 	bzero((char *)&frame, sizeof(frame));
819 
820 	frame.mii_phyaddr = phy;
821 	frame.mii_regaddr = reg;
822 	frame.mii_data = data;
823 
824 	tl_mii_writereg(sc, &frame);
825 
826 	return(0);
827 }
828 
829 static void tl_miibus_statchg(dev)
830 	device_t		dev;
831 {
832 	struct tl_softc		*sc;
833 	struct mii_data		*mii;
834 
835 	sc = device_get_softc(dev);
836 	mii = device_get_softc(sc->tl_miibus);
837 
838 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
839 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
840 	} else {
841 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
842 	}
843 
844 	return;
845 }
846 
847 /*
848  * Set modes for bitrate devices.
849  */
850 static void tl_setmode(sc, media)
851 	struct tl_softc		*sc;
852 	int			media;
853 {
854 	if (IFM_SUBTYPE(media) == IFM_10_5)
855 		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
856 	if (IFM_SUBTYPE(media) == IFM_10_T) {
857 		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
858 		if ((media & IFM_GMASK) == IFM_FDX) {
859 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
860 			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
861 		} else {
862 			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
863 			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
864 		}
865 	}
866 
867 	return;
868 }
869 
870 /*
871  * Calculate the hash of a MAC address for programming the multicast hash
872  * table.  This hash is simply the address split into 6-bit chunks
873  * XOR'd, e.g.
874  * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
875  * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
876  * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
877  * the folded 24-bit value is split into 6-bit portions and XOR'd.
878  */
879 static int tl_calchash(addr)
880 	caddr_t			addr;
881 {
882 	int			t;
883 
884 	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
885 		(addr[2] ^ addr[5]);
886 	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
887 }
888 
889 /*
890  * The ThunderLAN has a perfect MAC address filter in addition to
891  * the multicast hash filter. The perfect filter can be programmed
892  * with up to four MAC addresses. The first one is always used to
893  * hold the station address, which leaves us free to use the other
894  * three for multicast addresses.
895  */
896 static void tl_setfilt(sc, addr, slot)
897 	struct tl_softc		*sc;
898 	caddr_t			addr;
899 	int			slot;
900 {
901 	int			i;
902 	u_int16_t		regaddr;
903 
904 	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
905 
906 	for (i = 0; i < ETHER_ADDR_LEN; i++)
907 		tl_dio_write8(sc, regaddr + i, *(addr + i));
908 
909 	return;
910 }
911 
912 /*
913  * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
914  * linked list. This is fine, except addresses are added from the head
915  * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
916  * group to always be in the perfect filter, but as more groups are added,
917  * the 224.0.0.1 entry (which is always added first) gets pushed down
918  * the list and ends up at the tail. So after 3 or 4 multicast groups
919  * are added, the all-hosts entry gets pushed out of the perfect filter
920  * and into the hash table.
921  *
922  * Because the multicast list is a doubly-linked list as opposed to a
923  * circular queue, we don't have the ability to just grab the tail of
924  * the list and traverse it backwards. Instead, we have to traverse
925  * the list once to find the tail, then traverse it again backwards to
926  * update the multicast filter.
927  */
928 static void tl_setmulti(sc)
929 	struct tl_softc		*sc;
930 {
931 	struct ifnet		*ifp;
932 	u_int32_t		hashes[2] = { 0, 0 };
933 	int			h, i;
934 	struct ifmultiaddr	*ifma;
935 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
936 	ifp = &sc->arpcom.ac_if;
937 
938 	/* First, zot all the existing filters. */
939 	for (i = 1; i < 4; i++)
940 		tl_setfilt(sc, (caddr_t)&dummy, i);
941 	tl_dio_write32(sc, TL_HASH1, 0);
942 	tl_dio_write32(sc, TL_HASH2, 0);
943 
944 	/* Now program new ones. */
945 	if (ifp->if_flags & IFF_ALLMULTI) {
946 		hashes[0] = 0xFFFFFFFF;
947 		hashes[1] = 0xFFFFFFFF;
948 	} else {
949 		i = 1;
950 		/* First find the tail of the list. */
951 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
952 					ifma = ifma->ifma_link.le_next) {
953 			if (ifma->ifma_link.le_next == NULL)
954 				break;
955 		}
956 		/* Now traverse the list backwards. */
957 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
958 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
959 			if (ifma->ifma_addr->sa_family != AF_LINK)
960 				continue;
961 			/*
962 			 * Program the first three multicast groups
963 			 * into the perfect filter. For all others,
964 			 * use the hash table.
965 			 */
966 			if (i < 4) {
967 				tl_setfilt(sc,
968 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
969 				i++;
970 				continue;
971 			}
972 
973 			h = tl_calchash(
974 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
975 			if (h < 32)
976 				hashes[0] |= (1 << h);
977 			else
978 				hashes[1] |= (1 << (h - 32));
979 		}
980 	}
981 
982 	tl_dio_write32(sc, TL_HASH1, hashes[0]);
983 	tl_dio_write32(sc, TL_HASH2, hashes[1]);
984 
985 	return;
986 }
987 
988 /*
989  * This routine is recommended by the ThunderLAN manual to insure that
990  * the internal PHY is powered up correctly. It also recommends a one
991  * second pause at the end to 'wait for the clocks to start' but in my
992  * experience this isn't necessary.
993  */
994 static void tl_hardreset(dev)
995 	device_t		dev;
996 {
997 	struct tl_softc		*sc;
998 	int			i;
999 	u_int16_t		flags;
1000 
1001 	sc = device_get_softc(dev);
1002 
1003 	tl_mii_sync(sc);
1004 
1005 	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
1006 
1007 	for (i = 0; i < MII_NPHY; i++)
1008 		tl_miibus_writereg(dev, i, MII_BMCR, flags);
1009 
1010 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
1011 	DELAY(50000);
1012 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
1013 	tl_mii_sync(sc);
1014 	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
1015 
1016 	DELAY(50000);
1017 	return;
1018 }
1019 
1020 static void tl_softreset(sc, internal)
1021 	struct tl_softc		*sc;
1022 	int			internal;
1023 {
1024         u_int32_t               cmd, dummy, i;
1025 
1026         /* Assert the adapter reset bit. */
1027 	CMD_SET(sc, TL_CMD_ADRST);
1028 
1029         /* Turn off interrupts */
1030 	CMD_SET(sc, TL_CMD_INTSOFF);
1031 
1032 	/* First, clear the stats registers. */
1033 	for (i = 0; i < 5; i++)
1034 		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
1035 
1036         /* Clear Areg and Hash registers */
1037 	for (i = 0; i < 8; i++)
1038 		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
1039 
1040         /*
1041 	 * Set up Netconfig register. Enable one channel and
1042 	 * one fragment mode.
1043 	 */
1044 	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
1045 	if (internal && !sc->tl_bitrate) {
1046 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1047 	} else {
1048 		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1049 	}
1050 
1051 	/* Handle cards with bitrate devices. */
1052 	if (sc->tl_bitrate)
1053 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
1054 
1055 	/*
1056 	 * Load adapter irq pacing timer and tx threshold.
1057 	 * We make the transmit threshold 1 initially but we may
1058 	 * change that later.
1059 	 */
1060 	cmd = CSR_READ_4(sc, TL_HOSTCMD);
1061 	cmd |= TL_CMD_NES;
1062 	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
1063 	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
1064 	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
1065 
1066         /* Unreset the MII */
1067 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
1068 
1069 	/* Take the adapter out of reset */
1070 	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
1071 
1072 	/* Wait for things to settle down a little. */
1073 	DELAY(500);
1074 
1075         return;
1076 }
1077 
1078 /*
1079  * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1080  * against our list and return its name if we find a match.
1081  */
1082 static int tl_probe(dev)
1083 	device_t		dev;
1084 {
1085 	struct tl_type		*t;
1086 
1087 	t = tl_devs;
1088 
1089 	while(t->tl_name != NULL) {
1090 		if ((pci_get_vendor(dev) == t->tl_vid) &&
1091 		    (pci_get_device(dev) == t->tl_did)) {
1092 			device_set_desc(dev, t->tl_name);
1093 			return(0);
1094 		}
1095 		t++;
1096 	}
1097 
1098 	return(ENXIO);
1099 }
1100 
1101 static int tl_attach(dev)
1102 	device_t		dev;
1103 {
1104 	int			i;
1105 	u_int16_t		did, vid;
1106 	struct tl_type		*t;
1107 	struct ifnet		*ifp;
1108 	struct tl_softc		*sc;
1109 	int			error = 0, rid;
1110 	uint8_t			eaddr[ETHER_ADDR_LEN];
1111 
1112 	vid = pci_get_vendor(dev);
1113 	did = pci_get_device(dev);
1114 	sc = device_get_softc(dev);
1115 
1116 	t = tl_devs;
1117 	while(t->tl_name != NULL) {
1118 		if (vid == t->tl_vid && did == t->tl_did)
1119 			break;
1120 		t++;
1121 	}
1122 
1123 	KKASSERT(t->tl_name != NULL);
1124 
1125 	pci_enable_busmaster(dev);
1126 
1127 #ifdef TL_USEIOSPACE
1128 	rid = TL_PCI_LOIO;
1129 	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1130 		RF_ACTIVE);
1131 
1132 	/*
1133 	 * Some cards have the I/O and memory mapped address registers
1134 	 * reversed. Try both combinations before giving up.
1135 	 */
1136 	if (sc->tl_res == NULL) {
1137 		rid = TL_PCI_LOMEM;
1138 		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1139 		    RF_ACTIVE);
1140 	}
1141 #else
1142 	rid = TL_PCI_LOMEM;
1143 	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1144 	    RF_ACTIVE);
1145 	if (sc->tl_res == NULL) {
1146 		rid = TL_PCI_LOIO;
1147 		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1148 		    RF_ACTIVE);
1149 	}
1150 #endif
1151 
1152 	if (sc->tl_res == NULL) {
1153 		device_printf(dev, "couldn't map ports/memory\n");
1154 		error = ENXIO;
1155 		return(error);
1156 	}
1157 
1158 	sc->tl_btag = rman_get_bustag(sc->tl_res);
1159 	sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
1160 
1161 #ifdef notdef
1162 	/*
1163 	 * The ThunderLAN manual suggests jacking the PCI latency
1164 	 * timer all the way up to its maximum value. I'm not sure
1165 	 * if this is really necessary, but what the manual wants,
1166 	 * the manual gets.
1167 	 */
1168 	command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1169 	command |= 0x0000FF00;
1170 	pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1171 #endif
1172 
1173 	/* Allocate interrupt */
1174 	rid = 0;
1175 	sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1176 	    RF_SHAREABLE | RF_ACTIVE);
1177 
1178 	if (sc->tl_irq == NULL) {
1179 		device_printf(dev, "couldn't map interrupt\n");
1180 		error = ENXIO;
1181 		goto fail;
1182 	}
1183 
1184 	/*
1185 	 * Now allocate memory for the TX and RX lists.
1186 	 */
1187 	sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1188 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1189 
1190 	if (sc->tl_ldata == NULL) {
1191 		device_printf(dev, "no memory for list buffers!\n");
1192 		error = ENXIO;
1193 		goto fail;
1194 	}
1195 
1196 	bzero(sc->tl_ldata, sizeof(struct tl_list_data));
1197 
1198 	sc->tl_dinfo = t;
1199 	if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
1200 		sc->tl_eeaddr = TL_EEPROM_EADDR;
1201 	if (t->tl_vid == OLICOM_VENDORID)
1202 		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1203 
1204 	/* Reset the adapter. */
1205 	tl_softreset(sc, 1);
1206 	tl_hardreset(dev);
1207 	tl_softreset(sc, 1);
1208 
1209 	ifp = &sc->arpcom.ac_if;
1210 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1211 
1212 	/*
1213 	 * Get station address from the EEPROM.
1214 	 */
1215 	if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1216 		device_printf(dev, "failed to read station address\n");
1217 		error = ENXIO;
1218 		goto fail;
1219 	}
1220 
1221         /*
1222          * XXX Olicom, in its desire to be different from the
1223          * rest of the world, has done strange things with the
1224          * encoding of the station address in the EEPROM. First
1225          * of all, they store the address at offset 0xF8 rather
1226          * than at 0x83 like the ThunderLAN manual suggests.
1227          * Second, they store the address in three 16-bit words in
1228          * network byte order, as opposed to storing it sequentially
1229          * like all the other ThunderLAN cards. In order to get
1230          * the station address in a form that matches what the Olicom
1231          * diagnostic utility specifies, we have to byte-swap each
1232          * word. To make things even more confusing, neither 00:00:28
1233          * nor 00:00:24 appear in the IEEE OUI database.
1234          */
1235         if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
1236                 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1237                         u_int16_t               *p;
1238                         p = (u_int16_t *)&eaddr[i];
1239                         *p = ntohs(*p);
1240                 }
1241         }
1242 
1243 	ifp->if_softc = sc;
1244 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1245 	ifp->if_ioctl = tl_ioctl;
1246 	ifp->if_start = tl_start;
1247 	ifp->if_watchdog = tl_watchdog;
1248 	ifp->if_init = tl_init;
1249 	ifp->if_mtu = ETHERMTU;
1250 	ifq_set_maxlen(&ifp->if_snd, TL_TX_LIST_CNT - 1);
1251 	ifq_set_ready(&ifp->if_snd);
1252 	callout_init(&sc->tl_stat_timer);
1253 
1254 	/* Reset the adapter again. */
1255 	tl_softreset(sc, 1);
1256 	tl_hardreset(dev);
1257 	tl_softreset(sc, 1);
1258 
1259 	/*
1260 	 * Do MII setup. If no PHYs are found, then this is a
1261 	 * bitrate ThunderLAN chip that only supports 10baseT
1262 	 * and AUI/BNC.
1263 	 */
1264 	if (mii_phy_probe(dev, &sc->tl_miibus,
1265 	    tl_ifmedia_upd, tl_ifmedia_sts)) {
1266 		struct ifmedia		*ifm;
1267 		sc->tl_bitrate = 1;
1268 		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1269 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1270 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1271 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1272 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1273 		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1274 		/* Reset again, this time setting bitrate mode. */
1275 		tl_softreset(sc, 1);
1276 		ifm = &sc->ifmedia;
1277 		ifm->ifm_media = ifm->ifm_cur->ifm_media;
1278 		tl_ifmedia_upd(ifp);
1279 	}
1280 
1281 	/*
1282 	 * Call MI attach routine.
1283 	 */
1284 	ether_ifattach(ifp, eaddr);
1285 
1286 	error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET,
1287 			       tl_intr, sc, &sc->tl_intrhand, NULL);
1288 
1289 	if (error) {
1290 		ether_ifdetach(ifp);
1291 		device_printf(dev, "couldn't set up irq\n");
1292 		goto fail;
1293 	}
1294 
1295 	return(0);
1296 
1297 fail:
1298 	tl_detach(dev);
1299 	return(error);
1300 }
1301 
1302 static int tl_detach(dev)
1303 	device_t		dev;
1304 {
1305 	struct tl_softc *sc = device_get_softc(dev);
1306 	struct ifnet *ifp = &sc->arpcom.ac_if;
1307 
1308 	crit_enter();
1309 
1310 	if (device_is_attached(dev)) {
1311 		tl_stop(sc);
1312 		ether_ifdetach(ifp);
1313 	}
1314 
1315 	if (sc->tl_miibus)
1316 		device_delete_child(dev, sc->tl_miibus);
1317 	bus_generic_detach(dev);
1318 
1319 	crit_exit();
1320 
1321 	if (sc->tl_ldata)
1322 		contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1323 	if (sc->tl_bitrate)
1324 		ifmedia_removeall(&sc->ifmedia);
1325 	if (sc->tl_intrhand)
1326 		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1327 	if (sc->tl_irq)
1328 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1329 	if (sc->tl_res)
1330 		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1331 
1332 	return(0);
1333 }
1334 
1335 /*
1336  * Initialize the transmit lists.
1337  */
1338 static int tl_list_tx_init(sc)
1339 	struct tl_softc		*sc;
1340 {
1341 	struct tl_chain_data	*cd;
1342 	struct tl_list_data	*ld;
1343 	int			i;
1344 
1345 	cd = &sc->tl_cdata;
1346 	ld = sc->tl_ldata;
1347 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1348 		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1349 		if (i == (TL_TX_LIST_CNT - 1))
1350 			cd->tl_tx_chain[i].tl_next = NULL;
1351 		else
1352 			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1353 	}
1354 
1355 	cd->tl_tx_free = &cd->tl_tx_chain[0];
1356 	cd->tl_tx_tail = cd->tl_tx_head = NULL;
1357 	sc->tl_txeoc = 1;
1358 
1359 	return(0);
1360 }
1361 
1362 /*
1363  * Initialize the RX lists and allocate mbufs for them.
1364  */
1365 static int tl_list_rx_init(sc)
1366 	struct tl_softc		*sc;
1367 {
1368 	struct tl_chain_data	*cd;
1369 	struct tl_list_data	*ld;
1370 	int			i;
1371 
1372 	cd = &sc->tl_cdata;
1373 	ld = sc->tl_ldata;
1374 
1375 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1376 		cd->tl_rx_chain[i].tl_ptr =
1377 			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
1378 		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1379 			return(ENOBUFS);
1380 		if (i == (TL_RX_LIST_CNT - 1)) {
1381 			cd->tl_rx_chain[i].tl_next = NULL;
1382 			ld->tl_rx_list[i].tlist_fptr = 0;
1383 		} else {
1384 			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1385 			ld->tl_rx_list[i].tlist_fptr =
1386 					vtophys(&ld->tl_rx_list[i + 1]);
1387 		}
1388 	}
1389 
1390 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1391 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1392 
1393 	return(0);
1394 }
1395 
1396 static int tl_newbuf(sc, c)
1397 	struct tl_softc		*sc;
1398 	struct tl_chain_onefrag	*c;
1399 {
1400 	struct mbuf *m_new;
1401 
1402 	m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1403 	if (m_new == NULL)
1404 		return (ENOBUFS);
1405 
1406 	c->tl_mbuf = m_new;
1407 	c->tl_next = NULL;
1408 	c->tl_ptr->tlist_frsize = MCLBYTES;
1409 	c->tl_ptr->tlist_fptr = 0;
1410 	c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1411 	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1412 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1413 
1414 	return(0);
1415 }
1416 /*
1417  * Interrupt handler for RX 'end of frame' condition (EOF). This
1418  * tells us that a full ethernet frame has been captured and we need
1419  * to handle it.
1420  *
1421  * Reception is done using 'lists' which consist of a header and a
1422  * series of 10 data count/data address pairs that point to buffers.
1423  * Initially you're supposed to create a list, populate it with pointers
1424  * to buffers, then load the physical address of the list into the
1425  * ch_parm register. The adapter is then supposed to DMA the received
1426  * frame into the buffers for you.
1427  *
1428  * To make things as fast as possible, we have the chip DMA directly
1429  * into mbufs. This saves us from having to do a buffer copy: we can
1430  * just hand the mbufs directly to ether_input(). Once the frame has
1431  * been sent on its way, the 'list' structure is assigned a new buffer
1432  * and moved to the end of the RX chain. As long we we stay ahead of
1433  * the chip, it will always think it has an endless receive channel.
1434  *
1435  * If we happen to fall behind and the chip manages to fill up all of
1436  * the buffers, it will generate an end of channel interrupt and wait
1437  * for us to empty the chain and restart the receiver.
1438  */
1439 static int tl_intvec_rxeof(xsc, type)
1440 	void			*xsc;
1441 	u_int32_t		type;
1442 {
1443 	struct tl_softc		*sc;
1444 	int			r = 0, total_len = 0;
1445 	struct ether_header	*eh;
1446 	struct mbuf		*m;
1447 	struct ifnet		*ifp;
1448 	struct tl_chain_onefrag	*cur_rx;
1449 
1450 	sc = xsc;
1451 	ifp = &sc->arpcom.ac_if;
1452 
1453 	while(sc->tl_cdata.tl_rx_head != NULL) {
1454 		cur_rx = sc->tl_cdata.tl_rx_head;
1455 		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1456 			break;
1457 		r++;
1458 		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1459 		m = cur_rx->tl_mbuf;
1460 		total_len = cur_rx->tl_ptr->tlist_frsize;
1461 
1462 		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1463 			ifp->if_ierrors++;
1464 			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1465 			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1466 			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1467 			continue;
1468 		}
1469 
1470 		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1471 						vtophys(cur_rx->tl_ptr);
1472 		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1473 		sc->tl_cdata.tl_rx_tail = cur_rx;
1474 
1475 		eh = mtod(m, struct ether_header *);
1476 		m->m_pkthdr.rcvif = ifp;
1477 
1478 		/*
1479 		 * Note: when the ThunderLAN chip is in 'capture all
1480 		 * frames' mode, it will receive its own transmissions.
1481 		 * We drop don't need to process our own transmissions,
1482 		 * so we drop them here and continue.
1483 		 */
1484 		/*if (ifp->if_flags & IFF_PROMISC && */
1485 		if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1486 		 					ETHER_ADDR_LEN)) {
1487 				m_freem(m);
1488 				continue;
1489 		}
1490 
1491 		(*ifp->if_input)(ifp, m);
1492 	}
1493 
1494 	return(r);
1495 }
1496 
1497 /*
1498  * The RX-EOC condition hits when the ch_parm address hasn't been
1499  * initialized or the adapter reached a list with a forward pointer
1500  * of 0 (which indicates the end of the chain). In our case, this means
1501  * the card has hit the end of the receive buffer chain and we need to
1502  * empty out the buffers and shift the pointer back to the beginning again.
1503  */
1504 static int tl_intvec_rxeoc(xsc, type)
1505 	void			*xsc;
1506 	u_int32_t		type;
1507 {
1508 	struct tl_softc		*sc;
1509 	int			r;
1510 	struct tl_chain_data	*cd;
1511 
1512 
1513 	sc = xsc;
1514 	cd = &sc->tl_cdata;
1515 
1516 	/* Flush out the receive queue and ack RXEOF interrupts. */
1517 	r = tl_intvec_rxeof(xsc, type);
1518 	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1519 	r = 1;
1520 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1521 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1522 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1523 	r |= (TL_CMD_GO|TL_CMD_RT);
1524 	return(r);
1525 }
1526 
1527 static int tl_intvec_txeof(xsc, type)
1528 	void			*xsc;
1529 	u_int32_t		type;
1530 {
1531 	struct tl_softc		*sc;
1532 	int			r = 0;
1533 	struct tl_chain		*cur_tx;
1534 
1535 	sc = xsc;
1536 
1537 	/*
1538 	 * Go through our tx list and free mbufs for those
1539 	 * frames that have been sent.
1540 	 */
1541 	while (sc->tl_cdata.tl_tx_head != NULL) {
1542 		cur_tx = sc->tl_cdata.tl_tx_head;
1543 		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1544 			break;
1545 		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1546 
1547 		r++;
1548 		m_freem(cur_tx->tl_mbuf);
1549 		cur_tx->tl_mbuf = NULL;
1550 
1551 		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1552 		sc->tl_cdata.tl_tx_free = cur_tx;
1553 		if (!cur_tx->tl_ptr->tlist_fptr)
1554 			break;
1555 	}
1556 
1557 	return(r);
1558 }
1559 
1560 /*
1561  * The transmit end of channel interrupt. The adapter triggers this
1562  * interrupt to tell us it hit the end of the current transmit list.
1563  *
1564  * A note about this: it's possible for a condition to arise where
1565  * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1566  * You have to avoid this since the chip expects things to go in a
1567  * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1568  * When the TXEOF handler is called, it will free all of the transmitted
1569  * frames and reset the tx_head pointer to NULL. However, a TXEOC
1570  * interrupt should be received and acknowledged before any more frames
1571  * are queued for transmission. If tl_statrt() is called after TXEOF
1572  * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1573  * it could attempt to issue a transmit command prematurely.
1574  *
1575  * To guard against this, tl_start() will only issue transmit commands
1576  * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1577  * can set this flag once tl_start() has cleared it.
1578  */
1579 static int tl_intvec_txeoc(xsc, type)
1580 	void			*xsc;
1581 	u_int32_t		type;
1582 {
1583 	struct tl_softc		*sc;
1584 	struct ifnet		*ifp;
1585 	u_int32_t		cmd;
1586 
1587 	sc = xsc;
1588 	ifp = &sc->arpcom.ac_if;
1589 
1590 	/* Clear the timeout timer. */
1591 	ifp->if_timer = 0;
1592 
1593 	if (sc->tl_cdata.tl_tx_head == NULL) {
1594 		ifp->if_flags &= ~IFF_OACTIVE;
1595 		sc->tl_cdata.tl_tx_tail = NULL;
1596 		sc->tl_txeoc = 1;
1597 	} else {
1598 		sc->tl_txeoc = 0;
1599 		/* First we have to ack the EOC interrupt. */
1600 		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1601 		/* Then load the address of the next TX list. */
1602 		CSR_WRITE_4(sc, TL_CH_PARM,
1603 		    vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1604 		/* Restart TX channel. */
1605 		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1606 		cmd &= ~TL_CMD_RT;
1607 		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1608 		CMD_PUT(sc, cmd);
1609 		return(0);
1610 	}
1611 
1612 	return(1);
1613 }
1614 
1615 static int tl_intvec_adchk(xsc, type)
1616 	void			*xsc;
1617 	u_int32_t		type;
1618 {
1619 	struct tl_softc		*sc;
1620 
1621 	sc = xsc;
1622 
1623 	if (type) {
1624 		if_printf(&sc->arpcom.ac_if, "adapter check: %x\n",
1625 			  (unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1626 	}
1627 
1628 	tl_softreset(sc, 1);
1629 	tl_stop(sc);
1630 	tl_init(sc);
1631 	CMD_SET(sc, TL_CMD_INTSON);
1632 
1633 	return(0);
1634 }
1635 
1636 static int tl_intvec_netsts(xsc, type)
1637 	void			*xsc;
1638 	u_int32_t		type;
1639 {
1640 	struct tl_softc		*sc;
1641 	u_int16_t		netsts;
1642 
1643 	sc = xsc;
1644 
1645 	netsts = tl_dio_read16(sc, TL_NETSTS);
1646 	tl_dio_write16(sc, TL_NETSTS, netsts);
1647 
1648 	if_printf(&sc->arpcom.ac_if, "network status: %x\n", netsts);
1649 
1650 	return(1);
1651 }
1652 
1653 static void tl_intr(xsc)
1654 	void			*xsc;
1655 {
1656 	struct tl_softc		*sc;
1657 	struct ifnet		*ifp;
1658 	int			r = 0;
1659 	u_int32_t		type = 0;
1660 	u_int16_t		ints = 0;
1661 	u_int8_t		ivec = 0;
1662 
1663 	sc = xsc;
1664 
1665 	/* Disable interrupts */
1666 	ints = CSR_READ_2(sc, TL_HOST_INT);
1667 	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1668 	type = (ints << 16) & 0xFFFF0000;
1669 	ivec = (ints & TL_VEC_MASK) >> 5;
1670 	ints = (ints & TL_INT_MASK) >> 2;
1671 
1672 	ifp = &sc->arpcom.ac_if;
1673 
1674 	switch(ints) {
1675 	case (TL_INTR_INVALID):
1676 #ifdef DIAGNOSTIC
1677 		if_printf(ifp, "got an invalid interrupt!\n");
1678 #endif
1679 		/* Re-enable interrupts but don't ack this one. */
1680 		CMD_PUT(sc, type);
1681 		r = 0;
1682 		break;
1683 	case (TL_INTR_TXEOF):
1684 		r = tl_intvec_txeof((void *)sc, type);
1685 		break;
1686 	case (TL_INTR_TXEOC):
1687 		r = tl_intvec_txeoc((void *)sc, type);
1688 		break;
1689 	case (TL_INTR_STATOFLOW):
1690 		tl_stats_update(sc);
1691 		r = 1;
1692 		break;
1693 	case (TL_INTR_RXEOF):
1694 		r = tl_intvec_rxeof((void *)sc, type);
1695 		break;
1696 	case (TL_INTR_DUMMY):
1697 		if_printf(ifp, "got a dummy interrupt\n");
1698 		r = 1;
1699 		break;
1700 	case (TL_INTR_ADCHK):
1701 		if (ivec)
1702 			r = tl_intvec_adchk((void *)sc, type);
1703 		else
1704 			r = tl_intvec_netsts((void *)sc, type);
1705 		break;
1706 	case (TL_INTR_RXEOC):
1707 		r = tl_intvec_rxeoc((void *)sc, type);
1708 		break;
1709 	default:
1710 		if_printf(ifp, "bogus interrupt type\n");
1711 		break;
1712 	}
1713 
1714 	/* Re-enable interrupts */
1715 	if (r) {
1716 		CMD_PUT(sc, TL_CMD_ACK | r | type);
1717 	}
1718 
1719 	if (!ifq_is_empty(&ifp->if_snd))
1720 		tl_start(ifp);
1721 
1722 	return;
1723 }
1724 
1725 static void tl_stats_update(xsc)
1726 	void			*xsc;
1727 {
1728 	struct tl_softc		*sc;
1729 	struct ifnet		*ifp;
1730 	struct tl_stats		tl_stats;
1731 	struct mii_data		*mii;
1732 	u_int32_t		*p;
1733 
1734 	crit_enter();
1735 
1736 	bzero((char *)&tl_stats, sizeof(struct tl_stats));
1737 
1738 	sc = xsc;
1739 	ifp = &sc->arpcom.ac_if;
1740 
1741 	p = (u_int32_t *)&tl_stats;
1742 
1743 	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1744 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1745 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1746 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1747 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1748 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1749 
1750 	ifp->if_opackets += tl_tx_goodframes(tl_stats);
1751 	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1752 				tl_stats.tl_tx_multi_collision;
1753 	ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1754 	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1755 			    tl_rx_overrun(tl_stats);
1756 	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1757 
1758 	if (tl_tx_underrun(tl_stats)) {
1759 		u_int8_t		tx_thresh;
1760 		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1761 		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1762 			tx_thresh >>= 4;
1763 			tx_thresh++;
1764 			if_printf(ifp, "tx underrun -- increasing "
1765 				  "tx threshold to %d bytes\n",
1766 				  (64 * (tx_thresh * 4)));
1767 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1768 			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1769 		}
1770 	}
1771 
1772 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1773 
1774 	if (!sc->tl_bitrate) {
1775 		mii = device_get_softc(sc->tl_miibus);
1776 		mii_tick(mii);
1777 	}
1778 
1779 	crit_exit();
1780 
1781 	return;
1782 }
1783 
1784 /*
1785  * Encapsulate an mbuf chain in a list by coupling the mbuf data
1786  * pointers to the fragment pointers.
1787  */
1788 static int tl_encap(sc, c, m_head)
1789 	struct tl_softc		*sc;
1790 	struct tl_chain		*c;
1791 	struct mbuf		*m_head;
1792 {
1793 	int			frag = 0;
1794 	struct tl_frag		*f = NULL;
1795 	int			total_len;
1796 	struct mbuf		*m;
1797 
1798 	/*
1799  	 * Start packing the mbufs in this chain into
1800 	 * the fragment pointers. Stop when we run out
1801  	 * of fragments or hit the end of the mbuf chain.
1802 	 */
1803 	m = m_head;
1804 	total_len = 0;
1805 
1806 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1807 		if (m->m_len != 0) {
1808 			if (frag == TL_MAXFRAGS)
1809 				break;
1810 			total_len+= m->m_len;
1811 			c->tl_ptr->tl_frag[frag].tlist_dadr =
1812 				vtophys(mtod(m, vm_offset_t));
1813 			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1814 			frag++;
1815 		}
1816 	}
1817 
1818 	/*
1819 	 * Handle special cases.
1820 	 * Special case #1: we used up all 10 fragments, but
1821 	 * we have more mbufs left in the chain. Copy the
1822 	 * data into an mbuf cluster. Note that we don't
1823 	 * bother clearing the values in the other fragment
1824 	 * pointers/counters; it wouldn't gain us anything,
1825 	 * and would waste cycles.
1826 	 */
1827 	if (m != NULL) {
1828 		struct mbuf *m_new;
1829 
1830 		m_new = m_getl(m_head->m_pkthdr.len, MB_DONTWAIT, MT_DATA,
1831 			       M_PKTHDR, NULL);
1832 		if (m_new == NULL) {
1833 			if_printf(&sc->arpcom.ac_if, "no memory for tx list\n");
1834 			return (1);
1835 		}
1836 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1837 					mtod(m_new, caddr_t));
1838 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1839 		m_freem(m_head);
1840 		m_head = m_new;
1841 		f = &c->tl_ptr->tl_frag[0];
1842 		f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1843 		f->tlist_dcnt = total_len = m_new->m_len;
1844 		frag = 1;
1845 	}
1846 
1847 	/*
1848 	 * Special case #2: the frame is smaller than the minimum
1849 	 * frame size. We have to pad it to make the chip happy.
1850 	 */
1851 	if (total_len < TL_MIN_FRAMELEN) {
1852 		if (frag == TL_MAXFRAGS) {
1853 			if_printf(&sc->arpcom.ac_if, "all frags filled but "
1854 				  "frame still to small!\n");
1855 		}
1856 		f = &c->tl_ptr->tl_frag[frag];
1857 		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1858 		f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1859 		total_len += f->tlist_dcnt;
1860 		frag++;
1861 	}
1862 
1863 	c->tl_mbuf = m_head;
1864 	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1865 	c->tl_ptr->tlist_frsize = total_len;
1866 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1867 	c->tl_ptr->tlist_fptr = 0;
1868 
1869 	return(0);
1870 }
1871 
1872 /*
1873  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1874  * to the mbuf data regions directly in the transmit lists. We also save a
1875  * copy of the pointers since the transmit list fragment pointers are
1876  * physical addresses.
1877  */
1878 static void tl_start(ifp)
1879 	struct ifnet		*ifp;
1880 {
1881 	struct tl_softc		*sc;
1882 	struct mbuf		*m_head = NULL;
1883 	u_int32_t		cmd;
1884 	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1885 
1886 	sc = ifp->if_softc;
1887 
1888 	/*
1889 	 * Check for an available queue slot. If there are none,
1890 	 * punt.
1891 	 */
1892 	if (sc->tl_cdata.tl_tx_free == NULL) {
1893 		ifp->if_flags |= IFF_OACTIVE;
1894 		return;
1895 	}
1896 
1897 	start_tx = sc->tl_cdata.tl_tx_free;
1898 
1899 	while(sc->tl_cdata.tl_tx_free != NULL) {
1900 		m_head = ifq_dequeue(&ifp->if_snd);
1901 		if (m_head == NULL)
1902 			break;
1903 
1904 		/* Pick a chain member off the free list. */
1905 		cur_tx = sc->tl_cdata.tl_tx_free;
1906 		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1907 
1908 		cur_tx->tl_next = NULL;
1909 
1910 		/* Pack the data into the list. */
1911 		tl_encap(sc, cur_tx, m_head);
1912 
1913 		/* Chain it together */
1914 		if (prev != NULL) {
1915 			prev->tl_next = cur_tx;
1916 			prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1917 		}
1918 		prev = cur_tx;
1919 
1920 		BPF_MTAP(ifp, cur_tx->tl_mbuf);
1921 	}
1922 
1923 	/*
1924 	 * If there are no packets queued, bail.
1925 	 */
1926 	if (cur_tx == NULL)
1927 		return;
1928 
1929 	/*
1930 	 * That's all we can stands, we can't stands no more.
1931 	 * If there are no other transfers pending, then issue the
1932 	 * TX GO command to the adapter to start things moving.
1933 	 * Otherwise, just leave the data in the queue and let
1934 	 * the EOF/EOC interrupt handler send.
1935 	 */
1936 	if (sc->tl_cdata.tl_tx_head == NULL) {
1937 		sc->tl_cdata.tl_tx_head = start_tx;
1938 		sc->tl_cdata.tl_tx_tail = cur_tx;
1939 
1940 		if (sc->tl_txeoc) {
1941 			sc->tl_txeoc = 0;
1942 			CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
1943 			cmd = CSR_READ_4(sc, TL_HOSTCMD);
1944 			cmd &= ~TL_CMD_RT;
1945 			cmd |= TL_CMD_GO|TL_CMD_INTSON;
1946 			CMD_PUT(sc, cmd);
1947 		}
1948 	} else {
1949 		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
1950 		sc->tl_cdata.tl_tx_tail = cur_tx;
1951 	}
1952 
1953 	/*
1954 	 * Set a timeout in case the chip goes out to lunch.
1955 	 */
1956 	ifp->if_timer = 5;
1957 
1958 	return;
1959 }
1960 
1961 static void tl_init(xsc)
1962 	void			*xsc;
1963 {
1964 	struct tl_softc		*sc = xsc;
1965 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1966 	struct mii_data		*mii;
1967 
1968 	crit_enter();
1969 
1970 	/*
1971 	 * Cancel pending I/O.
1972 	 */
1973 	tl_stop(sc);
1974 
1975 	/* Initialize TX FIFO threshold */
1976 	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1977 	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
1978 
1979         /* Set PCI burst size */
1980 	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
1981 
1982 	/*
1983 	 * Set 'capture all frames' bit for promiscuous mode.
1984 	 */
1985 	if (ifp->if_flags & IFF_PROMISC)
1986 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
1987 	else
1988 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
1989 
1990 	/*
1991 	 * Set capture broadcast bit to capture broadcast frames.
1992 	 */
1993 	if (ifp->if_flags & IFF_BROADCAST)
1994 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1995 	else
1996 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1997 
1998 	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
1999 
2000 	/* Init our MAC address */
2001 	tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
2002 
2003 	/* Init multicast filter, if needed. */
2004 	tl_setmulti(sc);
2005 
2006 	/* Init circular RX list. */
2007 	if (tl_list_rx_init(sc) == ENOBUFS) {
2008 		if_printf(ifp, "initialization failed: no "
2009 			  "memory for rx buffers\n");
2010 		tl_stop(sc);
2011 		return;
2012 	}
2013 
2014 	/* Init TX pointers. */
2015 	tl_list_tx_init(sc);
2016 
2017 	/* Enable PCI interrupts. */
2018 	CMD_SET(sc, TL_CMD_INTSON);
2019 
2020 	/* Load the address of the rx list */
2021 	CMD_SET(sc, TL_CMD_RT);
2022 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
2023 
2024 	if (!sc->tl_bitrate) {
2025 		if (sc->tl_miibus != NULL) {
2026 			mii = device_get_softc(sc->tl_miibus);
2027 			mii_mediachg(mii);
2028 		}
2029 	}
2030 
2031 	/* Send the RX go command */
2032 	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
2033 
2034 	ifp->if_flags |= IFF_RUNNING;
2035 	ifp->if_flags &= ~IFF_OACTIVE;
2036 
2037 	/* Start the stats update counter */
2038 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
2039 
2040 	crit_exit();
2041 }
2042 
2043 /*
2044  * Set media options.
2045  */
2046 static int tl_ifmedia_upd(ifp)
2047 	struct ifnet		*ifp;
2048 {
2049 	struct tl_softc		*sc;
2050 	struct mii_data		*mii = NULL;
2051 
2052 	sc = ifp->if_softc;
2053 
2054 	if (sc->tl_bitrate)
2055 		tl_setmode(sc, sc->ifmedia.ifm_media);
2056 	else {
2057 		mii = device_get_softc(sc->tl_miibus);
2058 		mii_mediachg(mii);
2059 	}
2060 
2061 	return(0);
2062 }
2063 
2064 /*
2065  * Report current media status.
2066  */
2067 static void tl_ifmedia_sts(ifp, ifmr)
2068 	struct ifnet		*ifp;
2069 	struct ifmediareq	*ifmr;
2070 {
2071 	struct tl_softc		*sc;
2072 	struct mii_data		*mii;
2073 
2074 	sc = ifp->if_softc;
2075 
2076 	ifmr->ifm_active = IFM_ETHER;
2077 
2078 	if (sc->tl_bitrate) {
2079 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2080 			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2081 		else
2082 			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2083 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2084 			ifmr->ifm_active |= IFM_HDX;
2085 		else
2086 			ifmr->ifm_active |= IFM_FDX;
2087 		return;
2088 	} else {
2089 		mii = device_get_softc(sc->tl_miibus);
2090 		mii_pollstat(mii);
2091 		ifmr->ifm_active = mii->mii_media_active;
2092 		ifmr->ifm_status = mii->mii_media_status;
2093 	}
2094 
2095 	return;
2096 }
2097 
2098 static int tl_ioctl(ifp, command, data, cr)
2099 	struct ifnet		*ifp;
2100 	u_long			command;
2101 	caddr_t			data;
2102 	struct ucred		*cr;
2103 {
2104 	struct tl_softc		*sc = ifp->if_softc;
2105 	struct ifreq		*ifr = (struct ifreq *) data;
2106 	int			error = 0;
2107 
2108 	crit_enter();
2109 
2110 	switch(command) {
2111 	case SIOCSIFFLAGS:
2112 		if (ifp->if_flags & IFF_UP) {
2113 			if (ifp->if_flags & IFF_RUNNING &&
2114 			    ifp->if_flags & IFF_PROMISC &&
2115 			    !(sc->tl_if_flags & IFF_PROMISC)) {
2116 				tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2117 				tl_setmulti(sc);
2118 			} else if (ifp->if_flags & IFF_RUNNING &&
2119 			    !(ifp->if_flags & IFF_PROMISC) &&
2120 			    sc->tl_if_flags & IFF_PROMISC) {
2121 				tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2122 				tl_setmulti(sc);
2123 			} else
2124 				tl_init(sc);
2125 		} else {
2126 			if (ifp->if_flags & IFF_RUNNING) {
2127 				tl_stop(sc);
2128 			}
2129 		}
2130 		sc->tl_if_flags = ifp->if_flags;
2131 		error = 0;
2132 		break;
2133 	case SIOCADDMULTI:
2134 	case SIOCDELMULTI:
2135 		tl_setmulti(sc);
2136 		error = 0;
2137 		break;
2138 	case SIOCSIFMEDIA:
2139 	case SIOCGIFMEDIA:
2140 		if (sc->tl_bitrate)
2141 			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2142 		else {
2143 			struct mii_data		*mii;
2144 			mii = device_get_softc(sc->tl_miibus);
2145 			error = ifmedia_ioctl(ifp, ifr,
2146 			    &mii->mii_media, command);
2147 		}
2148 		break;
2149 	default:
2150 		error = ether_ioctl(ifp, command, data);
2151 		break;
2152 	}
2153 
2154 	crit_exit();
2155 
2156 	return(error);
2157 }
2158 
2159 static void tl_watchdog(ifp)
2160 	struct ifnet		*ifp;
2161 {
2162 	struct tl_softc		*sc;
2163 
2164 	sc = ifp->if_softc;
2165 
2166 	if_printf(ifp, "device timeout\n");
2167 
2168 	ifp->if_oerrors++;
2169 
2170 	tl_softreset(sc, 1);
2171 	tl_init(sc);
2172 
2173 	return;
2174 }
2175 
2176 /*
2177  * Stop the adapter and free any mbufs allocated to the
2178  * RX and TX lists.
2179  */
2180 static void tl_stop(sc)
2181 	struct tl_softc		*sc;
2182 {
2183 	int		i;
2184 	struct ifnet		*ifp;
2185 
2186 	ifp = &sc->arpcom.ac_if;
2187 
2188 	/* Stop the stats updater. */
2189 	callout_stop(&sc->tl_stat_timer);
2190 
2191 	/* Stop the transmitter */
2192 	CMD_CLR(sc, TL_CMD_RT);
2193 	CMD_SET(sc, TL_CMD_STOP);
2194 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2195 
2196 	/* Stop the receiver */
2197 	CMD_SET(sc, TL_CMD_RT);
2198 	CMD_SET(sc, TL_CMD_STOP);
2199 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2200 
2201 	/*
2202 	 * Disable host interrupts.
2203 	 */
2204 	CMD_SET(sc, TL_CMD_INTSOFF);
2205 
2206 	/*
2207 	 * Clear list pointer.
2208 	 */
2209 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2210 
2211 	/*
2212 	 * Free the RX lists.
2213 	 */
2214 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
2215 		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2216 			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2217 			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2218 		}
2219 	}
2220 	bzero((char *)&sc->tl_ldata->tl_rx_list,
2221 		sizeof(sc->tl_ldata->tl_rx_list));
2222 
2223 	/*
2224 	 * Free the TX list buffers.
2225 	 */
2226 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
2227 		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2228 			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2229 			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2230 		}
2231 	}
2232 	bzero((char *)&sc->tl_ldata->tl_tx_list,
2233 		sizeof(sc->tl_ldata->tl_tx_list));
2234 
2235 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2236 
2237 	return;
2238 }
2239 
2240 /*
2241  * Stop all chip I/O so that the kernel's probe routines don't
2242  * get confused by errant DMAs when rebooting.
2243  */
2244 static void tl_shutdown(dev)
2245 	device_t		dev;
2246 {
2247 	struct tl_softc		*sc;
2248 
2249 	sc = device_get_softc(dev);
2250 
2251 	tl_stop(sc);
2252 
2253 	return;
2254 }
2255