xref: /dragonfly/sys/dev/netif/tl/if_tl.c (revision 27f48495)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_tl.c,v 1.51.2.5 2001/12/16 15:46:08 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/tl/if_tl.c,v 1.16 2005/02/21 18:40:37 joerg Exp $
34  */
35 
36 /*
37  * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
38  * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
39  * the National Semiconductor DP83840A physical interface and the
40  * Microchip Technology 24Cxx series serial EEPROM.
41  *
42  * Written using the following four documents:
43  *
44  * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
45  * National Semiconductor DP83840A data sheet (www.national.com)
46  * Microchip Technology 24C02C data sheet (www.microchip.com)
47  * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
48  *
49  * Written by Bill Paul <wpaul@ctr.columbia.edu>
50  * Electrical Engineering Department
51  * Columbia University, New York City
52  */
53 
54 /*
55  * Some notes about the ThunderLAN:
56  *
57  * The ThunderLAN controller is a single chip containing PCI controller
58  * logic, approximately 3K of on-board SRAM, a LAN controller, and media
59  * independent interface (MII) bus. The MII allows the ThunderLAN chip to
60  * control up to 32 different physical interfaces (PHYs). The ThunderLAN
61  * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
62  * to act as a complete ethernet interface.
63  *
64  * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
65  * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
66  * in full or half duplex. Some of the Compaq Deskpro machines use a
67  * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
68  * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
69  * concert with the ThunderLAN's internal PHY to provide full 10/100
70  * support. This is cheaper than using a standalone external PHY for both
71  * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
72  * A serial EEPROM is also attached to the ThunderLAN chip to provide
73  * power-up default register settings and for storing the adapter's
74  * station address. Although not supported by this driver, the ThunderLAN
75  * chip can also be connected to token ring PHYs.
76  *
77  * The ThunderLAN has a set of registers which can be used to issue
78  * commands, acknowledge interrupts, and to manipulate other internal
79  * registers on its DIO bus. The primary registers can be accessed
80  * using either programmed I/O (inb/outb) or via PCI memory mapping,
81  * depending on how the card is configured during the PCI probing
82  * phase. It is even possible to have both PIO and memory mapped
83  * access turned on at the same time.
84  *
85  * Frame reception and transmission with the ThunderLAN chip is done
86  * using frame 'lists.' A list structure looks more or less like this:
87  *
88  * struct tl_frag {
89  *	u_int32_t		fragment_address;
90  *	u_int32_t		fragment_size;
91  * };
92  * struct tl_list {
93  *	u_int32_t		forward_pointer;
94  *	u_int16_t		cstat;
95  *	u_int16_t		frame_size;
96  *	struct tl_frag		fragments[10];
97  * };
98  *
99  * The forward pointer in the list header can be either a 0 or the address
100  * of another list, which allows several lists to be linked together. Each
101  * list contains up to 10 fragment descriptors. This means the chip allows
102  * ethernet frames to be broken up into up to 10 chunks for transfer to
103  * and from the SRAM. Note that the forward pointer and fragment buffer
104  * addresses are physical memory addresses, not virtual. Note also that
105  * a single ethernet frame can not span lists: if the host wants to
106  * transmit a frame and the frame data is split up over more than 10
107  * buffers, the frame has to collapsed before it can be transmitted.
108  *
109  * To receive frames, the driver sets up a number of lists and populates
110  * the fragment descriptors, then it sends an RX GO command to the chip.
111  * When a frame is received, the chip will DMA it into the memory regions
112  * specified by the fragment descriptors and then trigger an RX 'end of
113  * frame interrupt' when done. The driver may choose to use only one
114  * fragment per list; this may result is slighltly less efficient use
115  * of memory in exchange for improving performance.
116  *
117  * To transmit frames, the driver again sets up lists and fragment
118  * descriptors, only this time the buffers contain frame data that
119  * is to be DMA'ed into the chip instead of out of it. Once the chip
120  * has transfered the data into its on-board SRAM, it will trigger a
121  * TX 'end of frame' interrupt. It will also generate an 'end of channel'
122  * interrupt when it reaches the end of the list.
123  */
124 
125 /*
126  * Some notes about this driver:
127  *
128  * The ThunderLAN chip provides a couple of different ways to organize
129  * reception, transmission and interrupt handling. The simplest approach
130  * is to use one list each for transmission and reception. In this mode,
131  * the ThunderLAN will generate two interrupts for every received frame
132  * (one RX EOF and one RX EOC) and two for each transmitted frame (one
133  * TX EOF and one TX EOC). This may make the driver simpler but it hurts
134  * performance to have to handle so many interrupts.
135  *
136  * Initially I wanted to create a circular list of receive buffers so
137  * that the ThunderLAN chip would think there was an infinitely long
138  * receive channel and never deliver an RXEOC interrupt. However this
139  * doesn't work correctly under heavy load: while the manual says the
140  * chip will trigger an RXEOF interrupt each time a frame is copied into
141  * memory, you can't count on the chip waiting around for you to acknowledge
142  * the interrupt before it starts trying to DMA the next frame. The result
143  * is that the chip might traverse the entire circular list and then wrap
144  * around before you have a chance to do anything about it. Consequently,
145  * the receive list is terminated (with a 0 in the forward pointer in the
146  * last element). Each time an RXEOF interrupt arrives, the used list
147  * is shifted to the end of the list. This gives the appearance of an
148  * infinitely large RX chain so long as the driver doesn't fall behind
149  * the chip and allow all of the lists to be filled up.
150  *
151  * If all the lists are filled, the adapter will deliver an RX 'end of
152  * channel' interrupt when it hits the 0 forward pointer at the end of
153  * the chain. The RXEOC handler then cleans out the RX chain and resets
154  * the list head pointer in the ch_parm register and restarts the receiver.
155  *
156  * For frame transmission, it is possible to program the ThunderLAN's
157  * transmit interrupt threshold so that the chip can acknowledge multiple
158  * lists with only a single TX EOF interrupt. This allows the driver to
159  * queue several frames in one shot, and only have to handle a total
160  * two interrupts (one TX EOF and one TX EOC) no matter how many frames
161  * are transmitted. Frame transmission is done directly out of the
162  * mbufs passed to the tl_start() routine via the interface send queue.
163  * The driver simply sets up the fragment descriptors in the transmit
164  * lists to point to the mbuf data regions and sends a TX GO command.
165  *
166  * Note that since the RX and TX lists themselves are always used
167  * only by the driver, the are malloc()ed once at driver initialization
168  * time and never free()ed.
169  *
170  * Also, in order to remain as platform independent as possible, this
171  * driver uses memory mapped register access to manipulate the card
172  * as opposed to programmed I/O. This avoids the use of the inb/outb
173  * (and related) instructions which are specific to the i386 platform.
174  *
175  * Using these techniques, this driver achieves very high performance
176  * by minimizing the amount of interrupts generated during large
177  * transfers and by completely avoiding buffer copies. Frame transfer
178  * to and from the ThunderLAN chip is performed entirely by the chip
179  * itself thereby reducing the load on the host CPU.
180  */
181 
182 #include <sys/param.h>
183 #include <sys/systm.h>
184 #include <sys/sockio.h>
185 #include <sys/mbuf.h>
186 #include <sys/malloc.h>
187 #include <sys/kernel.h>
188 #include <sys/socket.h>
189 
190 #include <net/if.h>
191 #include <net/ifq_var.h>
192 #include <net/if_arp.h>
193 #include <net/ethernet.h>
194 #include <net/if_dl.h>
195 #include <net/if_media.h>
196 
197 #include <net/bpf.h>
198 
199 #include <vm/vm.h>              /* for vtophys */
200 #include <vm/pmap.h>            /* for vtophys */
201 #include <machine/clock.h>      /* for DELAY */
202 #include <machine/bus_memio.h>
203 #include <machine/bus_pio.h>
204 #include <machine/bus.h>
205 #include <machine/resource.h>
206 #include <sys/bus.h>
207 #include <sys/rman.h>
208 
209 #include "../mii_layer/mii.h"
210 #include "../mii_layer/miivar.h"
211 
212 #include <bus/pci/pcireg.h>
213 #include <bus/pci/pcivar.h>
214 
215 /*
216  * Default to using PIO register access mode to pacify certain
217  * laptop docking stations with built-in ThunderLAN chips that
218  * don't seem to handle memory mapped mode properly.
219  */
220 #define TL_USEIOSPACE
221 
222 #include "if_tlreg.h"
223 
224 /* "controller miibus0" required.  See GENERIC if you get errors here. */
225 #include "miibus_if.h"
226 
227 /*
228  * Various supported device vendors/types and their names.
229  */
230 
231 static struct tl_type tl_devs[] = {
232 	{ TI_VENDORID,	TI_DEVICEID_THUNDERLAN,
233 		"Texas Instruments ThunderLAN" },
234 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
235 		"Compaq Netelligent 10" },
236 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
237 		"Compaq Netelligent 10/100" },
238 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
239 		"Compaq Netelligent 10/100 Proliant" },
240 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
241 		"Compaq Netelligent 10/100 Dual Port" },
242 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
243 		"Compaq NetFlex-3/P Integrated" },
244 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
245 		"Compaq NetFlex-3/P" },
246 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
247 		"Compaq NetFlex 3/P w/ BNC" },
248 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
249 		"Compaq Netelligent 10/100 TX Embedded UTP" },
250 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
251 		"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
252 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
253 		"Compaq Netelligent 10/100 TX UTP" },
254 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
255 		"Olicom OC-2183/2185" },
256 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
257 		"Olicom OC-2325" },
258 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
259 		"Olicom OC-2326 10/100 TX UTP" },
260 	{ 0, 0, NULL }
261 };
262 
263 static int tl_probe		(device_t);
264 static int tl_attach		(device_t);
265 static int tl_detach		(device_t);
266 static int tl_intvec_rxeoc	(void *, u_int32_t);
267 static int tl_intvec_txeoc	(void *, u_int32_t);
268 static int tl_intvec_txeof	(void *, u_int32_t);
269 static int tl_intvec_rxeof	(void *, u_int32_t);
270 static int tl_intvec_adchk	(void *, u_int32_t);
271 static int tl_intvec_netsts	(void *, u_int32_t);
272 
273 static int tl_newbuf		(struct tl_softc *,
274 					struct tl_chain_onefrag *);
275 static void tl_stats_update	(void *);
276 static int tl_encap		(struct tl_softc *, struct tl_chain *,
277 						struct mbuf *);
278 
279 static void tl_intr		(void *);
280 static void tl_start		(struct ifnet *);
281 static int tl_ioctl		(struct ifnet *, u_long, caddr_t,
282 						struct ucred *);
283 static void tl_init		(void *);
284 static void tl_stop		(struct tl_softc *);
285 static void tl_watchdog		(struct ifnet *);
286 static void tl_shutdown		(device_t);
287 static int tl_ifmedia_upd	(struct ifnet *);
288 static void tl_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
289 
290 static u_int8_t tl_eeprom_putbyte	(struct tl_softc *, int);
291 static u_int8_t	tl_eeprom_getbyte	(struct tl_softc *,
292 						int, u_int8_t *);
293 static int tl_read_eeprom	(struct tl_softc *, caddr_t, int, int);
294 
295 static void tl_mii_sync		(struct tl_softc *);
296 static void tl_mii_send		(struct tl_softc *, u_int32_t, int);
297 static int tl_mii_readreg	(struct tl_softc *, struct tl_mii_frame *);
298 static int tl_mii_writereg	(struct tl_softc *, struct tl_mii_frame *);
299 static int tl_miibus_readreg	(device_t, int, int);
300 static int tl_miibus_writereg	(device_t, int, int, int);
301 static void tl_miibus_statchg	(device_t);
302 
303 static void tl_setmode		(struct tl_softc *, int);
304 static int tl_calchash		(caddr_t);
305 static void tl_setmulti		(struct tl_softc *);
306 static void tl_setfilt		(struct tl_softc *, caddr_t, int);
307 static void tl_softreset	(struct tl_softc *, int);
308 static void tl_hardreset	(device_t);
309 static int tl_list_rx_init	(struct tl_softc *);
310 static int tl_list_tx_init	(struct tl_softc *);
311 
312 static u_int8_t tl_dio_read8	(struct tl_softc *, int);
313 static u_int16_t tl_dio_read16	(struct tl_softc *, int);
314 static u_int32_t tl_dio_read32	(struct tl_softc *, int);
315 static void tl_dio_write8	(struct tl_softc *, int, int);
316 static void tl_dio_write16	(struct tl_softc *, int, int);
317 static void tl_dio_write32	(struct tl_softc *, int, int);
318 static void tl_dio_setbit	(struct tl_softc *, int, int);
319 static void tl_dio_clrbit	(struct tl_softc *, int, int);
320 static void tl_dio_setbit16	(struct tl_softc *, int, int);
321 static void tl_dio_clrbit16	(struct tl_softc *, int, int);
322 
323 #ifdef TL_USEIOSPACE
324 #define TL_RES		SYS_RES_IOPORT
325 #define TL_RID		TL_PCI_LOIO
326 #else
327 #define TL_RES		SYS_RES_MEMORY
328 #define TL_RID		TL_PCI_LOMEM
329 #endif
330 
331 static device_method_t tl_methods[] = {
332 	/* Device interface */
333 	DEVMETHOD(device_probe,		tl_probe),
334 	DEVMETHOD(device_attach,	tl_attach),
335 	DEVMETHOD(device_detach,	tl_detach),
336 	DEVMETHOD(device_shutdown,	tl_shutdown),
337 
338 	/* bus interface */
339 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
340 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
341 
342 	/* MII interface */
343 	DEVMETHOD(miibus_readreg,	tl_miibus_readreg),
344 	DEVMETHOD(miibus_writereg,	tl_miibus_writereg),
345 	DEVMETHOD(miibus_statchg,	tl_miibus_statchg),
346 
347 	{ 0, 0 }
348 };
349 
350 static driver_t tl_driver = {
351 	"tl",
352 	tl_methods,
353 	sizeof(struct tl_softc)
354 };
355 
356 static devclass_t tl_devclass;
357 
358 DECLARE_DUMMY_MODULE(if_tl);
359 DRIVER_MODULE(if_tl, pci, tl_driver, tl_devclass, 0, 0);
360 DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
361 
362 static u_int8_t tl_dio_read8(sc, reg)
363 	struct tl_softc		*sc;
364 	int			reg;
365 {
366 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
367 	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
368 }
369 
370 static u_int16_t tl_dio_read16(sc, reg)
371 	struct tl_softc		*sc;
372 	int			reg;
373 {
374 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
375 	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
376 }
377 
378 static u_int32_t tl_dio_read32(sc, reg)
379 	struct tl_softc		*sc;
380 	int			reg;
381 {
382 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
383 	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
384 }
385 
386 static void tl_dio_write8(sc, reg, val)
387 	struct tl_softc		*sc;
388 	int			reg;
389 	int			val;
390 {
391 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
392 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
393 	return;
394 }
395 
396 static void tl_dio_write16(sc, reg, val)
397 	struct tl_softc		*sc;
398 	int			reg;
399 	int			val;
400 {
401 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
402 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
403 	return;
404 }
405 
406 static void tl_dio_write32(sc, reg, val)
407 	struct tl_softc		*sc;
408 	int			reg;
409 	int			val;
410 {
411 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
412 	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
413 	return;
414 }
415 
416 static void tl_dio_setbit(sc, reg, bit)
417 	struct tl_softc		*sc;
418 	int			reg;
419 	int			bit;
420 {
421 	u_int8_t			f;
422 
423 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
424 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
425 	f |= bit;
426 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
427 
428 	return;
429 }
430 
431 static void tl_dio_clrbit(sc, reg, bit)
432 	struct tl_softc		*sc;
433 	int			reg;
434 	int			bit;
435 {
436 	u_int8_t			f;
437 
438 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
439 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
440 	f &= ~bit;
441 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
442 
443 	return;
444 }
445 
446 static void tl_dio_setbit16(sc, reg, bit)
447 	struct tl_softc		*sc;
448 	int			reg;
449 	int			bit;
450 {
451 	u_int16_t			f;
452 
453 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
454 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
455 	f |= bit;
456 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
457 
458 	return;
459 }
460 
461 static void tl_dio_clrbit16(sc, reg, bit)
462 	struct tl_softc		*sc;
463 	int			reg;
464 	int			bit;
465 {
466 	u_int16_t			f;
467 
468 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
469 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
470 	f &= ~bit;
471 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
472 
473 	return;
474 }
475 
476 /*
477  * Send an instruction or address to the EEPROM, check for ACK.
478  */
479 static u_int8_t tl_eeprom_putbyte(sc, byte)
480 	struct tl_softc		*sc;
481 	int			byte;
482 {
483 	int		i, ack = 0;
484 
485 	/*
486 	 * Make sure we're in TX mode.
487 	 */
488 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
489 
490 	/*
491 	 * Feed in each bit and stobe the clock.
492 	 */
493 	for (i = 0x80; i; i >>= 1) {
494 		if (byte & i) {
495 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
496 		} else {
497 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
498 		}
499 		DELAY(1);
500 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
501 		DELAY(1);
502 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
503 	}
504 
505 	/*
506 	 * Turn off TX mode.
507 	 */
508 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
509 
510 	/*
511 	 * Check for ack.
512 	 */
513 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
514 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
515 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
516 
517 	return(ack);
518 }
519 
520 /*
521  * Read a byte of data stored in the EEPROM at address 'addr.'
522  */
523 static u_int8_t tl_eeprom_getbyte(sc, addr, dest)
524 	struct tl_softc		*sc;
525 	int			addr;
526 	u_int8_t		*dest;
527 {
528 	int		i;
529 	u_int8_t		byte = 0;
530 
531 	tl_dio_write8(sc, TL_NETSIO, 0);
532 
533 	EEPROM_START;
534 
535 	/*
536 	 * Send write control code to EEPROM.
537 	 */
538 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
539 		printf("tl%d: failed to send write command, status: %x\n",
540 				sc->tl_unit, tl_dio_read8(sc, TL_NETSIO));
541 		return(1);
542 	}
543 
544 	/*
545 	 * Send address of byte we want to read.
546 	 */
547 	if (tl_eeprom_putbyte(sc, addr)) {
548 		printf("tl%d: failed to send address, status: %x\n",
549 				sc->tl_unit, tl_dio_read8(sc, TL_NETSIO));
550 		return(1);
551 	}
552 
553 	EEPROM_STOP;
554 	EEPROM_START;
555 	/*
556 	 * Send read control code to EEPROM.
557 	 */
558 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
559 		printf("tl%d: failed to send write command, status: %x\n",
560 				sc->tl_unit, tl_dio_read8(sc, TL_NETSIO));
561 		return(1);
562 	}
563 
564 	/*
565 	 * Start reading bits from EEPROM.
566 	 */
567 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
568 	for (i = 0x80; i; i >>= 1) {
569 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
570 		DELAY(1);
571 		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
572 			byte |= i;
573 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
574 		DELAY(1);
575 	}
576 
577 	EEPROM_STOP;
578 
579 	/*
580 	 * No ACK generated for read, so just return byte.
581 	 */
582 
583 	*dest = byte;
584 
585 	return(0);
586 }
587 
588 /*
589  * Read a sequence of bytes from the EEPROM.
590  */
591 static int tl_read_eeprom(sc, dest, off, cnt)
592 	struct tl_softc		*sc;
593 	caddr_t			dest;
594 	int			off;
595 	int			cnt;
596 {
597 	int			err = 0, i;
598 	u_int8_t		byte = 0;
599 
600 	for (i = 0; i < cnt; i++) {
601 		err = tl_eeprom_getbyte(sc, off + i, &byte);
602 		if (err)
603 			break;
604 		*(dest + i) = byte;
605 	}
606 
607 	return(err ? 1 : 0);
608 }
609 
610 static void tl_mii_sync(sc)
611 	struct tl_softc		*sc;
612 {
613 	int		i;
614 
615 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
616 
617 	for (i = 0; i < 32; i++) {
618 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
619 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
620 	}
621 
622 	return;
623 }
624 
625 static void tl_mii_send(sc, bits, cnt)
626 	struct tl_softc		*sc;
627 	u_int32_t		bits;
628 	int			cnt;
629 {
630 	int			i;
631 
632 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
633 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
634 		if (bits & i) {
635 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
636 		} else {
637 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
638 		}
639 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
640 	}
641 }
642 
643 static int tl_mii_readreg(sc, frame)
644 	struct tl_softc		*sc;
645 	struct tl_mii_frame	*frame;
646 
647 {
648 	int			i, ack, s;
649 	int			minten = 0;
650 
651 	s = splimp();
652 
653 	tl_mii_sync(sc);
654 
655 	/*
656 	 * Set up frame for RX.
657 	 */
658 	frame->mii_stdelim = TL_MII_STARTDELIM;
659 	frame->mii_opcode = TL_MII_READOP;
660 	frame->mii_turnaround = 0;
661 	frame->mii_data = 0;
662 
663 	/*
664 	 * Turn off MII interrupt by forcing MINTEN low.
665 	 */
666 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
667 	if (minten) {
668 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
669 	}
670 
671 	/*
672  	 * Turn on data xmit.
673 	 */
674 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
675 
676 	/*
677 	 * Send command/address info.
678 	 */
679 	tl_mii_send(sc, frame->mii_stdelim, 2);
680 	tl_mii_send(sc, frame->mii_opcode, 2);
681 	tl_mii_send(sc, frame->mii_phyaddr, 5);
682 	tl_mii_send(sc, frame->mii_regaddr, 5);
683 
684 	/*
685 	 * Turn off xmit.
686 	 */
687 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
688 
689 	/* Idle bit */
690 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
691 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
692 
693 	/* Check for ack */
694 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
695 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
696 
697 	/* Complete the cycle */
698 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
699 
700 	/*
701 	 * Now try reading data bits. If the ack failed, we still
702 	 * need to clock through 16 cycles to keep the PHYs in sync.
703 	 */
704 	if (ack) {
705 		for(i = 0; i < 16; i++) {
706 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
707 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
708 		}
709 		goto fail;
710 	}
711 
712 	for (i = 0x8000; i; i >>= 1) {
713 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
714 		if (!ack) {
715 			if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
716 				frame->mii_data |= i;
717 		}
718 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
719 	}
720 
721 fail:
722 
723 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
724 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
725 
726 	/* Reenable interrupts */
727 	if (minten) {
728 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
729 	}
730 
731 	splx(s);
732 
733 	if (ack)
734 		return(1);
735 	return(0);
736 }
737 
738 static int tl_mii_writereg(sc, frame)
739 	struct tl_softc		*sc;
740 	struct tl_mii_frame	*frame;
741 
742 {
743 	int			s;
744 	int			minten;
745 
746 	tl_mii_sync(sc);
747 
748 	s = splimp();
749 	/*
750 	 * Set up frame for TX.
751 	 */
752 
753 	frame->mii_stdelim = TL_MII_STARTDELIM;
754 	frame->mii_opcode = TL_MII_WRITEOP;
755 	frame->mii_turnaround = TL_MII_TURNAROUND;
756 
757 	/*
758 	 * Turn off MII interrupt by forcing MINTEN low.
759 	 */
760 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
761 	if (minten) {
762 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
763 	}
764 
765 	/*
766  	 * Turn on data output.
767 	 */
768 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
769 
770 	tl_mii_send(sc, frame->mii_stdelim, 2);
771 	tl_mii_send(sc, frame->mii_opcode, 2);
772 	tl_mii_send(sc, frame->mii_phyaddr, 5);
773 	tl_mii_send(sc, frame->mii_regaddr, 5);
774 	tl_mii_send(sc, frame->mii_turnaround, 2);
775 	tl_mii_send(sc, frame->mii_data, 16);
776 
777 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
778 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
779 
780 	/*
781 	 * Turn off xmit.
782 	 */
783 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
784 
785 	/* Reenable interrupts */
786 	if (minten)
787 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
788 
789 	splx(s);
790 
791 	return(0);
792 }
793 
794 static int tl_miibus_readreg(dev, phy, reg)
795 	device_t		dev;
796 	int			phy, reg;
797 {
798 	struct tl_softc		*sc;
799 	struct tl_mii_frame	frame;
800 
801 	sc = device_get_softc(dev);
802 	bzero((char *)&frame, sizeof(frame));
803 
804 	frame.mii_phyaddr = phy;
805 	frame.mii_regaddr = reg;
806 	tl_mii_readreg(sc, &frame);
807 
808 	return(frame.mii_data);
809 }
810 
811 static int tl_miibus_writereg(dev, phy, reg, data)
812 	device_t		dev;
813 	int			phy, reg, data;
814 {
815 	struct tl_softc		*sc;
816 	struct tl_mii_frame	frame;
817 
818 	sc = device_get_softc(dev);
819 	bzero((char *)&frame, sizeof(frame));
820 
821 	frame.mii_phyaddr = phy;
822 	frame.mii_regaddr = reg;
823 	frame.mii_data = data;
824 
825 	tl_mii_writereg(sc, &frame);
826 
827 	return(0);
828 }
829 
830 static void tl_miibus_statchg(dev)
831 	device_t		dev;
832 {
833 	struct tl_softc		*sc;
834 	struct mii_data		*mii;
835 
836 	sc = device_get_softc(dev);
837 	mii = device_get_softc(sc->tl_miibus);
838 
839 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
840 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
841 	} else {
842 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
843 	}
844 
845 	return;
846 }
847 
848 /*
849  * Set modes for bitrate devices.
850  */
851 static void tl_setmode(sc, media)
852 	struct tl_softc		*sc;
853 	int			media;
854 {
855 	if (IFM_SUBTYPE(media) == IFM_10_5)
856 		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
857 	if (IFM_SUBTYPE(media) == IFM_10_T) {
858 		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
859 		if ((media & IFM_GMASK) == IFM_FDX) {
860 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
861 			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
862 		} else {
863 			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
864 			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
865 		}
866 	}
867 
868 	return;
869 }
870 
871 /*
872  * Calculate the hash of a MAC address for programming the multicast hash
873  * table.  This hash is simply the address split into 6-bit chunks
874  * XOR'd, e.g.
875  * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
876  * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
877  * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
878  * the folded 24-bit value is split into 6-bit portions and XOR'd.
879  */
880 static int tl_calchash(addr)
881 	caddr_t			addr;
882 {
883 	int			t;
884 
885 	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
886 		(addr[2] ^ addr[5]);
887 	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
888 }
889 
890 /*
891  * The ThunderLAN has a perfect MAC address filter in addition to
892  * the multicast hash filter. The perfect filter can be programmed
893  * with up to four MAC addresses. The first one is always used to
894  * hold the station address, which leaves us free to use the other
895  * three for multicast addresses.
896  */
897 static void tl_setfilt(sc, addr, slot)
898 	struct tl_softc		*sc;
899 	caddr_t			addr;
900 	int			slot;
901 {
902 	int			i;
903 	u_int16_t		regaddr;
904 
905 	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
906 
907 	for (i = 0; i < ETHER_ADDR_LEN; i++)
908 		tl_dio_write8(sc, regaddr + i, *(addr + i));
909 
910 	return;
911 }
912 
913 /*
914  * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
915  * linked list. This is fine, except addresses are added from the head
916  * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
917  * group to always be in the perfect filter, but as more groups are added,
918  * the 224.0.0.1 entry (which is always added first) gets pushed down
919  * the list and ends up at the tail. So after 3 or 4 multicast groups
920  * are added, the all-hosts entry gets pushed out of the perfect filter
921  * and into the hash table.
922  *
923  * Because the multicast list is a doubly-linked list as opposed to a
924  * circular queue, we don't have the ability to just grab the tail of
925  * the list and traverse it backwards. Instead, we have to traverse
926  * the list once to find the tail, then traverse it again backwards to
927  * update the multicast filter.
928  */
929 static void tl_setmulti(sc)
930 	struct tl_softc		*sc;
931 {
932 	struct ifnet		*ifp;
933 	u_int32_t		hashes[2] = { 0, 0 };
934 	int			h, i;
935 	struct ifmultiaddr	*ifma;
936 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
937 	ifp = &sc->arpcom.ac_if;
938 
939 	/* First, zot all the existing filters. */
940 	for (i = 1; i < 4; i++)
941 		tl_setfilt(sc, (caddr_t)&dummy, i);
942 	tl_dio_write32(sc, TL_HASH1, 0);
943 	tl_dio_write32(sc, TL_HASH2, 0);
944 
945 	/* Now program new ones. */
946 	if (ifp->if_flags & IFF_ALLMULTI) {
947 		hashes[0] = 0xFFFFFFFF;
948 		hashes[1] = 0xFFFFFFFF;
949 	} else {
950 		i = 1;
951 		/* First find the tail of the list. */
952 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
953 					ifma = ifma->ifma_link.le_next) {
954 			if (ifma->ifma_link.le_next == NULL)
955 				break;
956 		}
957 		/* Now traverse the list backwards. */
958 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
959 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
960 			if (ifma->ifma_addr->sa_family != AF_LINK)
961 				continue;
962 			/*
963 			 * Program the first three multicast groups
964 			 * into the perfect filter. For all others,
965 			 * use the hash table.
966 			 */
967 			if (i < 4) {
968 				tl_setfilt(sc,
969 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
970 				i++;
971 				continue;
972 			}
973 
974 			h = tl_calchash(
975 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
976 			if (h < 32)
977 				hashes[0] |= (1 << h);
978 			else
979 				hashes[1] |= (1 << (h - 32));
980 		}
981 	}
982 
983 	tl_dio_write32(sc, TL_HASH1, hashes[0]);
984 	tl_dio_write32(sc, TL_HASH2, hashes[1]);
985 
986 	return;
987 }
988 
989 /*
990  * This routine is recommended by the ThunderLAN manual to insure that
991  * the internal PHY is powered up correctly. It also recommends a one
992  * second pause at the end to 'wait for the clocks to start' but in my
993  * experience this isn't necessary.
994  */
995 static void tl_hardreset(dev)
996 	device_t		dev;
997 {
998 	struct tl_softc		*sc;
999 	int			i;
1000 	u_int16_t		flags;
1001 
1002 	sc = device_get_softc(dev);
1003 
1004 	tl_mii_sync(sc);
1005 
1006 	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
1007 
1008 	for (i = 0; i < MII_NPHY; i++)
1009 		tl_miibus_writereg(dev, i, MII_BMCR, flags);
1010 
1011 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
1012 	DELAY(50000);
1013 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
1014 	tl_mii_sync(sc);
1015 	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
1016 
1017 	DELAY(50000);
1018 	return;
1019 }
1020 
1021 static void tl_softreset(sc, internal)
1022 	struct tl_softc		*sc;
1023 	int			internal;
1024 {
1025         u_int32_t               cmd, dummy, i;
1026 
1027         /* Assert the adapter reset bit. */
1028 	CMD_SET(sc, TL_CMD_ADRST);
1029 
1030         /* Turn off interrupts */
1031 	CMD_SET(sc, TL_CMD_INTSOFF);
1032 
1033 	/* First, clear the stats registers. */
1034 	for (i = 0; i < 5; i++)
1035 		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
1036 
1037         /* Clear Areg and Hash registers */
1038 	for (i = 0; i < 8; i++)
1039 		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
1040 
1041         /*
1042 	 * Set up Netconfig register. Enable one channel and
1043 	 * one fragment mode.
1044 	 */
1045 	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
1046 	if (internal && !sc->tl_bitrate) {
1047 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1048 	} else {
1049 		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1050 	}
1051 
1052 	/* Handle cards with bitrate devices. */
1053 	if (sc->tl_bitrate)
1054 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
1055 
1056 	/*
1057 	 * Load adapter irq pacing timer and tx threshold.
1058 	 * We make the transmit threshold 1 initially but we may
1059 	 * change that later.
1060 	 */
1061 	cmd = CSR_READ_4(sc, TL_HOSTCMD);
1062 	cmd |= TL_CMD_NES;
1063 	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
1064 	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
1065 	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
1066 
1067         /* Unreset the MII */
1068 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
1069 
1070 	/* Take the adapter out of reset */
1071 	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
1072 
1073 	/* Wait for things to settle down a little. */
1074 	DELAY(500);
1075 
1076         return;
1077 }
1078 
1079 /*
1080  * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1081  * against our list and return its name if we find a match.
1082  */
1083 static int tl_probe(dev)
1084 	device_t		dev;
1085 {
1086 	struct tl_type		*t;
1087 
1088 	t = tl_devs;
1089 
1090 	while(t->tl_name != NULL) {
1091 		if ((pci_get_vendor(dev) == t->tl_vid) &&
1092 		    (pci_get_device(dev) == t->tl_did)) {
1093 			device_set_desc(dev, t->tl_name);
1094 			return(0);
1095 		}
1096 		t++;
1097 	}
1098 
1099 	return(ENXIO);
1100 }
1101 
1102 static int tl_attach(dev)
1103 	device_t		dev;
1104 {
1105 	int			s, i;
1106 	u_int32_t		command;
1107 	u_int16_t		did, vid;
1108 	struct tl_type		*t;
1109 	struct ifnet		*ifp;
1110 	struct tl_softc		*sc;
1111 	int			unit, error = 0, rid;
1112 
1113 	s = splimp();
1114 
1115 	vid = pci_get_vendor(dev);
1116 	did = pci_get_device(dev);
1117 	sc = device_get_softc(dev);
1118 	unit = device_get_unit(dev);
1119 	bzero(sc, sizeof(struct tl_softc));
1120 
1121 	t = tl_devs;
1122 	while(t->tl_name != NULL) {
1123 		if (vid == t->tl_vid && did == t->tl_did)
1124 			break;
1125 		t++;
1126 	}
1127 
1128 	if (t->tl_name == NULL) {
1129 		printf("tl%d: unknown device!?\n", unit);
1130 		goto fail;
1131 	}
1132 
1133 	/*
1134 	 * Map control/status registers.
1135 	 */
1136 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1137 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1138 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1139 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1140 
1141 #ifdef TL_USEIOSPACE
1142 	if (!(command & PCIM_CMD_PORTEN)) {
1143 		printf("tl%d: failed to enable I/O ports!\n", unit);
1144 		error = ENXIO;
1145 		goto fail;
1146 	}
1147 
1148 	rid = TL_PCI_LOIO;
1149 	sc->tl_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
1150 		0, ~0, 1, RF_ACTIVE);
1151 
1152 	/*
1153 	 * Some cards have the I/O and memory mapped address registers
1154 	 * reversed. Try both combinations before giving up.
1155 	 */
1156 	if (sc->tl_res == NULL) {
1157 		rid = TL_PCI_LOMEM;
1158 		sc->tl_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
1159 		    0, ~0, 1, RF_ACTIVE);
1160 	}
1161 #else
1162 	if (!(command & PCIM_CMD_MEMEN)) {
1163 		printf("tl%d: failed to enable memory mapping!\n", unit);
1164 		error = ENXIO;
1165 		goto fail;
1166 	}
1167 
1168 	rid = TL_PCI_LOMEM;
1169 	sc->tl_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1170 	    0, ~0, 1, RF_ACTIVE);
1171 	if (sc->tl_res == NULL) {
1172 		rid = TL_PCI_LOIO;
1173 		sc->tl_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1174 		    0, ~0, 1, RF_ACTIVE);
1175 	}
1176 #endif
1177 
1178 	if (sc->tl_res == NULL) {
1179 		printf("tl%d: couldn't map ports/memory\n", unit);
1180 		error = ENXIO;
1181 		goto fail;
1182 	}
1183 
1184 	sc->tl_btag = rman_get_bustag(sc->tl_res);
1185 	sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
1186 
1187 #ifdef notdef
1188 	/*
1189 	 * The ThunderLAN manual suggests jacking the PCI latency
1190 	 * timer all the way up to its maximum value. I'm not sure
1191 	 * if this is really necessary, but what the manual wants,
1192 	 * the manual gets.
1193 	 */
1194 	command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1195 	command |= 0x0000FF00;
1196 	pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1197 #endif
1198 
1199 	/* Allocate interrupt */
1200 	rid = 0;
1201 	sc->tl_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1202 	    RF_SHAREABLE | RF_ACTIVE);
1203 
1204 	if (sc->tl_irq == NULL) {
1205 		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1206 		printf("tl%d: couldn't map interrupt\n", unit);
1207 		error = ENXIO;
1208 		goto fail;
1209 	}
1210 
1211 	error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET,
1212 	    tl_intr, sc, &sc->tl_intrhand);
1213 
1214 	if (error) {
1215 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1216 		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1217 		printf("tl%d: couldn't set up irq\n", unit);
1218 		goto fail;
1219 	}
1220 
1221 	/*
1222 	 * Now allocate memory for the TX and RX lists.
1223 	 */
1224 	sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1225 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1226 
1227 	if (sc->tl_ldata == NULL) {
1228 		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1229 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1230 		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1231 		printf("tl%d: no memory for list buffers!\n", unit);
1232 		error = ENXIO;
1233 		goto fail;
1234 	}
1235 
1236 	bzero(sc->tl_ldata, sizeof(struct tl_list_data));
1237 
1238 	sc->tl_unit = unit;
1239 	sc->tl_dinfo = t;
1240 	if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
1241 		sc->tl_eeaddr = TL_EEPROM_EADDR;
1242 	if (t->tl_vid == OLICOM_VENDORID)
1243 		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1244 
1245 	/* Reset the adapter. */
1246 	tl_softreset(sc, 1);
1247 	tl_hardreset(dev);
1248 	tl_softreset(sc, 1);
1249 
1250 	/*
1251 	 * Get station address from the EEPROM.
1252 	 */
1253 	if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1254 				sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1255 		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1256 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1257 		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1258 		contigfree(sc->tl_ldata,
1259 		    sizeof(struct tl_list_data), M_DEVBUF);
1260 		printf("tl%d: failed to read station address\n", unit);
1261 		error = ENXIO;
1262 		goto fail;
1263 	}
1264 
1265         /*
1266          * XXX Olicom, in its desire to be different from the
1267          * rest of the world, has done strange things with the
1268          * encoding of the station address in the EEPROM. First
1269          * of all, they store the address at offset 0xF8 rather
1270          * than at 0x83 like the ThunderLAN manual suggests.
1271          * Second, they store the address in three 16-bit words in
1272          * network byte order, as opposed to storing it sequentially
1273          * like all the other ThunderLAN cards. In order to get
1274          * the station address in a form that matches what the Olicom
1275          * diagnostic utility specifies, we have to byte-swap each
1276          * word. To make things even more confusing, neither 00:00:28
1277          * nor 00:00:24 appear in the IEEE OUI database.
1278          */
1279         if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
1280                 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1281                         u_int16_t               *p;
1282                         p = (u_int16_t *)&sc->arpcom.ac_enaddr[i];
1283                         *p = ntohs(*p);
1284                 }
1285         }
1286 
1287 	ifp = &sc->arpcom.ac_if;
1288 	ifp->if_softc = sc;
1289 	if_initname(ifp, "tl", sc->tl_unit);
1290 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1291 	ifp->if_ioctl = tl_ioctl;
1292 	ifp->if_start = tl_start;
1293 	ifp->if_watchdog = tl_watchdog;
1294 	ifp->if_init = tl_init;
1295 	ifp->if_mtu = ETHERMTU;
1296 	ifq_set_maxlen(&ifp->if_snd, TL_TX_LIST_CNT - 1);
1297 	ifq_set_ready(&ifp->if_snd);
1298 	callout_init(&sc->tl_stat_timer);
1299 
1300 	/* Reset the adapter again. */
1301 	tl_softreset(sc, 1);
1302 	tl_hardreset(dev);
1303 	tl_softreset(sc, 1);
1304 
1305 	/*
1306 	 * Do MII setup. If no PHYs are found, then this is a
1307 	 * bitrate ThunderLAN chip that only supports 10baseT
1308 	 * and AUI/BNC.
1309 	 */
1310 	if (mii_phy_probe(dev, &sc->tl_miibus,
1311 	    tl_ifmedia_upd, tl_ifmedia_sts)) {
1312 		struct ifmedia		*ifm;
1313 		sc->tl_bitrate = 1;
1314 		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1315 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1316 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1317 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1318 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1319 		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1320 		/* Reset again, this time setting bitrate mode. */
1321 		tl_softreset(sc, 1);
1322 		ifm = &sc->ifmedia;
1323 		ifm->ifm_media = ifm->ifm_cur->ifm_media;
1324 		tl_ifmedia_upd(ifp);
1325 	}
1326 
1327 	/*
1328 	 * Call MI attach routine.
1329 	 */
1330 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
1331 
1332 fail:
1333 	splx(s);
1334 	return(error);
1335 }
1336 
1337 static int tl_detach(dev)
1338 	device_t		dev;
1339 {
1340 	struct tl_softc		*sc;
1341 	struct ifnet		*ifp;
1342 	int			s;
1343 
1344 	s = splimp();
1345 
1346 	sc = device_get_softc(dev);
1347 	ifp = &sc->arpcom.ac_if;
1348 
1349 	tl_stop(sc);
1350 	ether_ifdetach(ifp);
1351 
1352 	bus_generic_detach(dev);
1353 	device_delete_child(dev, sc->tl_miibus);
1354 
1355 	contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1356 	if (sc->tl_bitrate)
1357 		ifmedia_removeall(&sc->ifmedia);
1358 
1359 	bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1360 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1361 	bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1362 
1363 	splx(s);
1364 
1365 	return(0);
1366 }
1367 
1368 /*
1369  * Initialize the transmit lists.
1370  */
1371 static int tl_list_tx_init(sc)
1372 	struct tl_softc		*sc;
1373 {
1374 	struct tl_chain_data	*cd;
1375 	struct tl_list_data	*ld;
1376 	int			i;
1377 
1378 	cd = &sc->tl_cdata;
1379 	ld = sc->tl_ldata;
1380 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1381 		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1382 		if (i == (TL_TX_LIST_CNT - 1))
1383 			cd->tl_tx_chain[i].tl_next = NULL;
1384 		else
1385 			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1386 	}
1387 
1388 	cd->tl_tx_free = &cd->tl_tx_chain[0];
1389 	cd->tl_tx_tail = cd->tl_tx_head = NULL;
1390 	sc->tl_txeoc = 1;
1391 
1392 	return(0);
1393 }
1394 
1395 /*
1396  * Initialize the RX lists and allocate mbufs for them.
1397  */
1398 static int tl_list_rx_init(sc)
1399 	struct tl_softc		*sc;
1400 {
1401 	struct tl_chain_data	*cd;
1402 	struct tl_list_data	*ld;
1403 	int			i;
1404 
1405 	cd = &sc->tl_cdata;
1406 	ld = sc->tl_ldata;
1407 
1408 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1409 		cd->tl_rx_chain[i].tl_ptr =
1410 			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
1411 		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1412 			return(ENOBUFS);
1413 		if (i == (TL_RX_LIST_CNT - 1)) {
1414 			cd->tl_rx_chain[i].tl_next = NULL;
1415 			ld->tl_rx_list[i].tlist_fptr = 0;
1416 		} else {
1417 			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1418 			ld->tl_rx_list[i].tlist_fptr =
1419 					vtophys(&ld->tl_rx_list[i + 1]);
1420 		}
1421 	}
1422 
1423 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1424 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1425 
1426 	return(0);
1427 }
1428 
1429 static int tl_newbuf(sc, c)
1430 	struct tl_softc		*sc;
1431 	struct tl_chain_onefrag	*c;
1432 {
1433 	struct mbuf		*m_new = NULL;
1434 
1435 	MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1436 	if (m_new == NULL)
1437 		return(ENOBUFS);
1438 
1439 	MCLGET(m_new, MB_DONTWAIT);
1440 	if (!(m_new->m_flags & M_EXT)) {
1441 		m_freem(m_new);
1442 		return(ENOBUFS);
1443 	}
1444 
1445 #ifdef __alpha__
1446 	m_new->m_data += 2;
1447 #endif
1448 
1449 	c->tl_mbuf = m_new;
1450 	c->tl_next = NULL;
1451 	c->tl_ptr->tlist_frsize = MCLBYTES;
1452 	c->tl_ptr->tlist_fptr = 0;
1453 	c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1454 	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1455 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1456 
1457 	return(0);
1458 }
1459 /*
1460  * Interrupt handler for RX 'end of frame' condition (EOF). This
1461  * tells us that a full ethernet frame has been captured and we need
1462  * to handle it.
1463  *
1464  * Reception is done using 'lists' which consist of a header and a
1465  * series of 10 data count/data address pairs that point to buffers.
1466  * Initially you're supposed to create a list, populate it with pointers
1467  * to buffers, then load the physical address of the list into the
1468  * ch_parm register. The adapter is then supposed to DMA the received
1469  * frame into the buffers for you.
1470  *
1471  * To make things as fast as possible, we have the chip DMA directly
1472  * into mbufs. This saves us from having to do a buffer copy: we can
1473  * just hand the mbufs directly to ether_input(). Once the frame has
1474  * been sent on its way, the 'list' structure is assigned a new buffer
1475  * and moved to the end of the RX chain. As long we we stay ahead of
1476  * the chip, it will always think it has an endless receive channel.
1477  *
1478  * If we happen to fall behind and the chip manages to fill up all of
1479  * the buffers, it will generate an end of channel interrupt and wait
1480  * for us to empty the chain and restart the receiver.
1481  */
1482 static int tl_intvec_rxeof(xsc, type)
1483 	void			*xsc;
1484 	u_int32_t		type;
1485 {
1486 	struct tl_softc		*sc;
1487 	int			r = 0, total_len = 0;
1488 	struct ether_header	*eh;
1489 	struct mbuf		*m;
1490 	struct ifnet		*ifp;
1491 	struct tl_chain_onefrag	*cur_rx;
1492 
1493 	sc = xsc;
1494 	ifp = &sc->arpcom.ac_if;
1495 
1496 	while(sc->tl_cdata.tl_rx_head != NULL) {
1497 		cur_rx = sc->tl_cdata.tl_rx_head;
1498 		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1499 			break;
1500 		r++;
1501 		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1502 		m = cur_rx->tl_mbuf;
1503 		total_len = cur_rx->tl_ptr->tlist_frsize;
1504 
1505 		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1506 			ifp->if_ierrors++;
1507 			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1508 			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1509 			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1510 			continue;
1511 		}
1512 
1513 		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1514 						vtophys(cur_rx->tl_ptr);
1515 		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1516 		sc->tl_cdata.tl_rx_tail = cur_rx;
1517 
1518 		eh = mtod(m, struct ether_header *);
1519 		m->m_pkthdr.rcvif = ifp;
1520 
1521 		/*
1522 		 * Note: when the ThunderLAN chip is in 'capture all
1523 		 * frames' mode, it will receive its own transmissions.
1524 		 * We drop don't need to process our own transmissions,
1525 		 * so we drop them here and continue.
1526 		 */
1527 		/*if (ifp->if_flags & IFF_PROMISC && */
1528 		if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1529 		 					ETHER_ADDR_LEN)) {
1530 				m_freem(m);
1531 				continue;
1532 		}
1533 
1534 		(*ifp->if_input)(ifp, m);
1535 	}
1536 
1537 	return(r);
1538 }
1539 
1540 /*
1541  * The RX-EOC condition hits when the ch_parm address hasn't been
1542  * initialized or the adapter reached a list with a forward pointer
1543  * of 0 (which indicates the end of the chain). In our case, this means
1544  * the card has hit the end of the receive buffer chain and we need to
1545  * empty out the buffers and shift the pointer back to the beginning again.
1546  */
1547 static int tl_intvec_rxeoc(xsc, type)
1548 	void			*xsc;
1549 	u_int32_t		type;
1550 {
1551 	struct tl_softc		*sc;
1552 	int			r;
1553 	struct tl_chain_data	*cd;
1554 
1555 
1556 	sc = xsc;
1557 	cd = &sc->tl_cdata;
1558 
1559 	/* Flush out the receive queue and ack RXEOF interrupts. */
1560 	r = tl_intvec_rxeof(xsc, type);
1561 	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1562 	r = 1;
1563 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1564 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1565 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1566 	r |= (TL_CMD_GO|TL_CMD_RT);
1567 	return(r);
1568 }
1569 
1570 static int tl_intvec_txeof(xsc, type)
1571 	void			*xsc;
1572 	u_int32_t		type;
1573 {
1574 	struct tl_softc		*sc;
1575 	int			r = 0;
1576 	struct tl_chain		*cur_tx;
1577 
1578 	sc = xsc;
1579 
1580 	/*
1581 	 * Go through our tx list and free mbufs for those
1582 	 * frames that have been sent.
1583 	 */
1584 	while (sc->tl_cdata.tl_tx_head != NULL) {
1585 		cur_tx = sc->tl_cdata.tl_tx_head;
1586 		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1587 			break;
1588 		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1589 
1590 		r++;
1591 		m_freem(cur_tx->tl_mbuf);
1592 		cur_tx->tl_mbuf = NULL;
1593 
1594 		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1595 		sc->tl_cdata.tl_tx_free = cur_tx;
1596 		if (!cur_tx->tl_ptr->tlist_fptr)
1597 			break;
1598 	}
1599 
1600 	return(r);
1601 }
1602 
1603 /*
1604  * The transmit end of channel interrupt. The adapter triggers this
1605  * interrupt to tell us it hit the end of the current transmit list.
1606  *
1607  * A note about this: it's possible for a condition to arise where
1608  * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1609  * You have to avoid this since the chip expects things to go in a
1610  * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1611  * When the TXEOF handler is called, it will free all of the transmitted
1612  * frames and reset the tx_head pointer to NULL. However, a TXEOC
1613  * interrupt should be received and acknowledged before any more frames
1614  * are queued for transmission. If tl_statrt() is called after TXEOF
1615  * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1616  * it could attempt to issue a transmit command prematurely.
1617  *
1618  * To guard against this, tl_start() will only issue transmit commands
1619  * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1620  * can set this flag once tl_start() has cleared it.
1621  */
1622 static int tl_intvec_txeoc(xsc, type)
1623 	void			*xsc;
1624 	u_int32_t		type;
1625 {
1626 	struct tl_softc		*sc;
1627 	struct ifnet		*ifp;
1628 	u_int32_t		cmd;
1629 
1630 	sc = xsc;
1631 	ifp = &sc->arpcom.ac_if;
1632 
1633 	/* Clear the timeout timer. */
1634 	ifp->if_timer = 0;
1635 
1636 	if (sc->tl_cdata.tl_tx_head == NULL) {
1637 		ifp->if_flags &= ~IFF_OACTIVE;
1638 		sc->tl_cdata.tl_tx_tail = NULL;
1639 		sc->tl_txeoc = 1;
1640 	} else {
1641 		sc->tl_txeoc = 0;
1642 		/* First we have to ack the EOC interrupt. */
1643 		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1644 		/* Then load the address of the next TX list. */
1645 		CSR_WRITE_4(sc, TL_CH_PARM,
1646 		    vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1647 		/* Restart TX channel. */
1648 		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1649 		cmd &= ~TL_CMD_RT;
1650 		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1651 		CMD_PUT(sc, cmd);
1652 		return(0);
1653 	}
1654 
1655 	return(1);
1656 }
1657 
1658 static int tl_intvec_adchk(xsc, type)
1659 	void			*xsc;
1660 	u_int32_t		type;
1661 {
1662 	struct tl_softc		*sc;
1663 
1664 	sc = xsc;
1665 
1666 	if (type)
1667 		printf("tl%d: adapter check: %x\n", sc->tl_unit,
1668 			(unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1669 
1670 	tl_softreset(sc, 1);
1671 	tl_stop(sc);
1672 	tl_init(sc);
1673 	CMD_SET(sc, TL_CMD_INTSON);
1674 
1675 	return(0);
1676 }
1677 
1678 static int tl_intvec_netsts(xsc, type)
1679 	void			*xsc;
1680 	u_int32_t		type;
1681 {
1682 	struct tl_softc		*sc;
1683 	u_int16_t		netsts;
1684 
1685 	sc = xsc;
1686 
1687 	netsts = tl_dio_read16(sc, TL_NETSTS);
1688 	tl_dio_write16(sc, TL_NETSTS, netsts);
1689 
1690 	printf("tl%d: network status: %x\n", sc->tl_unit, netsts);
1691 
1692 	return(1);
1693 }
1694 
1695 static void tl_intr(xsc)
1696 	void			*xsc;
1697 {
1698 	struct tl_softc		*sc;
1699 	struct ifnet		*ifp;
1700 	int			r = 0;
1701 	u_int32_t		type = 0;
1702 	u_int16_t		ints = 0;
1703 	u_int8_t		ivec = 0;
1704 
1705 	sc = xsc;
1706 
1707 	/* Disable interrupts */
1708 	ints = CSR_READ_2(sc, TL_HOST_INT);
1709 	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1710 	type = (ints << 16) & 0xFFFF0000;
1711 	ivec = (ints & TL_VEC_MASK) >> 5;
1712 	ints = (ints & TL_INT_MASK) >> 2;
1713 
1714 	ifp = &sc->arpcom.ac_if;
1715 
1716 	switch(ints) {
1717 	case (TL_INTR_INVALID):
1718 #ifdef DIAGNOSTIC
1719 		printf("tl%d: got an invalid interrupt!\n", sc->tl_unit);
1720 #endif
1721 		/* Re-enable interrupts but don't ack this one. */
1722 		CMD_PUT(sc, type);
1723 		r = 0;
1724 		break;
1725 	case (TL_INTR_TXEOF):
1726 		r = tl_intvec_txeof((void *)sc, type);
1727 		break;
1728 	case (TL_INTR_TXEOC):
1729 		r = tl_intvec_txeoc((void *)sc, type);
1730 		break;
1731 	case (TL_INTR_STATOFLOW):
1732 		tl_stats_update(sc);
1733 		r = 1;
1734 		break;
1735 	case (TL_INTR_RXEOF):
1736 		r = tl_intvec_rxeof((void *)sc, type);
1737 		break;
1738 	case (TL_INTR_DUMMY):
1739 		printf("tl%d: got a dummy interrupt\n", sc->tl_unit);
1740 		r = 1;
1741 		break;
1742 	case (TL_INTR_ADCHK):
1743 		if (ivec)
1744 			r = tl_intvec_adchk((void *)sc, type);
1745 		else
1746 			r = tl_intvec_netsts((void *)sc, type);
1747 		break;
1748 	case (TL_INTR_RXEOC):
1749 		r = tl_intvec_rxeoc((void *)sc, type);
1750 		break;
1751 	default:
1752 		printf("%s: bogus interrupt type\n", ifp->if_xname);
1753 		break;
1754 	}
1755 
1756 	/* Re-enable interrupts */
1757 	if (r) {
1758 		CMD_PUT(sc, TL_CMD_ACK | r | type);
1759 	}
1760 
1761 	if (!ifq_is_empty(&ifp->if_snd))
1762 		tl_start(ifp);
1763 
1764 	return;
1765 }
1766 
1767 static void tl_stats_update(xsc)
1768 	void			*xsc;
1769 {
1770 	struct tl_softc		*sc;
1771 	struct ifnet		*ifp;
1772 	struct tl_stats		tl_stats;
1773 	struct mii_data		*mii;
1774 	u_int32_t		*p;
1775 	int			s;
1776 
1777 	s = splimp();
1778 
1779 	bzero((char *)&tl_stats, sizeof(struct tl_stats));
1780 
1781 	sc = xsc;
1782 	ifp = &sc->arpcom.ac_if;
1783 
1784 	p = (u_int32_t *)&tl_stats;
1785 
1786 	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1787 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1788 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1789 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1790 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1791 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1792 
1793 	ifp->if_opackets += tl_tx_goodframes(tl_stats);
1794 	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1795 				tl_stats.tl_tx_multi_collision;
1796 	ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1797 	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1798 			    tl_rx_overrun(tl_stats);
1799 	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1800 
1801 	if (tl_tx_underrun(tl_stats)) {
1802 		u_int8_t		tx_thresh;
1803 		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1804 		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1805 			tx_thresh >>= 4;
1806 			tx_thresh++;
1807 			printf("tl%d: tx underrun -- increasing "
1808 			    "tx threshold to %d bytes\n", sc->tl_unit,
1809 			    (64 * (tx_thresh * 4)));
1810 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1811 			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1812 		}
1813 	}
1814 
1815 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1816 
1817 	if (!sc->tl_bitrate) {
1818 		mii = device_get_softc(sc->tl_miibus);
1819 		mii_tick(mii);
1820 	}
1821 
1822 	splx(s);
1823 
1824 	return;
1825 }
1826 
1827 /*
1828  * Encapsulate an mbuf chain in a list by coupling the mbuf data
1829  * pointers to the fragment pointers.
1830  */
1831 static int tl_encap(sc, c, m_head)
1832 	struct tl_softc		*sc;
1833 	struct tl_chain		*c;
1834 	struct mbuf		*m_head;
1835 {
1836 	int			frag = 0;
1837 	struct tl_frag		*f = NULL;
1838 	int			total_len;
1839 	struct mbuf		*m;
1840 
1841 	/*
1842  	 * Start packing the mbufs in this chain into
1843 	 * the fragment pointers. Stop when we run out
1844  	 * of fragments or hit the end of the mbuf chain.
1845 	 */
1846 	m = m_head;
1847 	total_len = 0;
1848 
1849 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1850 		if (m->m_len != 0) {
1851 			if (frag == TL_MAXFRAGS)
1852 				break;
1853 			total_len+= m->m_len;
1854 			c->tl_ptr->tl_frag[frag].tlist_dadr =
1855 				vtophys(mtod(m, vm_offset_t));
1856 			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1857 			frag++;
1858 		}
1859 	}
1860 
1861 	/*
1862 	 * Handle special cases.
1863 	 * Special case #1: we used up all 10 fragments, but
1864 	 * we have more mbufs left in the chain. Copy the
1865 	 * data into an mbuf cluster. Note that we don't
1866 	 * bother clearing the values in the other fragment
1867 	 * pointers/counters; it wouldn't gain us anything,
1868 	 * and would waste cycles.
1869 	 */
1870 	if (m != NULL) {
1871 		struct mbuf		*m_new = NULL;
1872 
1873 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1874 		if (m_new == NULL) {
1875 			printf("tl%d: no memory for tx list\n", sc->tl_unit);
1876 			return(1);
1877 		}
1878 		if (m_head->m_pkthdr.len > MHLEN) {
1879 			MCLGET(m_new, MB_DONTWAIT);
1880 			if (!(m_new->m_flags & M_EXT)) {
1881 				m_freem(m_new);
1882 				printf("tl%d: no memory for tx list\n",
1883 				sc->tl_unit);
1884 				return(1);
1885 			}
1886 		}
1887 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1888 					mtod(m_new, caddr_t));
1889 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1890 		m_freem(m_head);
1891 		m_head = m_new;
1892 		f = &c->tl_ptr->tl_frag[0];
1893 		f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1894 		f->tlist_dcnt = total_len = m_new->m_len;
1895 		frag = 1;
1896 	}
1897 
1898 	/*
1899 	 * Special case #2: the frame is smaller than the minimum
1900 	 * frame size. We have to pad it to make the chip happy.
1901 	 */
1902 	if (total_len < TL_MIN_FRAMELEN) {
1903 		if (frag == TL_MAXFRAGS)
1904 			printf("tl%d: all frags filled but "
1905 				"frame still to small!\n", sc->tl_unit);
1906 		f = &c->tl_ptr->tl_frag[frag];
1907 		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1908 		f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1909 		total_len += f->tlist_dcnt;
1910 		frag++;
1911 	}
1912 
1913 	c->tl_mbuf = m_head;
1914 	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1915 	c->tl_ptr->tlist_frsize = total_len;
1916 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1917 	c->tl_ptr->tlist_fptr = 0;
1918 
1919 	return(0);
1920 }
1921 
1922 /*
1923  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1924  * to the mbuf data regions directly in the transmit lists. We also save a
1925  * copy of the pointers since the transmit list fragment pointers are
1926  * physical addresses.
1927  */
1928 static void tl_start(ifp)
1929 	struct ifnet		*ifp;
1930 {
1931 	struct tl_softc		*sc;
1932 	struct mbuf		*m_head = NULL;
1933 	u_int32_t		cmd;
1934 	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1935 
1936 	sc = ifp->if_softc;
1937 
1938 	/*
1939 	 * Check for an available queue slot. If there are none,
1940 	 * punt.
1941 	 */
1942 	if (sc->tl_cdata.tl_tx_free == NULL) {
1943 		ifp->if_flags |= IFF_OACTIVE;
1944 		return;
1945 	}
1946 
1947 	start_tx = sc->tl_cdata.tl_tx_free;
1948 
1949 	while(sc->tl_cdata.tl_tx_free != NULL) {
1950 		m_head = ifq_dequeue(&ifp->if_snd);
1951 		if (m_head == NULL)
1952 			break;
1953 
1954 		/* Pick a chain member off the free list. */
1955 		cur_tx = sc->tl_cdata.tl_tx_free;
1956 		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1957 
1958 		cur_tx->tl_next = NULL;
1959 
1960 		/* Pack the data into the list. */
1961 		tl_encap(sc, cur_tx, m_head);
1962 
1963 		/* Chain it together */
1964 		if (prev != NULL) {
1965 			prev->tl_next = cur_tx;
1966 			prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1967 		}
1968 		prev = cur_tx;
1969 
1970 		BPF_MTAP(ifp, cur_tx->tl_mbuf);
1971 	}
1972 
1973 	/*
1974 	 * If there are no packets queued, bail.
1975 	 */
1976 	if (cur_tx == NULL)
1977 		return;
1978 
1979 	/*
1980 	 * That's all we can stands, we can't stands no more.
1981 	 * If there are no other transfers pending, then issue the
1982 	 * TX GO command to the adapter to start things moving.
1983 	 * Otherwise, just leave the data in the queue and let
1984 	 * the EOF/EOC interrupt handler send.
1985 	 */
1986 	if (sc->tl_cdata.tl_tx_head == NULL) {
1987 		sc->tl_cdata.tl_tx_head = start_tx;
1988 		sc->tl_cdata.tl_tx_tail = cur_tx;
1989 
1990 		if (sc->tl_txeoc) {
1991 			sc->tl_txeoc = 0;
1992 			CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
1993 			cmd = CSR_READ_4(sc, TL_HOSTCMD);
1994 			cmd &= ~TL_CMD_RT;
1995 			cmd |= TL_CMD_GO|TL_CMD_INTSON;
1996 			CMD_PUT(sc, cmd);
1997 		}
1998 	} else {
1999 		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
2000 		sc->tl_cdata.tl_tx_tail = cur_tx;
2001 	}
2002 
2003 	/*
2004 	 * Set a timeout in case the chip goes out to lunch.
2005 	 */
2006 	ifp->if_timer = 5;
2007 
2008 	return;
2009 }
2010 
2011 static void tl_init(xsc)
2012 	void			*xsc;
2013 {
2014 	struct tl_softc		*sc = xsc;
2015 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2016         int			s;
2017 	struct mii_data		*mii;
2018 
2019 	s = splimp();
2020 
2021 	ifp = &sc->arpcom.ac_if;
2022 
2023 	/*
2024 	 * Cancel pending I/O.
2025 	 */
2026 	tl_stop(sc);
2027 
2028 	/* Initialize TX FIFO threshold */
2029 	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
2030 	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
2031 
2032         /* Set PCI burst size */
2033 	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
2034 
2035 	/*
2036 	 * Set 'capture all frames' bit for promiscuous mode.
2037 	 */
2038 	if (ifp->if_flags & IFF_PROMISC)
2039 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2040 	else
2041 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2042 
2043 	/*
2044 	 * Set capture broadcast bit to capture broadcast frames.
2045 	 */
2046 	if (ifp->if_flags & IFF_BROADCAST)
2047 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2048 	else
2049 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2050 
2051 	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
2052 
2053 	/* Init our MAC address */
2054 	tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
2055 
2056 	/* Init multicast filter, if needed. */
2057 	tl_setmulti(sc);
2058 
2059 	/* Init circular RX list. */
2060 	if (tl_list_rx_init(sc) == ENOBUFS) {
2061 		printf("tl%d: initialization failed: no "
2062 			"memory for rx buffers\n", sc->tl_unit);
2063 		tl_stop(sc);
2064 		return;
2065 	}
2066 
2067 	/* Init TX pointers. */
2068 	tl_list_tx_init(sc);
2069 
2070 	/* Enable PCI interrupts. */
2071 	CMD_SET(sc, TL_CMD_INTSON);
2072 
2073 	/* Load the address of the rx list */
2074 	CMD_SET(sc, TL_CMD_RT);
2075 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
2076 
2077 	if (!sc->tl_bitrate) {
2078 		if (sc->tl_miibus != NULL) {
2079 			mii = device_get_softc(sc->tl_miibus);
2080 			mii_mediachg(mii);
2081 		}
2082 	}
2083 
2084 	/* Send the RX go command */
2085 	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
2086 
2087 	ifp->if_flags |= IFF_RUNNING;
2088 	ifp->if_flags &= ~IFF_OACTIVE;
2089 
2090 	(void)splx(s);
2091 
2092 	/* Start the stats update counter */
2093 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
2094 }
2095 
2096 /*
2097  * Set media options.
2098  */
2099 static int tl_ifmedia_upd(ifp)
2100 	struct ifnet		*ifp;
2101 {
2102 	struct tl_softc		*sc;
2103 	struct mii_data		*mii = NULL;
2104 
2105 	sc = ifp->if_softc;
2106 
2107 	if (sc->tl_bitrate)
2108 		tl_setmode(sc, sc->ifmedia.ifm_media);
2109 	else {
2110 		mii = device_get_softc(sc->tl_miibus);
2111 		mii_mediachg(mii);
2112 	}
2113 
2114 	return(0);
2115 }
2116 
2117 /*
2118  * Report current media status.
2119  */
2120 static void tl_ifmedia_sts(ifp, ifmr)
2121 	struct ifnet		*ifp;
2122 	struct ifmediareq	*ifmr;
2123 {
2124 	struct tl_softc		*sc;
2125 	struct mii_data		*mii;
2126 
2127 	sc = ifp->if_softc;
2128 
2129 	ifmr->ifm_active = IFM_ETHER;
2130 
2131 	if (sc->tl_bitrate) {
2132 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2133 			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2134 		else
2135 			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2136 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2137 			ifmr->ifm_active |= IFM_HDX;
2138 		else
2139 			ifmr->ifm_active |= IFM_FDX;
2140 		return;
2141 	} else {
2142 		mii = device_get_softc(sc->tl_miibus);
2143 		mii_pollstat(mii);
2144 		ifmr->ifm_active = mii->mii_media_active;
2145 		ifmr->ifm_status = mii->mii_media_status;
2146 	}
2147 
2148 	return;
2149 }
2150 
2151 static int tl_ioctl(ifp, command, data, cr)
2152 	struct ifnet		*ifp;
2153 	u_long			command;
2154 	caddr_t			data;
2155 	struct ucred		*cr;
2156 {
2157 	struct tl_softc		*sc = ifp->if_softc;
2158 	struct ifreq		*ifr = (struct ifreq *) data;
2159 	int			s, error = 0;
2160 
2161 	s = splimp();
2162 
2163 	switch(command) {
2164 	case SIOCSIFADDR:
2165 	case SIOCGIFADDR:
2166 	case SIOCSIFMTU:
2167 		error = ether_ioctl(ifp, command, data);
2168 		break;
2169 	case SIOCSIFFLAGS:
2170 		if (ifp->if_flags & IFF_UP) {
2171 			if (ifp->if_flags & IFF_RUNNING &&
2172 			    ifp->if_flags & IFF_PROMISC &&
2173 			    !(sc->tl_if_flags & IFF_PROMISC)) {
2174 				tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2175 				tl_setmulti(sc);
2176 			} else if (ifp->if_flags & IFF_RUNNING &&
2177 			    !(ifp->if_flags & IFF_PROMISC) &&
2178 			    sc->tl_if_flags & IFF_PROMISC) {
2179 				tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2180 				tl_setmulti(sc);
2181 			} else
2182 				tl_init(sc);
2183 		} else {
2184 			if (ifp->if_flags & IFF_RUNNING) {
2185 				tl_stop(sc);
2186 			}
2187 		}
2188 		sc->tl_if_flags = ifp->if_flags;
2189 		error = 0;
2190 		break;
2191 	case SIOCADDMULTI:
2192 	case SIOCDELMULTI:
2193 		tl_setmulti(sc);
2194 		error = 0;
2195 		break;
2196 	case SIOCSIFMEDIA:
2197 	case SIOCGIFMEDIA:
2198 		if (sc->tl_bitrate)
2199 			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2200 		else {
2201 			struct mii_data		*mii;
2202 			mii = device_get_softc(sc->tl_miibus);
2203 			error = ifmedia_ioctl(ifp, ifr,
2204 			    &mii->mii_media, command);
2205 		}
2206 		break;
2207 	default:
2208 		error = EINVAL;
2209 		break;
2210 	}
2211 
2212 	(void)splx(s);
2213 
2214 	return(error);
2215 }
2216 
2217 static void tl_watchdog(ifp)
2218 	struct ifnet		*ifp;
2219 {
2220 	struct tl_softc		*sc;
2221 
2222 	sc = ifp->if_softc;
2223 
2224 	printf("tl%d: device timeout\n", sc->tl_unit);
2225 
2226 	ifp->if_oerrors++;
2227 
2228 	tl_softreset(sc, 1);
2229 	tl_init(sc);
2230 
2231 	return;
2232 }
2233 
2234 /*
2235  * Stop the adapter and free any mbufs allocated to the
2236  * RX and TX lists.
2237  */
2238 static void tl_stop(sc)
2239 	struct tl_softc		*sc;
2240 {
2241 	int		i;
2242 	struct ifnet		*ifp;
2243 
2244 	ifp = &sc->arpcom.ac_if;
2245 
2246 	/* Stop the stats updater. */
2247 	callout_stop(&sc->tl_stat_timer);
2248 
2249 	/* Stop the transmitter */
2250 	CMD_CLR(sc, TL_CMD_RT);
2251 	CMD_SET(sc, TL_CMD_STOP);
2252 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2253 
2254 	/* Stop the receiver */
2255 	CMD_SET(sc, TL_CMD_RT);
2256 	CMD_SET(sc, TL_CMD_STOP);
2257 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2258 
2259 	/*
2260 	 * Disable host interrupts.
2261 	 */
2262 	CMD_SET(sc, TL_CMD_INTSOFF);
2263 
2264 	/*
2265 	 * Clear list pointer.
2266 	 */
2267 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2268 
2269 	/*
2270 	 * Free the RX lists.
2271 	 */
2272 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
2273 		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2274 			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2275 			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2276 		}
2277 	}
2278 	bzero((char *)&sc->tl_ldata->tl_rx_list,
2279 		sizeof(sc->tl_ldata->tl_rx_list));
2280 
2281 	/*
2282 	 * Free the TX list buffers.
2283 	 */
2284 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
2285 		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2286 			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2287 			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2288 		}
2289 	}
2290 	bzero((char *)&sc->tl_ldata->tl_tx_list,
2291 		sizeof(sc->tl_ldata->tl_tx_list));
2292 
2293 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2294 
2295 	return;
2296 }
2297 
2298 /*
2299  * Stop all chip I/O so that the kernel's probe routines don't
2300  * get confused by errant DMAs when rebooting.
2301  */
2302 static void tl_shutdown(dev)
2303 	device_t		dev;
2304 {
2305 	struct tl_softc		*sc;
2306 
2307 	sc = device_get_softc(dev);
2308 
2309 	tl_stop(sc);
2310 
2311 	return;
2312 }
2313