xref: /dragonfly/sys/dev/netif/tl/if_tl.c (revision 49781055)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_tl.c,v 1.51.2.5 2001/12/16 15:46:08 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/tl/if_tl.c,v 1.35 2005/12/31 14:08:00 sephe Exp $
34  */
35 
36 /*
37  * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
38  * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
39  * the National Semiconductor DP83840A physical interface and the
40  * Microchip Technology 24Cxx series serial EEPROM.
41  *
42  * Written using the following four documents:
43  *
44  * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
45  * National Semiconductor DP83840A data sheet (www.national.com)
46  * Microchip Technology 24C02C data sheet (www.microchip.com)
47  * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
48  *
49  * Written by Bill Paul <wpaul@ctr.columbia.edu>
50  * Electrical Engineering Department
51  * Columbia University, New York City
52  */
53 
54 /*
55  * Some notes about the ThunderLAN:
56  *
57  * The ThunderLAN controller is a single chip containing PCI controller
58  * logic, approximately 3K of on-board SRAM, a LAN controller, and media
59  * independent interface (MII) bus. The MII allows the ThunderLAN chip to
60  * control up to 32 different physical interfaces (PHYs). The ThunderLAN
61  * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
62  * to act as a complete ethernet interface.
63  *
64  * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
65  * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
66  * in full or half duplex. Some of the Compaq Deskpro machines use a
67  * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
68  * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
69  * concert with the ThunderLAN's internal PHY to provide full 10/100
70  * support. This is cheaper than using a standalone external PHY for both
71  * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
72  * A serial EEPROM is also attached to the ThunderLAN chip to provide
73  * power-up default register settings and for storing the adapter's
74  * station address. Although not supported by this driver, the ThunderLAN
75  * chip can also be connected to token ring PHYs.
76  *
77  * The ThunderLAN has a set of registers which can be used to issue
78  * commands, acknowledge interrupts, and to manipulate other internal
79  * registers on its DIO bus. The primary registers can be accessed
80  * using either programmed I/O (inb/outb) or via PCI memory mapping,
81  * depending on how the card is configured during the PCI probing
82  * phase. It is even possible to have both PIO and memory mapped
83  * access turned on at the same time.
84  *
85  * Frame reception and transmission with the ThunderLAN chip is done
86  * using frame 'lists.' A list structure looks more or less like this:
87  *
88  * struct tl_frag {
89  *	u_int32_t		fragment_address;
90  *	u_int32_t		fragment_size;
91  * };
92  * struct tl_list {
93  *	u_int32_t		forward_pointer;
94  *	u_int16_t		cstat;
95  *	u_int16_t		frame_size;
96  *	struct tl_frag		fragments[10];
97  * };
98  *
99  * The forward pointer in the list header can be either a 0 or the address
100  * of another list, which allows several lists to be linked together. Each
101  * list contains up to 10 fragment descriptors. This means the chip allows
102  * ethernet frames to be broken up into up to 10 chunks for transfer to
103  * and from the SRAM. Note that the forward pointer and fragment buffer
104  * addresses are physical memory addresses, not virtual. Note also that
105  * a single ethernet frame can not span lists: if the host wants to
106  * transmit a frame and the frame data is split up over more than 10
107  * buffers, the frame has to collapsed before it can be transmitted.
108  *
109  * To receive frames, the driver sets up a number of lists and populates
110  * the fragment descriptors, then it sends an RX GO command to the chip.
111  * When a frame is received, the chip will DMA it into the memory regions
112  * specified by the fragment descriptors and then trigger an RX 'end of
113  * frame interrupt' when done. The driver may choose to use only one
114  * fragment per list; this may result is slighltly less efficient use
115  * of memory in exchange for improving performance.
116  *
117  * To transmit frames, the driver again sets up lists and fragment
118  * descriptors, only this time the buffers contain frame data that
119  * is to be DMA'ed into the chip instead of out of it. Once the chip
120  * has transfered the data into its on-board SRAM, it will trigger a
121  * TX 'end of frame' interrupt. It will also generate an 'end of channel'
122  * interrupt when it reaches the end of the list.
123  */
124 
125 /*
126  * Some notes about this driver:
127  *
128  * The ThunderLAN chip provides a couple of different ways to organize
129  * reception, transmission and interrupt handling. The simplest approach
130  * is to use one list each for transmission and reception. In this mode,
131  * the ThunderLAN will generate two interrupts for every received frame
132  * (one RX EOF and one RX EOC) and two for each transmitted frame (one
133  * TX EOF and one TX EOC). This may make the driver simpler but it hurts
134  * performance to have to handle so many interrupts.
135  *
136  * Initially I wanted to create a circular list of receive buffers so
137  * that the ThunderLAN chip would think there was an infinitely long
138  * receive channel and never deliver an RXEOC interrupt. However this
139  * doesn't work correctly under heavy load: while the manual says the
140  * chip will trigger an RXEOF interrupt each time a frame is copied into
141  * memory, you can't count on the chip waiting around for you to acknowledge
142  * the interrupt before it starts trying to DMA the next frame. The result
143  * is that the chip might traverse the entire circular list and then wrap
144  * around before you have a chance to do anything about it. Consequently,
145  * the receive list is terminated (with a 0 in the forward pointer in the
146  * last element). Each time an RXEOF interrupt arrives, the used list
147  * is shifted to the end of the list. This gives the appearance of an
148  * infinitely large RX chain so long as the driver doesn't fall behind
149  * the chip and allow all of the lists to be filled up.
150  *
151  * If all the lists are filled, the adapter will deliver an RX 'end of
152  * channel' interrupt when it hits the 0 forward pointer at the end of
153  * the chain. The RXEOC handler then cleans out the RX chain and resets
154  * the list head pointer in the ch_parm register and restarts the receiver.
155  *
156  * For frame transmission, it is possible to program the ThunderLAN's
157  * transmit interrupt threshold so that the chip can acknowledge multiple
158  * lists with only a single TX EOF interrupt. This allows the driver to
159  * queue several frames in one shot, and only have to handle a total
160  * two interrupts (one TX EOF and one TX EOC) no matter how many frames
161  * are transmitted. Frame transmission is done directly out of the
162  * mbufs passed to the tl_start() routine via the interface send queue.
163  * The driver simply sets up the fragment descriptors in the transmit
164  * lists to point to the mbuf data regions and sends a TX GO command.
165  *
166  * Note that since the RX and TX lists themselves are always used
167  * only by the driver, the are malloc()ed once at driver initialization
168  * time and never free()ed.
169  *
170  * Also, in order to remain as platform independent as possible, this
171  * driver uses memory mapped register access to manipulate the card
172  * as opposed to programmed I/O. This avoids the use of the inb/outb
173  * (and related) instructions which are specific to the i386 platform.
174  *
175  * Using these techniques, this driver achieves very high performance
176  * by minimizing the amount of interrupts generated during large
177  * transfers and by completely avoiding buffer copies. Frame transfer
178  * to and from the ThunderLAN chip is performed entirely by the chip
179  * itself thereby reducing the load on the host CPU.
180  */
181 
182 #include <sys/param.h>
183 #include <sys/systm.h>
184 #include <sys/sockio.h>
185 #include <sys/mbuf.h>
186 #include <sys/malloc.h>
187 #include <sys/kernel.h>
188 #include <sys/socket.h>
189 #include <sys/serialize.h>
190 #include <sys/thread2.h>
191 
192 #include <net/if.h>
193 #include <net/ifq_var.h>
194 #include <net/if_arp.h>
195 #include <net/ethernet.h>
196 #include <net/if_dl.h>
197 #include <net/if_media.h>
198 
199 #include <net/bpf.h>
200 
201 #include <vm/vm.h>              /* for vtophys */
202 #include <vm/pmap.h>            /* for vtophys */
203 #include <machine/bus_memio.h>
204 #include <machine/bus_pio.h>
205 #include <machine/bus.h>
206 #include <machine/resource.h>
207 #include <sys/bus.h>
208 #include <sys/rman.h>
209 
210 #include "../mii_layer/mii.h"
211 #include "../mii_layer/miivar.h"
212 
213 #include <bus/pci/pcireg.h>
214 #include <bus/pci/pcivar.h>
215 
216 /*
217  * Default to using PIO register access mode to pacify certain
218  * laptop docking stations with built-in ThunderLAN chips that
219  * don't seem to handle memory mapped mode properly.
220  */
221 #define TL_USEIOSPACE
222 
223 #include "if_tlreg.h"
224 
225 /* "controller miibus0" required.  See GENERIC if you get errors here. */
226 #include "miibus_if.h"
227 
228 /*
229  * Various supported device vendors/types and their names.
230  */
231 
232 static struct tl_type tl_devs[] = {
233 	{ TI_VENDORID,	TI_DEVICEID_THUNDERLAN,
234 		"Texas Instruments ThunderLAN" },
235 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
236 		"Compaq Netelligent 10" },
237 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
238 		"Compaq Netelligent 10/100" },
239 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
240 		"Compaq Netelligent 10/100 Proliant" },
241 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
242 		"Compaq Netelligent 10/100 Dual Port" },
243 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
244 		"Compaq NetFlex-3/P Integrated" },
245 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
246 		"Compaq NetFlex-3/P" },
247 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
248 		"Compaq NetFlex 3/P w/ BNC" },
249 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
250 		"Compaq Netelligent 10/100 TX Embedded UTP" },
251 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
252 		"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
253 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
254 		"Compaq Netelligent 10/100 TX UTP" },
255 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
256 		"Olicom OC-2183/2185" },
257 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
258 		"Olicom OC-2325" },
259 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
260 		"Olicom OC-2326 10/100 TX UTP" },
261 	{ 0, 0, NULL }
262 };
263 
264 static int tl_probe		(device_t);
265 static int tl_attach		(device_t);
266 static int tl_detach		(device_t);
267 static int tl_intvec_rxeoc	(void *, u_int32_t);
268 static int tl_intvec_txeoc	(void *, u_int32_t);
269 static int tl_intvec_txeof	(void *, u_int32_t);
270 static int tl_intvec_rxeof	(void *, u_int32_t);
271 static int tl_intvec_adchk	(void *, u_int32_t);
272 static int tl_intvec_netsts	(void *, u_int32_t);
273 
274 static int tl_newbuf		(struct tl_softc *,
275 					struct tl_chain_onefrag *);
276 static void tl_stats_update	(void *);
277 static void tl_stats_update_serialized(void *);
278 static int tl_encap		(struct tl_softc *, struct tl_chain *,
279 						struct mbuf *);
280 
281 static void tl_intr		(void *);
282 static void tl_start		(struct ifnet *);
283 static int tl_ioctl		(struct ifnet *, u_long, caddr_t,
284 						struct ucred *);
285 static void tl_init		(void *);
286 static void tl_stop		(struct tl_softc *);
287 static void tl_watchdog		(struct ifnet *);
288 static void tl_shutdown		(device_t);
289 static int tl_ifmedia_upd	(struct ifnet *);
290 static void tl_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
291 
292 static u_int8_t tl_eeprom_putbyte	(struct tl_softc *, int);
293 static u_int8_t	tl_eeprom_getbyte	(struct tl_softc *,
294 						int, u_int8_t *);
295 static int tl_read_eeprom	(struct tl_softc *, caddr_t, int, int);
296 
297 static void tl_mii_sync		(struct tl_softc *);
298 static void tl_mii_send		(struct tl_softc *, u_int32_t, int);
299 static int tl_mii_readreg	(struct tl_softc *, struct tl_mii_frame *);
300 static int tl_mii_writereg	(struct tl_softc *, struct tl_mii_frame *);
301 static int tl_miibus_readreg	(device_t, int, int);
302 static int tl_miibus_writereg	(device_t, int, int, int);
303 static void tl_miibus_statchg	(device_t);
304 
305 static void tl_setmode		(struct tl_softc *, int);
306 static int tl_calchash		(caddr_t);
307 static void tl_setmulti		(struct tl_softc *);
308 static void tl_setfilt		(struct tl_softc *, caddr_t, int);
309 static void tl_softreset	(struct tl_softc *, int);
310 static void tl_hardreset	(device_t);
311 static int tl_list_rx_init	(struct tl_softc *);
312 static int tl_list_tx_init	(struct tl_softc *);
313 
314 static u_int8_t tl_dio_read8	(struct tl_softc *, int);
315 static u_int16_t tl_dio_read16	(struct tl_softc *, int);
316 static u_int32_t tl_dio_read32	(struct tl_softc *, int);
317 static void tl_dio_write8	(struct tl_softc *, int, int);
318 static void tl_dio_write16	(struct tl_softc *, int, int);
319 static void tl_dio_write32	(struct tl_softc *, int, int);
320 static void tl_dio_setbit	(struct tl_softc *, int, int);
321 static void tl_dio_clrbit	(struct tl_softc *, int, int);
322 static void tl_dio_setbit16	(struct tl_softc *, int, int);
323 static void tl_dio_clrbit16	(struct tl_softc *, int, int);
324 
325 #ifdef TL_USEIOSPACE
326 #define TL_RES		SYS_RES_IOPORT
327 #define TL_RID		TL_PCI_LOIO
328 #else
329 #define TL_RES		SYS_RES_MEMORY
330 #define TL_RID		TL_PCI_LOMEM
331 #endif
332 
333 static device_method_t tl_methods[] = {
334 	/* Device interface */
335 	DEVMETHOD(device_probe,		tl_probe),
336 	DEVMETHOD(device_attach,	tl_attach),
337 	DEVMETHOD(device_detach,	tl_detach),
338 	DEVMETHOD(device_shutdown,	tl_shutdown),
339 
340 	/* bus interface */
341 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
342 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
343 
344 	/* MII interface */
345 	DEVMETHOD(miibus_readreg,	tl_miibus_readreg),
346 	DEVMETHOD(miibus_writereg,	tl_miibus_writereg),
347 	DEVMETHOD(miibus_statchg,	tl_miibus_statchg),
348 
349 	{ 0, 0 }
350 };
351 
352 static driver_t tl_driver = {
353 	"tl",
354 	tl_methods,
355 	sizeof(struct tl_softc)
356 };
357 
358 static devclass_t tl_devclass;
359 
360 DECLARE_DUMMY_MODULE(if_tl);
361 DRIVER_MODULE(if_tl, pci, tl_driver, tl_devclass, 0, 0);
362 DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
363 
364 static u_int8_t
365 tl_dio_read8(struct tl_softc *sc, int reg)
366 {
367 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
368 	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
369 }
370 
371 static u_int16_t
372 tl_dio_read16(struct tl_softc *sc, int reg)
373 {
374 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
375 	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
376 }
377 
378 static u_int32_t
379 tl_dio_read32(struct tl_softc *sc, int reg)
380 {
381 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
382 	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
383 }
384 
385 static void
386 tl_dio_write8(struct tl_softc *sc, int reg, int val)
387 {
388 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
389 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
390 	return;
391 }
392 
393 static void
394 tl_dio_write16(struct tl_softc *sc, int reg, int val)
395 {
396 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
397 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
398 	return;
399 }
400 
401 static void
402 tl_dio_write32(struct tl_softc *sc, int reg, int val)
403 {
404 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
405 	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
406 	return;
407 }
408 
409 static void
410 tl_dio_setbit(struct tl_softc *sc, int reg, int bit)
411 {
412 	u_int8_t			f;
413 
414 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
415 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
416 	f |= bit;
417 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
418 
419 	return;
420 }
421 
422 static void
423 tl_dio_clrbit(struct tl_softc *sc, int reg, int bit)
424 {
425 	u_int8_t			f;
426 
427 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
428 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
429 	f &= ~bit;
430 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
431 
432 	return;
433 }
434 
435 static void
436 tl_dio_setbit16(struct tl_softc *sc, int reg, int bit)
437 {
438 	u_int16_t			f;
439 
440 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
441 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
442 	f |= bit;
443 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
444 
445 	return;
446 }
447 
448 static void
449 tl_dio_clrbit16(struct tl_softc *sc, int reg, int bit)
450 {
451 	u_int16_t			f;
452 
453 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
454 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
455 	f &= ~bit;
456 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
457 
458 	return;
459 }
460 
461 /*
462  * Send an instruction or address to the EEPROM, check for ACK.
463  */
464 static u_int8_t
465 tl_eeprom_putbyte(struct tl_softc *sc, int byte)
466 {
467 	int		i, ack = 0;
468 
469 	/*
470 	 * Make sure we're in TX mode.
471 	 */
472 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
473 
474 	/*
475 	 * Feed in each bit and stobe the clock.
476 	 */
477 	for (i = 0x80; i; i >>= 1) {
478 		if (byte & i) {
479 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
480 		} else {
481 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
482 		}
483 		DELAY(1);
484 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
485 		DELAY(1);
486 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
487 	}
488 
489 	/*
490 	 * Turn off TX mode.
491 	 */
492 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
493 
494 	/*
495 	 * Check for ack.
496 	 */
497 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
498 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
499 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
500 
501 	return(ack);
502 }
503 
504 /*
505  * Read a byte of data stored in the EEPROM at address 'addr.'
506  */
507 static u_int8_t
508 tl_eeprom_getbyte(struct tl_softc *sc, int addr, u_int8_t *dest)
509 {
510 	int		i;
511 	u_int8_t		byte = 0;
512 
513 	tl_dio_write8(sc, TL_NETSIO, 0);
514 
515 	EEPROM_START;
516 
517 	/*
518 	 * Send write control code to EEPROM.
519 	 */
520 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
521 		if_printf(&sc->arpcom.ac_if, "failed to send write command, "
522 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
523 		return(1);
524 	}
525 
526 	/*
527 	 * Send address of byte we want to read.
528 	 */
529 	if (tl_eeprom_putbyte(sc, addr)) {
530 		if_printf(&sc->arpcom.ac_if, "failed to send address, "
531 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
532 		return(1);
533 	}
534 
535 	EEPROM_STOP;
536 	EEPROM_START;
537 	/*
538 	 * Send read control code to EEPROM.
539 	 */
540 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
541 		if_printf(&sc->arpcom.ac_if, "failed to send write command, "
542 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
543 		return(1);
544 	}
545 
546 	/*
547 	 * Start reading bits from EEPROM.
548 	 */
549 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
550 	for (i = 0x80; i; i >>= 1) {
551 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
552 		DELAY(1);
553 		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
554 			byte |= i;
555 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
556 		DELAY(1);
557 	}
558 
559 	EEPROM_STOP;
560 
561 	/*
562 	 * No ACK generated for read, so just return byte.
563 	 */
564 
565 	*dest = byte;
566 
567 	return(0);
568 }
569 
570 /*
571  * Read a sequence of bytes from the EEPROM.
572  */
573 static int
574 tl_read_eeprom(struct tl_softc *sc, caddr_t dest, int off, int cnt)
575 {
576 	int			err = 0, i;
577 	u_int8_t		byte = 0;
578 
579 	for (i = 0; i < cnt; i++) {
580 		err = tl_eeprom_getbyte(sc, off + i, &byte);
581 		if (err)
582 			break;
583 		*(dest + i) = byte;
584 	}
585 
586 	return(err ? 1 : 0);
587 }
588 
589 static void
590 tl_mii_sync(struct tl_softc *sc)
591 {
592 	int		i;
593 
594 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
595 
596 	for (i = 0; i < 32; i++) {
597 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
598 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
599 	}
600 
601 	return;
602 }
603 
604 static void
605 tl_mii_send(struct tl_softc *sc, u_int32_t bits, int cnt)
606 {
607 	int			i;
608 
609 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
610 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
611 		if (bits & i) {
612 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
613 		} else {
614 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
615 		}
616 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
617 	}
618 }
619 
620 static int
621 tl_mii_readreg(struct tl_softc *sc, struct tl_mii_frame *frame)
622 {
623 	int			i, ack;
624 	int			minten = 0;
625 
626 	tl_mii_sync(sc);
627 
628 	/*
629 	 * Set up frame for RX.
630 	 */
631 	frame->mii_stdelim = TL_MII_STARTDELIM;
632 	frame->mii_opcode = TL_MII_READOP;
633 	frame->mii_turnaround = 0;
634 	frame->mii_data = 0;
635 
636 	/*
637 	 * Turn off MII interrupt by forcing MINTEN low.
638 	 */
639 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
640 	if (minten) {
641 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
642 	}
643 
644 	/*
645  	 * Turn on data xmit.
646 	 */
647 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
648 
649 	/*
650 	 * Send command/address info.
651 	 */
652 	tl_mii_send(sc, frame->mii_stdelim, 2);
653 	tl_mii_send(sc, frame->mii_opcode, 2);
654 	tl_mii_send(sc, frame->mii_phyaddr, 5);
655 	tl_mii_send(sc, frame->mii_regaddr, 5);
656 
657 	/*
658 	 * Turn off xmit.
659 	 */
660 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
661 
662 	/* Idle bit */
663 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
664 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
665 
666 	/* Check for ack */
667 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
668 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
669 
670 	/* Complete the cycle */
671 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
672 
673 	/*
674 	 * Now try reading data bits. If the ack failed, we still
675 	 * need to clock through 16 cycles to keep the PHYs in sync.
676 	 */
677 	if (ack) {
678 		for(i = 0; i < 16; i++) {
679 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
680 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
681 		}
682 		goto fail;
683 	}
684 
685 	for (i = 0x8000; i; i >>= 1) {
686 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
687 		if (!ack) {
688 			if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
689 				frame->mii_data |= i;
690 		}
691 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
692 	}
693 
694 fail:
695 
696 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
697 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
698 
699 	/* Reenable interrupts */
700 	if (minten) {
701 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
702 	}
703 
704 	if (ack)
705 		return(1);
706 	return(0);
707 }
708 
709 static int
710 tl_mii_writereg(struct tl_softc *sc, struct tl_mii_frame *frame)
711 {
712 	int			minten;
713 
714 	tl_mii_sync(sc);
715 
716 	/*
717 	 * Set up frame for TX.
718 	 */
719 
720 	frame->mii_stdelim = TL_MII_STARTDELIM;
721 	frame->mii_opcode = TL_MII_WRITEOP;
722 	frame->mii_turnaround = TL_MII_TURNAROUND;
723 
724 	/*
725 	 * Turn off MII interrupt by forcing MINTEN low.
726 	 */
727 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
728 	if (minten) {
729 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
730 	}
731 
732 	/*
733  	 * Turn on data output.
734 	 */
735 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
736 
737 	tl_mii_send(sc, frame->mii_stdelim, 2);
738 	tl_mii_send(sc, frame->mii_opcode, 2);
739 	tl_mii_send(sc, frame->mii_phyaddr, 5);
740 	tl_mii_send(sc, frame->mii_regaddr, 5);
741 	tl_mii_send(sc, frame->mii_turnaround, 2);
742 	tl_mii_send(sc, frame->mii_data, 16);
743 
744 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
745 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
746 
747 	/*
748 	 * Turn off xmit.
749 	 */
750 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
751 
752 	/* Reenable interrupts */
753 	if (minten)
754 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
755 
756 	return(0);
757 }
758 
759 static int
760 tl_miibus_readreg(device_t dev, int phy, int reg)
761 {
762 	struct tl_softc		*sc;
763 	struct tl_mii_frame	frame;
764 
765 	sc = device_get_softc(dev);
766 	bzero((char *)&frame, sizeof(frame));
767 
768 	frame.mii_phyaddr = phy;
769 	frame.mii_regaddr = reg;
770 	tl_mii_readreg(sc, &frame);
771 
772 	return(frame.mii_data);
773 }
774 
775 static int
776 tl_miibus_writereg(device_t dev, int phy, int reg, int data)
777 {
778 	struct tl_softc		*sc;
779 	struct tl_mii_frame	frame;
780 
781 	sc = device_get_softc(dev);
782 	bzero((char *)&frame, sizeof(frame));
783 
784 	frame.mii_phyaddr = phy;
785 	frame.mii_regaddr = reg;
786 	frame.mii_data = data;
787 
788 	tl_mii_writereg(sc, &frame);
789 
790 	return(0);
791 }
792 
793 static void
794 tl_miibus_statchg(device_t dev)
795 {
796 	struct tl_softc		*sc;
797 	struct mii_data		*mii;
798 
799 	sc = device_get_softc(dev);
800 	mii = device_get_softc(sc->tl_miibus);
801 
802 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
803 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
804 	} else {
805 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
806 	}
807 
808 	return;
809 }
810 
811 /*
812  * Set modes for bitrate devices.
813  */
814 static void
815 tl_setmode(struct tl_softc *sc, int media)
816 {
817 	if (IFM_SUBTYPE(media) == IFM_10_5)
818 		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
819 	if (IFM_SUBTYPE(media) == IFM_10_T) {
820 		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
821 		if ((media & IFM_GMASK) == IFM_FDX) {
822 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
823 			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
824 		} else {
825 			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
826 			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
827 		}
828 	}
829 
830 	return;
831 }
832 
833 /*
834  * Calculate the hash of a MAC address for programming the multicast hash
835  * table.  This hash is simply the address split into 6-bit chunks
836  * XOR'd, e.g.
837  * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
838  * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
839  * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
840  * the folded 24-bit value is split into 6-bit portions and XOR'd.
841  */
842 static int
843 tl_calchash(caddr_t addr)
844 {
845 	int			t;
846 
847 	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
848 		(addr[2] ^ addr[5]);
849 	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
850 }
851 
852 /*
853  * The ThunderLAN has a perfect MAC address filter in addition to
854  * the multicast hash filter. The perfect filter can be programmed
855  * with up to four MAC addresses. The first one is always used to
856  * hold the station address, which leaves us free to use the other
857  * three for multicast addresses.
858  */
859 static void
860 tl_setfilt(struct tl_softc *sc, caddr_t addr, int slot)
861 {
862 	int			i;
863 	u_int16_t		regaddr;
864 
865 	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
866 
867 	for (i = 0; i < ETHER_ADDR_LEN; i++)
868 		tl_dio_write8(sc, regaddr + i, *(addr + i));
869 
870 	return;
871 }
872 
873 /*
874  * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
875  * linked list. This is fine, except addresses are added from the head
876  * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
877  * group to always be in the perfect filter, but as more groups are added,
878  * the 224.0.0.1 entry (which is always added first) gets pushed down
879  * the list and ends up at the tail. So after 3 or 4 multicast groups
880  * are added, the all-hosts entry gets pushed out of the perfect filter
881  * and into the hash table.
882  *
883  * Because the multicast list is a doubly-linked list as opposed to a
884  * circular queue, we don't have the ability to just grab the tail of
885  * the list and traverse it backwards. Instead, we have to traverse
886  * the list once to find the tail, then traverse it again backwards to
887  * update the multicast filter.
888  */
889 static void
890 tl_setmulti(struct tl_softc *sc)
891 {
892 	struct ifnet		*ifp;
893 	u_int32_t		hashes[2] = { 0, 0 };
894 	int			h, i;
895 	struct ifmultiaddr	*ifma;
896 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
897 	ifp = &sc->arpcom.ac_if;
898 
899 	/* First, zot all the existing filters. */
900 	for (i = 1; i < 4; i++)
901 		tl_setfilt(sc, (caddr_t)&dummy, i);
902 	tl_dio_write32(sc, TL_HASH1, 0);
903 	tl_dio_write32(sc, TL_HASH2, 0);
904 
905 	/* Now program new ones. */
906 	if (ifp->if_flags & IFF_ALLMULTI) {
907 		hashes[0] = 0xFFFFFFFF;
908 		hashes[1] = 0xFFFFFFFF;
909 	} else {
910 		i = 1;
911 		/* First find the tail of the list. */
912 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
913 					ifma = ifma->ifma_link.le_next) {
914 			if (ifma->ifma_link.le_next == NULL)
915 				break;
916 		}
917 		/* Now traverse the list backwards. */
918 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
919 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
920 			if (ifma->ifma_addr->sa_family != AF_LINK)
921 				continue;
922 			/*
923 			 * Program the first three multicast groups
924 			 * into the perfect filter. For all others,
925 			 * use the hash table.
926 			 */
927 			if (i < 4) {
928 				tl_setfilt(sc,
929 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
930 				i++;
931 				continue;
932 			}
933 
934 			h = tl_calchash(
935 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
936 			if (h < 32)
937 				hashes[0] |= (1 << h);
938 			else
939 				hashes[1] |= (1 << (h - 32));
940 		}
941 	}
942 
943 	tl_dio_write32(sc, TL_HASH1, hashes[0]);
944 	tl_dio_write32(sc, TL_HASH2, hashes[1]);
945 
946 	return;
947 }
948 
949 /*
950  * This routine is recommended by the ThunderLAN manual to insure that
951  * the internal PHY is powered up correctly. It also recommends a one
952  * second pause at the end to 'wait for the clocks to start' but in my
953  * experience this isn't necessary.
954  */
955 static void
956 tl_hardreset(device_t dev)
957 {
958 	struct tl_softc		*sc;
959 	int			i;
960 	u_int16_t		flags;
961 
962 	sc = device_get_softc(dev);
963 
964 	tl_mii_sync(sc);
965 
966 	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
967 
968 	for (i = 0; i < MII_NPHY; i++)
969 		tl_miibus_writereg(dev, i, MII_BMCR, flags);
970 
971 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
972 	DELAY(50000);
973 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
974 	tl_mii_sync(sc);
975 	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
976 
977 	DELAY(50000);
978 	return;
979 }
980 
981 static void
982 tl_softreset(struct tl_softc *sc, int internal)
983 {
984         u_int32_t               cmd, dummy, i;
985 
986         /* Assert the adapter reset bit. */
987 	CMD_SET(sc, TL_CMD_ADRST);
988 
989         /* Turn off interrupts */
990 	CMD_SET(sc, TL_CMD_INTSOFF);
991 
992 	/* First, clear the stats registers. */
993 	for (i = 0; i < 5; i++)
994 		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
995 
996         /* Clear Areg and Hash registers */
997 	for (i = 0; i < 8; i++)
998 		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
999 
1000         /*
1001 	 * Set up Netconfig register. Enable one channel and
1002 	 * one fragment mode.
1003 	 */
1004 	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
1005 	if (internal && !sc->tl_bitrate) {
1006 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1007 	} else {
1008 		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1009 	}
1010 
1011 	/* Handle cards with bitrate devices. */
1012 	if (sc->tl_bitrate)
1013 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
1014 
1015 	/*
1016 	 * Load adapter irq pacing timer and tx threshold.
1017 	 * We make the transmit threshold 1 initially but we may
1018 	 * change that later.
1019 	 */
1020 	cmd = CSR_READ_4(sc, TL_HOSTCMD);
1021 	cmd |= TL_CMD_NES;
1022 	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
1023 	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
1024 	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
1025 
1026         /* Unreset the MII */
1027 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
1028 
1029 	/* Take the adapter out of reset */
1030 	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
1031 
1032 	/* Wait for things to settle down a little. */
1033 	DELAY(500);
1034 
1035         return;
1036 }
1037 
1038 /*
1039  * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1040  * against our list and return its name if we find a match.
1041  */
1042 static int
1043 tl_probe(device_t dev)
1044 {
1045 	struct tl_type		*t;
1046 
1047 	t = tl_devs;
1048 
1049 	while(t->tl_name != NULL) {
1050 		if ((pci_get_vendor(dev) == t->tl_vid) &&
1051 		    (pci_get_device(dev) == t->tl_did)) {
1052 			device_set_desc(dev, t->tl_name);
1053 			return(0);
1054 		}
1055 		t++;
1056 	}
1057 
1058 	return(ENXIO);
1059 }
1060 
1061 static int
1062 tl_attach(device_t dev)
1063 {
1064 	int			i;
1065 	u_int16_t		did, vid;
1066 	struct tl_type		*t;
1067 	struct ifnet		*ifp;
1068 	struct tl_softc		*sc;
1069 	int			error = 0, rid;
1070 	uint8_t			eaddr[ETHER_ADDR_LEN];
1071 
1072 	vid = pci_get_vendor(dev);
1073 	did = pci_get_device(dev);
1074 	sc = device_get_softc(dev);
1075 
1076 	t = tl_devs;
1077 	while(t->tl_name != NULL) {
1078 		if (vid == t->tl_vid && did == t->tl_did)
1079 			break;
1080 		t++;
1081 	}
1082 
1083 	KKASSERT(t->tl_name != NULL);
1084 
1085 	pci_enable_busmaster(dev);
1086 
1087 #ifdef TL_USEIOSPACE
1088 	rid = TL_PCI_LOIO;
1089 	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1090 		RF_ACTIVE);
1091 
1092 	/*
1093 	 * Some cards have the I/O and memory mapped address registers
1094 	 * reversed. Try both combinations before giving up.
1095 	 */
1096 	if (sc->tl_res == NULL) {
1097 		rid = TL_PCI_LOMEM;
1098 		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1099 		    RF_ACTIVE);
1100 	}
1101 #else
1102 	rid = TL_PCI_LOMEM;
1103 	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1104 	    RF_ACTIVE);
1105 	if (sc->tl_res == NULL) {
1106 		rid = TL_PCI_LOIO;
1107 		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1108 		    RF_ACTIVE);
1109 	}
1110 #endif
1111 
1112 	if (sc->tl_res == NULL) {
1113 		device_printf(dev, "couldn't map ports/memory\n");
1114 		error = ENXIO;
1115 		return(error);
1116 	}
1117 
1118 	sc->tl_btag = rman_get_bustag(sc->tl_res);
1119 	sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
1120 
1121 #ifdef notdef
1122 	/*
1123 	 * The ThunderLAN manual suggests jacking the PCI latency
1124 	 * timer all the way up to its maximum value. I'm not sure
1125 	 * if this is really necessary, but what the manual wants,
1126 	 * the manual gets.
1127 	 */
1128 	command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1129 	command |= 0x0000FF00;
1130 	pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1131 #endif
1132 
1133 	/* Allocate interrupt */
1134 	rid = 0;
1135 	sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1136 	    RF_SHAREABLE | RF_ACTIVE);
1137 
1138 	if (sc->tl_irq == NULL) {
1139 		device_printf(dev, "couldn't map interrupt\n");
1140 		error = ENXIO;
1141 		goto fail;
1142 	}
1143 
1144 	/*
1145 	 * Now allocate memory for the TX and RX lists.
1146 	 */
1147 	sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1148 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1149 
1150 	if (sc->tl_ldata == NULL) {
1151 		device_printf(dev, "no memory for list buffers!\n");
1152 		error = ENXIO;
1153 		goto fail;
1154 	}
1155 
1156 	bzero(sc->tl_ldata, sizeof(struct tl_list_data));
1157 
1158 	sc->tl_dinfo = t;
1159 	if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
1160 		sc->tl_eeaddr = TL_EEPROM_EADDR;
1161 	if (t->tl_vid == OLICOM_VENDORID)
1162 		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1163 
1164 	/* Reset the adapter. */
1165 	tl_softreset(sc, 1);
1166 	tl_hardreset(dev);
1167 	tl_softreset(sc, 1);
1168 
1169 	ifp = &sc->arpcom.ac_if;
1170 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1171 
1172 	/*
1173 	 * Get station address from the EEPROM.
1174 	 */
1175 	if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1176 		device_printf(dev, "failed to read station address\n");
1177 		error = ENXIO;
1178 		goto fail;
1179 	}
1180 
1181         /*
1182          * XXX Olicom, in its desire to be different from the
1183          * rest of the world, has done strange things with the
1184          * encoding of the station address in the EEPROM. First
1185          * of all, they store the address at offset 0xF8 rather
1186          * than at 0x83 like the ThunderLAN manual suggests.
1187          * Second, they store the address in three 16-bit words in
1188          * network byte order, as opposed to storing it sequentially
1189          * like all the other ThunderLAN cards. In order to get
1190          * the station address in a form that matches what the Olicom
1191          * diagnostic utility specifies, we have to byte-swap each
1192          * word. To make things even more confusing, neither 00:00:28
1193          * nor 00:00:24 appear in the IEEE OUI database.
1194          */
1195         if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
1196                 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1197                         u_int16_t               *p;
1198                         p = (u_int16_t *)&eaddr[i];
1199                         *p = ntohs(*p);
1200                 }
1201         }
1202 
1203 	ifp->if_softc = sc;
1204 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1205 	ifp->if_ioctl = tl_ioctl;
1206 	ifp->if_start = tl_start;
1207 	ifp->if_watchdog = tl_watchdog;
1208 	ifp->if_init = tl_init;
1209 	ifp->if_mtu = ETHERMTU;
1210 	ifq_set_maxlen(&ifp->if_snd, TL_TX_LIST_CNT - 1);
1211 	ifq_set_ready(&ifp->if_snd);
1212 	callout_init(&sc->tl_stat_timer);
1213 
1214 	/* Reset the adapter again. */
1215 	tl_softreset(sc, 1);
1216 	tl_hardreset(dev);
1217 	tl_softreset(sc, 1);
1218 
1219 	/*
1220 	 * Do MII setup. If no PHYs are found, then this is a
1221 	 * bitrate ThunderLAN chip that only supports 10baseT
1222 	 * and AUI/BNC.
1223 	 */
1224 	if (mii_phy_probe(dev, &sc->tl_miibus,
1225 	    tl_ifmedia_upd, tl_ifmedia_sts)) {
1226 		struct ifmedia		*ifm;
1227 		sc->tl_bitrate = 1;
1228 		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1229 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1230 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1231 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1232 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1233 		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1234 		/* Reset again, this time setting bitrate mode. */
1235 		tl_softreset(sc, 1);
1236 		ifm = &sc->ifmedia;
1237 		ifm->ifm_media = ifm->ifm_cur->ifm_media;
1238 		tl_ifmedia_upd(ifp);
1239 	}
1240 
1241 	/*
1242 	 * Call MI attach routine.
1243 	 */
1244 	ether_ifattach(ifp, eaddr, NULL);
1245 
1246 	error = bus_setup_intr(dev, sc->tl_irq, INTR_NETSAFE,
1247 			       tl_intr, sc, &sc->tl_intrhand,
1248 			       ifp->if_serializer);
1249 
1250 	if (error) {
1251 		ether_ifdetach(ifp);
1252 		device_printf(dev, "couldn't set up irq\n");
1253 		goto fail;
1254 	}
1255 
1256 	return(0);
1257 
1258 fail:
1259 	tl_detach(dev);
1260 	return(error);
1261 }
1262 
1263 static int
1264 tl_detach(device_t dev)
1265 {
1266 	struct tl_softc *sc = device_get_softc(dev);
1267 	struct ifnet *ifp = &sc->arpcom.ac_if;
1268 
1269 	if (device_is_attached(dev)) {
1270 		lwkt_serialize_enter(ifp->if_serializer);
1271 		tl_stop(sc);
1272 		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1273 		lwkt_serialize_exit(ifp->if_serializer);
1274 
1275 		ether_ifdetach(ifp);
1276 	}
1277 
1278 	if (sc->tl_miibus)
1279 		device_delete_child(dev, sc->tl_miibus);
1280 	bus_generic_detach(dev);
1281 
1282 	if (sc->tl_ldata)
1283 		contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1284 	if (sc->tl_bitrate)
1285 		ifmedia_removeall(&sc->ifmedia);
1286 	if (sc->tl_irq)
1287 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1288 	if (sc->tl_res)
1289 		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1290 
1291 	return(0);
1292 }
1293 
1294 /*
1295  * Initialize the transmit lists.
1296  */
1297 static int
1298 tl_list_tx_init(struct tl_softc *sc)
1299 {
1300 	struct tl_chain_data	*cd;
1301 	struct tl_list_data	*ld;
1302 	int			i;
1303 
1304 	cd = &sc->tl_cdata;
1305 	ld = sc->tl_ldata;
1306 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1307 		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1308 		if (i == (TL_TX_LIST_CNT - 1))
1309 			cd->tl_tx_chain[i].tl_next = NULL;
1310 		else
1311 			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1312 	}
1313 
1314 	cd->tl_tx_free = &cd->tl_tx_chain[0];
1315 	cd->tl_tx_tail = cd->tl_tx_head = NULL;
1316 	sc->tl_txeoc = 1;
1317 
1318 	return(0);
1319 }
1320 
1321 /*
1322  * Initialize the RX lists and allocate mbufs for them.
1323  */
1324 static int
1325 tl_list_rx_init(struct tl_softc *sc)
1326 {
1327 	struct tl_chain_data	*cd;
1328 	struct tl_list_data	*ld;
1329 	int			i;
1330 
1331 	cd = &sc->tl_cdata;
1332 	ld = sc->tl_ldata;
1333 
1334 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1335 		cd->tl_rx_chain[i].tl_ptr =
1336 			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
1337 		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1338 			return(ENOBUFS);
1339 		if (i == (TL_RX_LIST_CNT - 1)) {
1340 			cd->tl_rx_chain[i].tl_next = NULL;
1341 			ld->tl_rx_list[i].tlist_fptr = 0;
1342 		} else {
1343 			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1344 			ld->tl_rx_list[i].tlist_fptr =
1345 					vtophys(&ld->tl_rx_list[i + 1]);
1346 		}
1347 	}
1348 
1349 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1350 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1351 
1352 	return(0);
1353 }
1354 
1355 static int
1356 tl_newbuf(struct tl_softc *sc, struct tl_chain_onefrag *c)
1357 {
1358 	struct mbuf *m_new;
1359 
1360 	m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1361 	if (m_new == NULL)
1362 		return (ENOBUFS);
1363 
1364 	c->tl_mbuf = m_new;
1365 	c->tl_next = NULL;
1366 	c->tl_ptr->tlist_frsize = MCLBYTES;
1367 	c->tl_ptr->tlist_fptr = 0;
1368 	c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1369 	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1370 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1371 
1372 	return(0);
1373 }
1374 
1375 /*
1376  * Interrupt handler for RX 'end of frame' condition (EOF). This
1377  * tells us that a full ethernet frame has been captured and we need
1378  * to handle it.
1379  *
1380  * Reception is done using 'lists' which consist of a header and a
1381  * series of 10 data count/data address pairs that point to buffers.
1382  * Initially you're supposed to create a list, populate it with pointers
1383  * to buffers, then load the physical address of the list into the
1384  * ch_parm register. The adapter is then supposed to DMA the received
1385  * frame into the buffers for you.
1386  *
1387  * To make things as fast as possible, we have the chip DMA directly
1388  * into mbufs. This saves us from having to do a buffer copy: we can
1389  * just hand the mbufs directly to ether_input(). Once the frame has
1390  * been sent on its way, the 'list' structure is assigned a new buffer
1391  * and moved to the end of the RX chain. As long we we stay ahead of
1392  * the chip, it will always think it has an endless receive channel.
1393  *
1394  * If we happen to fall behind and the chip manages to fill up all of
1395  * the buffers, it will generate an end of channel interrupt and wait
1396  * for us to empty the chain and restart the receiver.
1397  */
1398 static int
1399 tl_intvec_rxeof(void *xsc, u_int32_t type)
1400 {
1401 	struct tl_softc		*sc;
1402 	int			r = 0, total_len = 0;
1403 	struct ether_header	*eh;
1404 	struct mbuf		*m;
1405 	struct ifnet		*ifp;
1406 	struct tl_chain_onefrag	*cur_rx;
1407 
1408 	sc = xsc;
1409 	ifp = &sc->arpcom.ac_if;
1410 
1411 	while(sc->tl_cdata.tl_rx_head != NULL) {
1412 		cur_rx = sc->tl_cdata.tl_rx_head;
1413 		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1414 			break;
1415 		r++;
1416 		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1417 		m = cur_rx->tl_mbuf;
1418 		total_len = cur_rx->tl_ptr->tlist_frsize;
1419 
1420 		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1421 			ifp->if_ierrors++;
1422 			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1423 			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1424 			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1425 			continue;
1426 		}
1427 
1428 		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1429 						vtophys(cur_rx->tl_ptr);
1430 		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1431 		sc->tl_cdata.tl_rx_tail = cur_rx;
1432 
1433 		eh = mtod(m, struct ether_header *);
1434 		m->m_pkthdr.rcvif = ifp;
1435 
1436 		/*
1437 		 * Note: when the ThunderLAN chip is in 'capture all
1438 		 * frames' mode, it will receive its own transmissions.
1439 		 * We drop don't need to process our own transmissions,
1440 		 * so we drop them here and continue.
1441 		 */
1442 		/*if (ifp->if_flags & IFF_PROMISC && */
1443 		if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1444 		 					ETHER_ADDR_LEN)) {
1445 				m_freem(m);
1446 				continue;
1447 		}
1448 
1449 		ifp->if_input(ifp, m);
1450 	}
1451 
1452 	return(r);
1453 }
1454 
1455 /*
1456  * The RX-EOC condition hits when the ch_parm address hasn't been
1457  * initialized or the adapter reached a list with a forward pointer
1458  * of 0 (which indicates the end of the chain). In our case, this means
1459  * the card has hit the end of the receive buffer chain and we need to
1460  * empty out the buffers and shift the pointer back to the beginning again.
1461  */
1462 static int
1463 tl_intvec_rxeoc(void *xsc, u_int32_t type)
1464 {
1465 	struct tl_softc		*sc;
1466 	int			r;
1467 	struct tl_chain_data	*cd;
1468 
1469 
1470 	sc = xsc;
1471 	cd = &sc->tl_cdata;
1472 
1473 	/* Flush out the receive queue and ack RXEOF interrupts. */
1474 	r = tl_intvec_rxeof(xsc, type);
1475 	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1476 	r = 1;
1477 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1478 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1479 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1480 	r |= (TL_CMD_GO|TL_CMD_RT);
1481 	return(r);
1482 }
1483 
1484 static int
1485 tl_intvec_txeof(void *xsc, u_int32_t type)
1486 {
1487 	struct tl_softc		*sc;
1488 	int			r = 0;
1489 	struct tl_chain		*cur_tx;
1490 
1491 	sc = xsc;
1492 
1493 	/*
1494 	 * Go through our tx list and free mbufs for those
1495 	 * frames that have been sent.
1496 	 */
1497 	while (sc->tl_cdata.tl_tx_head != NULL) {
1498 		cur_tx = sc->tl_cdata.tl_tx_head;
1499 		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1500 			break;
1501 		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1502 
1503 		r++;
1504 		m_freem(cur_tx->tl_mbuf);
1505 		cur_tx->tl_mbuf = NULL;
1506 
1507 		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1508 		sc->tl_cdata.tl_tx_free = cur_tx;
1509 		if (!cur_tx->tl_ptr->tlist_fptr)
1510 			break;
1511 	}
1512 
1513 	return(r);
1514 }
1515 
1516 /*
1517  * The transmit end of channel interrupt. The adapter triggers this
1518  * interrupt to tell us it hit the end of the current transmit list.
1519  *
1520  * A note about this: it's possible for a condition to arise where
1521  * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1522  * You have to avoid this since the chip expects things to go in a
1523  * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1524  * When the TXEOF handler is called, it will free all of the transmitted
1525  * frames and reset the tx_head pointer to NULL. However, a TXEOC
1526  * interrupt should be received and acknowledged before any more frames
1527  * are queued for transmission. If tl_statrt() is called after TXEOF
1528  * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1529  * it could attempt to issue a transmit command prematurely.
1530  *
1531  * To guard against this, tl_start() will only issue transmit commands
1532  * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1533  * can set this flag once tl_start() has cleared it.
1534  */
1535 static int
1536 tl_intvec_txeoc(void *xsc, u_int32_t type)
1537 {
1538 	struct tl_softc		*sc;
1539 	struct ifnet		*ifp;
1540 	u_int32_t		cmd;
1541 
1542 	sc = xsc;
1543 	ifp = &sc->arpcom.ac_if;
1544 
1545 	/* Clear the timeout timer. */
1546 	ifp->if_timer = 0;
1547 
1548 	if (sc->tl_cdata.tl_tx_head == NULL) {
1549 		ifp->if_flags &= ~IFF_OACTIVE;
1550 		sc->tl_cdata.tl_tx_tail = NULL;
1551 		sc->tl_txeoc = 1;
1552 	} else {
1553 		sc->tl_txeoc = 0;
1554 		/* First we have to ack the EOC interrupt. */
1555 		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1556 		/* Then load the address of the next TX list. */
1557 		CSR_WRITE_4(sc, TL_CH_PARM,
1558 		    vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1559 		/* Restart TX channel. */
1560 		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1561 		cmd &= ~TL_CMD_RT;
1562 		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1563 		CMD_PUT(sc, cmd);
1564 		return(0);
1565 	}
1566 
1567 	return(1);
1568 }
1569 
1570 static int
1571 tl_intvec_adchk(void *xsc, u_int32_t type)
1572 {
1573 	struct tl_softc		*sc;
1574 
1575 	sc = xsc;
1576 
1577 	if (type) {
1578 		if_printf(&sc->arpcom.ac_if, "adapter check: %x\n",
1579 			  (unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1580 	}
1581 
1582 	tl_softreset(sc, 1);
1583 	tl_stop(sc);
1584 	tl_init(sc);
1585 	CMD_SET(sc, TL_CMD_INTSON);
1586 
1587 	return(0);
1588 }
1589 
1590 static int
1591 tl_intvec_netsts(void *xsc, u_int32_t type)
1592 {
1593 	struct tl_softc		*sc;
1594 	u_int16_t		netsts;
1595 
1596 	sc = xsc;
1597 
1598 	netsts = tl_dio_read16(sc, TL_NETSTS);
1599 	tl_dio_write16(sc, TL_NETSTS, netsts);
1600 
1601 	if_printf(&sc->arpcom.ac_if, "network status: %x\n", netsts);
1602 
1603 	return(1);
1604 }
1605 
1606 static void
1607 tl_intr(void *xsc)
1608 {
1609 	struct tl_softc		*sc;
1610 	struct ifnet		*ifp;
1611 	int			r = 0;
1612 	u_int32_t		type = 0;
1613 	u_int16_t		ints = 0;
1614 	u_int8_t		ivec = 0;
1615 
1616 	sc = xsc;
1617 
1618 	/* Disable interrupts */
1619 	ints = CSR_READ_2(sc, TL_HOST_INT);
1620 	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1621 	type = (ints << 16) & 0xFFFF0000;
1622 	ivec = (ints & TL_VEC_MASK) >> 5;
1623 	ints = (ints & TL_INT_MASK) >> 2;
1624 
1625 	ifp = &sc->arpcom.ac_if;
1626 
1627 	switch(ints) {
1628 	case (TL_INTR_INVALID):
1629 #ifdef DIAGNOSTIC
1630 		if_printf(ifp, "got an invalid interrupt!\n");
1631 #endif
1632 		/* Re-enable interrupts but don't ack this one. */
1633 		CMD_PUT(sc, type);
1634 		r = 0;
1635 		break;
1636 	case (TL_INTR_TXEOF):
1637 		r = tl_intvec_txeof((void *)sc, type);
1638 		break;
1639 	case (TL_INTR_TXEOC):
1640 		r = tl_intvec_txeoc((void *)sc, type);
1641 		break;
1642 	case (TL_INTR_STATOFLOW):
1643 		tl_stats_update_serialized(sc);
1644 		r = 1;
1645 		break;
1646 	case (TL_INTR_RXEOF):
1647 		r = tl_intvec_rxeof((void *)sc, type);
1648 		break;
1649 	case (TL_INTR_DUMMY):
1650 		if_printf(ifp, "got a dummy interrupt\n");
1651 		r = 1;
1652 		break;
1653 	case (TL_INTR_ADCHK):
1654 		if (ivec)
1655 			r = tl_intvec_adchk((void *)sc, type);
1656 		else
1657 			r = tl_intvec_netsts((void *)sc, type);
1658 		break;
1659 	case (TL_INTR_RXEOC):
1660 		r = tl_intvec_rxeoc((void *)sc, type);
1661 		break;
1662 	default:
1663 		if_printf(ifp, "bogus interrupt type\n");
1664 		break;
1665 	}
1666 
1667 	/* Re-enable interrupts */
1668 	if (r) {
1669 		CMD_PUT(sc, TL_CMD_ACK | r | type);
1670 	}
1671 
1672 	if (!ifq_is_empty(&ifp->if_snd))
1673 		tl_start(ifp);
1674 
1675 	return;
1676 }
1677 
1678 static
1679 void
1680 tl_stats_update(void *xsc)
1681 {
1682 	struct tl_softc *sc = xsc;
1683 	struct ifnet *ifp = &sc->arpcom.ac_if;
1684 
1685 	lwkt_serialize_enter(ifp->if_serializer);
1686 	tl_stats_update_serialized(xsc);
1687 	lwkt_serialize_exit(ifp->if_serializer);
1688 }
1689 
1690 static
1691 void
1692 tl_stats_update_serialized(void *xsc)
1693 {
1694 	struct tl_softc		*sc;
1695 	struct ifnet		*ifp;
1696 	struct tl_stats		tl_stats;
1697 	struct mii_data		*mii;
1698 	u_int32_t		*p;
1699 
1700 	bzero((char *)&tl_stats, sizeof(struct tl_stats));
1701 
1702 	sc = xsc;
1703 	ifp = &sc->arpcom.ac_if;
1704 
1705 	p = (u_int32_t *)&tl_stats;
1706 
1707 	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1708 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1709 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1710 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1711 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1712 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1713 
1714 	ifp->if_opackets += tl_tx_goodframes(tl_stats);
1715 	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1716 				tl_stats.tl_tx_multi_collision;
1717 	ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1718 	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1719 			    tl_rx_overrun(tl_stats);
1720 	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1721 
1722 	if (tl_tx_underrun(tl_stats)) {
1723 		u_int8_t		tx_thresh;
1724 		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1725 		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1726 			tx_thresh >>= 4;
1727 			tx_thresh++;
1728 			if_printf(ifp, "tx underrun -- increasing "
1729 				  "tx threshold to %d bytes\n",
1730 				  (64 * (tx_thresh * 4)));
1731 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1732 			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1733 		}
1734 	}
1735 
1736 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1737 
1738 	if (!sc->tl_bitrate) {
1739 		mii = device_get_softc(sc->tl_miibus);
1740 		mii_tick(mii);
1741 	}
1742 }
1743 
1744 /*
1745  * Encapsulate an mbuf chain in a list by coupling the mbuf data
1746  * pointers to the fragment pointers.
1747  */
1748 static int
1749 tl_encap(struct tl_softc *sc, struct tl_chain *c, struct mbuf *m_head)
1750 {
1751 	int			frag = 0;
1752 	struct tl_frag		*f = NULL;
1753 	int			total_len;
1754 	struct mbuf		*m;
1755 
1756 	/*
1757  	 * Start packing the mbufs in this chain into
1758 	 * the fragment pointers. Stop when we run out
1759  	 * of fragments or hit the end of the mbuf chain.
1760 	 */
1761 	m = m_head;
1762 	total_len = 0;
1763 
1764 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1765 		if (m->m_len != 0) {
1766 			if (frag == TL_MAXFRAGS)
1767 				break;
1768 			total_len+= m->m_len;
1769 			c->tl_ptr->tl_frag[frag].tlist_dadr =
1770 				vtophys(mtod(m, vm_offset_t));
1771 			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1772 			frag++;
1773 		}
1774 	}
1775 
1776 	/*
1777 	 * Handle special cases.
1778 	 * Special case #1: we used up all 10 fragments, but
1779 	 * we have more mbufs left in the chain. Copy the
1780 	 * data into an mbuf cluster. Note that we don't
1781 	 * bother clearing the values in the other fragment
1782 	 * pointers/counters; it wouldn't gain us anything,
1783 	 * and would waste cycles.
1784 	 */
1785 	if (m != NULL) {
1786 		struct mbuf *m_new;
1787 
1788 		m_new = m_getl(m_head->m_pkthdr.len, MB_DONTWAIT, MT_DATA,
1789 			       M_PKTHDR, NULL);
1790 		if (m_new == NULL) {
1791 			if_printf(&sc->arpcom.ac_if, "no memory for tx list\n");
1792 			return (1);
1793 		}
1794 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1795 					mtod(m_new, caddr_t));
1796 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1797 		m_freem(m_head);
1798 		m_head = m_new;
1799 		f = &c->tl_ptr->tl_frag[0];
1800 		f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1801 		f->tlist_dcnt = total_len = m_new->m_len;
1802 		frag = 1;
1803 	}
1804 
1805 	/*
1806 	 * Special case #2: the frame is smaller than the minimum
1807 	 * frame size. We have to pad it to make the chip happy.
1808 	 */
1809 	if (total_len < TL_MIN_FRAMELEN) {
1810 		if (frag == TL_MAXFRAGS) {
1811 			if_printf(&sc->arpcom.ac_if, "all frags filled but "
1812 				  "frame still to small!\n");
1813 		}
1814 		f = &c->tl_ptr->tl_frag[frag];
1815 		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1816 		f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1817 		total_len += f->tlist_dcnt;
1818 		frag++;
1819 	}
1820 
1821 	c->tl_mbuf = m_head;
1822 	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1823 	c->tl_ptr->tlist_frsize = total_len;
1824 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1825 	c->tl_ptr->tlist_fptr = 0;
1826 
1827 	return(0);
1828 }
1829 
1830 /*
1831  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1832  * to the mbuf data regions directly in the transmit lists. We also save a
1833  * copy of the pointers since the transmit list fragment pointers are
1834  * physical addresses.
1835  */
1836 static void
1837 tl_start(struct ifnet *ifp)
1838 {
1839 	struct tl_softc		*sc;
1840 	struct mbuf		*m_head = NULL;
1841 	u_int32_t		cmd;
1842 	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1843 
1844 	sc = ifp->if_softc;
1845 
1846 	/*
1847 	 * Check for an available queue slot. If there are none,
1848 	 * punt.
1849 	 */
1850 	if (sc->tl_cdata.tl_tx_free == NULL) {
1851 		ifp->if_flags |= IFF_OACTIVE;
1852 		return;
1853 	}
1854 
1855 	start_tx = sc->tl_cdata.tl_tx_free;
1856 
1857 	while(sc->tl_cdata.tl_tx_free != NULL) {
1858 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1859 		if (m_head == NULL)
1860 			break;
1861 
1862 		/* Pick a chain member off the free list. */
1863 		cur_tx = sc->tl_cdata.tl_tx_free;
1864 		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1865 
1866 		cur_tx->tl_next = NULL;
1867 
1868 		/* Pack the data into the list. */
1869 		tl_encap(sc, cur_tx, m_head);
1870 
1871 		/* Chain it together */
1872 		if (prev != NULL) {
1873 			prev->tl_next = cur_tx;
1874 			prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1875 		}
1876 		prev = cur_tx;
1877 
1878 		BPF_MTAP(ifp, cur_tx->tl_mbuf);
1879 	}
1880 
1881 	/*
1882 	 * If there are no packets queued, bail.
1883 	 */
1884 	if (cur_tx == NULL)
1885 		return;
1886 
1887 	/*
1888 	 * That's all we can stands, we can't stands no more.
1889 	 * If there are no other transfers pending, then issue the
1890 	 * TX GO command to the adapter to start things moving.
1891 	 * Otherwise, just leave the data in the queue and let
1892 	 * the EOF/EOC interrupt handler send.
1893 	 */
1894 	if (sc->tl_cdata.tl_tx_head == NULL) {
1895 		sc->tl_cdata.tl_tx_head = start_tx;
1896 		sc->tl_cdata.tl_tx_tail = cur_tx;
1897 
1898 		if (sc->tl_txeoc) {
1899 			sc->tl_txeoc = 0;
1900 			CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
1901 			cmd = CSR_READ_4(sc, TL_HOSTCMD);
1902 			cmd &= ~TL_CMD_RT;
1903 			cmd |= TL_CMD_GO|TL_CMD_INTSON;
1904 			CMD_PUT(sc, cmd);
1905 		}
1906 	} else {
1907 		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
1908 		sc->tl_cdata.tl_tx_tail = cur_tx;
1909 	}
1910 
1911 	/*
1912 	 * Set a timeout in case the chip goes out to lunch.
1913 	 */
1914 	ifp->if_timer = 5;
1915 
1916 	return;
1917 }
1918 
1919 static void
1920 tl_init(void *xsc)
1921 {
1922 	struct tl_softc		*sc = xsc;
1923 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1924 	struct mii_data		*mii;
1925 
1926 	/*
1927 	 * Cancel pending I/O.
1928 	 */
1929 	tl_stop(sc);
1930 
1931 	/* Initialize TX FIFO threshold */
1932 	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1933 	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
1934 
1935         /* Set PCI burst size */
1936 	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
1937 
1938 	/*
1939 	 * Set 'capture all frames' bit for promiscuous mode.
1940 	 */
1941 	if (ifp->if_flags & IFF_PROMISC)
1942 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
1943 	else
1944 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
1945 
1946 	/*
1947 	 * Set capture broadcast bit to capture broadcast frames.
1948 	 */
1949 	if (ifp->if_flags & IFF_BROADCAST)
1950 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1951 	else
1952 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1953 
1954 	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
1955 
1956 	/* Init our MAC address */
1957 	tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
1958 
1959 	/* Init multicast filter, if needed. */
1960 	tl_setmulti(sc);
1961 
1962 	/* Init circular RX list. */
1963 	if (tl_list_rx_init(sc) == ENOBUFS) {
1964 		if_printf(ifp, "initialization failed: no "
1965 			  "memory for rx buffers\n");
1966 		tl_stop(sc);
1967 		return;
1968 	}
1969 
1970 	/* Init TX pointers. */
1971 	tl_list_tx_init(sc);
1972 
1973 	/* Enable PCI interrupts. */
1974 	CMD_SET(sc, TL_CMD_INTSON);
1975 
1976 	/* Load the address of the rx list */
1977 	CMD_SET(sc, TL_CMD_RT);
1978 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
1979 
1980 	if (!sc->tl_bitrate) {
1981 		if (sc->tl_miibus != NULL) {
1982 			mii = device_get_softc(sc->tl_miibus);
1983 			mii_mediachg(mii);
1984 		}
1985 	}
1986 
1987 	/* Send the RX go command */
1988 	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
1989 
1990 	ifp->if_flags |= IFF_RUNNING;
1991 	ifp->if_flags &= ~IFF_OACTIVE;
1992 
1993 	/* Start the stats update counter */
1994 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1995 }
1996 
1997 /*
1998  * Set media options.
1999  */
2000 static int
2001 tl_ifmedia_upd(struct ifnet *ifp)
2002 {
2003 	struct tl_softc		*sc;
2004 	struct mii_data		*mii = NULL;
2005 
2006 	sc = ifp->if_softc;
2007 
2008 	if (sc->tl_bitrate)
2009 		tl_setmode(sc, sc->ifmedia.ifm_media);
2010 	else {
2011 		mii = device_get_softc(sc->tl_miibus);
2012 		mii_mediachg(mii);
2013 	}
2014 
2015 	return(0);
2016 }
2017 
2018 /*
2019  * Report current media status.
2020  */
2021 static void
2022 tl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2023 {
2024 	struct tl_softc		*sc;
2025 	struct mii_data		*mii;
2026 
2027 	sc = ifp->if_softc;
2028 
2029 	ifmr->ifm_active = IFM_ETHER;
2030 
2031 	if (sc->tl_bitrate) {
2032 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2033 			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2034 		else
2035 			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2036 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2037 			ifmr->ifm_active |= IFM_HDX;
2038 		else
2039 			ifmr->ifm_active |= IFM_FDX;
2040 		return;
2041 	} else {
2042 		mii = device_get_softc(sc->tl_miibus);
2043 		mii_pollstat(mii);
2044 		ifmr->ifm_active = mii->mii_media_active;
2045 		ifmr->ifm_status = mii->mii_media_status;
2046 	}
2047 
2048 	return;
2049 }
2050 
2051 static int
2052 tl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2053 {
2054 	struct tl_softc		*sc = ifp->if_softc;
2055 	struct ifreq		*ifr = (struct ifreq *) data;
2056 	int			error = 0;
2057 
2058 	switch(command) {
2059 	case SIOCSIFFLAGS:
2060 		if (ifp->if_flags & IFF_UP) {
2061 			if (ifp->if_flags & IFF_RUNNING &&
2062 			    ifp->if_flags & IFF_PROMISC &&
2063 			    !(sc->tl_if_flags & IFF_PROMISC)) {
2064 				tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2065 				tl_setmulti(sc);
2066 			} else if (ifp->if_flags & IFF_RUNNING &&
2067 			    !(ifp->if_flags & IFF_PROMISC) &&
2068 			    sc->tl_if_flags & IFF_PROMISC) {
2069 				tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2070 				tl_setmulti(sc);
2071 			} else
2072 				tl_init(sc);
2073 		} else {
2074 			if (ifp->if_flags & IFF_RUNNING) {
2075 				tl_stop(sc);
2076 			}
2077 		}
2078 		sc->tl_if_flags = ifp->if_flags;
2079 		error = 0;
2080 		break;
2081 	case SIOCADDMULTI:
2082 	case SIOCDELMULTI:
2083 		tl_setmulti(sc);
2084 		error = 0;
2085 		break;
2086 	case SIOCSIFMEDIA:
2087 	case SIOCGIFMEDIA:
2088 		if (sc->tl_bitrate)
2089 			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2090 		else {
2091 			struct mii_data		*mii;
2092 			mii = device_get_softc(sc->tl_miibus);
2093 			error = ifmedia_ioctl(ifp, ifr,
2094 			    &mii->mii_media, command);
2095 		}
2096 		break;
2097 	default:
2098 		error = ether_ioctl(ifp, command, data);
2099 		break;
2100 	}
2101 	return(error);
2102 }
2103 
2104 static void
2105 tl_watchdog(struct ifnet *ifp)
2106 {
2107 	struct tl_softc		*sc;
2108 
2109 	sc = ifp->if_softc;
2110 
2111 	if_printf(ifp, "device timeout\n");
2112 
2113 	ifp->if_oerrors++;
2114 
2115 	tl_softreset(sc, 1);
2116 	tl_init(sc);
2117 
2118 	return;
2119 }
2120 
2121 /*
2122  * Stop the adapter and free any mbufs allocated to the
2123  * RX and TX lists.
2124  */
2125 static void
2126 tl_stop(struct tl_softc *sc)
2127 {
2128 	int		i;
2129 	struct ifnet		*ifp;
2130 
2131 	ifp = &sc->arpcom.ac_if;
2132 
2133 	/* Stop the stats updater. */
2134 	callout_stop(&sc->tl_stat_timer);
2135 
2136 	/* Stop the transmitter */
2137 	CMD_CLR(sc, TL_CMD_RT);
2138 	CMD_SET(sc, TL_CMD_STOP);
2139 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2140 
2141 	/* Stop the receiver */
2142 	CMD_SET(sc, TL_CMD_RT);
2143 	CMD_SET(sc, TL_CMD_STOP);
2144 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2145 
2146 	/*
2147 	 * Disable host interrupts.
2148 	 */
2149 	CMD_SET(sc, TL_CMD_INTSOFF);
2150 
2151 	/*
2152 	 * Clear list pointer.
2153 	 */
2154 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2155 
2156 	/*
2157 	 * Free the RX lists.
2158 	 */
2159 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
2160 		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2161 			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2162 			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2163 		}
2164 	}
2165 	bzero((char *)&sc->tl_ldata->tl_rx_list,
2166 		sizeof(sc->tl_ldata->tl_rx_list));
2167 
2168 	/*
2169 	 * Free the TX list buffers.
2170 	 */
2171 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
2172 		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2173 			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2174 			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2175 		}
2176 	}
2177 	bzero((char *)&sc->tl_ldata->tl_tx_list,
2178 		sizeof(sc->tl_ldata->tl_tx_list));
2179 
2180 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2181 
2182 	return;
2183 }
2184 
2185 /*
2186  * Stop all chip I/O so that the kernel's probe routines don't
2187  * get confused by errant DMAs when rebooting.
2188  */
2189 static void
2190 tl_shutdown(device_t dev)
2191 {
2192 	struct tl_softc		*sc;
2193 
2194 	sc = device_get_softc(dev);
2195 
2196 	tl_stop(sc);
2197 
2198 	return;
2199 }
2200