xref: /dragonfly/sys/dev/netif/tl/if_tl.c (revision 62f7f702)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_tl.c,v 1.51.2.5 2001/12/16 15:46:08 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/tl/if_tl.c,v 1.38 2008/01/05 14:02:37 swildner Exp $
34  */
35 
36 /*
37  * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
38  * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
39  * the National Semiconductor DP83840A physical interface and the
40  * Microchip Technology 24Cxx series serial EEPROM.
41  *
42  * Written using the following four documents:
43  *
44  * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
45  * National Semiconductor DP83840A data sheet (www.national.com)
46  * Microchip Technology 24C02C data sheet (www.microchip.com)
47  * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
48  *
49  * Written by Bill Paul <wpaul@ctr.columbia.edu>
50  * Electrical Engineering Department
51  * Columbia University, New York City
52  */
53 
54 /*
55  * Some notes about the ThunderLAN:
56  *
57  * The ThunderLAN controller is a single chip containing PCI controller
58  * logic, approximately 3K of on-board SRAM, a LAN controller, and media
59  * independent interface (MII) bus. The MII allows the ThunderLAN chip to
60  * control up to 32 different physical interfaces (PHYs). The ThunderLAN
61  * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
62  * to act as a complete ethernet interface.
63  *
64  * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
65  * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
66  * in full or half duplex. Some of the Compaq Deskpro machines use a
67  * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
68  * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
69  * concert with the ThunderLAN's internal PHY to provide full 10/100
70  * support. This is cheaper than using a standalone external PHY for both
71  * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
72  * A serial EEPROM is also attached to the ThunderLAN chip to provide
73  * power-up default register settings and for storing the adapter's
74  * station address. Although not supported by this driver, the ThunderLAN
75  * chip can also be connected to token ring PHYs.
76  *
77  * The ThunderLAN has a set of registers which can be used to issue
78  * commands, acknowledge interrupts, and to manipulate other internal
79  * registers on its DIO bus. The primary registers can be accessed
80  * using either programmed I/O (inb/outb) or via PCI memory mapping,
81  * depending on how the card is configured during the PCI probing
82  * phase. It is even possible to have both PIO and memory mapped
83  * access turned on at the same time.
84  *
85  * Frame reception and transmission with the ThunderLAN chip is done
86  * using frame 'lists.' A list structure looks more or less like this:
87  *
88  * struct tl_frag {
89  *	u_int32_t		fragment_address;
90  *	u_int32_t		fragment_size;
91  * };
92  * struct tl_list {
93  *	u_int32_t		forward_pointer;
94  *	u_int16_t		cstat;
95  *	u_int16_t		frame_size;
96  *	struct tl_frag		fragments[10];
97  * };
98  *
99  * The forward pointer in the list header can be either a 0 or the address
100  * of another list, which allows several lists to be linked together. Each
101  * list contains up to 10 fragment descriptors. This means the chip allows
102  * ethernet frames to be broken up into up to 10 chunks for transfer to
103  * and from the SRAM. Note that the forward pointer and fragment buffer
104  * addresses are physical memory addresses, not virtual. Note also that
105  * a single ethernet frame can not span lists: if the host wants to
106  * transmit a frame and the frame data is split up over more than 10
107  * buffers, the frame has to collapsed before it can be transmitted.
108  *
109  * To receive frames, the driver sets up a number of lists and populates
110  * the fragment descriptors, then it sends an RX GO command to the chip.
111  * When a frame is received, the chip will DMA it into the memory regions
112  * specified by the fragment descriptors and then trigger an RX 'end of
113  * frame interrupt' when done. The driver may choose to use only one
114  * fragment per list; this may result is slighltly less efficient use
115  * of memory in exchange for improving performance.
116  *
117  * To transmit frames, the driver again sets up lists and fragment
118  * descriptors, only this time the buffers contain frame data that
119  * is to be DMA'ed into the chip instead of out of it. Once the chip
120  * has transfered the data into its on-board SRAM, it will trigger a
121  * TX 'end of frame' interrupt. It will also generate an 'end of channel'
122  * interrupt when it reaches the end of the list.
123  */
124 
125 /*
126  * Some notes about this driver:
127  *
128  * The ThunderLAN chip provides a couple of different ways to organize
129  * reception, transmission and interrupt handling. The simplest approach
130  * is to use one list each for transmission and reception. In this mode,
131  * the ThunderLAN will generate two interrupts for every received frame
132  * (one RX EOF and one RX EOC) and two for each transmitted frame (one
133  * TX EOF and one TX EOC). This may make the driver simpler but it hurts
134  * performance to have to handle so many interrupts.
135  *
136  * Initially I wanted to create a circular list of receive buffers so
137  * that the ThunderLAN chip would think there was an infinitely long
138  * receive channel and never deliver an RXEOC interrupt. However this
139  * doesn't work correctly under heavy load: while the manual says the
140  * chip will trigger an RXEOF interrupt each time a frame is copied into
141  * memory, you can't count on the chip waiting around for you to acknowledge
142  * the interrupt before it starts trying to DMA the next frame. The result
143  * is that the chip might traverse the entire circular list and then wrap
144  * around before you have a chance to do anything about it. Consequently,
145  * the receive list is terminated (with a 0 in the forward pointer in the
146  * last element). Each time an RXEOF interrupt arrives, the used list
147  * is shifted to the end of the list. This gives the appearance of an
148  * infinitely large RX chain so long as the driver doesn't fall behind
149  * the chip and allow all of the lists to be filled up.
150  *
151  * If all the lists are filled, the adapter will deliver an RX 'end of
152  * channel' interrupt when it hits the 0 forward pointer at the end of
153  * the chain. The RXEOC handler then cleans out the RX chain and resets
154  * the list head pointer in the ch_parm register and restarts the receiver.
155  *
156  * For frame transmission, it is possible to program the ThunderLAN's
157  * transmit interrupt threshold so that the chip can acknowledge multiple
158  * lists with only a single TX EOF interrupt. This allows the driver to
159  * queue several frames in one shot, and only have to handle a total
160  * two interrupts (one TX EOF and one TX EOC) no matter how many frames
161  * are transmitted. Frame transmission is done directly out of the
162  * mbufs passed to the tl_start() routine via the interface send queue.
163  * The driver simply sets up the fragment descriptors in the transmit
164  * lists to point to the mbuf data regions and sends a TX GO command.
165  *
166  * Note that since the RX and TX lists themselves are always used
167  * only by the driver, the are malloc()ed once at driver initialization
168  * time and never free()ed.
169  *
170  * Also, in order to remain as platform independent as possible, this
171  * driver uses memory mapped register access to manipulate the card
172  * as opposed to programmed I/O. This avoids the use of the inb/outb
173  * (and related) instructions which are specific to the i386 platform.
174  *
175  * Using these techniques, this driver achieves very high performance
176  * by minimizing the amount of interrupts generated during large
177  * transfers and by completely avoiding buffer copies. Frame transfer
178  * to and from the ThunderLAN chip is performed entirely by the chip
179  * itself thereby reducing the load on the host CPU.
180  */
181 
182 #include <sys/param.h>
183 #include <sys/systm.h>
184 #include <sys/sockio.h>
185 #include <sys/mbuf.h>
186 #include <sys/malloc.h>
187 #include <sys/kernel.h>
188 #include <sys/socket.h>
189 #include <sys/serialize.h>
190 #include <sys/bus.h>
191 #include <sys/rman.h>
192 #include <sys/thread2.h>
193 
194 #include <net/if.h>
195 #include <net/ifq_var.h>
196 #include <net/if_arp.h>
197 #include <net/ethernet.h>
198 #include <net/if_dl.h>
199 #include <net/if_media.h>
200 
201 #include <net/bpf.h>
202 
203 #include <vm/vm.h>              /* for vtophys */
204 #include <vm/pmap.h>            /* for vtophys */
205 
206 #include "../mii_layer/mii.h"
207 #include "../mii_layer/miivar.h"
208 
209 #include <bus/pci/pcireg.h>
210 #include <bus/pci/pcivar.h>
211 
212 /*
213  * Default to using PIO register access mode to pacify certain
214  * laptop docking stations with built-in ThunderLAN chips that
215  * don't seem to handle memory mapped mode properly.
216  */
217 #define TL_USEIOSPACE
218 
219 #include "if_tlreg.h"
220 
221 /* "controller miibus0" required.  See GENERIC if you get errors here. */
222 #include "miibus_if.h"
223 
224 /*
225  * Various supported device vendors/types and their names.
226  */
227 
228 static struct tl_type tl_devs[] = {
229 	{ TI_VENDORID,	TI_DEVICEID_THUNDERLAN,
230 		"Texas Instruments ThunderLAN" },
231 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
232 		"Compaq Netelligent 10" },
233 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
234 		"Compaq Netelligent 10/100" },
235 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
236 		"Compaq Netelligent 10/100 Proliant" },
237 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
238 		"Compaq Netelligent 10/100 Dual Port" },
239 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
240 		"Compaq NetFlex-3/P Integrated" },
241 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
242 		"Compaq NetFlex-3/P" },
243 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
244 		"Compaq NetFlex 3/P w/ BNC" },
245 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
246 		"Compaq Netelligent 10/100 TX Embedded UTP" },
247 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
248 		"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
249 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
250 		"Compaq Netelligent 10/100 TX UTP" },
251 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
252 		"Olicom OC-2183/2185" },
253 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
254 		"Olicom OC-2325" },
255 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
256 		"Olicom OC-2326 10/100 TX UTP" },
257 	{ 0, 0, NULL }
258 };
259 
260 static int tl_probe		(device_t);
261 static int tl_attach		(device_t);
262 static int tl_detach		(device_t);
263 static int tl_intvec_rxeoc	(void *, u_int32_t);
264 static int tl_intvec_txeoc	(void *, u_int32_t);
265 static int tl_intvec_txeof	(void *, u_int32_t);
266 static int tl_intvec_rxeof	(void *, u_int32_t);
267 static int tl_intvec_adchk	(void *, u_int32_t);
268 static int tl_intvec_netsts	(void *, u_int32_t);
269 
270 static int tl_newbuf		(struct tl_softc *,
271 					struct tl_chain_onefrag *);
272 static void tl_stats_update	(void *);
273 static void tl_stats_update_serialized(void *);
274 static int tl_encap		(struct tl_softc *, struct tl_chain *,
275 						struct mbuf *);
276 
277 static void tl_intr		(void *);
278 static void tl_start		(struct ifnet *);
279 static int tl_ioctl		(struct ifnet *, u_long, caddr_t,
280 						struct ucred *);
281 static void tl_init		(void *);
282 static void tl_stop		(struct tl_softc *);
283 static void tl_watchdog		(struct ifnet *);
284 static void tl_shutdown		(device_t);
285 static int tl_ifmedia_upd	(struct ifnet *);
286 static void tl_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
287 
288 static u_int8_t tl_eeprom_putbyte	(struct tl_softc *, int);
289 static u_int8_t	tl_eeprom_getbyte	(struct tl_softc *,
290 						int, u_int8_t *);
291 static int tl_read_eeprom	(struct tl_softc *, caddr_t, int, int);
292 
293 static void tl_mii_sync		(struct tl_softc *);
294 static void tl_mii_send		(struct tl_softc *, u_int32_t, int);
295 static int tl_mii_readreg	(struct tl_softc *, struct tl_mii_frame *);
296 static int tl_mii_writereg	(struct tl_softc *, struct tl_mii_frame *);
297 static int tl_miibus_readreg	(device_t, int, int);
298 static int tl_miibus_writereg	(device_t, int, int, int);
299 static void tl_miibus_statchg	(device_t);
300 
301 static void tl_setmode		(struct tl_softc *, int);
302 static int tl_calchash		(caddr_t);
303 static void tl_setmulti		(struct tl_softc *);
304 static void tl_setfilt		(struct tl_softc *, caddr_t, int);
305 static void tl_softreset	(struct tl_softc *, int);
306 static void tl_hardreset	(device_t);
307 static int tl_list_rx_init	(struct tl_softc *);
308 static int tl_list_tx_init	(struct tl_softc *);
309 
310 static u_int8_t tl_dio_read8	(struct tl_softc *, int);
311 static u_int16_t tl_dio_read16	(struct tl_softc *, int);
312 static u_int32_t tl_dio_read32	(struct tl_softc *, int);
313 static void tl_dio_write8	(struct tl_softc *, int, int);
314 static void tl_dio_write16	(struct tl_softc *, int, int);
315 static void tl_dio_write32	(struct tl_softc *, int, int);
316 static void tl_dio_setbit	(struct tl_softc *, int, int);
317 static void tl_dio_clrbit	(struct tl_softc *, int, int);
318 static void tl_dio_setbit16	(struct tl_softc *, int, int);
319 static void tl_dio_clrbit16	(struct tl_softc *, int, int);
320 
321 #ifdef TL_USEIOSPACE
322 #define TL_RES		SYS_RES_IOPORT
323 #define TL_RID		TL_PCI_LOIO
324 #else
325 #define TL_RES		SYS_RES_MEMORY
326 #define TL_RID		TL_PCI_LOMEM
327 #endif
328 
329 static device_method_t tl_methods[] = {
330 	/* Device interface */
331 	DEVMETHOD(device_probe,		tl_probe),
332 	DEVMETHOD(device_attach,	tl_attach),
333 	DEVMETHOD(device_detach,	tl_detach),
334 	DEVMETHOD(device_shutdown,	tl_shutdown),
335 
336 	/* bus interface */
337 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
338 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
339 
340 	/* MII interface */
341 	DEVMETHOD(miibus_readreg,	tl_miibus_readreg),
342 	DEVMETHOD(miibus_writereg,	tl_miibus_writereg),
343 	DEVMETHOD(miibus_statchg,	tl_miibus_statchg),
344 
345 	{ 0, 0 }
346 };
347 
348 static driver_t tl_driver = {
349 	"tl",
350 	tl_methods,
351 	sizeof(struct tl_softc)
352 };
353 
354 static devclass_t tl_devclass;
355 
356 DECLARE_DUMMY_MODULE(if_tl);
357 DRIVER_MODULE(if_tl, pci, tl_driver, tl_devclass, 0, 0);
358 DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
359 
360 static u_int8_t
361 tl_dio_read8(struct tl_softc *sc, int reg)
362 {
363 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
364 	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
365 }
366 
367 static u_int16_t
368 tl_dio_read16(struct tl_softc *sc, int reg)
369 {
370 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
371 	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
372 }
373 
374 static u_int32_t
375 tl_dio_read32(struct tl_softc *sc, int reg)
376 {
377 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
378 	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
379 }
380 
381 static void
382 tl_dio_write8(struct tl_softc *sc, int reg, int val)
383 {
384 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
385 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
386 	return;
387 }
388 
389 static void
390 tl_dio_write16(struct tl_softc *sc, int reg, int val)
391 {
392 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
393 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
394 	return;
395 }
396 
397 static void
398 tl_dio_write32(struct tl_softc *sc, int reg, int val)
399 {
400 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
401 	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
402 	return;
403 }
404 
405 static void
406 tl_dio_setbit(struct tl_softc *sc, int reg, int bit)
407 {
408 	u_int8_t			f;
409 
410 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
411 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
412 	f |= bit;
413 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
414 
415 	return;
416 }
417 
418 static void
419 tl_dio_clrbit(struct tl_softc *sc, int reg, int bit)
420 {
421 	u_int8_t			f;
422 
423 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
424 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
425 	f &= ~bit;
426 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
427 
428 	return;
429 }
430 
431 static void
432 tl_dio_setbit16(struct tl_softc *sc, int reg, int bit)
433 {
434 	u_int16_t			f;
435 
436 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
437 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
438 	f |= bit;
439 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
440 
441 	return;
442 }
443 
444 static void
445 tl_dio_clrbit16(struct tl_softc *sc, int reg, int bit)
446 {
447 	u_int16_t			f;
448 
449 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
450 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
451 	f &= ~bit;
452 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
453 
454 	return;
455 }
456 
457 /*
458  * Send an instruction or address to the EEPROM, check for ACK.
459  */
460 static u_int8_t
461 tl_eeprom_putbyte(struct tl_softc *sc, int byte)
462 {
463 	int		i, ack = 0;
464 
465 	/*
466 	 * Make sure we're in TX mode.
467 	 */
468 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
469 
470 	/*
471 	 * Feed in each bit and stobe the clock.
472 	 */
473 	for (i = 0x80; i; i >>= 1) {
474 		if (byte & i) {
475 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
476 		} else {
477 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
478 		}
479 		DELAY(1);
480 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
481 		DELAY(1);
482 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
483 	}
484 
485 	/*
486 	 * Turn off TX mode.
487 	 */
488 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
489 
490 	/*
491 	 * Check for ack.
492 	 */
493 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
494 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
495 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
496 
497 	return(ack);
498 }
499 
500 /*
501  * Read a byte of data stored in the EEPROM at address 'addr.'
502  */
503 static u_int8_t
504 tl_eeprom_getbyte(struct tl_softc *sc, int addr, u_int8_t *dest)
505 {
506 	int		i;
507 	u_int8_t		byte = 0;
508 
509 	tl_dio_write8(sc, TL_NETSIO, 0);
510 
511 	EEPROM_START;
512 
513 	/*
514 	 * Send write control code to EEPROM.
515 	 */
516 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
517 		if_printf(&sc->arpcom.ac_if, "failed to send write command, "
518 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
519 		return(1);
520 	}
521 
522 	/*
523 	 * Send address of byte we want to read.
524 	 */
525 	if (tl_eeprom_putbyte(sc, addr)) {
526 		if_printf(&sc->arpcom.ac_if, "failed to send address, "
527 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
528 		return(1);
529 	}
530 
531 	EEPROM_STOP;
532 	EEPROM_START;
533 	/*
534 	 * Send read control code to EEPROM.
535 	 */
536 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
537 		if_printf(&sc->arpcom.ac_if, "failed to send write command, "
538 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
539 		return(1);
540 	}
541 
542 	/*
543 	 * Start reading bits from EEPROM.
544 	 */
545 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
546 	for (i = 0x80; i; i >>= 1) {
547 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
548 		DELAY(1);
549 		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
550 			byte |= i;
551 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
552 		DELAY(1);
553 	}
554 
555 	EEPROM_STOP;
556 
557 	/*
558 	 * No ACK generated for read, so just return byte.
559 	 */
560 
561 	*dest = byte;
562 
563 	return(0);
564 }
565 
566 /*
567  * Read a sequence of bytes from the EEPROM.
568  */
569 static int
570 tl_read_eeprom(struct tl_softc *sc, caddr_t dest, int off, int cnt)
571 {
572 	int			err = 0, i;
573 	u_int8_t		byte = 0;
574 
575 	for (i = 0; i < cnt; i++) {
576 		err = tl_eeprom_getbyte(sc, off + i, &byte);
577 		if (err)
578 			break;
579 		*(dest + i) = byte;
580 	}
581 
582 	return(err ? 1 : 0);
583 }
584 
585 static void
586 tl_mii_sync(struct tl_softc *sc)
587 {
588 	int		i;
589 
590 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
591 
592 	for (i = 0; i < 32; i++) {
593 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
594 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
595 	}
596 
597 	return;
598 }
599 
600 static void
601 tl_mii_send(struct tl_softc *sc, u_int32_t bits, int cnt)
602 {
603 	int			i;
604 
605 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
606 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
607 		if (bits & i) {
608 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
609 		} else {
610 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
611 		}
612 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
613 	}
614 }
615 
616 static int
617 tl_mii_readreg(struct tl_softc *sc, struct tl_mii_frame *frame)
618 {
619 	int			i, ack;
620 	int			minten = 0;
621 
622 	tl_mii_sync(sc);
623 
624 	/*
625 	 * Set up frame for RX.
626 	 */
627 	frame->mii_stdelim = TL_MII_STARTDELIM;
628 	frame->mii_opcode = TL_MII_READOP;
629 	frame->mii_turnaround = 0;
630 	frame->mii_data = 0;
631 
632 	/*
633 	 * Turn off MII interrupt by forcing MINTEN low.
634 	 */
635 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
636 	if (minten) {
637 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
638 	}
639 
640 	/*
641  	 * Turn on data xmit.
642 	 */
643 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
644 
645 	/*
646 	 * Send command/address info.
647 	 */
648 	tl_mii_send(sc, frame->mii_stdelim, 2);
649 	tl_mii_send(sc, frame->mii_opcode, 2);
650 	tl_mii_send(sc, frame->mii_phyaddr, 5);
651 	tl_mii_send(sc, frame->mii_regaddr, 5);
652 
653 	/*
654 	 * Turn off xmit.
655 	 */
656 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
657 
658 	/* Idle bit */
659 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
660 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
661 
662 	/* Check for ack */
663 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
664 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
665 
666 	/* Complete the cycle */
667 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
668 
669 	/*
670 	 * Now try reading data bits. If the ack failed, we still
671 	 * need to clock through 16 cycles to keep the PHYs in sync.
672 	 */
673 	if (ack) {
674 		for(i = 0; i < 16; i++) {
675 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
676 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
677 		}
678 		goto fail;
679 	}
680 
681 	for (i = 0x8000; i; i >>= 1) {
682 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
683 		if (!ack) {
684 			if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
685 				frame->mii_data |= i;
686 		}
687 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
688 	}
689 
690 fail:
691 
692 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
693 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
694 
695 	/* Reenable interrupts */
696 	if (minten) {
697 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
698 	}
699 
700 	if (ack)
701 		return(1);
702 	return(0);
703 }
704 
705 static int
706 tl_mii_writereg(struct tl_softc *sc, struct tl_mii_frame *frame)
707 {
708 	int			minten;
709 
710 	tl_mii_sync(sc);
711 
712 	/*
713 	 * Set up frame for TX.
714 	 */
715 
716 	frame->mii_stdelim = TL_MII_STARTDELIM;
717 	frame->mii_opcode = TL_MII_WRITEOP;
718 	frame->mii_turnaround = TL_MII_TURNAROUND;
719 
720 	/*
721 	 * Turn off MII interrupt by forcing MINTEN low.
722 	 */
723 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
724 	if (minten) {
725 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
726 	}
727 
728 	/*
729  	 * Turn on data output.
730 	 */
731 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
732 
733 	tl_mii_send(sc, frame->mii_stdelim, 2);
734 	tl_mii_send(sc, frame->mii_opcode, 2);
735 	tl_mii_send(sc, frame->mii_phyaddr, 5);
736 	tl_mii_send(sc, frame->mii_regaddr, 5);
737 	tl_mii_send(sc, frame->mii_turnaround, 2);
738 	tl_mii_send(sc, frame->mii_data, 16);
739 
740 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
741 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
742 
743 	/*
744 	 * Turn off xmit.
745 	 */
746 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
747 
748 	/* Reenable interrupts */
749 	if (minten)
750 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
751 
752 	return(0);
753 }
754 
755 static int
756 tl_miibus_readreg(device_t dev, int phy, int reg)
757 {
758 	struct tl_softc		*sc;
759 	struct tl_mii_frame	frame;
760 
761 	sc = device_get_softc(dev);
762 	bzero((char *)&frame, sizeof(frame));
763 
764 	frame.mii_phyaddr = phy;
765 	frame.mii_regaddr = reg;
766 	tl_mii_readreg(sc, &frame);
767 
768 	return(frame.mii_data);
769 }
770 
771 static int
772 tl_miibus_writereg(device_t dev, int phy, int reg, int data)
773 {
774 	struct tl_softc		*sc;
775 	struct tl_mii_frame	frame;
776 
777 	sc = device_get_softc(dev);
778 	bzero((char *)&frame, sizeof(frame));
779 
780 	frame.mii_phyaddr = phy;
781 	frame.mii_regaddr = reg;
782 	frame.mii_data = data;
783 
784 	tl_mii_writereg(sc, &frame);
785 
786 	return(0);
787 }
788 
789 static void
790 tl_miibus_statchg(device_t dev)
791 {
792 	struct tl_softc		*sc;
793 	struct mii_data		*mii;
794 
795 	sc = device_get_softc(dev);
796 	mii = device_get_softc(sc->tl_miibus);
797 
798 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
799 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
800 	} else {
801 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
802 	}
803 
804 	return;
805 }
806 
807 /*
808  * Set modes for bitrate devices.
809  */
810 static void
811 tl_setmode(struct tl_softc *sc, int media)
812 {
813 	if (IFM_SUBTYPE(media) == IFM_10_5)
814 		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
815 	if (IFM_SUBTYPE(media) == IFM_10_T) {
816 		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
817 		if ((media & IFM_GMASK) == IFM_FDX) {
818 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
819 			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
820 		} else {
821 			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
822 			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
823 		}
824 	}
825 
826 	return;
827 }
828 
829 /*
830  * Calculate the hash of a MAC address for programming the multicast hash
831  * table.  This hash is simply the address split into 6-bit chunks
832  * XOR'd, e.g.
833  * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
834  * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
835  * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
836  * the folded 24-bit value is split into 6-bit portions and XOR'd.
837  */
838 static int
839 tl_calchash(caddr_t addr)
840 {
841 	int			t;
842 
843 	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
844 		(addr[2] ^ addr[5]);
845 	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
846 }
847 
848 /*
849  * The ThunderLAN has a perfect MAC address filter in addition to
850  * the multicast hash filter. The perfect filter can be programmed
851  * with up to four MAC addresses. The first one is always used to
852  * hold the station address, which leaves us free to use the other
853  * three for multicast addresses.
854  */
855 static void
856 tl_setfilt(struct tl_softc *sc, caddr_t addr, int slot)
857 {
858 	int			i;
859 	u_int16_t		regaddr;
860 
861 	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
862 
863 	for (i = 0; i < ETHER_ADDR_LEN; i++)
864 		tl_dio_write8(sc, regaddr + i, *(addr + i));
865 
866 	return;
867 }
868 
869 /*
870  * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
871  * linked list. This is fine, except addresses are added from the head
872  * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
873  * group to always be in the perfect filter, but as more groups are added,
874  * the 224.0.0.1 entry (which is always added first) gets pushed down
875  * the list and ends up at the tail. So after 3 or 4 multicast groups
876  * are added, the all-hosts entry gets pushed out of the perfect filter
877  * and into the hash table.
878  *
879  * Because the multicast list is a doubly-linked list as opposed to a
880  * circular queue, we don't have the ability to just grab the tail of
881  * the list and traverse it backwards. Instead, we have to traverse
882  * the list once to find the tail, then traverse it again backwards to
883  * update the multicast filter.
884  */
885 static void
886 tl_setmulti(struct tl_softc *sc)
887 {
888 	struct ifnet		*ifp;
889 	u_int32_t		hashes[2] = { 0, 0 };
890 	int			h, i;
891 	struct ifmultiaddr	*ifma;
892 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
893 	ifp = &sc->arpcom.ac_if;
894 
895 	/* First, zot all the existing filters. */
896 	for (i = 1; i < 4; i++)
897 		tl_setfilt(sc, (caddr_t)&dummy, i);
898 	tl_dio_write32(sc, TL_HASH1, 0);
899 	tl_dio_write32(sc, TL_HASH2, 0);
900 
901 	/* Now program new ones. */
902 	if (ifp->if_flags & IFF_ALLMULTI) {
903 		hashes[0] = 0xFFFFFFFF;
904 		hashes[1] = 0xFFFFFFFF;
905 	} else {
906 		i = 1;
907 		/* First find the tail of the list. */
908 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
909 					ifma = ifma->ifma_link.le_next) {
910 			if (ifma->ifma_link.le_next == NULL)
911 				break;
912 		}
913 		/* Now traverse the list backwards. */
914 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
915 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
916 			if (ifma->ifma_addr->sa_family != AF_LINK)
917 				continue;
918 			/*
919 			 * Program the first three multicast groups
920 			 * into the perfect filter. For all others,
921 			 * use the hash table.
922 			 */
923 			if (i < 4) {
924 				tl_setfilt(sc,
925 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
926 				i++;
927 				continue;
928 			}
929 
930 			h = tl_calchash(
931 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
932 			if (h < 32)
933 				hashes[0] |= (1 << h);
934 			else
935 				hashes[1] |= (1 << (h - 32));
936 		}
937 	}
938 
939 	tl_dio_write32(sc, TL_HASH1, hashes[0]);
940 	tl_dio_write32(sc, TL_HASH2, hashes[1]);
941 
942 	return;
943 }
944 
945 /*
946  * This routine is recommended by the ThunderLAN manual to insure that
947  * the internal PHY is powered up correctly. It also recommends a one
948  * second pause at the end to 'wait for the clocks to start' but in my
949  * experience this isn't necessary.
950  */
951 static void
952 tl_hardreset(device_t dev)
953 {
954 	struct tl_softc		*sc;
955 	int			i;
956 	u_int16_t		flags;
957 
958 	sc = device_get_softc(dev);
959 
960 	tl_mii_sync(sc);
961 
962 	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
963 
964 	for (i = 0; i < MII_NPHY; i++)
965 		tl_miibus_writereg(dev, i, MII_BMCR, flags);
966 
967 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
968 	DELAY(50000);
969 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
970 	tl_mii_sync(sc);
971 	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
972 
973 	DELAY(50000);
974 	return;
975 }
976 
977 static void
978 tl_softreset(struct tl_softc *sc, int internal)
979 {
980         u_int32_t               cmd, dummy, i;
981 
982         /* Assert the adapter reset bit. */
983 	CMD_SET(sc, TL_CMD_ADRST);
984 
985         /* Turn off interrupts */
986 	CMD_SET(sc, TL_CMD_INTSOFF);
987 
988 	/* First, clear the stats registers. */
989 	for (i = 0; i < 5; i++)
990 		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
991 
992         /* Clear Areg and Hash registers */
993 	for (i = 0; i < 8; i++)
994 		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
995 
996         /*
997 	 * Set up Netconfig register. Enable one channel and
998 	 * one fragment mode.
999 	 */
1000 	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
1001 	if (internal && !sc->tl_bitrate) {
1002 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1003 	} else {
1004 		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1005 	}
1006 
1007 	/* Handle cards with bitrate devices. */
1008 	if (sc->tl_bitrate)
1009 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
1010 
1011 	/*
1012 	 * Load adapter irq pacing timer and tx threshold.
1013 	 * We make the transmit threshold 1 initially but we may
1014 	 * change that later.
1015 	 */
1016 	cmd = CSR_READ_4(sc, TL_HOSTCMD);
1017 	cmd |= TL_CMD_NES;
1018 	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
1019 	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
1020 	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
1021 
1022         /* Unreset the MII */
1023 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
1024 
1025 	/* Take the adapter out of reset */
1026 	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
1027 
1028 	/* Wait for things to settle down a little. */
1029 	DELAY(500);
1030 
1031         return;
1032 }
1033 
1034 /*
1035  * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1036  * against our list and return its name if we find a match.
1037  */
1038 static int
1039 tl_probe(device_t dev)
1040 {
1041 	struct tl_type		*t;
1042 
1043 	t = tl_devs;
1044 
1045 	while(t->tl_name != NULL) {
1046 		if ((pci_get_vendor(dev) == t->tl_vid) &&
1047 		    (pci_get_device(dev) == t->tl_did)) {
1048 			device_set_desc(dev, t->tl_name);
1049 			return(0);
1050 		}
1051 		t++;
1052 	}
1053 
1054 	return(ENXIO);
1055 }
1056 
1057 static int
1058 tl_attach(device_t dev)
1059 {
1060 	int			i;
1061 	u_int16_t		did, vid;
1062 	struct tl_type		*t;
1063 	struct ifnet		*ifp;
1064 	struct tl_softc		*sc;
1065 	int			error = 0, rid;
1066 	uint8_t			eaddr[ETHER_ADDR_LEN];
1067 
1068 	vid = pci_get_vendor(dev);
1069 	did = pci_get_device(dev);
1070 	sc = device_get_softc(dev);
1071 
1072 	t = tl_devs;
1073 	while(t->tl_name != NULL) {
1074 		if (vid == t->tl_vid && did == t->tl_did)
1075 			break;
1076 		t++;
1077 	}
1078 
1079 	KKASSERT(t->tl_name != NULL);
1080 
1081 	pci_enable_busmaster(dev);
1082 
1083 #ifdef TL_USEIOSPACE
1084 	rid = TL_PCI_LOIO;
1085 	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1086 		RF_ACTIVE);
1087 
1088 	/*
1089 	 * Some cards have the I/O and memory mapped address registers
1090 	 * reversed. Try both combinations before giving up.
1091 	 */
1092 	if (sc->tl_res == NULL) {
1093 		rid = TL_PCI_LOMEM;
1094 		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1095 		    RF_ACTIVE);
1096 	}
1097 #else
1098 	rid = TL_PCI_LOMEM;
1099 	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1100 	    RF_ACTIVE);
1101 	if (sc->tl_res == NULL) {
1102 		rid = TL_PCI_LOIO;
1103 		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1104 		    RF_ACTIVE);
1105 	}
1106 #endif
1107 
1108 	if (sc->tl_res == NULL) {
1109 		device_printf(dev, "couldn't map ports/memory\n");
1110 		error = ENXIO;
1111 		return(error);
1112 	}
1113 
1114 	sc->tl_btag = rman_get_bustag(sc->tl_res);
1115 	sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
1116 
1117 #ifdef notdef
1118 	/*
1119 	 * The ThunderLAN manual suggests jacking the PCI latency
1120 	 * timer all the way up to its maximum value. I'm not sure
1121 	 * if this is really necessary, but what the manual wants,
1122 	 * the manual gets.
1123 	 */
1124 	command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1125 	command |= 0x0000FF00;
1126 	pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1127 #endif
1128 
1129 	/* Allocate interrupt */
1130 	rid = 0;
1131 	sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1132 	    RF_SHAREABLE | RF_ACTIVE);
1133 
1134 	if (sc->tl_irq == NULL) {
1135 		device_printf(dev, "couldn't map interrupt\n");
1136 		error = ENXIO;
1137 		goto fail;
1138 	}
1139 
1140 	/*
1141 	 * Now allocate memory for the TX and RX lists.
1142 	 */
1143 	sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1144 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
1145 
1146 	if (sc->tl_ldata == NULL) {
1147 		device_printf(dev, "no memory for list buffers!\n");
1148 		error = ENXIO;
1149 		goto fail;
1150 	}
1151 
1152 	sc->tl_dinfo = t;
1153 	if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
1154 		sc->tl_eeaddr = TL_EEPROM_EADDR;
1155 	if (t->tl_vid == OLICOM_VENDORID)
1156 		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1157 
1158 	/* Reset the adapter. */
1159 	tl_softreset(sc, 1);
1160 	tl_hardreset(dev);
1161 	tl_softreset(sc, 1);
1162 
1163 	ifp = &sc->arpcom.ac_if;
1164 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1165 
1166 	/*
1167 	 * Get station address from the EEPROM.
1168 	 */
1169 	if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1170 		device_printf(dev, "failed to read station address\n");
1171 		error = ENXIO;
1172 		goto fail;
1173 	}
1174 
1175         /*
1176          * XXX Olicom, in its desire to be different from the
1177          * rest of the world, has done strange things with the
1178          * encoding of the station address in the EEPROM. First
1179          * of all, they store the address at offset 0xF8 rather
1180          * than at 0x83 like the ThunderLAN manual suggests.
1181          * Second, they store the address in three 16-bit words in
1182          * network byte order, as opposed to storing it sequentially
1183          * like all the other ThunderLAN cards. In order to get
1184          * the station address in a form that matches what the Olicom
1185          * diagnostic utility specifies, we have to byte-swap each
1186          * word. To make things even more confusing, neither 00:00:28
1187          * nor 00:00:24 appear in the IEEE OUI database.
1188          */
1189         if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
1190                 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1191                         u_int16_t               *p;
1192                         p = (u_int16_t *)&eaddr[i];
1193                         *p = ntohs(*p);
1194                 }
1195         }
1196 
1197 	ifp->if_softc = sc;
1198 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1199 	ifp->if_ioctl = tl_ioctl;
1200 	ifp->if_start = tl_start;
1201 	ifp->if_watchdog = tl_watchdog;
1202 	ifp->if_init = tl_init;
1203 	ifp->if_mtu = ETHERMTU;
1204 	ifq_set_maxlen(&ifp->if_snd, TL_TX_LIST_CNT - 1);
1205 	ifq_set_ready(&ifp->if_snd);
1206 	callout_init(&sc->tl_stat_timer);
1207 
1208 	/* Reset the adapter again. */
1209 	tl_softreset(sc, 1);
1210 	tl_hardreset(dev);
1211 	tl_softreset(sc, 1);
1212 
1213 	/*
1214 	 * Do MII setup. If no PHYs are found, then this is a
1215 	 * bitrate ThunderLAN chip that only supports 10baseT
1216 	 * and AUI/BNC.
1217 	 */
1218 	if (mii_phy_probe(dev, &sc->tl_miibus,
1219 	    tl_ifmedia_upd, tl_ifmedia_sts)) {
1220 		struct ifmedia		*ifm;
1221 		sc->tl_bitrate = 1;
1222 		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1223 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1224 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1225 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1226 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1227 		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1228 		/* Reset again, this time setting bitrate mode. */
1229 		tl_softreset(sc, 1);
1230 		ifm = &sc->ifmedia;
1231 		ifm->ifm_media = ifm->ifm_cur->ifm_media;
1232 		tl_ifmedia_upd(ifp);
1233 	}
1234 
1235 	/*
1236 	 * Call MI attach routine.
1237 	 */
1238 	ether_ifattach(ifp, eaddr, NULL);
1239 
1240 	error = bus_setup_intr(dev, sc->tl_irq, INTR_NETSAFE,
1241 			       tl_intr, sc, &sc->tl_intrhand,
1242 			       ifp->if_serializer);
1243 
1244 	if (error) {
1245 		ether_ifdetach(ifp);
1246 		device_printf(dev, "couldn't set up irq\n");
1247 		goto fail;
1248 	}
1249 
1250 	return(0);
1251 
1252 fail:
1253 	tl_detach(dev);
1254 	return(error);
1255 }
1256 
1257 static int
1258 tl_detach(device_t dev)
1259 {
1260 	struct tl_softc *sc = device_get_softc(dev);
1261 	struct ifnet *ifp = &sc->arpcom.ac_if;
1262 
1263 	if (device_is_attached(dev)) {
1264 		lwkt_serialize_enter(ifp->if_serializer);
1265 		tl_stop(sc);
1266 		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1267 		lwkt_serialize_exit(ifp->if_serializer);
1268 
1269 		ether_ifdetach(ifp);
1270 	}
1271 
1272 	if (sc->tl_miibus)
1273 		device_delete_child(dev, sc->tl_miibus);
1274 	bus_generic_detach(dev);
1275 
1276 	if (sc->tl_ldata)
1277 		contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1278 	if (sc->tl_bitrate)
1279 		ifmedia_removeall(&sc->ifmedia);
1280 	if (sc->tl_irq)
1281 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1282 	if (sc->tl_res)
1283 		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1284 
1285 	return(0);
1286 }
1287 
1288 /*
1289  * Initialize the transmit lists.
1290  */
1291 static int
1292 tl_list_tx_init(struct tl_softc *sc)
1293 {
1294 	struct tl_chain_data	*cd;
1295 	struct tl_list_data	*ld;
1296 	int			i;
1297 
1298 	cd = &sc->tl_cdata;
1299 	ld = sc->tl_ldata;
1300 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1301 		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1302 		if (i == (TL_TX_LIST_CNT - 1))
1303 			cd->tl_tx_chain[i].tl_next = NULL;
1304 		else
1305 			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1306 	}
1307 
1308 	cd->tl_tx_free = &cd->tl_tx_chain[0];
1309 	cd->tl_tx_tail = cd->tl_tx_head = NULL;
1310 	sc->tl_txeoc = 1;
1311 
1312 	return(0);
1313 }
1314 
1315 /*
1316  * Initialize the RX lists and allocate mbufs for them.
1317  */
1318 static int
1319 tl_list_rx_init(struct tl_softc *sc)
1320 {
1321 	struct tl_chain_data	*cd;
1322 	struct tl_list_data	*ld;
1323 	int			i;
1324 
1325 	cd = &sc->tl_cdata;
1326 	ld = sc->tl_ldata;
1327 
1328 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1329 		cd->tl_rx_chain[i].tl_ptr =
1330 			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
1331 		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1332 			return(ENOBUFS);
1333 		if (i == (TL_RX_LIST_CNT - 1)) {
1334 			cd->tl_rx_chain[i].tl_next = NULL;
1335 			ld->tl_rx_list[i].tlist_fptr = 0;
1336 		} else {
1337 			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1338 			ld->tl_rx_list[i].tlist_fptr =
1339 					vtophys(&ld->tl_rx_list[i + 1]);
1340 		}
1341 	}
1342 
1343 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1344 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1345 
1346 	return(0);
1347 }
1348 
1349 static int
1350 tl_newbuf(struct tl_softc *sc, struct tl_chain_onefrag *c)
1351 {
1352 	struct mbuf *m_new;
1353 
1354 	m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1355 	if (m_new == NULL)
1356 		return (ENOBUFS);
1357 
1358 	c->tl_mbuf = m_new;
1359 	c->tl_next = NULL;
1360 	c->tl_ptr->tlist_frsize = MCLBYTES;
1361 	c->tl_ptr->tlist_fptr = 0;
1362 	c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1363 	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1364 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1365 
1366 	return(0);
1367 }
1368 
1369 /*
1370  * Interrupt handler for RX 'end of frame' condition (EOF). This
1371  * tells us that a full ethernet frame has been captured and we need
1372  * to handle it.
1373  *
1374  * Reception is done using 'lists' which consist of a header and a
1375  * series of 10 data count/data address pairs that point to buffers.
1376  * Initially you're supposed to create a list, populate it with pointers
1377  * to buffers, then load the physical address of the list into the
1378  * ch_parm register. The adapter is then supposed to DMA the received
1379  * frame into the buffers for you.
1380  *
1381  * To make things as fast as possible, we have the chip DMA directly
1382  * into mbufs. This saves us from having to do a buffer copy: we can
1383  * just hand the mbufs directly to ether_input(). Once the frame has
1384  * been sent on its way, the 'list' structure is assigned a new buffer
1385  * and moved to the end of the RX chain. As long we we stay ahead of
1386  * the chip, it will always think it has an endless receive channel.
1387  *
1388  * If we happen to fall behind and the chip manages to fill up all of
1389  * the buffers, it will generate an end of channel interrupt and wait
1390  * for us to empty the chain and restart the receiver.
1391  */
1392 static int
1393 tl_intvec_rxeof(void *xsc, u_int32_t type)
1394 {
1395 	struct tl_softc		*sc;
1396 	int			r = 0, total_len = 0;
1397 	struct ether_header	*eh;
1398 	struct mbuf		*m;
1399 	struct ifnet		*ifp;
1400 	struct tl_chain_onefrag	*cur_rx;
1401 
1402 	sc = xsc;
1403 	ifp = &sc->arpcom.ac_if;
1404 
1405 	while(sc->tl_cdata.tl_rx_head != NULL) {
1406 		cur_rx = sc->tl_cdata.tl_rx_head;
1407 		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1408 			break;
1409 		r++;
1410 		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1411 		m = cur_rx->tl_mbuf;
1412 		total_len = cur_rx->tl_ptr->tlist_frsize;
1413 
1414 		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1415 			ifp->if_ierrors++;
1416 			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1417 			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1418 			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1419 			continue;
1420 		}
1421 
1422 		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1423 						vtophys(cur_rx->tl_ptr);
1424 		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1425 		sc->tl_cdata.tl_rx_tail = cur_rx;
1426 
1427 		eh = mtod(m, struct ether_header *);
1428 		m->m_pkthdr.rcvif = ifp;
1429 		m->m_pkthdr.len = m->m_len = total_len;
1430 
1431 		/*
1432 		 * Note: when the ThunderLAN chip is in 'capture all
1433 		 * frames' mode, it will receive its own transmissions.
1434 		 * We drop don't need to process our own transmissions,
1435 		 * so we drop them here and continue.
1436 		 */
1437 		/*if (ifp->if_flags & IFF_PROMISC && */
1438 		if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1439 		 					ETHER_ADDR_LEN)) {
1440 				m_freem(m);
1441 				continue;
1442 		}
1443 
1444 		ifp->if_input(ifp, m);
1445 	}
1446 
1447 	return(r);
1448 }
1449 
1450 /*
1451  * The RX-EOC condition hits when the ch_parm address hasn't been
1452  * initialized or the adapter reached a list with a forward pointer
1453  * of 0 (which indicates the end of the chain). In our case, this means
1454  * the card has hit the end of the receive buffer chain and we need to
1455  * empty out the buffers and shift the pointer back to the beginning again.
1456  */
1457 static int
1458 tl_intvec_rxeoc(void *xsc, u_int32_t type)
1459 {
1460 	struct tl_softc		*sc;
1461 	int			r;
1462 	struct tl_chain_data	*cd;
1463 
1464 
1465 	sc = xsc;
1466 	cd = &sc->tl_cdata;
1467 
1468 	/* Flush out the receive queue and ack RXEOF interrupts. */
1469 	r = tl_intvec_rxeof(xsc, type);
1470 	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1471 	r = 1;
1472 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1473 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1474 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1475 	r |= (TL_CMD_GO|TL_CMD_RT);
1476 	return(r);
1477 }
1478 
1479 static int
1480 tl_intvec_txeof(void *xsc, u_int32_t type)
1481 {
1482 	struct tl_softc		*sc;
1483 	int			r = 0;
1484 	struct tl_chain		*cur_tx;
1485 
1486 	sc = xsc;
1487 
1488 	/*
1489 	 * Go through our tx list and free mbufs for those
1490 	 * frames that have been sent.
1491 	 */
1492 	while (sc->tl_cdata.tl_tx_head != NULL) {
1493 		cur_tx = sc->tl_cdata.tl_tx_head;
1494 		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1495 			break;
1496 		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1497 
1498 		r++;
1499 		m_freem(cur_tx->tl_mbuf);
1500 		cur_tx->tl_mbuf = NULL;
1501 
1502 		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1503 		sc->tl_cdata.tl_tx_free = cur_tx;
1504 		if (!cur_tx->tl_ptr->tlist_fptr)
1505 			break;
1506 	}
1507 
1508 	return(r);
1509 }
1510 
1511 /*
1512  * The transmit end of channel interrupt. The adapter triggers this
1513  * interrupt to tell us it hit the end of the current transmit list.
1514  *
1515  * A note about this: it's possible for a condition to arise where
1516  * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1517  * You have to avoid this since the chip expects things to go in a
1518  * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1519  * When the TXEOF handler is called, it will free all of the transmitted
1520  * frames and reset the tx_head pointer to NULL. However, a TXEOC
1521  * interrupt should be received and acknowledged before any more frames
1522  * are queued for transmission. If tl_statrt() is called after TXEOF
1523  * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1524  * it could attempt to issue a transmit command prematurely.
1525  *
1526  * To guard against this, tl_start() will only issue transmit commands
1527  * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1528  * can set this flag once tl_start() has cleared it.
1529  */
1530 static int
1531 tl_intvec_txeoc(void *xsc, u_int32_t type)
1532 {
1533 	struct tl_softc		*sc;
1534 	struct ifnet		*ifp;
1535 	u_int32_t		cmd;
1536 
1537 	sc = xsc;
1538 	ifp = &sc->arpcom.ac_if;
1539 
1540 	/* Clear the timeout timer. */
1541 	ifp->if_timer = 0;
1542 
1543 	if (sc->tl_cdata.tl_tx_head == NULL) {
1544 		ifp->if_flags &= ~IFF_OACTIVE;
1545 		sc->tl_cdata.tl_tx_tail = NULL;
1546 		sc->tl_txeoc = 1;
1547 	} else {
1548 		sc->tl_txeoc = 0;
1549 		/* First we have to ack the EOC interrupt. */
1550 		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1551 		/* Then load the address of the next TX list. */
1552 		CSR_WRITE_4(sc, TL_CH_PARM,
1553 		    vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1554 		/* Restart TX channel. */
1555 		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1556 		cmd &= ~TL_CMD_RT;
1557 		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1558 		CMD_PUT(sc, cmd);
1559 		return(0);
1560 	}
1561 
1562 	return(1);
1563 }
1564 
1565 static int
1566 tl_intvec_adchk(void *xsc, u_int32_t type)
1567 {
1568 	struct tl_softc		*sc;
1569 
1570 	sc = xsc;
1571 
1572 	if (type) {
1573 		if_printf(&sc->arpcom.ac_if, "adapter check: %x\n",
1574 			  (unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1575 	}
1576 
1577 	tl_softreset(sc, 1);
1578 	tl_stop(sc);
1579 	tl_init(sc);
1580 	CMD_SET(sc, TL_CMD_INTSON);
1581 
1582 	return(0);
1583 }
1584 
1585 static int
1586 tl_intvec_netsts(void *xsc, u_int32_t type)
1587 {
1588 	struct tl_softc		*sc;
1589 	u_int16_t		netsts;
1590 
1591 	sc = xsc;
1592 
1593 	netsts = tl_dio_read16(sc, TL_NETSTS);
1594 	tl_dio_write16(sc, TL_NETSTS, netsts);
1595 
1596 	if_printf(&sc->arpcom.ac_if, "network status: %x\n", netsts);
1597 
1598 	return(1);
1599 }
1600 
1601 static void
1602 tl_intr(void *xsc)
1603 {
1604 	struct tl_softc		*sc;
1605 	struct ifnet		*ifp;
1606 	int			r = 0;
1607 	u_int32_t		type = 0;
1608 	u_int16_t		ints = 0;
1609 	u_int8_t		ivec = 0;
1610 
1611 	sc = xsc;
1612 
1613 	/* Disable interrupts */
1614 	ints = CSR_READ_2(sc, TL_HOST_INT);
1615 	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1616 	type = (ints << 16) & 0xFFFF0000;
1617 	ivec = (ints & TL_VEC_MASK) >> 5;
1618 	ints = (ints & TL_INT_MASK) >> 2;
1619 
1620 	ifp = &sc->arpcom.ac_if;
1621 
1622 	switch(ints) {
1623 	case (TL_INTR_INVALID):
1624 #ifdef DIAGNOSTIC
1625 		if_printf(ifp, "got an invalid interrupt!\n");
1626 #endif
1627 		/* Re-enable interrupts but don't ack this one. */
1628 		CMD_PUT(sc, type);
1629 		r = 0;
1630 		break;
1631 	case (TL_INTR_TXEOF):
1632 		r = tl_intvec_txeof((void *)sc, type);
1633 		break;
1634 	case (TL_INTR_TXEOC):
1635 		r = tl_intvec_txeoc((void *)sc, type);
1636 		break;
1637 	case (TL_INTR_STATOFLOW):
1638 		tl_stats_update_serialized(sc);
1639 		r = 1;
1640 		break;
1641 	case (TL_INTR_RXEOF):
1642 		r = tl_intvec_rxeof((void *)sc, type);
1643 		break;
1644 	case (TL_INTR_DUMMY):
1645 		if_printf(ifp, "got a dummy interrupt\n");
1646 		r = 1;
1647 		break;
1648 	case (TL_INTR_ADCHK):
1649 		if (ivec)
1650 			r = tl_intvec_adchk((void *)sc, type);
1651 		else
1652 			r = tl_intvec_netsts((void *)sc, type);
1653 		break;
1654 	case (TL_INTR_RXEOC):
1655 		r = tl_intvec_rxeoc((void *)sc, type);
1656 		break;
1657 	default:
1658 		if_printf(ifp, "bogus interrupt type\n");
1659 		break;
1660 	}
1661 
1662 	/* Re-enable interrupts */
1663 	if (r) {
1664 		CMD_PUT(sc, TL_CMD_ACK | r | type);
1665 	}
1666 
1667 	if (!ifq_is_empty(&ifp->if_snd))
1668 		tl_start(ifp);
1669 
1670 	return;
1671 }
1672 
1673 static
1674 void
1675 tl_stats_update(void *xsc)
1676 {
1677 	struct tl_softc *sc = xsc;
1678 	struct ifnet *ifp = &sc->arpcom.ac_if;
1679 
1680 	lwkt_serialize_enter(ifp->if_serializer);
1681 	tl_stats_update_serialized(xsc);
1682 	lwkt_serialize_exit(ifp->if_serializer);
1683 }
1684 
1685 static
1686 void
1687 tl_stats_update_serialized(void *xsc)
1688 {
1689 	struct tl_softc		*sc;
1690 	struct ifnet		*ifp;
1691 	struct tl_stats		tl_stats;
1692 	struct mii_data		*mii;
1693 	u_int32_t		*p;
1694 
1695 	bzero((char *)&tl_stats, sizeof(struct tl_stats));
1696 
1697 	sc = xsc;
1698 	ifp = &sc->arpcom.ac_if;
1699 
1700 	p = (u_int32_t *)&tl_stats;
1701 
1702 	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1703 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1704 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1705 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1706 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1707 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1708 
1709 	ifp->if_opackets += tl_tx_goodframes(tl_stats);
1710 	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1711 				tl_stats.tl_tx_multi_collision;
1712 	ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1713 	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1714 			    tl_rx_overrun(tl_stats);
1715 	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1716 
1717 	if (tl_tx_underrun(tl_stats)) {
1718 		u_int8_t		tx_thresh;
1719 		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1720 		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1721 			tx_thresh >>= 4;
1722 			tx_thresh++;
1723 			if_printf(ifp, "tx underrun -- increasing "
1724 				  "tx threshold to %d bytes\n",
1725 				  (64 * (tx_thresh * 4)));
1726 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1727 			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1728 		}
1729 	}
1730 
1731 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1732 
1733 	if (!sc->tl_bitrate) {
1734 		mii = device_get_softc(sc->tl_miibus);
1735 		mii_tick(mii);
1736 	}
1737 }
1738 
1739 /*
1740  * Encapsulate an mbuf chain in a list by coupling the mbuf data
1741  * pointers to the fragment pointers.
1742  */
1743 static int
1744 tl_encap(struct tl_softc *sc, struct tl_chain *c, struct mbuf *m_head)
1745 {
1746 	int			frag = 0;
1747 	struct tl_frag		*f = NULL;
1748 	int			total_len;
1749 	struct mbuf		*m;
1750 
1751 	/*
1752  	 * Start packing the mbufs in this chain into
1753 	 * the fragment pointers. Stop when we run out
1754  	 * of fragments or hit the end of the mbuf chain.
1755 	 */
1756 	m = m_head;
1757 	total_len = 0;
1758 
1759 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1760 		if (m->m_len != 0) {
1761 			if (frag == TL_MAXFRAGS)
1762 				break;
1763 			total_len+= m->m_len;
1764 			c->tl_ptr->tl_frag[frag].tlist_dadr =
1765 				vtophys(mtod(m, vm_offset_t));
1766 			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1767 			frag++;
1768 		}
1769 	}
1770 
1771 	/*
1772 	 * Handle special cases.
1773 	 * Special case #1: we used up all 10 fragments, but
1774 	 * we have more mbufs left in the chain. Copy the
1775 	 * data into an mbuf cluster. Note that we don't
1776 	 * bother clearing the values in the other fragment
1777 	 * pointers/counters; it wouldn't gain us anything,
1778 	 * and would waste cycles.
1779 	 */
1780 	if (m != NULL) {
1781 		struct mbuf *m_new;
1782 
1783 		m_new = m_getl(m_head->m_pkthdr.len, MB_DONTWAIT, MT_DATA,
1784 			       M_PKTHDR, NULL);
1785 		if (m_new == NULL) {
1786 			if_printf(&sc->arpcom.ac_if, "no memory for tx list\n");
1787 			return (1);
1788 		}
1789 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1790 					mtod(m_new, caddr_t));
1791 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1792 		m_freem(m_head);
1793 		m_head = m_new;
1794 		f = &c->tl_ptr->tl_frag[0];
1795 		f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1796 		f->tlist_dcnt = total_len = m_new->m_len;
1797 		frag = 1;
1798 	}
1799 
1800 	/*
1801 	 * Special case #2: the frame is smaller than the minimum
1802 	 * frame size. We have to pad it to make the chip happy.
1803 	 */
1804 	if (total_len < TL_MIN_FRAMELEN) {
1805 		if (frag == TL_MAXFRAGS) {
1806 			if_printf(&sc->arpcom.ac_if, "all frags filled but "
1807 				  "frame still to small!\n");
1808 		}
1809 		f = &c->tl_ptr->tl_frag[frag];
1810 		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1811 		f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1812 		total_len += f->tlist_dcnt;
1813 		frag++;
1814 	}
1815 
1816 	c->tl_mbuf = m_head;
1817 	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1818 	c->tl_ptr->tlist_frsize = total_len;
1819 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1820 	c->tl_ptr->tlist_fptr = 0;
1821 
1822 	return(0);
1823 }
1824 
1825 /*
1826  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1827  * to the mbuf data regions directly in the transmit lists. We also save a
1828  * copy of the pointers since the transmit list fragment pointers are
1829  * physical addresses.
1830  */
1831 static void
1832 tl_start(struct ifnet *ifp)
1833 {
1834 	struct tl_softc		*sc;
1835 	struct mbuf		*m_head = NULL;
1836 	u_int32_t		cmd;
1837 	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1838 
1839 	sc = ifp->if_softc;
1840 
1841 	/*
1842 	 * Check for an available queue slot. If there are none,
1843 	 * punt.
1844 	 */
1845 	if (sc->tl_cdata.tl_tx_free == NULL) {
1846 		ifp->if_flags |= IFF_OACTIVE;
1847 		return;
1848 	}
1849 
1850 	start_tx = sc->tl_cdata.tl_tx_free;
1851 
1852 	while(sc->tl_cdata.tl_tx_free != NULL) {
1853 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1854 		if (m_head == NULL)
1855 			break;
1856 
1857 		/* Pick a chain member off the free list. */
1858 		cur_tx = sc->tl_cdata.tl_tx_free;
1859 		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1860 
1861 		cur_tx->tl_next = NULL;
1862 
1863 		/* Pack the data into the list. */
1864 		tl_encap(sc, cur_tx, m_head);
1865 
1866 		/* Chain it together */
1867 		if (prev != NULL) {
1868 			prev->tl_next = cur_tx;
1869 			prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1870 		}
1871 		prev = cur_tx;
1872 
1873 		BPF_MTAP(ifp, cur_tx->tl_mbuf);
1874 	}
1875 
1876 	/*
1877 	 * If there are no packets queued, bail.
1878 	 */
1879 	if (cur_tx == NULL)
1880 		return;
1881 
1882 	/*
1883 	 * That's all we can stands, we can't stands no more.
1884 	 * If there are no other transfers pending, then issue the
1885 	 * TX GO command to the adapter to start things moving.
1886 	 * Otherwise, just leave the data in the queue and let
1887 	 * the EOF/EOC interrupt handler send.
1888 	 */
1889 	if (sc->tl_cdata.tl_tx_head == NULL) {
1890 		sc->tl_cdata.tl_tx_head = start_tx;
1891 		sc->tl_cdata.tl_tx_tail = cur_tx;
1892 
1893 		if (sc->tl_txeoc) {
1894 			sc->tl_txeoc = 0;
1895 			CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
1896 			cmd = CSR_READ_4(sc, TL_HOSTCMD);
1897 			cmd &= ~TL_CMD_RT;
1898 			cmd |= TL_CMD_GO|TL_CMD_INTSON;
1899 			CMD_PUT(sc, cmd);
1900 		}
1901 	} else {
1902 		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
1903 		sc->tl_cdata.tl_tx_tail = cur_tx;
1904 	}
1905 
1906 	/*
1907 	 * Set a timeout in case the chip goes out to lunch.
1908 	 */
1909 	ifp->if_timer = 5;
1910 
1911 	return;
1912 }
1913 
1914 static void
1915 tl_init(void *xsc)
1916 {
1917 	struct tl_softc		*sc = xsc;
1918 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1919 	struct mii_data		*mii;
1920 
1921 	/*
1922 	 * Cancel pending I/O.
1923 	 */
1924 	tl_stop(sc);
1925 
1926 	/* Initialize TX FIFO threshold */
1927 	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1928 	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
1929 
1930         /* Set PCI burst size */
1931 	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
1932 
1933 	/*
1934 	 * Set 'capture all frames' bit for promiscuous mode.
1935 	 */
1936 	if (ifp->if_flags & IFF_PROMISC)
1937 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
1938 	else
1939 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
1940 
1941 	/*
1942 	 * Set capture broadcast bit to capture broadcast frames.
1943 	 */
1944 	if (ifp->if_flags & IFF_BROADCAST)
1945 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1946 	else
1947 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1948 
1949 	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
1950 
1951 	/* Init our MAC address */
1952 	tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
1953 
1954 	/* Init multicast filter, if needed. */
1955 	tl_setmulti(sc);
1956 
1957 	/* Init circular RX list. */
1958 	if (tl_list_rx_init(sc) == ENOBUFS) {
1959 		if_printf(ifp, "initialization failed: no "
1960 			  "memory for rx buffers\n");
1961 		tl_stop(sc);
1962 		return;
1963 	}
1964 
1965 	/* Init TX pointers. */
1966 	tl_list_tx_init(sc);
1967 
1968 	/* Enable PCI interrupts. */
1969 	CMD_SET(sc, TL_CMD_INTSON);
1970 
1971 	/* Load the address of the rx list */
1972 	CMD_SET(sc, TL_CMD_RT);
1973 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
1974 
1975 	if (!sc->tl_bitrate) {
1976 		if (sc->tl_miibus != NULL) {
1977 			mii = device_get_softc(sc->tl_miibus);
1978 			mii_mediachg(mii);
1979 		}
1980 	}
1981 
1982 	/* Send the RX go command */
1983 	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
1984 
1985 	ifp->if_flags |= IFF_RUNNING;
1986 	ifp->if_flags &= ~IFF_OACTIVE;
1987 
1988 	/* Start the stats update counter */
1989 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1990 }
1991 
1992 /*
1993  * Set media options.
1994  */
1995 static int
1996 tl_ifmedia_upd(struct ifnet *ifp)
1997 {
1998 	struct tl_softc		*sc;
1999 	struct mii_data		*mii = NULL;
2000 
2001 	sc = ifp->if_softc;
2002 
2003 	if (sc->tl_bitrate)
2004 		tl_setmode(sc, sc->ifmedia.ifm_media);
2005 	else {
2006 		mii = device_get_softc(sc->tl_miibus);
2007 		mii_mediachg(mii);
2008 	}
2009 
2010 	return(0);
2011 }
2012 
2013 /*
2014  * Report current media status.
2015  */
2016 static void
2017 tl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2018 {
2019 	struct tl_softc		*sc;
2020 	struct mii_data		*mii;
2021 
2022 	sc = ifp->if_softc;
2023 
2024 	ifmr->ifm_active = IFM_ETHER;
2025 
2026 	if (sc->tl_bitrate) {
2027 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2028 			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2029 		else
2030 			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2031 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2032 			ifmr->ifm_active |= IFM_HDX;
2033 		else
2034 			ifmr->ifm_active |= IFM_FDX;
2035 		return;
2036 	} else {
2037 		mii = device_get_softc(sc->tl_miibus);
2038 		mii_pollstat(mii);
2039 		ifmr->ifm_active = mii->mii_media_active;
2040 		ifmr->ifm_status = mii->mii_media_status;
2041 	}
2042 
2043 	return;
2044 }
2045 
2046 static int
2047 tl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2048 {
2049 	struct tl_softc		*sc = ifp->if_softc;
2050 	struct ifreq		*ifr = (struct ifreq *) data;
2051 	int			error = 0;
2052 
2053 	switch(command) {
2054 	case SIOCSIFFLAGS:
2055 		if (ifp->if_flags & IFF_UP) {
2056 			if (ifp->if_flags & IFF_RUNNING &&
2057 			    ifp->if_flags & IFF_PROMISC &&
2058 			    !(sc->tl_if_flags & IFF_PROMISC)) {
2059 				tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2060 				tl_setmulti(sc);
2061 			} else if (ifp->if_flags & IFF_RUNNING &&
2062 			    !(ifp->if_flags & IFF_PROMISC) &&
2063 			    sc->tl_if_flags & IFF_PROMISC) {
2064 				tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2065 				tl_setmulti(sc);
2066 			} else
2067 				tl_init(sc);
2068 		} else {
2069 			if (ifp->if_flags & IFF_RUNNING) {
2070 				tl_stop(sc);
2071 			}
2072 		}
2073 		sc->tl_if_flags = ifp->if_flags;
2074 		error = 0;
2075 		break;
2076 	case SIOCADDMULTI:
2077 	case SIOCDELMULTI:
2078 		tl_setmulti(sc);
2079 		error = 0;
2080 		break;
2081 	case SIOCSIFMEDIA:
2082 	case SIOCGIFMEDIA:
2083 		if (sc->tl_bitrate)
2084 			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2085 		else {
2086 			struct mii_data		*mii;
2087 			mii = device_get_softc(sc->tl_miibus);
2088 			error = ifmedia_ioctl(ifp, ifr,
2089 			    &mii->mii_media, command);
2090 		}
2091 		break;
2092 	default:
2093 		error = ether_ioctl(ifp, command, data);
2094 		break;
2095 	}
2096 	return(error);
2097 }
2098 
2099 static void
2100 tl_watchdog(struct ifnet *ifp)
2101 {
2102 	struct tl_softc		*sc;
2103 
2104 	sc = ifp->if_softc;
2105 
2106 	if_printf(ifp, "device timeout\n");
2107 
2108 	ifp->if_oerrors++;
2109 
2110 	tl_softreset(sc, 1);
2111 	tl_init(sc);
2112 
2113 	return;
2114 }
2115 
2116 /*
2117  * Stop the adapter and free any mbufs allocated to the
2118  * RX and TX lists.
2119  */
2120 static void
2121 tl_stop(struct tl_softc *sc)
2122 {
2123 	int		i;
2124 	struct ifnet		*ifp;
2125 
2126 	ifp = &sc->arpcom.ac_if;
2127 
2128 	/* Stop the stats updater. */
2129 	callout_stop(&sc->tl_stat_timer);
2130 
2131 	/* Stop the transmitter */
2132 	CMD_CLR(sc, TL_CMD_RT);
2133 	CMD_SET(sc, TL_CMD_STOP);
2134 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2135 
2136 	/* Stop the receiver */
2137 	CMD_SET(sc, TL_CMD_RT);
2138 	CMD_SET(sc, TL_CMD_STOP);
2139 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2140 
2141 	/*
2142 	 * Disable host interrupts.
2143 	 */
2144 	CMD_SET(sc, TL_CMD_INTSOFF);
2145 
2146 	/*
2147 	 * Clear list pointer.
2148 	 */
2149 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2150 
2151 	/*
2152 	 * Free the RX lists.
2153 	 */
2154 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
2155 		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2156 			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2157 			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2158 		}
2159 	}
2160 	bzero((char *)&sc->tl_ldata->tl_rx_list,
2161 		sizeof(sc->tl_ldata->tl_rx_list));
2162 
2163 	/*
2164 	 * Free the TX list buffers.
2165 	 */
2166 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
2167 		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2168 			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2169 			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2170 		}
2171 	}
2172 	bzero((char *)&sc->tl_ldata->tl_tx_list,
2173 		sizeof(sc->tl_ldata->tl_tx_list));
2174 
2175 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2176 
2177 	return;
2178 }
2179 
2180 /*
2181  * Stop all chip I/O so that the kernel's probe routines don't
2182  * get confused by errant DMAs when rebooting.
2183  */
2184 static void
2185 tl_shutdown(device_t dev)
2186 {
2187 	struct tl_softc		*sc;
2188 
2189 	sc = device_get_softc(dev);
2190 
2191 	tl_stop(sc);
2192 
2193 	return;
2194 }
2195