xref: /dragonfly/sys/dev/netif/tl/if_tl.c (revision a1113e4e)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_tl.c,v 1.51.2.5 2001/12/16 15:46:08 luigi Exp $
33  */
34 
35 /*
36  * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
37  * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
38  * the National Semiconductor DP83840A physical interface and the
39  * Microchip Technology 24Cxx series serial EEPROM.
40  *
41  * Written using the following four documents:
42  *
43  * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
44  * National Semiconductor DP83840A data sheet (www.national.com)
45  * Microchip Technology 24C02C data sheet (www.microchip.com)
46  * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
47  *
48  * Written by Bill Paul <wpaul@ctr.columbia.edu>
49  * Electrical Engineering Department
50  * Columbia University, New York City
51  */
52 
53 /*
54  * Some notes about the ThunderLAN:
55  *
56  * The ThunderLAN controller is a single chip containing PCI controller
57  * logic, approximately 3K of on-board SRAM, a LAN controller, and media
58  * independent interface (MII) bus. The MII allows the ThunderLAN chip to
59  * control up to 32 different physical interfaces (PHYs). The ThunderLAN
60  * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
61  * to act as a complete ethernet interface.
62  *
63  * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
64  * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
65  * in full or half duplex. Some of the Compaq Deskpro machines use a
66  * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
67  * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
68  * concert with the ThunderLAN's internal PHY to provide full 10/100
69  * support. This is cheaper than using a standalone external PHY for both
70  * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
71  * A serial EEPROM is also attached to the ThunderLAN chip to provide
72  * power-up default register settings and for storing the adapter's
73  * station address. Although not supported by this driver, the ThunderLAN
74  * chip can also be connected to token ring PHYs.
75  *
76  * The ThunderLAN has a set of registers which can be used to issue
77  * commands, acknowledge interrupts, and to manipulate other internal
78  * registers on its DIO bus. The primary registers can be accessed
79  * using either programmed I/O (inb/outb) or via PCI memory mapping,
80  * depending on how the card is configured during the PCI probing
81  * phase. It is even possible to have both PIO and memory mapped
82  * access turned on at the same time.
83  *
84  * Frame reception and transmission with the ThunderLAN chip is done
85  * using frame 'lists.' A list structure looks more or less like this:
86  *
87  * struct tl_frag {
88  *	u_int32_t		fragment_address;
89  *	u_int32_t		fragment_size;
90  * };
91  * struct tl_list {
92  *	u_int32_t		forward_pointer;
93  *	u_int16_t		cstat;
94  *	u_int16_t		frame_size;
95  *	struct tl_frag		fragments[10];
96  * };
97  *
98  * The forward pointer in the list header can be either a 0 or the address
99  * of another list, which allows several lists to be linked together. Each
100  * list contains up to 10 fragment descriptors. This means the chip allows
101  * ethernet frames to be broken up into up to 10 chunks for transfer to
102  * and from the SRAM. Note that the forward pointer and fragment buffer
103  * addresses are physical memory addresses, not virtual. Note also that
104  * a single ethernet frame can not span lists: if the host wants to
105  * transmit a frame and the frame data is split up over more than 10
106  * buffers, the frame has to collapsed before it can be transmitted.
107  *
108  * To receive frames, the driver sets up a number of lists and populates
109  * the fragment descriptors, then it sends an RX GO command to the chip.
110  * When a frame is received, the chip will DMA it into the memory regions
111  * specified by the fragment descriptors and then trigger an RX 'end of
112  * frame interrupt' when done. The driver may choose to use only one
113  * fragment per list; this may result is slighltly less efficient use
114  * of memory in exchange for improving performance.
115  *
116  * To transmit frames, the driver again sets up lists and fragment
117  * descriptors, only this time the buffers contain frame data that
118  * is to be DMA'ed into the chip instead of out of it. Once the chip
119  * has transfered the data into its on-board SRAM, it will trigger a
120  * TX 'end of frame' interrupt. It will also generate an 'end of channel'
121  * interrupt when it reaches the end of the list.
122  */
123 
124 /*
125  * Some notes about this driver:
126  *
127  * The ThunderLAN chip provides a couple of different ways to organize
128  * reception, transmission and interrupt handling. The simplest approach
129  * is to use one list each for transmission and reception. In this mode,
130  * the ThunderLAN will generate two interrupts for every received frame
131  * (one RX EOF and one RX EOC) and two for each transmitted frame (one
132  * TX EOF and one TX EOC). This may make the driver simpler but it hurts
133  * performance to have to handle so many interrupts.
134  *
135  * Initially I wanted to create a circular list of receive buffers so
136  * that the ThunderLAN chip would think there was an infinitely long
137  * receive channel and never deliver an RXEOC interrupt. However this
138  * doesn't work correctly under heavy load: while the manual says the
139  * chip will trigger an RXEOF interrupt each time a frame is copied into
140  * memory, you can't count on the chip waiting around for you to acknowledge
141  * the interrupt before it starts trying to DMA the next frame. The result
142  * is that the chip might traverse the entire circular list and then wrap
143  * around before you have a chance to do anything about it. Consequently,
144  * the receive list is terminated (with a 0 in the forward pointer in the
145  * last element). Each time an RXEOF interrupt arrives, the used list
146  * is shifted to the end of the list. This gives the appearance of an
147  * infinitely large RX chain so long as the driver doesn't fall behind
148  * the chip and allow all of the lists to be filled up.
149  *
150  * If all the lists are filled, the adapter will deliver an RX 'end of
151  * channel' interrupt when it hits the 0 forward pointer at the end of
152  * the chain. The RXEOC handler then cleans out the RX chain and resets
153  * the list head pointer in the ch_parm register and restarts the receiver.
154  *
155  * For frame transmission, it is possible to program the ThunderLAN's
156  * transmit interrupt threshold so that the chip can acknowledge multiple
157  * lists with only a single TX EOF interrupt. This allows the driver to
158  * queue several frames in one shot, and only have to handle a total
159  * two interrupts (one TX EOF and one TX EOC) no matter how many frames
160  * are transmitted. Frame transmission is done directly out of the
161  * mbufs passed to the tl_start() routine via the interface send queue.
162  * The driver simply sets up the fragment descriptors in the transmit
163  * lists to point to the mbuf data regions and sends a TX GO command.
164  *
165  * Note that since the RX and TX lists themselves are always used
166  * only by the driver, the are malloc()ed once at driver initialization
167  * time and never free()ed.
168  *
169  * Also, in order to remain as platform independent as possible, this
170  * driver uses memory mapped register access to manipulate the card
171  * as opposed to programmed I/O. This avoids the use of the inb/outb
172  * (and related) instructions which are specific to the i386 platform.
173  *
174  * Using these techniques, this driver achieves very high performance
175  * by minimizing the amount of interrupts generated during large
176  * transfers and by completely avoiding buffer copies. Frame transfer
177  * to and from the ThunderLAN chip is performed entirely by the chip
178  * itself thereby reducing the load on the host CPU.
179  */
180 
181 #include <sys/param.h>
182 #include <sys/systm.h>
183 #include <sys/sockio.h>
184 #include <sys/mbuf.h>
185 #include <sys/malloc.h>
186 #include <sys/kernel.h>
187 #include <sys/socket.h>
188 #include <sys/serialize.h>
189 #include <sys/bus.h>
190 #include <sys/rman.h>
191 #include <sys/thread2.h>
192 #include <sys/interrupt.h>
193 
194 #include <net/if.h>
195 #include <net/ifq_var.h>
196 #include <net/if_arp.h>
197 #include <net/ethernet.h>
198 #include <net/if_dl.h>
199 #include <net/if_media.h>
200 
201 #include <net/bpf.h>
202 
203 #include <vm/vm.h>              /* for vtophys */
204 #include <vm/pmap.h>            /* for vtophys */
205 
206 #include "../mii_layer/mii.h"
207 #include "../mii_layer/miivar.h"
208 
209 #include <bus/pci/pcireg.h>
210 #include <bus/pci/pcivar.h>
211 
212 /*
213  * Default to using PIO register access mode to pacify certain
214  * laptop docking stations with built-in ThunderLAN chips that
215  * don't seem to handle memory mapped mode properly.
216  */
217 #define TL_USEIOSPACE
218 
219 #include "if_tlreg.h"
220 
221 /* "controller miibus0" required.  See GENERIC if you get errors here. */
222 #include "miibus_if.h"
223 
224 /*
225  * Various supported device vendors/types and their names.
226  */
227 
228 static struct tl_type tl_devs[] = {
229 	{ TI_VENDORID,	TI_DEVICEID_THUNDERLAN,
230 		"Texas Instruments ThunderLAN" },
231 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
232 		"Compaq Netelligent 10" },
233 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
234 		"Compaq Netelligent 10/100" },
235 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
236 		"Compaq Netelligent 10/100 Proliant" },
237 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
238 		"Compaq Netelligent 10/100 Dual Port" },
239 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
240 		"Compaq NetFlex-3/P Integrated" },
241 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
242 		"Compaq NetFlex-3/P" },
243 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
244 		"Compaq NetFlex 3/P w/ BNC" },
245 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
246 		"Compaq Netelligent 10/100 TX Embedded UTP" },
247 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
248 		"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
249 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
250 		"Compaq Netelligent 10/100 TX UTP" },
251 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
252 		"Olicom OC-2183/2185" },
253 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
254 		"Olicom OC-2325" },
255 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
256 		"Olicom OC-2326 10/100 TX UTP" },
257 	{ 0, 0, NULL }
258 };
259 
260 static int tl_probe		(device_t);
261 static int tl_attach		(device_t);
262 static int tl_detach		(device_t);
263 static int tl_intvec_rxeoc	(void *, u_int32_t);
264 static int tl_intvec_txeoc	(void *, u_int32_t);
265 static int tl_intvec_txeof	(void *, u_int32_t);
266 static int tl_intvec_rxeof	(void *, u_int32_t);
267 static int tl_intvec_adchk	(void *, u_int32_t);
268 static int tl_intvec_netsts	(void *, u_int32_t);
269 
270 static int tl_newbuf		(struct tl_softc *,
271 					struct tl_chain_onefrag *);
272 static void tl_stats_update	(void *);
273 static void tl_stats_update_serialized(void *);
274 static int tl_encap		(struct tl_softc *, struct tl_chain *,
275 						struct mbuf *);
276 
277 static void tl_intr		(void *);
278 static void tl_start		(struct ifnet *, struct ifaltq_subque *);
279 static int tl_ioctl		(struct ifnet *, u_long, caddr_t,
280 						struct ucred *);
281 static void tl_init		(void *);
282 static void tl_stop		(struct tl_softc *);
283 static void tl_watchdog		(struct ifnet *);
284 static void tl_shutdown		(device_t);
285 static int tl_ifmedia_upd	(struct ifnet *);
286 static void tl_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
287 
288 static u_int8_t tl_eeprom_putbyte	(struct tl_softc *, int);
289 static u_int8_t	tl_eeprom_getbyte	(struct tl_softc *,
290 						int, u_int8_t *);
291 static int tl_read_eeprom	(struct tl_softc *, caddr_t, int, int);
292 
293 static void tl_mii_sync		(struct tl_softc *);
294 static void tl_mii_send		(struct tl_softc *, u_int32_t, int);
295 static int tl_mii_readreg	(struct tl_softc *, struct tl_mii_frame *);
296 static int tl_mii_writereg	(struct tl_softc *, struct tl_mii_frame *);
297 static int tl_miibus_readreg	(device_t, int, int);
298 static int tl_miibus_writereg	(device_t, int, int, int);
299 static void tl_miibus_statchg	(device_t);
300 
301 static void tl_setmode		(struct tl_softc *, int);
302 static int tl_calchash		(caddr_t);
303 static void tl_setmulti		(struct tl_softc *);
304 static void tl_setfilt		(struct tl_softc *, caddr_t, int);
305 static void tl_softreset	(struct tl_softc *, int);
306 static void tl_hardreset	(device_t);
307 static int tl_list_rx_init	(struct tl_softc *);
308 static int tl_list_tx_init	(struct tl_softc *);
309 
310 static u_int8_t tl_dio_read8	(struct tl_softc *, int);
311 static u_int16_t tl_dio_read16	(struct tl_softc *, int);
312 static u_int32_t tl_dio_read32	(struct tl_softc *, int);
313 static void tl_dio_write8	(struct tl_softc *, int, int);
314 static void tl_dio_write16	(struct tl_softc *, int, int);
315 static void tl_dio_write32	(struct tl_softc *, int, int);
316 static void tl_dio_setbit	(struct tl_softc *, int, int);
317 static void tl_dio_clrbit	(struct tl_softc *, int, int);
318 static void tl_dio_setbit16	(struct tl_softc *, int, int);
319 static void tl_dio_clrbit16	(struct tl_softc *, int, int);
320 
321 #ifdef TL_USEIOSPACE
322 #define TL_RES		SYS_RES_IOPORT
323 #define TL_RID		TL_PCI_LOIO
324 #else
325 #define TL_RES		SYS_RES_MEMORY
326 #define TL_RID		TL_PCI_LOMEM
327 #endif
328 
329 static device_method_t tl_methods[] = {
330 	/* Device interface */
331 	DEVMETHOD(device_probe,		tl_probe),
332 	DEVMETHOD(device_attach,	tl_attach),
333 	DEVMETHOD(device_detach,	tl_detach),
334 	DEVMETHOD(device_shutdown,	tl_shutdown),
335 
336 	/* bus interface */
337 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
338 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
339 
340 	/* MII interface */
341 	DEVMETHOD(miibus_readreg,	tl_miibus_readreg),
342 	DEVMETHOD(miibus_writereg,	tl_miibus_writereg),
343 	DEVMETHOD(miibus_statchg,	tl_miibus_statchg),
344 
345 	DEVMETHOD_END
346 };
347 
348 static driver_t tl_driver = {
349 	"tl",
350 	tl_methods,
351 	sizeof(struct tl_softc)
352 };
353 
354 static devclass_t tl_devclass;
355 
356 DECLARE_DUMMY_MODULE(if_tl);
357 DRIVER_MODULE(if_tl, pci, tl_driver, tl_devclass, NULL, NULL);
358 DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, NULL, NULL);
359 
360 static u_int8_t
361 tl_dio_read8(struct tl_softc *sc, int reg)
362 {
363 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
364 	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
365 }
366 
367 static u_int16_t
368 tl_dio_read16(struct tl_softc *sc, int reg)
369 {
370 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
371 	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
372 }
373 
374 static u_int32_t
375 tl_dio_read32(struct tl_softc *sc, int reg)
376 {
377 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
378 	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
379 }
380 
381 static void
382 tl_dio_write8(struct tl_softc *sc, int reg, int val)
383 {
384 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
385 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
386 	return;
387 }
388 
389 static void
390 tl_dio_write16(struct tl_softc *sc, int reg, int val)
391 {
392 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
393 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
394 	return;
395 }
396 
397 static void
398 tl_dio_write32(struct tl_softc *sc, int reg, int val)
399 {
400 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
401 	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
402 	return;
403 }
404 
405 static void
406 tl_dio_setbit(struct tl_softc *sc, int reg, int bit)
407 {
408 	u_int8_t			f;
409 
410 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
411 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
412 	f |= bit;
413 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
414 
415 	return;
416 }
417 
418 static void
419 tl_dio_clrbit(struct tl_softc *sc, int reg, int bit)
420 {
421 	u_int8_t			f;
422 
423 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
424 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
425 	f &= ~bit;
426 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
427 
428 	return;
429 }
430 
431 static void
432 tl_dio_setbit16(struct tl_softc *sc, int reg, int bit)
433 {
434 	u_int16_t			f;
435 
436 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
437 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
438 	f |= bit;
439 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
440 
441 	return;
442 }
443 
444 static void
445 tl_dio_clrbit16(struct tl_softc *sc, int reg, int bit)
446 {
447 	u_int16_t			f;
448 
449 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
450 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
451 	f &= ~bit;
452 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
453 
454 	return;
455 }
456 
457 /*
458  * Send an instruction or address to the EEPROM, check for ACK.
459  */
460 static u_int8_t
461 tl_eeprom_putbyte(struct tl_softc *sc, int byte)
462 {
463 	int		i, ack = 0;
464 
465 	/*
466 	 * Make sure we're in TX mode.
467 	 */
468 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
469 
470 	/*
471 	 * Feed in each bit and stobe the clock.
472 	 */
473 	for (i = 0x80; i; i >>= 1) {
474 		if (byte & i) {
475 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
476 		} else {
477 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
478 		}
479 		DELAY(1);
480 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
481 		DELAY(1);
482 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
483 	}
484 
485 	/*
486 	 * Turn off TX mode.
487 	 */
488 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
489 
490 	/*
491 	 * Check for ack.
492 	 */
493 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
494 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
495 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
496 
497 	return(ack);
498 }
499 
500 /*
501  * Read a byte of data stored in the EEPROM at address 'addr.'
502  */
503 static u_int8_t
504 tl_eeprom_getbyte(struct tl_softc *sc, int addr, u_int8_t *dest)
505 {
506 	int		i;
507 	u_int8_t		byte = 0;
508 
509 	tl_dio_write8(sc, TL_NETSIO, 0);
510 
511 	EEPROM_START;
512 
513 	/*
514 	 * Send write control code to EEPROM.
515 	 */
516 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
517 		if_printf(&sc->arpcom.ac_if, "failed to send write command, "
518 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
519 		return(1);
520 	}
521 
522 	/*
523 	 * Send address of byte we want to read.
524 	 */
525 	if (tl_eeprom_putbyte(sc, addr)) {
526 		if_printf(&sc->arpcom.ac_if, "failed to send address, "
527 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
528 		return(1);
529 	}
530 
531 	EEPROM_STOP;
532 	EEPROM_START;
533 	/*
534 	 * Send read control code to EEPROM.
535 	 */
536 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
537 		if_printf(&sc->arpcom.ac_if, "failed to send write command, "
538 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
539 		return(1);
540 	}
541 
542 	/*
543 	 * Start reading bits from EEPROM.
544 	 */
545 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
546 	for (i = 0x80; i; i >>= 1) {
547 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
548 		DELAY(1);
549 		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
550 			byte |= i;
551 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
552 		DELAY(1);
553 	}
554 
555 	EEPROM_STOP;
556 
557 	/*
558 	 * No ACK generated for read, so just return byte.
559 	 */
560 
561 	*dest = byte;
562 
563 	return(0);
564 }
565 
566 /*
567  * Read a sequence of bytes from the EEPROM.
568  */
569 static int
570 tl_read_eeprom(struct tl_softc *sc, caddr_t dest, int off, int cnt)
571 {
572 	int			err = 0, i;
573 	u_int8_t		byte = 0;
574 
575 	for (i = 0; i < cnt; i++) {
576 		err = tl_eeprom_getbyte(sc, off + i, &byte);
577 		if (err)
578 			break;
579 		*(dest + i) = byte;
580 	}
581 
582 	return(err ? 1 : 0);
583 }
584 
585 static void
586 tl_mii_sync(struct tl_softc *sc)
587 {
588 	int		i;
589 
590 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
591 
592 	for (i = 0; i < 32; i++) {
593 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
594 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
595 	}
596 
597 	return;
598 }
599 
600 static void
601 tl_mii_send(struct tl_softc *sc, u_int32_t bits, int cnt)
602 {
603 	int			i;
604 
605 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
606 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
607 		if (bits & i) {
608 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
609 		} else {
610 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
611 		}
612 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
613 	}
614 }
615 
616 static int
617 tl_mii_readreg(struct tl_softc *sc, struct tl_mii_frame *frame)
618 {
619 	int			i, ack;
620 	int			minten = 0;
621 
622 	tl_mii_sync(sc);
623 
624 	/*
625 	 * Set up frame for RX.
626 	 */
627 	frame->mii_stdelim = TL_MII_STARTDELIM;
628 	frame->mii_opcode = TL_MII_READOP;
629 	frame->mii_turnaround = 0;
630 	frame->mii_data = 0;
631 
632 	/*
633 	 * Turn off MII interrupt by forcing MINTEN low.
634 	 */
635 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
636 	if (minten) {
637 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
638 	}
639 
640 	/*
641  	 * Turn on data xmit.
642 	 */
643 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
644 
645 	/*
646 	 * Send command/address info.
647 	 */
648 	tl_mii_send(sc, frame->mii_stdelim, 2);
649 	tl_mii_send(sc, frame->mii_opcode, 2);
650 	tl_mii_send(sc, frame->mii_phyaddr, 5);
651 	tl_mii_send(sc, frame->mii_regaddr, 5);
652 
653 	/*
654 	 * Turn off xmit.
655 	 */
656 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
657 
658 	/* Idle bit */
659 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
660 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
661 
662 	/* Check for ack */
663 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
664 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
665 
666 	/* Complete the cycle */
667 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
668 
669 	/*
670 	 * Now try reading data bits. If the ack failed, we still
671 	 * need to clock through 16 cycles to keep the PHYs in sync.
672 	 */
673 	if (ack) {
674 		for(i = 0; i < 16; i++) {
675 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
676 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
677 		}
678 		goto fail;
679 	}
680 
681 	for (i = 0x8000; i; i >>= 1) {
682 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
683 		if (!ack) {
684 			if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
685 				frame->mii_data |= i;
686 		}
687 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
688 	}
689 
690 fail:
691 
692 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
693 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
694 
695 	/* Reenable interrupts */
696 	if (minten) {
697 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
698 	}
699 
700 	if (ack)
701 		return(1);
702 	return(0);
703 }
704 
705 static int
706 tl_mii_writereg(struct tl_softc *sc, struct tl_mii_frame *frame)
707 {
708 	int			minten;
709 
710 	tl_mii_sync(sc);
711 
712 	/*
713 	 * Set up frame for TX.
714 	 */
715 
716 	frame->mii_stdelim = TL_MII_STARTDELIM;
717 	frame->mii_opcode = TL_MII_WRITEOP;
718 	frame->mii_turnaround = TL_MII_TURNAROUND;
719 
720 	/*
721 	 * Turn off MII interrupt by forcing MINTEN low.
722 	 */
723 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
724 	if (minten) {
725 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
726 	}
727 
728 	/*
729  	 * Turn on data output.
730 	 */
731 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
732 
733 	tl_mii_send(sc, frame->mii_stdelim, 2);
734 	tl_mii_send(sc, frame->mii_opcode, 2);
735 	tl_mii_send(sc, frame->mii_phyaddr, 5);
736 	tl_mii_send(sc, frame->mii_regaddr, 5);
737 	tl_mii_send(sc, frame->mii_turnaround, 2);
738 	tl_mii_send(sc, frame->mii_data, 16);
739 
740 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
741 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
742 
743 	/*
744 	 * Turn off xmit.
745 	 */
746 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
747 
748 	/* Reenable interrupts */
749 	if (minten)
750 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
751 
752 	return(0);
753 }
754 
755 static int
756 tl_miibus_readreg(device_t dev, int phy, int reg)
757 {
758 	struct tl_softc		*sc;
759 	struct tl_mii_frame	frame;
760 
761 	sc = device_get_softc(dev);
762 	bzero((char *)&frame, sizeof(frame));
763 
764 	frame.mii_phyaddr = phy;
765 	frame.mii_regaddr = reg;
766 	tl_mii_readreg(sc, &frame);
767 
768 	return(frame.mii_data);
769 }
770 
771 static int
772 tl_miibus_writereg(device_t dev, int phy, int reg, int data)
773 {
774 	struct tl_softc		*sc;
775 	struct tl_mii_frame	frame;
776 
777 	sc = device_get_softc(dev);
778 	bzero((char *)&frame, sizeof(frame));
779 
780 	frame.mii_phyaddr = phy;
781 	frame.mii_regaddr = reg;
782 	frame.mii_data = data;
783 
784 	tl_mii_writereg(sc, &frame);
785 
786 	return(0);
787 }
788 
789 static void
790 tl_miibus_statchg(device_t dev)
791 {
792 	struct tl_softc		*sc;
793 	struct mii_data		*mii;
794 
795 	sc = device_get_softc(dev);
796 	mii = device_get_softc(sc->tl_miibus);
797 
798 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
799 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
800 	} else {
801 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
802 	}
803 
804 	return;
805 }
806 
807 /*
808  * Set modes for bitrate devices.
809  */
810 static void
811 tl_setmode(struct tl_softc *sc, int media)
812 {
813 	if (IFM_SUBTYPE(media) == IFM_10_5)
814 		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
815 	if (IFM_SUBTYPE(media) == IFM_10_T) {
816 		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
817 		if ((media & IFM_GMASK) == IFM_FDX) {
818 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
819 			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
820 		} else {
821 			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
822 			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
823 		}
824 	}
825 
826 	return;
827 }
828 
829 /*
830  * Calculate the hash of a MAC address for programming the multicast hash
831  * table.  This hash is simply the address split into 6-bit chunks
832  * XOR'd, e.g.
833  * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
834  * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
835  * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
836  * the folded 24-bit value is split into 6-bit portions and XOR'd.
837  */
838 static int
839 tl_calchash(caddr_t addr)
840 {
841 	int			t;
842 
843 	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
844 		(addr[2] ^ addr[5]);
845 	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
846 }
847 
848 /*
849  * The ThunderLAN has a perfect MAC address filter in addition to
850  * the multicast hash filter. The perfect filter can be programmed
851  * with up to four MAC addresses. The first one is always used to
852  * hold the station address, which leaves us free to use the other
853  * three for multicast addresses.
854  */
855 static void
856 tl_setfilt(struct tl_softc *sc, caddr_t addr, int slot)
857 {
858 	int			i;
859 	u_int16_t		regaddr;
860 
861 	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
862 
863 	for (i = 0; i < ETHER_ADDR_LEN; i++)
864 		tl_dio_write8(sc, regaddr + i, *(addr + i));
865 
866 	return;
867 }
868 
869 /*
870  * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
871  * linked list. This is fine, except addresses are added from the head
872  * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
873  * group to always be in the perfect filter, but as more groups are added,
874  * the 224.0.0.1 entry (which is always added first) gets pushed down
875  * the list and ends up at the tail. So after 3 or 4 multicast groups
876  * are added, the all-hosts entry gets pushed out of the perfect filter
877  * and into the hash table.
878  *
879  * Because the multicast list is a doubly-linked list as opposed to a
880  * circular queue, we don't have the ability to just grab the tail of
881  * the list and traverse it backwards. Instead, we have to traverse
882  * the list once to find the tail, then traverse it again backwards to
883  * update the multicast filter.
884  */
885 static void
886 tl_setmulti(struct tl_softc *sc)
887 {
888 	struct ifnet		*ifp;
889 	u_int32_t		hashes[2] = { 0, 0 };
890 	int			h, i;
891 	struct ifmultiaddr	*ifma;
892 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
893 	ifp = &sc->arpcom.ac_if;
894 
895 	/* First, zot all the existing filters. */
896 	for (i = 1; i < 4; i++)
897 		tl_setfilt(sc, (caddr_t)&dummy, i);
898 	tl_dio_write32(sc, TL_HASH1, 0);
899 	tl_dio_write32(sc, TL_HASH2, 0);
900 
901 	/* Now program new ones. */
902 	if (ifp->if_flags & IFF_ALLMULTI) {
903 		hashes[0] = 0xFFFFFFFF;
904 		hashes[1] = 0xFFFFFFFF;
905 	} else {
906 		i = 1;
907 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
908 			if (ifma->ifma_addr->sa_family != AF_LINK)
909 				continue;
910 			/*
911 			 * Program the first three multicast groups
912 			 * into the perfect filter. For all others,
913 			 * use the hash table.
914 			 */
915 			if (i < 4) {
916 				tl_setfilt(sc,
917 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
918 				i++;
919 				continue;
920 			}
921 
922 			h = tl_calchash(
923 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
924 			if (h < 32)
925 				hashes[0] |= (1 << h);
926 			else
927 				hashes[1] |= (1 << (h - 32));
928 		}
929 	}
930 
931 	tl_dio_write32(sc, TL_HASH1, hashes[0]);
932 	tl_dio_write32(sc, TL_HASH2, hashes[1]);
933 
934 	return;
935 }
936 
937 /*
938  * This routine is recommended by the ThunderLAN manual to insure that
939  * the internal PHY is powered up correctly. It also recommends a one
940  * second pause at the end to 'wait for the clocks to start' but in my
941  * experience this isn't necessary.
942  */
943 static void
944 tl_hardreset(device_t dev)
945 {
946 	struct tl_softc		*sc;
947 	int			i;
948 	u_int16_t		flags;
949 
950 	sc = device_get_softc(dev);
951 
952 	tl_mii_sync(sc);
953 
954 	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
955 
956 	for (i = 0; i < MII_NPHY; i++)
957 		tl_miibus_writereg(dev, i, MII_BMCR, flags);
958 
959 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
960 	DELAY(50000);
961 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
962 	tl_mii_sync(sc);
963 	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
964 
965 	DELAY(50000);
966 	return;
967 }
968 
969 static void
970 tl_softreset(struct tl_softc *sc, int internal)
971 {
972         u_int32_t               cmd, i;
973 
974         /* Assert the adapter reset bit. */
975 	CMD_SET(sc, TL_CMD_ADRST);
976 
977         /* Turn off interrupts */
978 	CMD_SET(sc, TL_CMD_INTSOFF);
979 
980 	/* First, clear the stats registers. */
981 	for (i = 0; i < 5; i++)
982 		tl_dio_read32(sc, TL_TXGOODFRAMES);
983 
984         /* Clear Areg and Hash registers */
985 	for (i = 0; i < 8; i++)
986 		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
987 
988         /*
989 	 * Set up Netconfig register. Enable one channel and
990 	 * one fragment mode.
991 	 */
992 	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
993 	if (internal && !sc->tl_bitrate) {
994 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
995 	} else {
996 		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
997 	}
998 
999 	/* Handle cards with bitrate devices. */
1000 	if (sc->tl_bitrate)
1001 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
1002 
1003 	/*
1004 	 * Load adapter irq pacing timer and tx threshold.
1005 	 * We make the transmit threshold 1 initially but we may
1006 	 * change that later.
1007 	 */
1008 	cmd = CSR_READ_4(sc, TL_HOSTCMD);
1009 	cmd |= TL_CMD_NES;
1010 	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
1011 	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
1012 	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
1013 
1014         /* Unreset the MII */
1015 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
1016 
1017 	/* Take the adapter out of reset */
1018 	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
1019 
1020 	/* Wait for things to settle down a little. */
1021 	DELAY(500);
1022 
1023         return;
1024 }
1025 
1026 /*
1027  * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1028  * against our list and return its name if we find a match.
1029  */
1030 static int
1031 tl_probe(device_t dev)
1032 {
1033 	struct tl_type		*t;
1034 
1035 	t = tl_devs;
1036 
1037 	while(t->tl_name != NULL) {
1038 		if ((pci_get_vendor(dev) == t->tl_vid) &&
1039 		    (pci_get_device(dev) == t->tl_did)) {
1040 			device_set_desc(dev, t->tl_name);
1041 			return(0);
1042 		}
1043 		t++;
1044 	}
1045 
1046 	return(ENXIO);
1047 }
1048 
1049 static int
1050 tl_attach(device_t dev)
1051 {
1052 	int			i;
1053 	u_int16_t		did, vid;
1054 	struct tl_type		*t;
1055 	struct ifnet		*ifp;
1056 	struct tl_softc		*sc;
1057 	int			error = 0, rid;
1058 	uint8_t			eaddr[ETHER_ADDR_LEN];
1059 
1060 	vid = pci_get_vendor(dev);
1061 	did = pci_get_device(dev);
1062 	sc = device_get_softc(dev);
1063 
1064 	t = tl_devs;
1065 	while(t->tl_name != NULL) {
1066 		if (vid == t->tl_vid && did == t->tl_did)
1067 			break;
1068 		t++;
1069 	}
1070 
1071 	KKASSERT(t->tl_name != NULL);
1072 
1073 	pci_enable_busmaster(dev);
1074 
1075 #ifdef TL_USEIOSPACE
1076 	rid = TL_PCI_LOIO;
1077 	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1078 		RF_ACTIVE);
1079 
1080 	/*
1081 	 * Some cards have the I/O and memory mapped address registers
1082 	 * reversed. Try both combinations before giving up.
1083 	 */
1084 	if (sc->tl_res == NULL) {
1085 		rid = TL_PCI_LOMEM;
1086 		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1087 		    RF_ACTIVE);
1088 	}
1089 #else
1090 	rid = TL_PCI_LOMEM;
1091 	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1092 	    RF_ACTIVE);
1093 	if (sc->tl_res == NULL) {
1094 		rid = TL_PCI_LOIO;
1095 		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1096 		    RF_ACTIVE);
1097 	}
1098 #endif
1099 
1100 	if (sc->tl_res == NULL) {
1101 		device_printf(dev, "couldn't map ports/memory\n");
1102 		error = ENXIO;
1103 		return(error);
1104 	}
1105 
1106 	sc->tl_btag = rman_get_bustag(sc->tl_res);
1107 	sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
1108 
1109 #ifdef notdef
1110 	/*
1111 	 * The ThunderLAN manual suggests jacking the PCI latency
1112 	 * timer all the way up to its maximum value. I'm not sure
1113 	 * if this is really necessary, but what the manual wants,
1114 	 * the manual gets.
1115 	 */
1116 	command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1117 	command |= 0x0000FF00;
1118 	pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1119 #endif
1120 
1121 	/* Allocate interrupt */
1122 	rid = 0;
1123 	sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1124 	    RF_SHAREABLE | RF_ACTIVE);
1125 
1126 	if (sc->tl_irq == NULL) {
1127 		device_printf(dev, "couldn't map interrupt\n");
1128 		error = ENXIO;
1129 		goto fail;
1130 	}
1131 
1132 	/*
1133 	 * Now allocate memory for the TX and RX lists.
1134 	 */
1135 	sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1136 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
1137 
1138 	if (sc->tl_ldata == NULL) {
1139 		device_printf(dev, "no memory for list buffers!\n");
1140 		error = ENXIO;
1141 		goto fail;
1142 	}
1143 
1144 	sc->tl_dinfo = t;
1145 	if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
1146 		sc->tl_eeaddr = TL_EEPROM_EADDR;
1147 	if (t->tl_vid == OLICOM_VENDORID)
1148 		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1149 
1150 	/* Reset the adapter. */
1151 	tl_softreset(sc, 1);
1152 	tl_hardreset(dev);
1153 	tl_softreset(sc, 1);
1154 
1155 	ifp = &sc->arpcom.ac_if;
1156 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1157 
1158 	/*
1159 	 * Get station address from the EEPROM.
1160 	 */
1161 	if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1162 		device_printf(dev, "failed to read station address\n");
1163 		error = ENXIO;
1164 		goto fail;
1165 	}
1166 
1167         /*
1168          * XXX Olicom, in its desire to be different from the
1169          * rest of the world, has done strange things with the
1170          * encoding of the station address in the EEPROM. First
1171          * of all, they store the address at offset 0xF8 rather
1172          * than at 0x83 like the ThunderLAN manual suggests.
1173          * Second, they store the address in three 16-bit words in
1174          * network byte order, as opposed to storing it sequentially
1175          * like all the other ThunderLAN cards. In order to get
1176          * the station address in a form that matches what the Olicom
1177          * diagnostic utility specifies, we have to byte-swap each
1178          * word. To make things even more confusing, neither 00:00:28
1179          * nor 00:00:24 appear in the IEEE OUI database.
1180          */
1181         if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
1182                 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1183                         u_int16_t               *p;
1184                         p = (u_int16_t *)&eaddr[i];
1185                         *p = ntohs(*p);
1186                 }
1187         }
1188 
1189 	ifp->if_softc = sc;
1190 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1191 	ifp->if_ioctl = tl_ioctl;
1192 	ifp->if_start = tl_start;
1193 	ifp->if_watchdog = tl_watchdog;
1194 	ifp->if_init = tl_init;
1195 	ifp->if_mtu = ETHERMTU;
1196 	ifq_set_maxlen(&ifp->if_snd, TL_TX_LIST_CNT - 1);
1197 	ifq_set_ready(&ifp->if_snd);
1198 	callout_init(&sc->tl_stat_timer);
1199 
1200 	/* Reset the adapter again. */
1201 	tl_softreset(sc, 1);
1202 	tl_hardreset(dev);
1203 	tl_softreset(sc, 1);
1204 
1205 	/*
1206 	 * Do MII setup. If no PHYs are found, then this is a
1207 	 * bitrate ThunderLAN chip that only supports 10baseT
1208 	 * and AUI/BNC.
1209 	 */
1210 	if (mii_phy_probe(dev, &sc->tl_miibus,
1211 	    tl_ifmedia_upd, tl_ifmedia_sts)) {
1212 		struct ifmedia		*ifm;
1213 		sc->tl_bitrate = 1;
1214 		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1215 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1216 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1217 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1218 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1219 		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1220 		/* Reset again, this time setting bitrate mode. */
1221 		tl_softreset(sc, 1);
1222 		ifm = &sc->ifmedia;
1223 		ifm->ifm_media = ifm->ifm_cur->ifm_media;
1224 		tl_ifmedia_upd(ifp);
1225 	}
1226 
1227 	/*
1228 	 * Call MI attach routine.
1229 	 */
1230 	ether_ifattach(ifp, eaddr, NULL);
1231 
1232 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->tl_irq));
1233 
1234 	error = bus_setup_intr(dev, sc->tl_irq, INTR_MPSAFE,
1235 			       tl_intr, sc, &sc->tl_intrhand,
1236 			       ifp->if_serializer);
1237 
1238 	if (error) {
1239 		ether_ifdetach(ifp);
1240 		device_printf(dev, "couldn't set up irq\n");
1241 		goto fail;
1242 	}
1243 
1244 	return(0);
1245 
1246 fail:
1247 	tl_detach(dev);
1248 	return(error);
1249 }
1250 
1251 static int
1252 tl_detach(device_t dev)
1253 {
1254 	struct tl_softc *sc = device_get_softc(dev);
1255 	struct ifnet *ifp = &sc->arpcom.ac_if;
1256 
1257 	if (device_is_attached(dev)) {
1258 		lwkt_serialize_enter(ifp->if_serializer);
1259 		tl_stop(sc);
1260 		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1261 		lwkt_serialize_exit(ifp->if_serializer);
1262 
1263 		ether_ifdetach(ifp);
1264 	}
1265 
1266 	if (sc->tl_miibus)
1267 		device_delete_child(dev, sc->tl_miibus);
1268 	bus_generic_detach(dev);
1269 
1270 	if (sc->tl_ldata)
1271 		contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1272 	if (sc->tl_bitrate)
1273 		ifmedia_removeall(&sc->ifmedia);
1274 	if (sc->tl_irq)
1275 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1276 	if (sc->tl_res)
1277 		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1278 
1279 	return(0);
1280 }
1281 
1282 /*
1283  * Initialize the transmit lists.
1284  */
1285 static int
1286 tl_list_tx_init(struct tl_softc *sc)
1287 {
1288 	struct tl_chain_data	*cd;
1289 	struct tl_list_data	*ld;
1290 	int			i;
1291 
1292 	cd = &sc->tl_cdata;
1293 	ld = sc->tl_ldata;
1294 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1295 		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1296 		if (i == (TL_TX_LIST_CNT - 1))
1297 			cd->tl_tx_chain[i].tl_next = NULL;
1298 		else
1299 			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1300 	}
1301 
1302 	cd->tl_tx_free = &cd->tl_tx_chain[0];
1303 	cd->tl_tx_tail = cd->tl_tx_head = NULL;
1304 	sc->tl_txeoc = 1;
1305 
1306 	return(0);
1307 }
1308 
1309 /*
1310  * Initialize the RX lists and allocate mbufs for them.
1311  */
1312 static int
1313 tl_list_rx_init(struct tl_softc *sc)
1314 {
1315 	struct tl_chain_data	*cd;
1316 	struct tl_list_data	*ld;
1317 	int			i;
1318 
1319 	cd = &sc->tl_cdata;
1320 	ld = sc->tl_ldata;
1321 
1322 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1323 		cd->tl_rx_chain[i].tl_ptr =
1324 			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
1325 		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1326 			return(ENOBUFS);
1327 		if (i == (TL_RX_LIST_CNT - 1)) {
1328 			cd->tl_rx_chain[i].tl_next = NULL;
1329 			ld->tl_rx_list[i].tlist_fptr = 0;
1330 		} else {
1331 			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1332 			ld->tl_rx_list[i].tlist_fptr =
1333 					vtophys(&ld->tl_rx_list[i + 1]);
1334 		}
1335 	}
1336 
1337 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1338 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1339 
1340 	return(0);
1341 }
1342 
1343 static int
1344 tl_newbuf(struct tl_softc *sc, struct tl_chain_onefrag *c)
1345 {
1346 	struct mbuf *m_new;
1347 
1348 	m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1349 	if (m_new == NULL)
1350 		return (ENOBUFS);
1351 
1352 	c->tl_mbuf = m_new;
1353 	c->tl_next = NULL;
1354 	c->tl_ptr->tlist_frsize = MCLBYTES;
1355 	c->tl_ptr->tlist_fptr = 0;
1356 	c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1357 	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1358 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1359 
1360 	return(0);
1361 }
1362 
1363 /*
1364  * Interrupt handler for RX 'end of frame' condition (EOF). This
1365  * tells us that a full ethernet frame has been captured and we need
1366  * to handle it.
1367  *
1368  * Reception is done using 'lists' which consist of a header and a
1369  * series of 10 data count/data address pairs that point to buffers.
1370  * Initially you're supposed to create a list, populate it with pointers
1371  * to buffers, then load the physical address of the list into the
1372  * ch_parm register. The adapter is then supposed to DMA the received
1373  * frame into the buffers for you.
1374  *
1375  * To make things as fast as possible, we have the chip DMA directly
1376  * into mbufs. This saves us from having to do a buffer copy: we can
1377  * just hand the mbufs directly to ether_input(). Once the frame has
1378  * been sent on its way, the 'list' structure is assigned a new buffer
1379  * and moved to the end of the RX chain. As long we we stay ahead of
1380  * the chip, it will always think it has an endless receive channel.
1381  *
1382  * If we happen to fall behind and the chip manages to fill up all of
1383  * the buffers, it will generate an end of channel interrupt and wait
1384  * for us to empty the chain and restart the receiver.
1385  */
1386 static int
1387 tl_intvec_rxeof(void *xsc, u_int32_t type)
1388 {
1389 	struct tl_softc		*sc;
1390 	int			r = 0, total_len = 0;
1391 	struct ether_header	*eh;
1392 	struct mbuf		*m;
1393 	struct ifnet		*ifp;
1394 	struct tl_chain_onefrag	*cur_rx;
1395 
1396 	sc = xsc;
1397 	ifp = &sc->arpcom.ac_if;
1398 
1399 	while(sc->tl_cdata.tl_rx_head != NULL) {
1400 		cur_rx = sc->tl_cdata.tl_rx_head;
1401 		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1402 			break;
1403 		r++;
1404 		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1405 		m = cur_rx->tl_mbuf;
1406 		total_len = cur_rx->tl_ptr->tlist_frsize;
1407 
1408 		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1409 			IFNET_STAT_INC(ifp, ierrors, 1);
1410 			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1411 			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1412 			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1413 			continue;
1414 		}
1415 
1416 		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1417 						vtophys(cur_rx->tl_ptr);
1418 		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1419 		sc->tl_cdata.tl_rx_tail = cur_rx;
1420 
1421 		eh = mtod(m, struct ether_header *);
1422 		m->m_pkthdr.rcvif = ifp;
1423 		m->m_pkthdr.len = m->m_len = total_len;
1424 
1425 		/*
1426 		 * Note: when the ThunderLAN chip is in 'capture all
1427 		 * frames' mode, it will receive its own transmissions.
1428 		 * We drop don't need to process our own transmissions,
1429 		 * so we drop them here and continue.
1430 		 */
1431 		/*if (ifp->if_flags & IFF_PROMISC && */
1432 		if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1433 		 					ETHER_ADDR_LEN)) {
1434 				m_freem(m);
1435 				continue;
1436 		}
1437 
1438 		ifp->if_input(ifp, m);
1439 	}
1440 
1441 	return(r);
1442 }
1443 
1444 /*
1445  * The RX-EOC condition hits when the ch_parm address hasn't been
1446  * initialized or the adapter reached a list with a forward pointer
1447  * of 0 (which indicates the end of the chain). In our case, this means
1448  * the card has hit the end of the receive buffer chain and we need to
1449  * empty out the buffers and shift the pointer back to the beginning again.
1450  */
1451 static int
1452 tl_intvec_rxeoc(void *xsc, u_int32_t type)
1453 {
1454 	struct tl_softc		*sc;
1455 	int			r;
1456 	struct tl_chain_data	*cd;
1457 
1458 
1459 	sc = xsc;
1460 	cd = &sc->tl_cdata;
1461 
1462 	/* Flush out the receive queue and ack RXEOF interrupts. */
1463 	r = tl_intvec_rxeof(xsc, type);
1464 	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1465 	r = 1;
1466 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1467 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1468 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1469 	r |= (TL_CMD_GO|TL_CMD_RT);
1470 	return(r);
1471 }
1472 
1473 static int
1474 tl_intvec_txeof(void *xsc, u_int32_t type)
1475 {
1476 	struct tl_softc		*sc;
1477 	int			r = 0;
1478 	struct tl_chain		*cur_tx;
1479 
1480 	sc = xsc;
1481 
1482 	/*
1483 	 * Go through our tx list and free mbufs for those
1484 	 * frames that have been sent.
1485 	 */
1486 	while (sc->tl_cdata.tl_tx_head != NULL) {
1487 		cur_tx = sc->tl_cdata.tl_tx_head;
1488 		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1489 			break;
1490 		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1491 
1492 		r++;
1493 		m_freem(cur_tx->tl_mbuf);
1494 		cur_tx->tl_mbuf = NULL;
1495 
1496 		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1497 		sc->tl_cdata.tl_tx_free = cur_tx;
1498 		if (!cur_tx->tl_ptr->tlist_fptr)
1499 			break;
1500 	}
1501 
1502 	return(r);
1503 }
1504 
1505 /*
1506  * The transmit end of channel interrupt. The adapter triggers this
1507  * interrupt to tell us it hit the end of the current transmit list.
1508  *
1509  * A note about this: it's possible for a condition to arise where
1510  * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1511  * You have to avoid this since the chip expects things to go in a
1512  * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1513  * When the TXEOF handler is called, it will free all of the transmitted
1514  * frames and reset the tx_head pointer to NULL. However, a TXEOC
1515  * interrupt should be received and acknowledged before any more frames
1516  * are queued for transmission. If tl_statrt() is called after TXEOF
1517  * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1518  * it could attempt to issue a transmit command prematurely.
1519  *
1520  * To guard against this, tl_start() will only issue transmit commands
1521  * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1522  * can set this flag once tl_start() has cleared it.
1523  */
1524 static int
1525 tl_intvec_txeoc(void *xsc, u_int32_t type)
1526 {
1527 	struct tl_softc		*sc;
1528 	struct ifnet		*ifp;
1529 	u_int32_t		cmd;
1530 
1531 	sc = xsc;
1532 	ifp = &sc->arpcom.ac_if;
1533 
1534 	/* Clear the timeout timer. */
1535 	ifp->if_timer = 0;
1536 
1537 	if (sc->tl_cdata.tl_tx_head == NULL) {
1538 		ifq_clr_oactive(&ifp->if_snd);
1539 		sc->tl_cdata.tl_tx_tail = NULL;
1540 		sc->tl_txeoc = 1;
1541 	} else {
1542 		sc->tl_txeoc = 0;
1543 		/* First we have to ack the EOC interrupt. */
1544 		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1545 		/* Then load the address of the next TX list. */
1546 		CSR_WRITE_4(sc, TL_CH_PARM,
1547 		    vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1548 		/* Restart TX channel. */
1549 		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1550 		cmd &= ~TL_CMD_RT;
1551 		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1552 		CMD_PUT(sc, cmd);
1553 		return(0);
1554 	}
1555 
1556 	return(1);
1557 }
1558 
1559 static int
1560 tl_intvec_adchk(void *xsc, u_int32_t type)
1561 {
1562 	struct tl_softc		*sc;
1563 
1564 	sc = xsc;
1565 
1566 	if (type) {
1567 		if_printf(&sc->arpcom.ac_if, "adapter check: %x\n",
1568 			  (unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1569 	}
1570 
1571 	tl_softreset(sc, 1);
1572 	tl_stop(sc);
1573 	tl_init(sc);
1574 	CMD_SET(sc, TL_CMD_INTSON);
1575 
1576 	return(0);
1577 }
1578 
1579 static int
1580 tl_intvec_netsts(void *xsc, u_int32_t type)
1581 {
1582 	struct tl_softc		*sc;
1583 	u_int16_t		netsts;
1584 
1585 	sc = xsc;
1586 
1587 	netsts = tl_dio_read16(sc, TL_NETSTS);
1588 	tl_dio_write16(sc, TL_NETSTS, netsts);
1589 
1590 	if_printf(&sc->arpcom.ac_if, "network status: %x\n", netsts);
1591 
1592 	return(1);
1593 }
1594 
1595 static void
1596 tl_intr(void *xsc)
1597 {
1598 	struct tl_softc		*sc;
1599 	struct ifnet		*ifp;
1600 	int			r = 0;
1601 	u_int32_t		type = 0;
1602 	u_int16_t		ints = 0;
1603 	u_int8_t		ivec = 0;
1604 
1605 	sc = xsc;
1606 
1607 	/* Disable interrupts */
1608 	ints = CSR_READ_2(sc, TL_HOST_INT);
1609 	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1610 	type = (ints << 16) & 0xFFFF0000;
1611 	ivec = (ints & TL_VEC_MASK) >> 5;
1612 	ints = (ints & TL_INT_MASK) >> 2;
1613 
1614 	ifp = &sc->arpcom.ac_if;
1615 
1616 	switch(ints) {
1617 	case (TL_INTR_INVALID):
1618 #ifdef DIAGNOSTIC
1619 		if_printf(ifp, "got an invalid interrupt!\n");
1620 #endif
1621 		/* Re-enable interrupts but don't ack this one. */
1622 		CMD_PUT(sc, type);
1623 		r = 0;
1624 		break;
1625 	case (TL_INTR_TXEOF):
1626 		r = tl_intvec_txeof(sc, type);
1627 		break;
1628 	case (TL_INTR_TXEOC):
1629 		r = tl_intvec_txeoc(sc, type);
1630 		break;
1631 	case (TL_INTR_STATOFLOW):
1632 		tl_stats_update_serialized(sc);
1633 		r = 1;
1634 		break;
1635 	case (TL_INTR_RXEOF):
1636 		r = tl_intvec_rxeof(sc, type);
1637 		break;
1638 	case (TL_INTR_DUMMY):
1639 		if_printf(ifp, "got a dummy interrupt\n");
1640 		r = 1;
1641 		break;
1642 	case (TL_INTR_ADCHK):
1643 		if (ivec)
1644 			r = tl_intvec_adchk(sc, type);
1645 		else
1646 			r = tl_intvec_netsts(sc, type);
1647 		break;
1648 	case (TL_INTR_RXEOC):
1649 		r = tl_intvec_rxeoc(sc, type);
1650 		break;
1651 	default:
1652 		if_printf(ifp, "bogus interrupt type\n");
1653 		break;
1654 	}
1655 
1656 	/* Re-enable interrupts */
1657 	if (r) {
1658 		CMD_PUT(sc, TL_CMD_ACK | r | type);
1659 	}
1660 
1661 	if (!ifq_is_empty(&ifp->if_snd))
1662 		if_devstart(ifp);
1663 }
1664 
1665 static
1666 void
1667 tl_stats_update(void *xsc)
1668 {
1669 	struct tl_softc *sc = xsc;
1670 	struct ifnet *ifp = &sc->arpcom.ac_if;
1671 
1672 	lwkt_serialize_enter(ifp->if_serializer);
1673 	tl_stats_update_serialized(xsc);
1674 	lwkt_serialize_exit(ifp->if_serializer);
1675 }
1676 
1677 static
1678 void
1679 tl_stats_update_serialized(void *xsc)
1680 {
1681 	struct tl_softc		*sc;
1682 	struct ifnet		*ifp;
1683 	struct tl_stats		tl_stats;
1684 	struct mii_data		*mii;
1685 	u_int32_t		*p;
1686 
1687 	bzero((char *)&tl_stats, sizeof(struct tl_stats));
1688 
1689 	sc = xsc;
1690 	ifp = &sc->arpcom.ac_if;
1691 
1692 	p = (u_int32_t *)&tl_stats;
1693 
1694 	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1695 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1696 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1697 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1698 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1699 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1700 
1701 	IFNET_STAT_INC(ifp, opackets, tl_tx_goodframes(tl_stats));
1702 	IFNET_STAT_INC(ifp, collisions, tl_stats.tl_tx_single_collision +
1703 	    tl_stats.tl_tx_multi_collision);
1704 	IFNET_STAT_INC(ifp, ipackets, tl_rx_goodframes(tl_stats));
1705 	IFNET_STAT_INC(ifp, ierrors, tl_stats.tl_crc_errors +
1706 	    tl_stats.tl_code_errors + tl_rx_overrun(tl_stats));
1707 	IFNET_STAT_INC(ifp, oerrors, tl_tx_underrun(tl_stats));
1708 
1709 	if (tl_tx_underrun(tl_stats)) {
1710 		u_int8_t		tx_thresh;
1711 		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1712 		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1713 			tx_thresh >>= 4;
1714 			tx_thresh++;
1715 			if_printf(ifp, "tx underrun -- increasing "
1716 				  "tx threshold to %d bytes\n",
1717 				  (64 * (tx_thresh * 4)));
1718 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1719 			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1720 		}
1721 	}
1722 
1723 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1724 
1725 	if (!sc->tl_bitrate) {
1726 		mii = device_get_softc(sc->tl_miibus);
1727 		mii_tick(mii);
1728 	}
1729 }
1730 
1731 /*
1732  * Encapsulate an mbuf chain in a list by coupling the mbuf data
1733  * pointers to the fragment pointers.
1734  */
1735 static int
1736 tl_encap(struct tl_softc *sc, struct tl_chain *c, struct mbuf *m_head)
1737 {
1738 	int			frag = 0;
1739 	struct tl_frag		*f = NULL;
1740 	int			total_len;
1741 	struct mbuf		*m;
1742 
1743 	/*
1744  	 * Start packing the mbufs in this chain into
1745 	 * the fragment pointers. Stop when we run out
1746  	 * of fragments or hit the end of the mbuf chain.
1747 	 */
1748 	total_len = 0;
1749 
1750 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1751 		if (m->m_len != 0) {
1752 			if (frag == TL_MAXFRAGS)
1753 				break;
1754 			total_len+= m->m_len;
1755 			c->tl_ptr->tl_frag[frag].tlist_dadr =
1756 				vtophys(mtod(m, vm_offset_t));
1757 			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1758 			frag++;
1759 		}
1760 	}
1761 
1762 	/*
1763 	 * Handle special cases.
1764 	 * Special case #1: we used up all 10 fragments, but
1765 	 * we have more mbufs left in the chain. Copy the
1766 	 * data into an mbuf cluster. Note that we don't
1767 	 * bother clearing the values in the other fragment
1768 	 * pointers/counters; it wouldn't gain us anything,
1769 	 * and would waste cycles.
1770 	 */
1771 	if (m != NULL) {
1772 		struct mbuf *m_new;
1773 
1774 		m_new = m_getl(m_head->m_pkthdr.len, MB_DONTWAIT, MT_DATA,
1775 			       M_PKTHDR, NULL);
1776 		if (m_new == NULL) {
1777 			if_printf(&sc->arpcom.ac_if, "no memory for tx list\n");
1778 			return (1);
1779 		}
1780 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1781 					mtod(m_new, caddr_t));
1782 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1783 		m_freem(m_head);
1784 		m_head = m_new;
1785 		f = &c->tl_ptr->tl_frag[0];
1786 		f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1787 		f->tlist_dcnt = total_len = m_new->m_len;
1788 		frag = 1;
1789 	}
1790 
1791 	/*
1792 	 * Special case #2: the frame is smaller than the minimum
1793 	 * frame size. We have to pad it to make the chip happy.
1794 	 */
1795 	if (total_len < TL_MIN_FRAMELEN) {
1796 		if (frag == TL_MAXFRAGS) {
1797 			if_printf(&sc->arpcom.ac_if, "all frags filled but "
1798 				  "frame still to small!\n");
1799 		}
1800 		f = &c->tl_ptr->tl_frag[frag];
1801 		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1802 		f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1803 		total_len += f->tlist_dcnt;
1804 		frag++;
1805 	}
1806 
1807 	c->tl_mbuf = m_head;
1808 	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1809 	c->tl_ptr->tlist_frsize = total_len;
1810 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1811 	c->tl_ptr->tlist_fptr = 0;
1812 
1813 	return(0);
1814 }
1815 
1816 /*
1817  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1818  * to the mbuf data regions directly in the transmit lists. We also save a
1819  * copy of the pointers since the transmit list fragment pointers are
1820  * physical addresses.
1821  */
1822 static void
1823 tl_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1824 {
1825 	struct tl_softc		*sc;
1826 	struct mbuf		*m_head = NULL;
1827 	u_int32_t		cmd;
1828 	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1829 
1830 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1831 
1832 	sc = ifp->if_softc;
1833 
1834 	/*
1835 	 * Check for an available queue slot. If there are none,
1836 	 * punt.
1837 	 */
1838 	if (sc->tl_cdata.tl_tx_free == NULL) {
1839 		ifq_set_oactive(&ifp->if_snd);
1840 		return;
1841 	}
1842 
1843 	start_tx = sc->tl_cdata.tl_tx_free;
1844 
1845 	while(sc->tl_cdata.tl_tx_free != NULL) {
1846 		m_head = ifq_dequeue(&ifp->if_snd);
1847 		if (m_head == NULL)
1848 			break;
1849 
1850 		/* Pick a chain member off the free list. */
1851 		cur_tx = sc->tl_cdata.tl_tx_free;
1852 		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1853 
1854 		cur_tx->tl_next = NULL;
1855 
1856 		/* Pack the data into the list. */
1857 		tl_encap(sc, cur_tx, m_head);
1858 
1859 		/* Chain it together */
1860 		if (prev != NULL) {
1861 			prev->tl_next = cur_tx;
1862 			prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1863 		}
1864 		prev = cur_tx;
1865 
1866 		BPF_MTAP(ifp, cur_tx->tl_mbuf);
1867 	}
1868 
1869 	/*
1870 	 * If there are no packets queued, bail.
1871 	 */
1872 	if (cur_tx == NULL)
1873 		return;
1874 
1875 	/*
1876 	 * That's all we can stands, we can't stands no more.
1877 	 * If there are no other transfers pending, then issue the
1878 	 * TX GO command to the adapter to start things moving.
1879 	 * Otherwise, just leave the data in the queue and let
1880 	 * the EOF/EOC interrupt handler send.
1881 	 */
1882 	if (sc->tl_cdata.tl_tx_head == NULL) {
1883 		sc->tl_cdata.tl_tx_head = start_tx;
1884 		sc->tl_cdata.tl_tx_tail = cur_tx;
1885 
1886 		if (sc->tl_txeoc) {
1887 			sc->tl_txeoc = 0;
1888 			CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
1889 			cmd = CSR_READ_4(sc, TL_HOSTCMD);
1890 			cmd &= ~TL_CMD_RT;
1891 			cmd |= TL_CMD_GO|TL_CMD_INTSON;
1892 			CMD_PUT(sc, cmd);
1893 		}
1894 	} else {
1895 		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
1896 		sc->tl_cdata.tl_tx_tail = cur_tx;
1897 	}
1898 
1899 	/*
1900 	 * Set a timeout in case the chip goes out to lunch.
1901 	 */
1902 	ifp->if_timer = 5;
1903 
1904 	return;
1905 }
1906 
1907 static void
1908 tl_init(void *xsc)
1909 {
1910 	struct tl_softc		*sc = xsc;
1911 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1912 	struct mii_data		*mii;
1913 
1914 	/*
1915 	 * Cancel pending I/O.
1916 	 */
1917 	tl_stop(sc);
1918 
1919 	/* Initialize TX FIFO threshold */
1920 	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1921 	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
1922 
1923         /* Set PCI burst size */
1924 	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
1925 
1926 	/*
1927 	 * Set 'capture all frames' bit for promiscuous mode.
1928 	 */
1929 	if (ifp->if_flags & IFF_PROMISC)
1930 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
1931 	else
1932 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
1933 
1934 	/*
1935 	 * Set capture broadcast bit to capture broadcast frames.
1936 	 */
1937 	if (ifp->if_flags & IFF_BROADCAST)
1938 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1939 	else
1940 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1941 
1942 	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
1943 
1944 	/* Init our MAC address */
1945 	tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
1946 
1947 	/* Init multicast filter, if needed. */
1948 	tl_setmulti(sc);
1949 
1950 	/* Init circular RX list. */
1951 	if (tl_list_rx_init(sc) == ENOBUFS) {
1952 		if_printf(ifp, "initialization failed: no "
1953 			  "memory for rx buffers\n");
1954 		tl_stop(sc);
1955 		return;
1956 	}
1957 
1958 	/* Init TX pointers. */
1959 	tl_list_tx_init(sc);
1960 
1961 	/* Enable PCI interrupts. */
1962 	CMD_SET(sc, TL_CMD_INTSON);
1963 
1964 	/* Load the address of the rx list */
1965 	CMD_SET(sc, TL_CMD_RT);
1966 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
1967 
1968 	if (!sc->tl_bitrate) {
1969 		if (sc->tl_miibus != NULL) {
1970 			mii = device_get_softc(sc->tl_miibus);
1971 			mii_mediachg(mii);
1972 		}
1973 	}
1974 
1975 	/* Send the RX go command */
1976 	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
1977 
1978 	ifp->if_flags |= IFF_RUNNING;
1979 	ifq_clr_oactive(&ifp->if_snd);
1980 
1981 	/* Start the stats update counter */
1982 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1983 }
1984 
1985 /*
1986  * Set media options.
1987  */
1988 static int
1989 tl_ifmedia_upd(struct ifnet *ifp)
1990 {
1991 	struct tl_softc		*sc;
1992 	struct mii_data		*mii = NULL;
1993 
1994 	sc = ifp->if_softc;
1995 
1996 	if (sc->tl_bitrate)
1997 		tl_setmode(sc, sc->ifmedia.ifm_media);
1998 	else {
1999 		mii = device_get_softc(sc->tl_miibus);
2000 		mii_mediachg(mii);
2001 	}
2002 
2003 	return(0);
2004 }
2005 
2006 /*
2007  * Report current media status.
2008  */
2009 static void
2010 tl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2011 {
2012 	struct tl_softc		*sc;
2013 	struct mii_data		*mii;
2014 
2015 	sc = ifp->if_softc;
2016 
2017 	ifmr->ifm_active = IFM_ETHER;
2018 
2019 	if (sc->tl_bitrate) {
2020 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2021 			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2022 		else
2023 			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2024 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2025 			ifmr->ifm_active |= IFM_HDX;
2026 		else
2027 			ifmr->ifm_active |= IFM_FDX;
2028 		return;
2029 	} else {
2030 		mii = device_get_softc(sc->tl_miibus);
2031 		mii_pollstat(mii);
2032 		ifmr->ifm_active = mii->mii_media_active;
2033 		ifmr->ifm_status = mii->mii_media_status;
2034 	}
2035 
2036 	return;
2037 }
2038 
2039 static int
2040 tl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2041 {
2042 	struct tl_softc		*sc = ifp->if_softc;
2043 	struct ifreq		*ifr = (struct ifreq *) data;
2044 	int			error = 0;
2045 
2046 	switch(command) {
2047 	case SIOCSIFFLAGS:
2048 		if (ifp->if_flags & IFF_UP) {
2049 			if (ifp->if_flags & IFF_RUNNING &&
2050 			    ifp->if_flags & IFF_PROMISC &&
2051 			    !(sc->tl_if_flags & IFF_PROMISC)) {
2052 				tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2053 				tl_setmulti(sc);
2054 			} else if (ifp->if_flags & IFF_RUNNING &&
2055 			    !(ifp->if_flags & IFF_PROMISC) &&
2056 			    sc->tl_if_flags & IFF_PROMISC) {
2057 				tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2058 				tl_setmulti(sc);
2059 			} else
2060 				tl_init(sc);
2061 		} else {
2062 			if (ifp->if_flags & IFF_RUNNING) {
2063 				tl_stop(sc);
2064 			}
2065 		}
2066 		sc->tl_if_flags = ifp->if_flags;
2067 		error = 0;
2068 		break;
2069 	case SIOCADDMULTI:
2070 	case SIOCDELMULTI:
2071 		tl_setmulti(sc);
2072 		error = 0;
2073 		break;
2074 	case SIOCSIFMEDIA:
2075 	case SIOCGIFMEDIA:
2076 		if (sc->tl_bitrate)
2077 			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2078 		else {
2079 			struct mii_data		*mii;
2080 			mii = device_get_softc(sc->tl_miibus);
2081 			error = ifmedia_ioctl(ifp, ifr,
2082 			    &mii->mii_media, command);
2083 		}
2084 		break;
2085 	default:
2086 		error = ether_ioctl(ifp, command, data);
2087 		break;
2088 	}
2089 	return(error);
2090 }
2091 
2092 static void
2093 tl_watchdog(struct ifnet *ifp)
2094 {
2095 	struct tl_softc		*sc;
2096 
2097 	sc = ifp->if_softc;
2098 
2099 	if_printf(ifp, "device timeout\n");
2100 
2101 	IFNET_STAT_INC(ifp, oerrors, 1);
2102 
2103 	tl_softreset(sc, 1);
2104 	tl_init(sc);
2105 
2106 	return;
2107 }
2108 
2109 /*
2110  * Stop the adapter and free any mbufs allocated to the
2111  * RX and TX lists.
2112  */
2113 static void
2114 tl_stop(struct tl_softc *sc)
2115 {
2116 	int		i;
2117 	struct ifnet		*ifp;
2118 
2119 	ifp = &sc->arpcom.ac_if;
2120 
2121 	/* Stop the stats updater. */
2122 	callout_stop(&sc->tl_stat_timer);
2123 
2124 	/* Stop the transmitter */
2125 	CMD_CLR(sc, TL_CMD_RT);
2126 	CMD_SET(sc, TL_CMD_STOP);
2127 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2128 
2129 	/* Stop the receiver */
2130 	CMD_SET(sc, TL_CMD_RT);
2131 	CMD_SET(sc, TL_CMD_STOP);
2132 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2133 
2134 	/*
2135 	 * Disable host interrupts.
2136 	 */
2137 	CMD_SET(sc, TL_CMD_INTSOFF);
2138 
2139 	/*
2140 	 * Clear list pointer.
2141 	 */
2142 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2143 
2144 	/*
2145 	 * Free the RX lists.
2146 	 */
2147 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
2148 		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2149 			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2150 			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2151 		}
2152 	}
2153 	bzero((char *)&sc->tl_ldata->tl_rx_list,
2154 		sizeof(sc->tl_ldata->tl_rx_list));
2155 
2156 	/*
2157 	 * Free the TX list buffers.
2158 	 */
2159 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
2160 		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2161 			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2162 			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2163 		}
2164 	}
2165 	bzero((char *)&sc->tl_ldata->tl_tx_list,
2166 		sizeof(sc->tl_ldata->tl_tx_list));
2167 
2168 	ifp->if_flags &= ~IFF_RUNNING;
2169 	ifq_clr_oactive(&ifp->if_snd);
2170 
2171 	return;
2172 }
2173 
2174 /*
2175  * Stop all chip I/O so that the kernel's probe routines don't
2176  * get confused by errant DMAs when rebooting.
2177  */
2178 static void
2179 tl_shutdown(device_t dev)
2180 {
2181 	struct tl_softc		*sc;
2182 
2183 	sc = device_get_softc(dev);
2184 
2185 	tl_stop(sc);
2186 
2187 	return;
2188 }
2189