xref: /dragonfly/sys/dev/netif/tl/if_tl.c (revision dcd37f7d)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_tl.c,v 1.51.2.5 2001/12/16 15:46:08 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/tl/if_tl.c,v 1.40 2008/08/17 04:32:34 sephe Exp $
34  */
35 
36 /*
37  * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
38  * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
39  * the National Semiconductor DP83840A physical interface and the
40  * Microchip Technology 24Cxx series serial EEPROM.
41  *
42  * Written using the following four documents:
43  *
44  * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
45  * National Semiconductor DP83840A data sheet (www.national.com)
46  * Microchip Technology 24C02C data sheet (www.microchip.com)
47  * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
48  *
49  * Written by Bill Paul <wpaul@ctr.columbia.edu>
50  * Electrical Engineering Department
51  * Columbia University, New York City
52  */
53 
54 /*
55  * Some notes about the ThunderLAN:
56  *
57  * The ThunderLAN controller is a single chip containing PCI controller
58  * logic, approximately 3K of on-board SRAM, a LAN controller, and media
59  * independent interface (MII) bus. The MII allows the ThunderLAN chip to
60  * control up to 32 different physical interfaces (PHYs). The ThunderLAN
61  * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
62  * to act as a complete ethernet interface.
63  *
64  * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
65  * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
66  * in full or half duplex. Some of the Compaq Deskpro machines use a
67  * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
68  * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
69  * concert with the ThunderLAN's internal PHY to provide full 10/100
70  * support. This is cheaper than using a standalone external PHY for both
71  * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
72  * A serial EEPROM is also attached to the ThunderLAN chip to provide
73  * power-up default register settings and for storing the adapter's
74  * station address. Although not supported by this driver, the ThunderLAN
75  * chip can also be connected to token ring PHYs.
76  *
77  * The ThunderLAN has a set of registers which can be used to issue
78  * commands, acknowledge interrupts, and to manipulate other internal
79  * registers on its DIO bus. The primary registers can be accessed
80  * using either programmed I/O (inb/outb) or via PCI memory mapping,
81  * depending on how the card is configured during the PCI probing
82  * phase. It is even possible to have both PIO and memory mapped
83  * access turned on at the same time.
84  *
85  * Frame reception and transmission with the ThunderLAN chip is done
86  * using frame 'lists.' A list structure looks more or less like this:
87  *
88  * struct tl_frag {
89  *	u_int32_t		fragment_address;
90  *	u_int32_t		fragment_size;
91  * };
92  * struct tl_list {
93  *	u_int32_t		forward_pointer;
94  *	u_int16_t		cstat;
95  *	u_int16_t		frame_size;
96  *	struct tl_frag		fragments[10];
97  * };
98  *
99  * The forward pointer in the list header can be either a 0 or the address
100  * of another list, which allows several lists to be linked together. Each
101  * list contains up to 10 fragment descriptors. This means the chip allows
102  * ethernet frames to be broken up into up to 10 chunks for transfer to
103  * and from the SRAM. Note that the forward pointer and fragment buffer
104  * addresses are physical memory addresses, not virtual. Note also that
105  * a single ethernet frame can not span lists: if the host wants to
106  * transmit a frame and the frame data is split up over more than 10
107  * buffers, the frame has to collapsed before it can be transmitted.
108  *
109  * To receive frames, the driver sets up a number of lists and populates
110  * the fragment descriptors, then it sends an RX GO command to the chip.
111  * When a frame is received, the chip will DMA it into the memory regions
112  * specified by the fragment descriptors and then trigger an RX 'end of
113  * frame interrupt' when done. The driver may choose to use only one
114  * fragment per list; this may result is slighltly less efficient use
115  * of memory in exchange for improving performance.
116  *
117  * To transmit frames, the driver again sets up lists and fragment
118  * descriptors, only this time the buffers contain frame data that
119  * is to be DMA'ed into the chip instead of out of it. Once the chip
120  * has transfered the data into its on-board SRAM, it will trigger a
121  * TX 'end of frame' interrupt. It will also generate an 'end of channel'
122  * interrupt when it reaches the end of the list.
123  */
124 
125 /*
126  * Some notes about this driver:
127  *
128  * The ThunderLAN chip provides a couple of different ways to organize
129  * reception, transmission and interrupt handling. The simplest approach
130  * is to use one list each for transmission and reception. In this mode,
131  * the ThunderLAN will generate two interrupts for every received frame
132  * (one RX EOF and one RX EOC) and two for each transmitted frame (one
133  * TX EOF and one TX EOC). This may make the driver simpler but it hurts
134  * performance to have to handle so many interrupts.
135  *
136  * Initially I wanted to create a circular list of receive buffers so
137  * that the ThunderLAN chip would think there was an infinitely long
138  * receive channel and never deliver an RXEOC interrupt. However this
139  * doesn't work correctly under heavy load: while the manual says the
140  * chip will trigger an RXEOF interrupt each time a frame is copied into
141  * memory, you can't count on the chip waiting around for you to acknowledge
142  * the interrupt before it starts trying to DMA the next frame. The result
143  * is that the chip might traverse the entire circular list and then wrap
144  * around before you have a chance to do anything about it. Consequently,
145  * the receive list is terminated (with a 0 in the forward pointer in the
146  * last element). Each time an RXEOF interrupt arrives, the used list
147  * is shifted to the end of the list. This gives the appearance of an
148  * infinitely large RX chain so long as the driver doesn't fall behind
149  * the chip and allow all of the lists to be filled up.
150  *
151  * If all the lists are filled, the adapter will deliver an RX 'end of
152  * channel' interrupt when it hits the 0 forward pointer at the end of
153  * the chain. The RXEOC handler then cleans out the RX chain and resets
154  * the list head pointer in the ch_parm register and restarts the receiver.
155  *
156  * For frame transmission, it is possible to program the ThunderLAN's
157  * transmit interrupt threshold so that the chip can acknowledge multiple
158  * lists with only a single TX EOF interrupt. This allows the driver to
159  * queue several frames in one shot, and only have to handle a total
160  * two interrupts (one TX EOF and one TX EOC) no matter how many frames
161  * are transmitted. Frame transmission is done directly out of the
162  * mbufs passed to the tl_start() routine via the interface send queue.
163  * The driver simply sets up the fragment descriptors in the transmit
164  * lists to point to the mbuf data regions and sends a TX GO command.
165  *
166  * Note that since the RX and TX lists themselves are always used
167  * only by the driver, the are malloc()ed once at driver initialization
168  * time and never free()ed.
169  *
170  * Also, in order to remain as platform independent as possible, this
171  * driver uses memory mapped register access to manipulate the card
172  * as opposed to programmed I/O. This avoids the use of the inb/outb
173  * (and related) instructions which are specific to the i386 platform.
174  *
175  * Using these techniques, this driver achieves very high performance
176  * by minimizing the amount of interrupts generated during large
177  * transfers and by completely avoiding buffer copies. Frame transfer
178  * to and from the ThunderLAN chip is performed entirely by the chip
179  * itself thereby reducing the load on the host CPU.
180  */
181 
182 #include <sys/param.h>
183 #include <sys/systm.h>
184 #include <sys/sockio.h>
185 #include <sys/mbuf.h>
186 #include <sys/malloc.h>
187 #include <sys/kernel.h>
188 #include <sys/socket.h>
189 #include <sys/serialize.h>
190 #include <sys/bus.h>
191 #include <sys/rman.h>
192 #include <sys/thread2.h>
193 #include <sys/interrupt.h>
194 
195 #include <net/if.h>
196 #include <net/ifq_var.h>
197 #include <net/if_arp.h>
198 #include <net/ethernet.h>
199 #include <net/if_dl.h>
200 #include <net/if_media.h>
201 
202 #include <net/bpf.h>
203 
204 #include <vm/vm.h>              /* for vtophys */
205 #include <vm/pmap.h>            /* for vtophys */
206 
207 #include "../mii_layer/mii.h"
208 #include "../mii_layer/miivar.h"
209 
210 #include <bus/pci/pcireg.h>
211 #include <bus/pci/pcivar.h>
212 
213 /*
214  * Default to using PIO register access mode to pacify certain
215  * laptop docking stations with built-in ThunderLAN chips that
216  * don't seem to handle memory mapped mode properly.
217  */
218 #define TL_USEIOSPACE
219 
220 #include "if_tlreg.h"
221 
222 /* "controller miibus0" required.  See GENERIC if you get errors here. */
223 #include "miibus_if.h"
224 
225 /*
226  * Various supported device vendors/types and their names.
227  */
228 
229 static struct tl_type tl_devs[] = {
230 	{ TI_VENDORID,	TI_DEVICEID_THUNDERLAN,
231 		"Texas Instruments ThunderLAN" },
232 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
233 		"Compaq Netelligent 10" },
234 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
235 		"Compaq Netelligent 10/100" },
236 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
237 		"Compaq Netelligent 10/100 Proliant" },
238 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
239 		"Compaq Netelligent 10/100 Dual Port" },
240 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
241 		"Compaq NetFlex-3/P Integrated" },
242 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
243 		"Compaq NetFlex-3/P" },
244 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
245 		"Compaq NetFlex 3/P w/ BNC" },
246 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
247 		"Compaq Netelligent 10/100 TX Embedded UTP" },
248 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
249 		"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
250 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
251 		"Compaq Netelligent 10/100 TX UTP" },
252 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
253 		"Olicom OC-2183/2185" },
254 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
255 		"Olicom OC-2325" },
256 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
257 		"Olicom OC-2326 10/100 TX UTP" },
258 	{ 0, 0, NULL }
259 };
260 
261 static int tl_probe		(device_t);
262 static int tl_attach		(device_t);
263 static int tl_detach		(device_t);
264 static int tl_intvec_rxeoc	(void *, u_int32_t);
265 static int tl_intvec_txeoc	(void *, u_int32_t);
266 static int tl_intvec_txeof	(void *, u_int32_t);
267 static int tl_intvec_rxeof	(void *, u_int32_t);
268 static int tl_intvec_adchk	(void *, u_int32_t);
269 static int tl_intvec_netsts	(void *, u_int32_t);
270 
271 static int tl_newbuf		(struct tl_softc *,
272 					struct tl_chain_onefrag *);
273 static void tl_stats_update	(void *);
274 static void tl_stats_update_serialized(void *);
275 static int tl_encap		(struct tl_softc *, struct tl_chain *,
276 						struct mbuf *);
277 
278 static void tl_intr		(void *);
279 static void tl_start		(struct ifnet *);
280 static int tl_ioctl		(struct ifnet *, u_long, caddr_t,
281 						struct ucred *);
282 static void tl_init		(void *);
283 static void tl_stop		(struct tl_softc *);
284 static void tl_watchdog		(struct ifnet *);
285 static void tl_shutdown		(device_t);
286 static int tl_ifmedia_upd	(struct ifnet *);
287 static void tl_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
288 
289 static u_int8_t tl_eeprom_putbyte	(struct tl_softc *, int);
290 static u_int8_t	tl_eeprom_getbyte	(struct tl_softc *,
291 						int, u_int8_t *);
292 static int tl_read_eeprom	(struct tl_softc *, caddr_t, int, int);
293 
294 static void tl_mii_sync		(struct tl_softc *);
295 static void tl_mii_send		(struct tl_softc *, u_int32_t, int);
296 static int tl_mii_readreg	(struct tl_softc *, struct tl_mii_frame *);
297 static int tl_mii_writereg	(struct tl_softc *, struct tl_mii_frame *);
298 static int tl_miibus_readreg	(device_t, int, int);
299 static int tl_miibus_writereg	(device_t, int, int, int);
300 static void tl_miibus_statchg	(device_t);
301 
302 static void tl_setmode		(struct tl_softc *, int);
303 static int tl_calchash		(caddr_t);
304 static void tl_setmulti		(struct tl_softc *);
305 static void tl_setfilt		(struct tl_softc *, caddr_t, int);
306 static void tl_softreset	(struct tl_softc *, int);
307 static void tl_hardreset	(device_t);
308 static int tl_list_rx_init	(struct tl_softc *);
309 static int tl_list_tx_init	(struct tl_softc *);
310 
311 static u_int8_t tl_dio_read8	(struct tl_softc *, int);
312 static u_int16_t tl_dio_read16	(struct tl_softc *, int);
313 static u_int32_t tl_dio_read32	(struct tl_softc *, int);
314 static void tl_dio_write8	(struct tl_softc *, int, int);
315 static void tl_dio_write16	(struct tl_softc *, int, int);
316 static void tl_dio_write32	(struct tl_softc *, int, int);
317 static void tl_dio_setbit	(struct tl_softc *, int, int);
318 static void tl_dio_clrbit	(struct tl_softc *, int, int);
319 static void tl_dio_setbit16	(struct tl_softc *, int, int);
320 static void tl_dio_clrbit16	(struct tl_softc *, int, int);
321 
322 #ifdef TL_USEIOSPACE
323 #define TL_RES		SYS_RES_IOPORT
324 #define TL_RID		TL_PCI_LOIO
325 #else
326 #define TL_RES		SYS_RES_MEMORY
327 #define TL_RID		TL_PCI_LOMEM
328 #endif
329 
330 static device_method_t tl_methods[] = {
331 	/* Device interface */
332 	DEVMETHOD(device_probe,		tl_probe),
333 	DEVMETHOD(device_attach,	tl_attach),
334 	DEVMETHOD(device_detach,	tl_detach),
335 	DEVMETHOD(device_shutdown,	tl_shutdown),
336 
337 	/* bus interface */
338 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
339 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
340 
341 	/* MII interface */
342 	DEVMETHOD(miibus_readreg,	tl_miibus_readreg),
343 	DEVMETHOD(miibus_writereg,	tl_miibus_writereg),
344 	DEVMETHOD(miibus_statchg,	tl_miibus_statchg),
345 
346 	{ 0, 0 }
347 };
348 
349 static driver_t tl_driver = {
350 	"tl",
351 	tl_methods,
352 	sizeof(struct tl_softc)
353 };
354 
355 static devclass_t tl_devclass;
356 
357 DECLARE_DUMMY_MODULE(if_tl);
358 DRIVER_MODULE(if_tl, pci, tl_driver, tl_devclass, 0, 0);
359 DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
360 
361 static u_int8_t
362 tl_dio_read8(struct tl_softc *sc, int reg)
363 {
364 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
365 	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
366 }
367 
368 static u_int16_t
369 tl_dio_read16(struct tl_softc *sc, int reg)
370 {
371 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
372 	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
373 }
374 
375 static u_int32_t
376 tl_dio_read32(struct tl_softc *sc, int reg)
377 {
378 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
379 	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
380 }
381 
382 static void
383 tl_dio_write8(struct tl_softc *sc, int reg, int val)
384 {
385 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
386 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
387 	return;
388 }
389 
390 static void
391 tl_dio_write16(struct tl_softc *sc, int reg, int val)
392 {
393 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
394 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
395 	return;
396 }
397 
398 static void
399 tl_dio_write32(struct tl_softc *sc, int reg, int val)
400 {
401 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
402 	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
403 	return;
404 }
405 
406 static void
407 tl_dio_setbit(struct tl_softc *sc, int reg, int bit)
408 {
409 	u_int8_t			f;
410 
411 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
412 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
413 	f |= bit;
414 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
415 
416 	return;
417 }
418 
419 static void
420 tl_dio_clrbit(struct tl_softc *sc, int reg, int bit)
421 {
422 	u_int8_t			f;
423 
424 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
425 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
426 	f &= ~bit;
427 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
428 
429 	return;
430 }
431 
432 static void
433 tl_dio_setbit16(struct tl_softc *sc, int reg, int bit)
434 {
435 	u_int16_t			f;
436 
437 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
438 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
439 	f |= bit;
440 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
441 
442 	return;
443 }
444 
445 static void
446 tl_dio_clrbit16(struct tl_softc *sc, int reg, int bit)
447 {
448 	u_int16_t			f;
449 
450 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
451 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
452 	f &= ~bit;
453 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
454 
455 	return;
456 }
457 
458 /*
459  * Send an instruction or address to the EEPROM, check for ACK.
460  */
461 static u_int8_t
462 tl_eeprom_putbyte(struct tl_softc *sc, int byte)
463 {
464 	int		i, ack = 0;
465 
466 	/*
467 	 * Make sure we're in TX mode.
468 	 */
469 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
470 
471 	/*
472 	 * Feed in each bit and stobe the clock.
473 	 */
474 	for (i = 0x80; i; i >>= 1) {
475 		if (byte & i) {
476 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
477 		} else {
478 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
479 		}
480 		DELAY(1);
481 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
482 		DELAY(1);
483 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
484 	}
485 
486 	/*
487 	 * Turn off TX mode.
488 	 */
489 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
490 
491 	/*
492 	 * Check for ack.
493 	 */
494 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
495 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
496 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
497 
498 	return(ack);
499 }
500 
501 /*
502  * Read a byte of data stored in the EEPROM at address 'addr.'
503  */
504 static u_int8_t
505 tl_eeprom_getbyte(struct tl_softc *sc, int addr, u_int8_t *dest)
506 {
507 	int		i;
508 	u_int8_t		byte = 0;
509 
510 	tl_dio_write8(sc, TL_NETSIO, 0);
511 
512 	EEPROM_START;
513 
514 	/*
515 	 * Send write control code to EEPROM.
516 	 */
517 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
518 		if_printf(&sc->arpcom.ac_if, "failed to send write command, "
519 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
520 		return(1);
521 	}
522 
523 	/*
524 	 * Send address of byte we want to read.
525 	 */
526 	if (tl_eeprom_putbyte(sc, addr)) {
527 		if_printf(&sc->arpcom.ac_if, "failed to send address, "
528 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
529 		return(1);
530 	}
531 
532 	EEPROM_STOP;
533 	EEPROM_START;
534 	/*
535 	 * Send read control code to EEPROM.
536 	 */
537 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
538 		if_printf(&sc->arpcom.ac_if, "failed to send write command, "
539 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
540 		return(1);
541 	}
542 
543 	/*
544 	 * Start reading bits from EEPROM.
545 	 */
546 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
547 	for (i = 0x80; i; i >>= 1) {
548 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
549 		DELAY(1);
550 		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
551 			byte |= i;
552 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
553 		DELAY(1);
554 	}
555 
556 	EEPROM_STOP;
557 
558 	/*
559 	 * No ACK generated for read, so just return byte.
560 	 */
561 
562 	*dest = byte;
563 
564 	return(0);
565 }
566 
567 /*
568  * Read a sequence of bytes from the EEPROM.
569  */
570 static int
571 tl_read_eeprom(struct tl_softc *sc, caddr_t dest, int off, int cnt)
572 {
573 	int			err = 0, i;
574 	u_int8_t		byte = 0;
575 
576 	for (i = 0; i < cnt; i++) {
577 		err = tl_eeprom_getbyte(sc, off + i, &byte);
578 		if (err)
579 			break;
580 		*(dest + i) = byte;
581 	}
582 
583 	return(err ? 1 : 0);
584 }
585 
586 static void
587 tl_mii_sync(struct tl_softc *sc)
588 {
589 	int		i;
590 
591 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
592 
593 	for (i = 0; i < 32; i++) {
594 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
595 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
596 	}
597 
598 	return;
599 }
600 
601 static void
602 tl_mii_send(struct tl_softc *sc, u_int32_t bits, int cnt)
603 {
604 	int			i;
605 
606 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
607 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
608 		if (bits & i) {
609 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
610 		} else {
611 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
612 		}
613 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
614 	}
615 }
616 
617 static int
618 tl_mii_readreg(struct tl_softc *sc, struct tl_mii_frame *frame)
619 {
620 	int			i, ack;
621 	int			minten = 0;
622 
623 	tl_mii_sync(sc);
624 
625 	/*
626 	 * Set up frame for RX.
627 	 */
628 	frame->mii_stdelim = TL_MII_STARTDELIM;
629 	frame->mii_opcode = TL_MII_READOP;
630 	frame->mii_turnaround = 0;
631 	frame->mii_data = 0;
632 
633 	/*
634 	 * Turn off MII interrupt by forcing MINTEN low.
635 	 */
636 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
637 	if (minten) {
638 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
639 	}
640 
641 	/*
642  	 * Turn on data xmit.
643 	 */
644 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
645 
646 	/*
647 	 * Send command/address info.
648 	 */
649 	tl_mii_send(sc, frame->mii_stdelim, 2);
650 	tl_mii_send(sc, frame->mii_opcode, 2);
651 	tl_mii_send(sc, frame->mii_phyaddr, 5);
652 	tl_mii_send(sc, frame->mii_regaddr, 5);
653 
654 	/*
655 	 * Turn off xmit.
656 	 */
657 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
658 
659 	/* Idle bit */
660 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
661 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
662 
663 	/* Check for ack */
664 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
665 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
666 
667 	/* Complete the cycle */
668 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
669 
670 	/*
671 	 * Now try reading data bits. If the ack failed, we still
672 	 * need to clock through 16 cycles to keep the PHYs in sync.
673 	 */
674 	if (ack) {
675 		for(i = 0; i < 16; i++) {
676 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
677 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
678 		}
679 		goto fail;
680 	}
681 
682 	for (i = 0x8000; i; i >>= 1) {
683 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
684 		if (!ack) {
685 			if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
686 				frame->mii_data |= i;
687 		}
688 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
689 	}
690 
691 fail:
692 
693 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
694 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
695 
696 	/* Reenable interrupts */
697 	if (minten) {
698 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
699 	}
700 
701 	if (ack)
702 		return(1);
703 	return(0);
704 }
705 
706 static int
707 tl_mii_writereg(struct tl_softc *sc, struct tl_mii_frame *frame)
708 {
709 	int			minten;
710 
711 	tl_mii_sync(sc);
712 
713 	/*
714 	 * Set up frame for TX.
715 	 */
716 
717 	frame->mii_stdelim = TL_MII_STARTDELIM;
718 	frame->mii_opcode = TL_MII_WRITEOP;
719 	frame->mii_turnaround = TL_MII_TURNAROUND;
720 
721 	/*
722 	 * Turn off MII interrupt by forcing MINTEN low.
723 	 */
724 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
725 	if (minten) {
726 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
727 	}
728 
729 	/*
730  	 * Turn on data output.
731 	 */
732 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
733 
734 	tl_mii_send(sc, frame->mii_stdelim, 2);
735 	tl_mii_send(sc, frame->mii_opcode, 2);
736 	tl_mii_send(sc, frame->mii_phyaddr, 5);
737 	tl_mii_send(sc, frame->mii_regaddr, 5);
738 	tl_mii_send(sc, frame->mii_turnaround, 2);
739 	tl_mii_send(sc, frame->mii_data, 16);
740 
741 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
742 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
743 
744 	/*
745 	 * Turn off xmit.
746 	 */
747 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
748 
749 	/* Reenable interrupts */
750 	if (minten)
751 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
752 
753 	return(0);
754 }
755 
756 static int
757 tl_miibus_readreg(device_t dev, int phy, int reg)
758 {
759 	struct tl_softc		*sc;
760 	struct tl_mii_frame	frame;
761 
762 	sc = device_get_softc(dev);
763 	bzero((char *)&frame, sizeof(frame));
764 
765 	frame.mii_phyaddr = phy;
766 	frame.mii_regaddr = reg;
767 	tl_mii_readreg(sc, &frame);
768 
769 	return(frame.mii_data);
770 }
771 
772 static int
773 tl_miibus_writereg(device_t dev, int phy, int reg, int data)
774 {
775 	struct tl_softc		*sc;
776 	struct tl_mii_frame	frame;
777 
778 	sc = device_get_softc(dev);
779 	bzero((char *)&frame, sizeof(frame));
780 
781 	frame.mii_phyaddr = phy;
782 	frame.mii_regaddr = reg;
783 	frame.mii_data = data;
784 
785 	tl_mii_writereg(sc, &frame);
786 
787 	return(0);
788 }
789 
790 static void
791 tl_miibus_statchg(device_t dev)
792 {
793 	struct tl_softc		*sc;
794 	struct mii_data		*mii;
795 
796 	sc = device_get_softc(dev);
797 	mii = device_get_softc(sc->tl_miibus);
798 
799 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
800 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
801 	} else {
802 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
803 	}
804 
805 	return;
806 }
807 
808 /*
809  * Set modes for bitrate devices.
810  */
811 static void
812 tl_setmode(struct tl_softc *sc, int media)
813 {
814 	if (IFM_SUBTYPE(media) == IFM_10_5)
815 		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
816 	if (IFM_SUBTYPE(media) == IFM_10_T) {
817 		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
818 		if ((media & IFM_GMASK) == IFM_FDX) {
819 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
820 			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
821 		} else {
822 			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
823 			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
824 		}
825 	}
826 
827 	return;
828 }
829 
830 /*
831  * Calculate the hash of a MAC address for programming the multicast hash
832  * table.  This hash is simply the address split into 6-bit chunks
833  * XOR'd, e.g.
834  * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
835  * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
836  * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
837  * the folded 24-bit value is split into 6-bit portions and XOR'd.
838  */
839 static int
840 tl_calchash(caddr_t addr)
841 {
842 	int			t;
843 
844 	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
845 		(addr[2] ^ addr[5]);
846 	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
847 }
848 
849 /*
850  * The ThunderLAN has a perfect MAC address filter in addition to
851  * the multicast hash filter. The perfect filter can be programmed
852  * with up to four MAC addresses. The first one is always used to
853  * hold the station address, which leaves us free to use the other
854  * three for multicast addresses.
855  */
856 static void
857 tl_setfilt(struct tl_softc *sc, caddr_t addr, int slot)
858 {
859 	int			i;
860 	u_int16_t		regaddr;
861 
862 	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
863 
864 	for (i = 0; i < ETHER_ADDR_LEN; i++)
865 		tl_dio_write8(sc, regaddr + i, *(addr + i));
866 
867 	return;
868 }
869 
870 /*
871  * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
872  * linked list. This is fine, except addresses are added from the head
873  * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
874  * group to always be in the perfect filter, but as more groups are added,
875  * the 224.0.0.1 entry (which is always added first) gets pushed down
876  * the list and ends up at the tail. So after 3 or 4 multicast groups
877  * are added, the all-hosts entry gets pushed out of the perfect filter
878  * and into the hash table.
879  *
880  * Because the multicast list is a doubly-linked list as opposed to a
881  * circular queue, we don't have the ability to just grab the tail of
882  * the list and traverse it backwards. Instead, we have to traverse
883  * the list once to find the tail, then traverse it again backwards to
884  * update the multicast filter.
885  */
886 static void
887 tl_setmulti(struct tl_softc *sc)
888 {
889 	struct ifnet		*ifp;
890 	u_int32_t		hashes[2] = { 0, 0 };
891 	int			h, i;
892 	struct ifmultiaddr	*ifma;
893 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
894 	ifp = &sc->arpcom.ac_if;
895 
896 	/* First, zot all the existing filters. */
897 	for (i = 1; i < 4; i++)
898 		tl_setfilt(sc, (caddr_t)&dummy, i);
899 	tl_dio_write32(sc, TL_HASH1, 0);
900 	tl_dio_write32(sc, TL_HASH2, 0);
901 
902 	/* Now program new ones. */
903 	if (ifp->if_flags & IFF_ALLMULTI) {
904 		hashes[0] = 0xFFFFFFFF;
905 		hashes[1] = 0xFFFFFFFF;
906 	} else {
907 		i = 1;
908 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
909 			if (ifma->ifma_addr->sa_family != AF_LINK)
910 				continue;
911 			/*
912 			 * Program the first three multicast groups
913 			 * into the perfect filter. For all others,
914 			 * use the hash table.
915 			 */
916 			if (i < 4) {
917 				tl_setfilt(sc,
918 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
919 				i++;
920 				continue;
921 			}
922 
923 			h = tl_calchash(
924 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
925 			if (h < 32)
926 				hashes[0] |= (1 << h);
927 			else
928 				hashes[1] |= (1 << (h - 32));
929 		}
930 	}
931 
932 	tl_dio_write32(sc, TL_HASH1, hashes[0]);
933 	tl_dio_write32(sc, TL_HASH2, hashes[1]);
934 
935 	return;
936 }
937 
938 /*
939  * This routine is recommended by the ThunderLAN manual to insure that
940  * the internal PHY is powered up correctly. It also recommends a one
941  * second pause at the end to 'wait for the clocks to start' but in my
942  * experience this isn't necessary.
943  */
944 static void
945 tl_hardreset(device_t dev)
946 {
947 	struct tl_softc		*sc;
948 	int			i;
949 	u_int16_t		flags;
950 
951 	sc = device_get_softc(dev);
952 
953 	tl_mii_sync(sc);
954 
955 	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
956 
957 	for (i = 0; i < MII_NPHY; i++)
958 		tl_miibus_writereg(dev, i, MII_BMCR, flags);
959 
960 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
961 	DELAY(50000);
962 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
963 	tl_mii_sync(sc);
964 	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
965 
966 	DELAY(50000);
967 	return;
968 }
969 
970 static void
971 tl_softreset(struct tl_softc *sc, int internal)
972 {
973         u_int32_t               cmd, dummy, i;
974 
975         /* Assert the adapter reset bit. */
976 	CMD_SET(sc, TL_CMD_ADRST);
977 
978         /* Turn off interrupts */
979 	CMD_SET(sc, TL_CMD_INTSOFF);
980 
981 	/* First, clear the stats registers. */
982 	for (i = 0; i < 5; i++)
983 		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
984 
985         /* Clear Areg and Hash registers */
986 	for (i = 0; i < 8; i++)
987 		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
988 
989         /*
990 	 * Set up Netconfig register. Enable one channel and
991 	 * one fragment mode.
992 	 */
993 	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
994 	if (internal && !sc->tl_bitrate) {
995 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
996 	} else {
997 		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
998 	}
999 
1000 	/* Handle cards with bitrate devices. */
1001 	if (sc->tl_bitrate)
1002 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
1003 
1004 	/*
1005 	 * Load adapter irq pacing timer and tx threshold.
1006 	 * We make the transmit threshold 1 initially but we may
1007 	 * change that later.
1008 	 */
1009 	cmd = CSR_READ_4(sc, TL_HOSTCMD);
1010 	cmd |= TL_CMD_NES;
1011 	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
1012 	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
1013 	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
1014 
1015         /* Unreset the MII */
1016 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
1017 
1018 	/* Take the adapter out of reset */
1019 	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
1020 
1021 	/* Wait for things to settle down a little. */
1022 	DELAY(500);
1023 
1024         return;
1025 }
1026 
1027 /*
1028  * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1029  * against our list and return its name if we find a match.
1030  */
1031 static int
1032 tl_probe(device_t dev)
1033 {
1034 	struct tl_type		*t;
1035 
1036 	t = tl_devs;
1037 
1038 	while(t->tl_name != NULL) {
1039 		if ((pci_get_vendor(dev) == t->tl_vid) &&
1040 		    (pci_get_device(dev) == t->tl_did)) {
1041 			device_set_desc(dev, t->tl_name);
1042 			return(0);
1043 		}
1044 		t++;
1045 	}
1046 
1047 	return(ENXIO);
1048 }
1049 
1050 static int
1051 tl_attach(device_t dev)
1052 {
1053 	int			i;
1054 	u_int16_t		did, vid;
1055 	struct tl_type		*t;
1056 	struct ifnet		*ifp;
1057 	struct tl_softc		*sc;
1058 	int			error = 0, rid;
1059 	uint8_t			eaddr[ETHER_ADDR_LEN];
1060 
1061 	vid = pci_get_vendor(dev);
1062 	did = pci_get_device(dev);
1063 	sc = device_get_softc(dev);
1064 
1065 	t = tl_devs;
1066 	while(t->tl_name != NULL) {
1067 		if (vid == t->tl_vid && did == t->tl_did)
1068 			break;
1069 		t++;
1070 	}
1071 
1072 	KKASSERT(t->tl_name != NULL);
1073 
1074 	pci_enable_busmaster(dev);
1075 
1076 #ifdef TL_USEIOSPACE
1077 	rid = TL_PCI_LOIO;
1078 	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1079 		RF_ACTIVE);
1080 
1081 	/*
1082 	 * Some cards have the I/O and memory mapped address registers
1083 	 * reversed. Try both combinations before giving up.
1084 	 */
1085 	if (sc->tl_res == NULL) {
1086 		rid = TL_PCI_LOMEM;
1087 		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1088 		    RF_ACTIVE);
1089 	}
1090 #else
1091 	rid = TL_PCI_LOMEM;
1092 	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1093 	    RF_ACTIVE);
1094 	if (sc->tl_res == NULL) {
1095 		rid = TL_PCI_LOIO;
1096 		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1097 		    RF_ACTIVE);
1098 	}
1099 #endif
1100 
1101 	if (sc->tl_res == NULL) {
1102 		device_printf(dev, "couldn't map ports/memory\n");
1103 		error = ENXIO;
1104 		return(error);
1105 	}
1106 
1107 	sc->tl_btag = rman_get_bustag(sc->tl_res);
1108 	sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
1109 
1110 #ifdef notdef
1111 	/*
1112 	 * The ThunderLAN manual suggests jacking the PCI latency
1113 	 * timer all the way up to its maximum value. I'm not sure
1114 	 * if this is really necessary, but what the manual wants,
1115 	 * the manual gets.
1116 	 */
1117 	command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1118 	command |= 0x0000FF00;
1119 	pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1120 #endif
1121 
1122 	/* Allocate interrupt */
1123 	rid = 0;
1124 	sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1125 	    RF_SHAREABLE | RF_ACTIVE);
1126 
1127 	if (sc->tl_irq == NULL) {
1128 		device_printf(dev, "couldn't map interrupt\n");
1129 		error = ENXIO;
1130 		goto fail;
1131 	}
1132 
1133 	/*
1134 	 * Now allocate memory for the TX and RX lists.
1135 	 */
1136 	sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1137 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
1138 
1139 	if (sc->tl_ldata == NULL) {
1140 		device_printf(dev, "no memory for list buffers!\n");
1141 		error = ENXIO;
1142 		goto fail;
1143 	}
1144 
1145 	sc->tl_dinfo = t;
1146 	if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
1147 		sc->tl_eeaddr = TL_EEPROM_EADDR;
1148 	if (t->tl_vid == OLICOM_VENDORID)
1149 		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1150 
1151 	/* Reset the adapter. */
1152 	tl_softreset(sc, 1);
1153 	tl_hardreset(dev);
1154 	tl_softreset(sc, 1);
1155 
1156 	ifp = &sc->arpcom.ac_if;
1157 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1158 
1159 	/*
1160 	 * Get station address from the EEPROM.
1161 	 */
1162 	if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1163 		device_printf(dev, "failed to read station address\n");
1164 		error = ENXIO;
1165 		goto fail;
1166 	}
1167 
1168         /*
1169          * XXX Olicom, in its desire to be different from the
1170          * rest of the world, has done strange things with the
1171          * encoding of the station address in the EEPROM. First
1172          * of all, they store the address at offset 0xF8 rather
1173          * than at 0x83 like the ThunderLAN manual suggests.
1174          * Second, they store the address in three 16-bit words in
1175          * network byte order, as opposed to storing it sequentially
1176          * like all the other ThunderLAN cards. In order to get
1177          * the station address in a form that matches what the Olicom
1178          * diagnostic utility specifies, we have to byte-swap each
1179          * word. To make things even more confusing, neither 00:00:28
1180          * nor 00:00:24 appear in the IEEE OUI database.
1181          */
1182         if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
1183                 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1184                         u_int16_t               *p;
1185                         p = (u_int16_t *)&eaddr[i];
1186                         *p = ntohs(*p);
1187                 }
1188         }
1189 
1190 	ifp->if_softc = sc;
1191 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1192 	ifp->if_ioctl = tl_ioctl;
1193 	ifp->if_start = tl_start;
1194 	ifp->if_watchdog = tl_watchdog;
1195 	ifp->if_init = tl_init;
1196 	ifp->if_mtu = ETHERMTU;
1197 	ifq_set_maxlen(&ifp->if_snd, TL_TX_LIST_CNT - 1);
1198 	ifq_set_ready(&ifp->if_snd);
1199 	callout_init(&sc->tl_stat_timer);
1200 
1201 	/* Reset the adapter again. */
1202 	tl_softreset(sc, 1);
1203 	tl_hardreset(dev);
1204 	tl_softreset(sc, 1);
1205 
1206 	/*
1207 	 * Do MII setup. If no PHYs are found, then this is a
1208 	 * bitrate ThunderLAN chip that only supports 10baseT
1209 	 * and AUI/BNC.
1210 	 */
1211 	if (mii_phy_probe(dev, &sc->tl_miibus,
1212 	    tl_ifmedia_upd, tl_ifmedia_sts)) {
1213 		struct ifmedia		*ifm;
1214 		sc->tl_bitrate = 1;
1215 		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1216 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1217 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1218 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1219 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1220 		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1221 		/* Reset again, this time setting bitrate mode. */
1222 		tl_softreset(sc, 1);
1223 		ifm = &sc->ifmedia;
1224 		ifm->ifm_media = ifm->ifm_cur->ifm_media;
1225 		tl_ifmedia_upd(ifp);
1226 	}
1227 
1228 	/*
1229 	 * Call MI attach routine.
1230 	 */
1231 	ether_ifattach(ifp, eaddr, NULL);
1232 
1233 	error = bus_setup_intr(dev, sc->tl_irq, INTR_MPSAFE,
1234 			       tl_intr, sc, &sc->tl_intrhand,
1235 			       ifp->if_serializer);
1236 
1237 	if (error) {
1238 		ether_ifdetach(ifp);
1239 		device_printf(dev, "couldn't set up irq\n");
1240 		goto fail;
1241 	}
1242 
1243 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->tl_irq));
1244 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1245 
1246 	return(0);
1247 
1248 fail:
1249 	tl_detach(dev);
1250 	return(error);
1251 }
1252 
1253 static int
1254 tl_detach(device_t dev)
1255 {
1256 	struct tl_softc *sc = device_get_softc(dev);
1257 	struct ifnet *ifp = &sc->arpcom.ac_if;
1258 
1259 	if (device_is_attached(dev)) {
1260 		lwkt_serialize_enter(ifp->if_serializer);
1261 		tl_stop(sc);
1262 		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1263 		lwkt_serialize_exit(ifp->if_serializer);
1264 
1265 		ether_ifdetach(ifp);
1266 	}
1267 
1268 	if (sc->tl_miibus)
1269 		device_delete_child(dev, sc->tl_miibus);
1270 	bus_generic_detach(dev);
1271 
1272 	if (sc->tl_ldata)
1273 		contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1274 	if (sc->tl_bitrate)
1275 		ifmedia_removeall(&sc->ifmedia);
1276 	if (sc->tl_irq)
1277 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1278 	if (sc->tl_res)
1279 		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1280 
1281 	return(0);
1282 }
1283 
1284 /*
1285  * Initialize the transmit lists.
1286  */
1287 static int
1288 tl_list_tx_init(struct tl_softc *sc)
1289 {
1290 	struct tl_chain_data	*cd;
1291 	struct tl_list_data	*ld;
1292 	int			i;
1293 
1294 	cd = &sc->tl_cdata;
1295 	ld = sc->tl_ldata;
1296 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1297 		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1298 		if (i == (TL_TX_LIST_CNT - 1))
1299 			cd->tl_tx_chain[i].tl_next = NULL;
1300 		else
1301 			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1302 	}
1303 
1304 	cd->tl_tx_free = &cd->tl_tx_chain[0];
1305 	cd->tl_tx_tail = cd->tl_tx_head = NULL;
1306 	sc->tl_txeoc = 1;
1307 
1308 	return(0);
1309 }
1310 
1311 /*
1312  * Initialize the RX lists and allocate mbufs for them.
1313  */
1314 static int
1315 tl_list_rx_init(struct tl_softc *sc)
1316 {
1317 	struct tl_chain_data	*cd;
1318 	struct tl_list_data	*ld;
1319 	int			i;
1320 
1321 	cd = &sc->tl_cdata;
1322 	ld = sc->tl_ldata;
1323 
1324 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1325 		cd->tl_rx_chain[i].tl_ptr =
1326 			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
1327 		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1328 			return(ENOBUFS);
1329 		if (i == (TL_RX_LIST_CNT - 1)) {
1330 			cd->tl_rx_chain[i].tl_next = NULL;
1331 			ld->tl_rx_list[i].tlist_fptr = 0;
1332 		} else {
1333 			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1334 			ld->tl_rx_list[i].tlist_fptr =
1335 					vtophys(&ld->tl_rx_list[i + 1]);
1336 		}
1337 	}
1338 
1339 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1340 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1341 
1342 	return(0);
1343 }
1344 
1345 static int
1346 tl_newbuf(struct tl_softc *sc, struct tl_chain_onefrag *c)
1347 {
1348 	struct mbuf *m_new;
1349 
1350 	m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1351 	if (m_new == NULL)
1352 		return (ENOBUFS);
1353 
1354 	c->tl_mbuf = m_new;
1355 	c->tl_next = NULL;
1356 	c->tl_ptr->tlist_frsize = MCLBYTES;
1357 	c->tl_ptr->tlist_fptr = 0;
1358 	c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1359 	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1360 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1361 
1362 	return(0);
1363 }
1364 
1365 /*
1366  * Interrupt handler for RX 'end of frame' condition (EOF). This
1367  * tells us that a full ethernet frame has been captured and we need
1368  * to handle it.
1369  *
1370  * Reception is done using 'lists' which consist of a header and a
1371  * series of 10 data count/data address pairs that point to buffers.
1372  * Initially you're supposed to create a list, populate it with pointers
1373  * to buffers, then load the physical address of the list into the
1374  * ch_parm register. The adapter is then supposed to DMA the received
1375  * frame into the buffers for you.
1376  *
1377  * To make things as fast as possible, we have the chip DMA directly
1378  * into mbufs. This saves us from having to do a buffer copy: we can
1379  * just hand the mbufs directly to ether_input(). Once the frame has
1380  * been sent on its way, the 'list' structure is assigned a new buffer
1381  * and moved to the end of the RX chain. As long we we stay ahead of
1382  * the chip, it will always think it has an endless receive channel.
1383  *
1384  * If we happen to fall behind and the chip manages to fill up all of
1385  * the buffers, it will generate an end of channel interrupt and wait
1386  * for us to empty the chain and restart the receiver.
1387  */
1388 static int
1389 tl_intvec_rxeof(void *xsc, u_int32_t type)
1390 {
1391 	struct tl_softc		*sc;
1392 	int			r = 0, total_len = 0;
1393 	struct ether_header	*eh;
1394 	struct mbuf		*m;
1395 	struct ifnet		*ifp;
1396 	struct tl_chain_onefrag	*cur_rx;
1397 
1398 	sc = xsc;
1399 	ifp = &sc->arpcom.ac_if;
1400 
1401 	while(sc->tl_cdata.tl_rx_head != NULL) {
1402 		cur_rx = sc->tl_cdata.tl_rx_head;
1403 		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1404 			break;
1405 		r++;
1406 		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1407 		m = cur_rx->tl_mbuf;
1408 		total_len = cur_rx->tl_ptr->tlist_frsize;
1409 
1410 		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1411 			ifp->if_ierrors++;
1412 			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1413 			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1414 			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1415 			continue;
1416 		}
1417 
1418 		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1419 						vtophys(cur_rx->tl_ptr);
1420 		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1421 		sc->tl_cdata.tl_rx_tail = cur_rx;
1422 
1423 		eh = mtod(m, struct ether_header *);
1424 		m->m_pkthdr.rcvif = ifp;
1425 		m->m_pkthdr.len = m->m_len = total_len;
1426 
1427 		/*
1428 		 * Note: when the ThunderLAN chip is in 'capture all
1429 		 * frames' mode, it will receive its own transmissions.
1430 		 * We drop don't need to process our own transmissions,
1431 		 * so we drop them here and continue.
1432 		 */
1433 		/*if (ifp->if_flags & IFF_PROMISC && */
1434 		if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1435 		 					ETHER_ADDR_LEN)) {
1436 				m_freem(m);
1437 				continue;
1438 		}
1439 
1440 		ifp->if_input(ifp, m);
1441 	}
1442 
1443 	return(r);
1444 }
1445 
1446 /*
1447  * The RX-EOC condition hits when the ch_parm address hasn't been
1448  * initialized or the adapter reached a list with a forward pointer
1449  * of 0 (which indicates the end of the chain). In our case, this means
1450  * the card has hit the end of the receive buffer chain and we need to
1451  * empty out the buffers and shift the pointer back to the beginning again.
1452  */
1453 static int
1454 tl_intvec_rxeoc(void *xsc, u_int32_t type)
1455 {
1456 	struct tl_softc		*sc;
1457 	int			r;
1458 	struct tl_chain_data	*cd;
1459 
1460 
1461 	sc = xsc;
1462 	cd = &sc->tl_cdata;
1463 
1464 	/* Flush out the receive queue and ack RXEOF interrupts. */
1465 	r = tl_intvec_rxeof(xsc, type);
1466 	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1467 	r = 1;
1468 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1469 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1470 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1471 	r |= (TL_CMD_GO|TL_CMD_RT);
1472 	return(r);
1473 }
1474 
1475 static int
1476 tl_intvec_txeof(void *xsc, u_int32_t type)
1477 {
1478 	struct tl_softc		*sc;
1479 	int			r = 0;
1480 	struct tl_chain		*cur_tx;
1481 
1482 	sc = xsc;
1483 
1484 	/*
1485 	 * Go through our tx list and free mbufs for those
1486 	 * frames that have been sent.
1487 	 */
1488 	while (sc->tl_cdata.tl_tx_head != NULL) {
1489 		cur_tx = sc->tl_cdata.tl_tx_head;
1490 		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1491 			break;
1492 		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1493 
1494 		r++;
1495 		m_freem(cur_tx->tl_mbuf);
1496 		cur_tx->tl_mbuf = NULL;
1497 
1498 		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1499 		sc->tl_cdata.tl_tx_free = cur_tx;
1500 		if (!cur_tx->tl_ptr->tlist_fptr)
1501 			break;
1502 	}
1503 
1504 	return(r);
1505 }
1506 
1507 /*
1508  * The transmit end of channel interrupt. The adapter triggers this
1509  * interrupt to tell us it hit the end of the current transmit list.
1510  *
1511  * A note about this: it's possible for a condition to arise where
1512  * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1513  * You have to avoid this since the chip expects things to go in a
1514  * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1515  * When the TXEOF handler is called, it will free all of the transmitted
1516  * frames and reset the tx_head pointer to NULL. However, a TXEOC
1517  * interrupt should be received and acknowledged before any more frames
1518  * are queued for transmission. If tl_statrt() is called after TXEOF
1519  * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1520  * it could attempt to issue a transmit command prematurely.
1521  *
1522  * To guard against this, tl_start() will only issue transmit commands
1523  * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1524  * can set this flag once tl_start() has cleared it.
1525  */
1526 static int
1527 tl_intvec_txeoc(void *xsc, u_int32_t type)
1528 {
1529 	struct tl_softc		*sc;
1530 	struct ifnet		*ifp;
1531 	u_int32_t		cmd;
1532 
1533 	sc = xsc;
1534 	ifp = &sc->arpcom.ac_if;
1535 
1536 	/* Clear the timeout timer. */
1537 	ifp->if_timer = 0;
1538 
1539 	if (sc->tl_cdata.tl_tx_head == NULL) {
1540 		ifp->if_flags &= ~IFF_OACTIVE;
1541 		sc->tl_cdata.tl_tx_tail = NULL;
1542 		sc->tl_txeoc = 1;
1543 	} else {
1544 		sc->tl_txeoc = 0;
1545 		/* First we have to ack the EOC interrupt. */
1546 		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1547 		/* Then load the address of the next TX list. */
1548 		CSR_WRITE_4(sc, TL_CH_PARM,
1549 		    vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1550 		/* Restart TX channel. */
1551 		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1552 		cmd &= ~TL_CMD_RT;
1553 		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1554 		CMD_PUT(sc, cmd);
1555 		return(0);
1556 	}
1557 
1558 	return(1);
1559 }
1560 
1561 static int
1562 tl_intvec_adchk(void *xsc, u_int32_t type)
1563 {
1564 	struct tl_softc		*sc;
1565 
1566 	sc = xsc;
1567 
1568 	if (type) {
1569 		if_printf(&sc->arpcom.ac_if, "adapter check: %x\n",
1570 			  (unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1571 	}
1572 
1573 	tl_softreset(sc, 1);
1574 	tl_stop(sc);
1575 	tl_init(sc);
1576 	CMD_SET(sc, TL_CMD_INTSON);
1577 
1578 	return(0);
1579 }
1580 
1581 static int
1582 tl_intvec_netsts(void *xsc, u_int32_t type)
1583 {
1584 	struct tl_softc		*sc;
1585 	u_int16_t		netsts;
1586 
1587 	sc = xsc;
1588 
1589 	netsts = tl_dio_read16(sc, TL_NETSTS);
1590 	tl_dio_write16(sc, TL_NETSTS, netsts);
1591 
1592 	if_printf(&sc->arpcom.ac_if, "network status: %x\n", netsts);
1593 
1594 	return(1);
1595 }
1596 
1597 static void
1598 tl_intr(void *xsc)
1599 {
1600 	struct tl_softc		*sc;
1601 	struct ifnet		*ifp;
1602 	int			r = 0;
1603 	u_int32_t		type = 0;
1604 	u_int16_t		ints = 0;
1605 	u_int8_t		ivec = 0;
1606 
1607 	sc = xsc;
1608 
1609 	/* Disable interrupts */
1610 	ints = CSR_READ_2(sc, TL_HOST_INT);
1611 	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1612 	type = (ints << 16) & 0xFFFF0000;
1613 	ivec = (ints & TL_VEC_MASK) >> 5;
1614 	ints = (ints & TL_INT_MASK) >> 2;
1615 
1616 	ifp = &sc->arpcom.ac_if;
1617 
1618 	switch(ints) {
1619 	case (TL_INTR_INVALID):
1620 #ifdef DIAGNOSTIC
1621 		if_printf(ifp, "got an invalid interrupt!\n");
1622 #endif
1623 		/* Re-enable interrupts but don't ack this one. */
1624 		CMD_PUT(sc, type);
1625 		r = 0;
1626 		break;
1627 	case (TL_INTR_TXEOF):
1628 		r = tl_intvec_txeof((void *)sc, type);
1629 		break;
1630 	case (TL_INTR_TXEOC):
1631 		r = tl_intvec_txeoc((void *)sc, type);
1632 		break;
1633 	case (TL_INTR_STATOFLOW):
1634 		tl_stats_update_serialized(sc);
1635 		r = 1;
1636 		break;
1637 	case (TL_INTR_RXEOF):
1638 		r = tl_intvec_rxeof((void *)sc, type);
1639 		break;
1640 	case (TL_INTR_DUMMY):
1641 		if_printf(ifp, "got a dummy interrupt\n");
1642 		r = 1;
1643 		break;
1644 	case (TL_INTR_ADCHK):
1645 		if (ivec)
1646 			r = tl_intvec_adchk((void *)sc, type);
1647 		else
1648 			r = tl_intvec_netsts((void *)sc, type);
1649 		break;
1650 	case (TL_INTR_RXEOC):
1651 		r = tl_intvec_rxeoc((void *)sc, type);
1652 		break;
1653 	default:
1654 		if_printf(ifp, "bogus interrupt type\n");
1655 		break;
1656 	}
1657 
1658 	/* Re-enable interrupts */
1659 	if (r) {
1660 		CMD_PUT(sc, TL_CMD_ACK | r | type);
1661 	}
1662 
1663 	if (!ifq_is_empty(&ifp->if_snd))
1664 		if_devstart(ifp);
1665 }
1666 
1667 static
1668 void
1669 tl_stats_update(void *xsc)
1670 {
1671 	struct tl_softc *sc = xsc;
1672 	struct ifnet *ifp = &sc->arpcom.ac_if;
1673 
1674 	lwkt_serialize_enter(ifp->if_serializer);
1675 	tl_stats_update_serialized(xsc);
1676 	lwkt_serialize_exit(ifp->if_serializer);
1677 }
1678 
1679 static
1680 void
1681 tl_stats_update_serialized(void *xsc)
1682 {
1683 	struct tl_softc		*sc;
1684 	struct ifnet		*ifp;
1685 	struct tl_stats		tl_stats;
1686 	struct mii_data		*mii;
1687 	u_int32_t		*p;
1688 
1689 	bzero((char *)&tl_stats, sizeof(struct tl_stats));
1690 
1691 	sc = xsc;
1692 	ifp = &sc->arpcom.ac_if;
1693 
1694 	p = (u_int32_t *)&tl_stats;
1695 
1696 	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1697 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1698 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1699 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1700 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1701 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1702 
1703 	ifp->if_opackets += tl_tx_goodframes(tl_stats);
1704 	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1705 				tl_stats.tl_tx_multi_collision;
1706 	ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1707 	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1708 			    tl_rx_overrun(tl_stats);
1709 	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1710 
1711 	if (tl_tx_underrun(tl_stats)) {
1712 		u_int8_t		tx_thresh;
1713 		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1714 		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1715 			tx_thresh >>= 4;
1716 			tx_thresh++;
1717 			if_printf(ifp, "tx underrun -- increasing "
1718 				  "tx threshold to %d bytes\n",
1719 				  (64 * (tx_thresh * 4)));
1720 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1721 			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1722 		}
1723 	}
1724 
1725 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1726 
1727 	if (!sc->tl_bitrate) {
1728 		mii = device_get_softc(sc->tl_miibus);
1729 		mii_tick(mii);
1730 	}
1731 }
1732 
1733 /*
1734  * Encapsulate an mbuf chain in a list by coupling the mbuf data
1735  * pointers to the fragment pointers.
1736  */
1737 static int
1738 tl_encap(struct tl_softc *sc, struct tl_chain *c, struct mbuf *m_head)
1739 {
1740 	int			frag = 0;
1741 	struct tl_frag		*f = NULL;
1742 	int			total_len;
1743 	struct mbuf		*m;
1744 
1745 	/*
1746  	 * Start packing the mbufs in this chain into
1747 	 * the fragment pointers. Stop when we run out
1748  	 * of fragments or hit the end of the mbuf chain.
1749 	 */
1750 	m = m_head;
1751 	total_len = 0;
1752 
1753 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1754 		if (m->m_len != 0) {
1755 			if (frag == TL_MAXFRAGS)
1756 				break;
1757 			total_len+= m->m_len;
1758 			c->tl_ptr->tl_frag[frag].tlist_dadr =
1759 				vtophys(mtod(m, vm_offset_t));
1760 			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1761 			frag++;
1762 		}
1763 	}
1764 
1765 	/*
1766 	 * Handle special cases.
1767 	 * Special case #1: we used up all 10 fragments, but
1768 	 * we have more mbufs left in the chain. Copy the
1769 	 * data into an mbuf cluster. Note that we don't
1770 	 * bother clearing the values in the other fragment
1771 	 * pointers/counters; it wouldn't gain us anything,
1772 	 * and would waste cycles.
1773 	 */
1774 	if (m != NULL) {
1775 		struct mbuf *m_new;
1776 
1777 		m_new = m_getl(m_head->m_pkthdr.len, MB_DONTWAIT, MT_DATA,
1778 			       M_PKTHDR, NULL);
1779 		if (m_new == NULL) {
1780 			if_printf(&sc->arpcom.ac_if, "no memory for tx list\n");
1781 			return (1);
1782 		}
1783 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1784 					mtod(m_new, caddr_t));
1785 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1786 		m_freem(m_head);
1787 		m_head = m_new;
1788 		f = &c->tl_ptr->tl_frag[0];
1789 		f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1790 		f->tlist_dcnt = total_len = m_new->m_len;
1791 		frag = 1;
1792 	}
1793 
1794 	/*
1795 	 * Special case #2: the frame is smaller than the minimum
1796 	 * frame size. We have to pad it to make the chip happy.
1797 	 */
1798 	if (total_len < TL_MIN_FRAMELEN) {
1799 		if (frag == TL_MAXFRAGS) {
1800 			if_printf(&sc->arpcom.ac_if, "all frags filled but "
1801 				  "frame still to small!\n");
1802 		}
1803 		f = &c->tl_ptr->tl_frag[frag];
1804 		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1805 		f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1806 		total_len += f->tlist_dcnt;
1807 		frag++;
1808 	}
1809 
1810 	c->tl_mbuf = m_head;
1811 	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1812 	c->tl_ptr->tlist_frsize = total_len;
1813 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1814 	c->tl_ptr->tlist_fptr = 0;
1815 
1816 	return(0);
1817 }
1818 
1819 /*
1820  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1821  * to the mbuf data regions directly in the transmit lists. We also save a
1822  * copy of the pointers since the transmit list fragment pointers are
1823  * physical addresses.
1824  */
1825 static void
1826 tl_start(struct ifnet *ifp)
1827 {
1828 	struct tl_softc		*sc;
1829 	struct mbuf		*m_head = NULL;
1830 	u_int32_t		cmd;
1831 	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1832 
1833 	sc = ifp->if_softc;
1834 
1835 	/*
1836 	 * Check for an available queue slot. If there are none,
1837 	 * punt.
1838 	 */
1839 	if (sc->tl_cdata.tl_tx_free == NULL) {
1840 		ifp->if_flags |= IFF_OACTIVE;
1841 		return;
1842 	}
1843 
1844 	start_tx = sc->tl_cdata.tl_tx_free;
1845 
1846 	while(sc->tl_cdata.tl_tx_free != NULL) {
1847 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1848 		if (m_head == NULL)
1849 			break;
1850 
1851 		/* Pick a chain member off the free list. */
1852 		cur_tx = sc->tl_cdata.tl_tx_free;
1853 		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1854 
1855 		cur_tx->tl_next = NULL;
1856 
1857 		/* Pack the data into the list. */
1858 		tl_encap(sc, cur_tx, m_head);
1859 
1860 		/* Chain it together */
1861 		if (prev != NULL) {
1862 			prev->tl_next = cur_tx;
1863 			prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1864 		}
1865 		prev = cur_tx;
1866 
1867 		BPF_MTAP(ifp, cur_tx->tl_mbuf);
1868 	}
1869 
1870 	/*
1871 	 * If there are no packets queued, bail.
1872 	 */
1873 	if (cur_tx == NULL)
1874 		return;
1875 
1876 	/*
1877 	 * That's all we can stands, we can't stands no more.
1878 	 * If there are no other transfers pending, then issue the
1879 	 * TX GO command to the adapter to start things moving.
1880 	 * Otherwise, just leave the data in the queue and let
1881 	 * the EOF/EOC interrupt handler send.
1882 	 */
1883 	if (sc->tl_cdata.tl_tx_head == NULL) {
1884 		sc->tl_cdata.tl_tx_head = start_tx;
1885 		sc->tl_cdata.tl_tx_tail = cur_tx;
1886 
1887 		if (sc->tl_txeoc) {
1888 			sc->tl_txeoc = 0;
1889 			CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
1890 			cmd = CSR_READ_4(sc, TL_HOSTCMD);
1891 			cmd &= ~TL_CMD_RT;
1892 			cmd |= TL_CMD_GO|TL_CMD_INTSON;
1893 			CMD_PUT(sc, cmd);
1894 		}
1895 	} else {
1896 		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
1897 		sc->tl_cdata.tl_tx_tail = cur_tx;
1898 	}
1899 
1900 	/*
1901 	 * Set a timeout in case the chip goes out to lunch.
1902 	 */
1903 	ifp->if_timer = 5;
1904 
1905 	return;
1906 }
1907 
1908 static void
1909 tl_init(void *xsc)
1910 {
1911 	struct tl_softc		*sc = xsc;
1912 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1913 	struct mii_data		*mii;
1914 
1915 	/*
1916 	 * Cancel pending I/O.
1917 	 */
1918 	tl_stop(sc);
1919 
1920 	/* Initialize TX FIFO threshold */
1921 	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1922 	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
1923 
1924         /* Set PCI burst size */
1925 	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
1926 
1927 	/*
1928 	 * Set 'capture all frames' bit for promiscuous mode.
1929 	 */
1930 	if (ifp->if_flags & IFF_PROMISC)
1931 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
1932 	else
1933 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
1934 
1935 	/*
1936 	 * Set capture broadcast bit to capture broadcast frames.
1937 	 */
1938 	if (ifp->if_flags & IFF_BROADCAST)
1939 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1940 	else
1941 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1942 
1943 	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
1944 
1945 	/* Init our MAC address */
1946 	tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
1947 
1948 	/* Init multicast filter, if needed. */
1949 	tl_setmulti(sc);
1950 
1951 	/* Init circular RX list. */
1952 	if (tl_list_rx_init(sc) == ENOBUFS) {
1953 		if_printf(ifp, "initialization failed: no "
1954 			  "memory for rx buffers\n");
1955 		tl_stop(sc);
1956 		return;
1957 	}
1958 
1959 	/* Init TX pointers. */
1960 	tl_list_tx_init(sc);
1961 
1962 	/* Enable PCI interrupts. */
1963 	CMD_SET(sc, TL_CMD_INTSON);
1964 
1965 	/* Load the address of the rx list */
1966 	CMD_SET(sc, TL_CMD_RT);
1967 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
1968 
1969 	if (!sc->tl_bitrate) {
1970 		if (sc->tl_miibus != NULL) {
1971 			mii = device_get_softc(sc->tl_miibus);
1972 			mii_mediachg(mii);
1973 		}
1974 	}
1975 
1976 	/* Send the RX go command */
1977 	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
1978 
1979 	ifp->if_flags |= IFF_RUNNING;
1980 	ifp->if_flags &= ~IFF_OACTIVE;
1981 
1982 	/* Start the stats update counter */
1983 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1984 }
1985 
1986 /*
1987  * Set media options.
1988  */
1989 static int
1990 tl_ifmedia_upd(struct ifnet *ifp)
1991 {
1992 	struct tl_softc		*sc;
1993 	struct mii_data		*mii = NULL;
1994 
1995 	sc = ifp->if_softc;
1996 
1997 	if (sc->tl_bitrate)
1998 		tl_setmode(sc, sc->ifmedia.ifm_media);
1999 	else {
2000 		mii = device_get_softc(sc->tl_miibus);
2001 		mii_mediachg(mii);
2002 	}
2003 
2004 	return(0);
2005 }
2006 
2007 /*
2008  * Report current media status.
2009  */
2010 static void
2011 tl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2012 {
2013 	struct tl_softc		*sc;
2014 	struct mii_data		*mii;
2015 
2016 	sc = ifp->if_softc;
2017 
2018 	ifmr->ifm_active = IFM_ETHER;
2019 
2020 	if (sc->tl_bitrate) {
2021 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2022 			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2023 		else
2024 			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2025 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2026 			ifmr->ifm_active |= IFM_HDX;
2027 		else
2028 			ifmr->ifm_active |= IFM_FDX;
2029 		return;
2030 	} else {
2031 		mii = device_get_softc(sc->tl_miibus);
2032 		mii_pollstat(mii);
2033 		ifmr->ifm_active = mii->mii_media_active;
2034 		ifmr->ifm_status = mii->mii_media_status;
2035 	}
2036 
2037 	return;
2038 }
2039 
2040 static int
2041 tl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2042 {
2043 	struct tl_softc		*sc = ifp->if_softc;
2044 	struct ifreq		*ifr = (struct ifreq *) data;
2045 	int			error = 0;
2046 
2047 	switch(command) {
2048 	case SIOCSIFFLAGS:
2049 		if (ifp->if_flags & IFF_UP) {
2050 			if (ifp->if_flags & IFF_RUNNING &&
2051 			    ifp->if_flags & IFF_PROMISC &&
2052 			    !(sc->tl_if_flags & IFF_PROMISC)) {
2053 				tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2054 				tl_setmulti(sc);
2055 			} else if (ifp->if_flags & IFF_RUNNING &&
2056 			    !(ifp->if_flags & IFF_PROMISC) &&
2057 			    sc->tl_if_flags & IFF_PROMISC) {
2058 				tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2059 				tl_setmulti(sc);
2060 			} else
2061 				tl_init(sc);
2062 		} else {
2063 			if (ifp->if_flags & IFF_RUNNING) {
2064 				tl_stop(sc);
2065 			}
2066 		}
2067 		sc->tl_if_flags = ifp->if_flags;
2068 		error = 0;
2069 		break;
2070 	case SIOCADDMULTI:
2071 	case SIOCDELMULTI:
2072 		tl_setmulti(sc);
2073 		error = 0;
2074 		break;
2075 	case SIOCSIFMEDIA:
2076 	case SIOCGIFMEDIA:
2077 		if (sc->tl_bitrate)
2078 			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2079 		else {
2080 			struct mii_data		*mii;
2081 			mii = device_get_softc(sc->tl_miibus);
2082 			error = ifmedia_ioctl(ifp, ifr,
2083 			    &mii->mii_media, command);
2084 		}
2085 		break;
2086 	default:
2087 		error = ether_ioctl(ifp, command, data);
2088 		break;
2089 	}
2090 	return(error);
2091 }
2092 
2093 static void
2094 tl_watchdog(struct ifnet *ifp)
2095 {
2096 	struct tl_softc		*sc;
2097 
2098 	sc = ifp->if_softc;
2099 
2100 	if_printf(ifp, "device timeout\n");
2101 
2102 	ifp->if_oerrors++;
2103 
2104 	tl_softreset(sc, 1);
2105 	tl_init(sc);
2106 
2107 	return;
2108 }
2109 
2110 /*
2111  * Stop the adapter and free any mbufs allocated to the
2112  * RX and TX lists.
2113  */
2114 static void
2115 tl_stop(struct tl_softc *sc)
2116 {
2117 	int		i;
2118 	struct ifnet		*ifp;
2119 
2120 	ifp = &sc->arpcom.ac_if;
2121 
2122 	/* Stop the stats updater. */
2123 	callout_stop(&sc->tl_stat_timer);
2124 
2125 	/* Stop the transmitter */
2126 	CMD_CLR(sc, TL_CMD_RT);
2127 	CMD_SET(sc, TL_CMD_STOP);
2128 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2129 
2130 	/* Stop the receiver */
2131 	CMD_SET(sc, TL_CMD_RT);
2132 	CMD_SET(sc, TL_CMD_STOP);
2133 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2134 
2135 	/*
2136 	 * Disable host interrupts.
2137 	 */
2138 	CMD_SET(sc, TL_CMD_INTSOFF);
2139 
2140 	/*
2141 	 * Clear list pointer.
2142 	 */
2143 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2144 
2145 	/*
2146 	 * Free the RX lists.
2147 	 */
2148 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
2149 		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2150 			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2151 			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2152 		}
2153 	}
2154 	bzero((char *)&sc->tl_ldata->tl_rx_list,
2155 		sizeof(sc->tl_ldata->tl_rx_list));
2156 
2157 	/*
2158 	 * Free the TX list buffers.
2159 	 */
2160 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
2161 		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2162 			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2163 			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2164 		}
2165 	}
2166 	bzero((char *)&sc->tl_ldata->tl_tx_list,
2167 		sizeof(sc->tl_ldata->tl_tx_list));
2168 
2169 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2170 
2171 	return;
2172 }
2173 
2174 /*
2175  * Stop all chip I/O so that the kernel's probe routines don't
2176  * get confused by errant DMAs when rebooting.
2177  */
2178 static void
2179 tl_shutdown(device_t dev)
2180 {
2181 	struct tl_softc		*sc;
2182 
2183 	sc = device_get_softc(dev);
2184 
2185 	tl_stop(sc);
2186 
2187 	return;
2188 }
2189