xref: /dragonfly/sys/dev/netif/vge/if_vge.c (revision 03517d4e)
1 /*
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/dev/vge/if_vge.c,v 1.24 2006/02/14 12:44:56 glebius Exp $
33  */
34 
35 /*
36  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
37  *
38  * Written by Bill Paul <wpaul@windriver.com>
39  * Senior Networking Software Engineer
40  * Wind River Systems
41  */
42 
43 /*
44  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
45  * combines a tri-speed ethernet MAC and PHY, with the following
46  * features:
47  *
48  *	o Jumbo frame support up to 16K
49  *	o Transmit and receive flow control
50  *	o IPv4 checksum offload
51  *	o VLAN tag insertion and stripping
52  *	o TCP large send
53  *	o 64-bit multicast hash table filter
54  *	o 64 entry CAM filter
55  *	o 16K RX FIFO and 48K TX FIFO memory
56  *	o Interrupt moderation
57  *
58  * The VT6122 supports up to four transmit DMA queues. The descriptors
59  * in the transmit ring can address up to 7 data fragments; frames which
60  * span more than 7 data buffers must be coalesced, but in general the
61  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
62  * long. The receive descriptors address only a single buffer.
63  *
64  * There are two peculiar design issues with the VT6122. One is that
65  * receive data buffers must be aligned on a 32-bit boundary. This is
66  * not a problem where the VT6122 is used as a LOM device in x86-based
67  * systems, but on architectures that generate unaligned access traps, we
68  * have to do some copying.
69  *
70  * The other issue has to do with the way 64-bit addresses are handled.
71  * The DMA descriptors only allow you to specify 48 bits of addressing
72  * information. The remaining 16 bits are specified using one of the
73  * I/O registers. If you only have a 32-bit system, then this isn't
74  * an issue, but if you have a 64-bit system and more than 4GB of
75  * memory, you must have to make sure your network data buffers reside
76  * in the same 48-bit 'segment.'
77  *
78  * Special thanks to Ryan Fu at VIA Networking for providing documentation
79  * and sample NICs for testing.
80  */
81 
82 #include "opt_ifpoll.h"
83 
84 #include <sys/param.h>
85 #include <sys/endian.h>
86 #include <sys/systm.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/module.h>
91 #include <sys/kernel.h>
92 #include <sys/socket.h>
93 #include <sys/serialize.h>
94 #include <sys/proc.h>
95 #include <sys/bus.h>
96 #include <sys/rman.h>
97 #include <sys/interrupt.h>
98 
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/ethernet.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_poll.h>
105 #include <net/ifq_var.h>
106 #include <net/if_types.h>
107 #include <net/vlan/if_vlan_var.h>
108 #include <net/vlan/if_vlan_ether.h>
109 
110 #include <net/bpf.h>
111 
112 #include <dev/netif/mii_layer/mii.h>
113 #include <dev/netif/mii_layer/miivar.h>
114 
115 #include <bus/pci/pcireg.h>
116 #include <bus/pci/pcivar.h>
117 #include "pcidevs.h"
118 
119 #include "miibus_if.h"
120 
121 #include <dev/netif/vge/if_vgereg.h>
122 #include <dev/netif/vge/if_vgevar.h>
123 
124 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
125 
126 /*
127  * Various supported device vendors/types and their names.
128  */
129 static const struct vge_type vge_devs[] = {
130 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612X,
131 	  "VIA Networking Gigabit Ethernet" },
132 	{ 0, 0, NULL }
133 };
134 
135 static int vge_probe		(device_t);
136 static int vge_attach		(device_t);
137 static int vge_detach		(device_t);
138 
139 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
140 
141 static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
142 static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
143 				    bus_size_t, int);
144 static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
145 				    bus_size_t, int);
146 static int vge_dma_alloc	(device_t);
147 static void vge_dma_free	(struct vge_softc *);
148 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
149 static int vge_rx_list_init	(struct vge_softc *);
150 static int vge_tx_list_init	(struct vge_softc *);
151 #ifdef VGE_FIXUP_RX
152 static __inline void vge_fixup_rx
153 				(struct mbuf *);
154 #endif
155 static void vge_rxeof		(struct vge_softc *, int);
156 static void vge_txeof		(struct vge_softc *);
157 static void vge_intr		(void *);
158 static void vge_tick		(struct vge_softc *);
159 static void vge_start		(struct ifnet *, struct ifaltq_subque *);
160 static int vge_ioctl		(struct ifnet *, u_long, caddr_t,
161 				 struct ucred *);
162 static void vge_init		(void *);
163 static void vge_stop		(struct vge_softc *);
164 static void vge_watchdog	(struct ifnet *);
165 static int vge_suspend		(device_t);
166 static int vge_resume		(device_t);
167 static void vge_shutdown	(device_t);
168 static int vge_ifmedia_upd	(struct ifnet *);
169 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
170 
171 #ifdef VGE_EEPROM
172 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
173 #endif
174 static void vge_read_eeprom	(struct vge_softc *, uint8_t *, int, int, int);
175 
176 static void vge_miipoll_start	(struct vge_softc *);
177 static void vge_miipoll_stop	(struct vge_softc *);
178 static int vge_miibus_readreg	(device_t, int, int);
179 static int vge_miibus_writereg	(device_t, int, int, int);
180 static void vge_miibus_statchg	(device_t);
181 
182 static void vge_cam_clear	(struct vge_softc *);
183 static int vge_cam_set		(struct vge_softc *, uint8_t *);
184 static void vge_setmulti	(struct vge_softc *);
185 static void vge_reset		(struct vge_softc *);
186 
187 #ifdef IFPOLL_ENABLE
188 static void	vge_npoll(struct ifnet *, struct ifpoll_info *);
189 static void	vge_npoll_compat(struct ifnet *, void *, int);
190 static void	vge_disable_intr(struct vge_softc *);
191 #endif
192 static void	vge_enable_intr(struct vge_softc *, uint32_t);
193 
194 #define VGE_PCI_LOIO             0x10
195 #define VGE_PCI_LOMEM            0x14
196 
197 static device_method_t vge_methods[] = {
198 	/* Device interface */
199 	DEVMETHOD(device_probe,		vge_probe),
200 	DEVMETHOD(device_attach,	vge_attach),
201 	DEVMETHOD(device_detach,	vge_detach),
202 	DEVMETHOD(device_suspend,	vge_suspend),
203 	DEVMETHOD(device_resume,	vge_resume),
204 	DEVMETHOD(device_shutdown,	vge_shutdown),
205 
206 	/* bus interface */
207 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
208 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
209 
210 	/* MII interface */
211 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
212 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
213 	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
214 
215 	DEVMETHOD_END
216 };
217 
218 static driver_t vge_driver = {
219 	"vge",
220 	vge_methods,
221 	sizeof(struct vge_softc)
222 };
223 
224 static devclass_t vge_devclass;
225 
226 DECLARE_DUMMY_MODULE(if_vge);
227 MODULE_DEPEND(if_vge, miibus, 1, 1, 1);
228 DRIVER_MODULE(if_vge, pci, vge_driver, vge_devclass, NULL, NULL);
229 DRIVER_MODULE(if_vge, cardbus, vge_driver, vge_devclass, NULL, NULL);
230 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, NULL, NULL);
231 
232 #ifdef VGE_EEPROM
233 /*
234  * Read a word of data stored in the EEPROM at address 'addr.'
235  */
236 static void
237 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t dest)
238 {
239 	uint16_t word = 0;
240 	int i;
241 
242 	/*
243 	 * Enter EEPROM embedded programming mode. In order to
244 	 * access the EEPROM at all, we first have to set the
245 	 * EELOAD bit in the CHIPCFG2 register.
246 	 */
247 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
248 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
249 
250 	/* Select the address of the word we want to read */
251 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
252 
253 	/* Issue read command */
254 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
255 
256 	/* Wait for the done bit to be set. */
257 	for (i = 0; i < VGE_TIMEOUT; i++) {
258 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
259 			break;
260 	}
261 	if (i == VGE_TIMEOUT) {
262 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
263 		*dest = 0;
264 		return;
265 	}
266 
267 	/* Read the result */
268 	word = CSR_READ_2(sc, VGE_EERDDAT);
269 
270 	/* Turn off EEPROM access mode. */
271 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
272 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
273 
274 	*dest = word;
275 }
276 #endif
277 
278 /*
279  * Read a sequence of words from the EEPROM.
280  */
281 static void
282 vge_read_eeprom(struct vge_softc *sc, uint8_t *dest, int off, int cnt, int swap)
283 {
284 	int i;
285 #ifdef VGE_EEPROM
286 	uint16_t word = 0, *ptr;
287 
288 	for (i = 0; i < cnt; i++) {
289 		vge_eeprom_getword(sc, off + i, &word);
290 		ptr = (uint16_t *)(dest + (i * 2));
291 		if (swap)
292 			*ptr = ntohs(word);
293 		else
294 			*ptr = word;
295 	}
296 #else
297 	for (i = 0; i < ETHER_ADDR_LEN; i++)
298 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
299 #endif
300 }
301 
302 static void
303 vge_miipoll_stop(struct vge_softc *sc)
304 {
305 	int i;
306 
307 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
308 
309 	for (i = 0; i < VGE_TIMEOUT; i++) {
310 		DELAY(1);
311 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
312 			break;
313 	}
314 	if (i == VGE_TIMEOUT)
315 		if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
316 }
317 
318 static void
319 vge_miipoll_start(struct vge_softc *sc)
320 {
321 	int i;
322 
323 	/* First, make sure we're idle. */
324 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
325 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
326 
327 	for (i = 0; i < VGE_TIMEOUT; i++) {
328 		DELAY(1);
329 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
330 			break;
331 	}
332 	if (i == VGE_TIMEOUT) {
333 		if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
334 		return;
335 	}
336 
337 	/* Now enable auto poll mode. */
338 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
339 
340 	/* And make sure it started. */
341 	for (i = 0; i < VGE_TIMEOUT; i++) {
342 		DELAY(1);
343 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
344 			break;
345 	}
346 	if (i == VGE_TIMEOUT)
347 		if_printf(&sc->arpcom.ac_if, "failed to start MII autopoll\n");
348 }
349 
350 static int
351 vge_miibus_readreg(device_t dev, int phy, int reg)
352 {
353 	struct vge_softc *sc;
354 	int i;
355 	uint16_t rval = 0;
356 
357 	sc = device_get_softc(dev);
358 
359 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
360 		return(0);
361 
362 	vge_miipoll_stop(sc);
363 
364 	/* Specify the register we want to read. */
365 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
366 
367 	/* Issue read command. */
368 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
369 
370 	/* Wait for the read command bit to self-clear. */
371 	for (i = 0; i < VGE_TIMEOUT; i++) {
372 		DELAY(1);
373 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
374 			break;
375 	}
376 	if (i == VGE_TIMEOUT)
377 		if_printf(&sc->arpcom.ac_if, "MII read timed out\n");
378 	else
379 		rval = CSR_READ_2(sc, VGE_MIIDATA);
380 
381 	vge_miipoll_start(sc);
382 
383 	return (rval);
384 }
385 
386 static int
387 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
388 {
389 	struct vge_softc *sc;
390 	int i, rval = 0;
391 
392 	sc = device_get_softc(dev);
393 
394 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
395 		return(0);
396 
397 	vge_miipoll_stop(sc);
398 
399 	/* Specify the register we want to write. */
400 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
401 
402 	/* Specify the data we want to write. */
403 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
404 
405 	/* Issue write command. */
406 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
407 
408 	/* Wait for the write command bit to self-clear. */
409 	for (i = 0; i < VGE_TIMEOUT; i++) {
410 		DELAY(1);
411 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
412 			break;
413 	}
414 	if (i == VGE_TIMEOUT) {
415 		if_printf(&sc->arpcom.ac_if, "MII write timed out\n");
416 		rval = EIO;
417 	}
418 
419 	vge_miipoll_start(sc);
420 
421 	return (rval);
422 }
423 
424 static void
425 vge_cam_clear(struct vge_softc *sc)
426 {
427 	int i;
428 
429 	/*
430 	 * Turn off all the mask bits. This tells the chip
431 	 * that none of the entries in the CAM filter are valid.
432 	 * desired entries will be enabled as we fill the filter in.
433 	 */
434 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
435 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
436 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
437 	for (i = 0; i < 8; i++)
438 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
439 
440 	/* Clear the VLAN filter too. */
441 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
442 	for (i = 0; i < 8; i++)
443 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
444 
445 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
446 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
447 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
448 
449 	sc->vge_camidx = 0;
450 }
451 
452 static int
453 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
454 {
455 	int i, error = 0;
456 
457 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
458 		return(ENOSPC);
459 
460 	/* Select the CAM data page. */
461 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
462 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
463 
464 	/* Set the filter entry we want to update and enable writing. */
465 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
466 
467 	/* Write the address to the CAM registers */
468 	for (i = 0; i < ETHER_ADDR_LEN; i++)
469 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
470 
471 	/* Issue a write command. */
472 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
473 
474 	/* Wake for it to clear. */
475 	for (i = 0; i < VGE_TIMEOUT; i++) {
476 		DELAY(1);
477 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
478 			break;
479 	}
480 	if (i == VGE_TIMEOUT) {
481 		if_printf(&sc->arpcom.ac_if, "setting CAM filter failed\n");
482 		error = EIO;
483 		goto fail;
484 	}
485 
486 	/* Select the CAM mask page. */
487 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
488 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
489 
490 	/* Set the mask bit that enables this filter. */
491 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
492 	    1<<(sc->vge_camidx & 7));
493 
494 	sc->vge_camidx++;
495 
496 fail:
497 	/* Turn off access to CAM. */
498 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
499 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
500 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
501 
502 	return (error);
503 }
504 
505 /*
506  * Program the multicast filter. We use the 64-entry CAM filter
507  * for perfect filtering. If there's more than 64 multicast addresses,
508  * we use the hash filter insted.
509  */
510 static void
511 vge_setmulti(struct vge_softc *sc)
512 {
513 	struct ifnet *ifp = &sc->arpcom.ac_if;
514 	int error = 0;
515 	struct ifmultiaddr *ifma;
516 	uint32_t h, hashes[2] = { 0, 0 };
517 
518 	/* First, zot all the multicast entries. */
519 	vge_cam_clear(sc);
520 	CSR_WRITE_4(sc, VGE_MAR0, 0);
521 	CSR_WRITE_4(sc, VGE_MAR1, 0);
522 
523 	/*
524 	 * If the user wants allmulti or promisc mode, enable reception
525 	 * of all multicast frames.
526 	 */
527 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
528 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
529 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
530 		return;
531 	}
532 
533 	/* Now program new ones */
534 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
535 		if (ifma->ifma_addr->sa_family != AF_LINK)
536 			continue;
537 		error = vge_cam_set(sc,
538 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
539 		if (error)
540 			break;
541 	}
542 
543 	/* If there were too many addresses, use the hash filter. */
544 	if (error) {
545 		vge_cam_clear(sc);
546 
547 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
548 			if (ifma->ifma_addr->sa_family != AF_LINK)
549 				continue;
550 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
551 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
552 			if (h < 32)
553 				hashes[0] |= (1 << h);
554 			else
555 				hashes[1] |= (1 << (h - 32));
556 		}
557 
558 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
559 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
560 	}
561 }
562 
563 static void
564 vge_reset(struct vge_softc *sc)
565 {
566 	int i;
567 
568 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
569 
570 	for (i = 0; i < VGE_TIMEOUT; i++) {
571 		DELAY(5);
572 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
573 			break;
574 	}
575 
576 	if (i == VGE_TIMEOUT) {
577 		if_printf(&sc->arpcom.ac_if, "soft reset timed out");
578 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
579 		DELAY(2000);
580 	}
581 
582 	DELAY(5000);
583 
584 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
585 
586 	for (i = 0; i < VGE_TIMEOUT; i++) {
587 		DELAY(5);
588 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
589 			break;
590 	}
591 	if (i == VGE_TIMEOUT) {
592 		if_printf(&sc->arpcom.ac_if, "EEPROM reload timed out\n");
593 		return;
594 	}
595 
596 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
597 }
598 
599 /*
600  * Probe for a VIA gigabit chip. Check the PCI vendor and device
601  * IDs against our list and return a device name if we find a match.
602  */
603 static int
604 vge_probe(device_t dev)
605 {
606 	const struct vge_type *t;
607 	uint16_t did, vid;
608 
609 	did = pci_get_device(dev);
610 	vid = pci_get_vendor(dev);
611 	for (t = vge_devs; t->vge_name != NULL; ++t) {
612 		if (vid == t->vge_vid && did == t->vge_did) {
613 			device_set_desc(dev, t->vge_name);
614 			return 0;
615 		}
616 	}
617 	return (ENXIO);
618 }
619 
620 static void
621 vge_dma_map_rx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
622 		    bus_size_t mapsize, int error)
623 {
624 
625 	struct vge_dmaload_arg *ctx;
626 	struct vge_rx_desc *d = NULL;
627 
628 	if (error)
629 		return;
630 
631 	ctx = arg;
632 
633 	/* Signal error to caller if there's too many segments */
634 	if (nseg > ctx->vge_maxsegs) {
635 		ctx->vge_maxsegs = 0;
636 		return;
637 	}
638 
639 	/*
640 	 * Map the segment array into descriptors.
641 	 */
642 	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
643 
644 	/* If this descriptor is still owned by the chip, bail. */
645 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
646 		if_printf(&ctx->sc->arpcom.ac_if,
647 			  "tried to map busy descriptor\n");
648 		ctx->vge_maxsegs = 0;
649 		return;
650 	}
651 
652 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
653 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
654 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
655 	d->vge_sts = 0;
656 	d->vge_ctl = 0;
657 
658 	ctx->vge_maxsegs = 1;
659 }
660 
661 static void
662 vge_dma_map_tx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
663 		    bus_size_t mapsize, int error)
664 {
665 	struct vge_dmaload_arg *ctx;
666 	struct vge_tx_desc *d = NULL;
667 	struct vge_tx_frag *f;
668 	int i = 0;
669 
670 	if (error)
671 		return;
672 
673 	ctx = arg;
674 
675 	/* Signal error to caller if there's too many segments */
676 	if (nseg > ctx->vge_maxsegs) {
677 		ctx->vge_maxsegs = 0;
678 		return;
679 	}
680 
681 	/* Map the segment array into descriptors. */
682 	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
683 
684 	/* If this descriptor is still owned by the chip, bail. */
685 	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
686 		ctx->vge_maxsegs = 0;
687 		return;
688 	}
689 
690 	for (i = 0; i < nseg; i++) {
691 		f = &d->vge_frag[i];
692 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
693 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
694 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
695 	}
696 
697 	/* Argh. This chip does not autopad short frames */
698 	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
699 		f = &d->vge_frag[i];
700 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
701 		    ctx->vge_m0->m_pkthdr.len));
702 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
703 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
704 		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
705 		i++;
706 	}
707 
708 	/*
709 	 * When telling the chip how many segments there are, we
710 	 * must use nsegs + 1 instead of just nsegs. Darned if I
711 	 * know why.
712 	 */
713 	i++;
714 
715 	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
716 	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
717 
718 	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
719 		d->vge_ctl |= VGE_TDCTL_JUMBO;
720 
721 	ctx->vge_maxsegs = nseg;
722 }
723 
724 /*
725  * Map a single buffer address.
726  */
727 
728 static void
729 vge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
730 {
731 	if (error)
732 		return;
733 
734 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
735 	*((bus_addr_t *)arg) = segs->ds_addr;
736 }
737 
738 static int
739 vge_dma_alloc(device_t dev)
740 {
741 	struct vge_softc *sc = device_get_softc(dev);
742 	int error, nseg, i, tx_pos = 0, rx_pos = 0;
743 
744 	/*
745 	 * Allocate the parent bus DMA tag appropriate for PCI.
746 	 */
747 #define VGE_NSEG_NEW 32
748 	error = bus_dma_tag_create(NULL,	/* parent */
749 			1, 0,			/* alignment, boundary */
750 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
751 			BUS_SPACE_MAXADDR,	/* highaddr */
752 			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
753 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
754 			BUS_DMA_ALLOCNOW,	/* flags */
755 			&sc->vge_parent_tag);
756 	if (error) {
757 		device_printf(dev, "can't create parent dma tag\n");
758 		return error;
759 	}
760 
761 	/*
762 	 * Allocate map for RX mbufs.
763 	 */
764 	nseg = 32;
765 	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
766 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
767 				   MCLBYTES * nseg, nseg, MCLBYTES,
768 				   BUS_DMA_ALLOCNOW, &sc->vge_ldata.vge_mtag);
769 	if (error) {
770 		device_printf(dev, "could not allocate mbuf dma tag\n");
771 		return error;
772 	}
773 
774 	/*
775 	 * Allocate map for TX descriptor list.
776 	 */
777 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
778 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
779 				   VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
780 				   BUS_DMA_ALLOCNOW,
781 				   &sc->vge_ldata.vge_tx_list_tag);
782 	if (error) {
783 		device_printf(dev, "could not allocate tx list dma tag\n");
784 		return error;
785 	}
786 
787 	/* Allocate DMA'able memory for the TX ring */
788 	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
789 				 (void **)&sc->vge_ldata.vge_tx_list,
790 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
791 				 &sc->vge_ldata.vge_tx_list_map);
792 	if (error) {
793 		device_printf(dev, "could not allocate tx list dma memory\n");
794 		return error;
795 	}
796 
797 	/* Load the map for the TX ring. */
798 	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
799 				sc->vge_ldata.vge_tx_list_map,
800 				sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ,
801 				vge_dma_map_addr,
802 				&sc->vge_ldata.vge_tx_list_addr,
803 				BUS_DMA_WAITOK);
804 	if (error) {
805 		device_printf(dev, "could not load tx list\n");
806 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
807 				sc->vge_ldata.vge_tx_list,
808 				sc->vge_ldata.vge_tx_list_map);
809 		sc->vge_ldata.vge_tx_list = NULL;
810 		return error;
811 	}
812 
813 	/* Create DMA maps for TX buffers */
814 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
815 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
816 					  &sc->vge_ldata.vge_tx_dmamap[i]);
817 		if (error) {
818 			device_printf(dev, "can't create DMA map for TX\n");
819 			tx_pos = i;
820 			goto map_fail;
821 		}
822 	}
823 	tx_pos = VGE_TX_DESC_CNT;
824 
825 	/*
826 	 * Allocate map for RX descriptor list.
827 	 */
828 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
829 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
830 				   VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
831 				   BUS_DMA_ALLOCNOW,
832 				   &sc->vge_ldata.vge_rx_list_tag);
833 	if (error) {
834 		device_printf(dev, "could not allocate rx list dma tag\n");
835 		return error;
836 	}
837 
838 	/* Allocate DMA'able memory for the RX ring */
839 	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
840 				 (void **)&sc->vge_ldata.vge_rx_list,
841 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
842 				 &sc->vge_ldata.vge_rx_list_map);
843 	if (error) {
844 		device_printf(dev, "could not allocate rx list dma memory\n");
845 		return error;
846 	}
847 
848 	/* Load the map for the RX ring. */
849 	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
850 				sc->vge_ldata.vge_rx_list_map,
851 				sc->vge_ldata.vge_rx_list, VGE_TX_LIST_SZ,
852 				vge_dma_map_addr,
853 				&sc->vge_ldata.vge_rx_list_addr,
854 				BUS_DMA_WAITOK);
855 	if (error) {
856 		device_printf(dev, "could not load rx list\n");
857 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
858 				sc->vge_ldata.vge_rx_list,
859 				sc->vge_ldata.vge_rx_list_map);
860 		sc->vge_ldata.vge_rx_list = NULL;
861 		return error;
862 	}
863 
864 	/* Create DMA maps for RX buffers */
865 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
866 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
867 					  &sc->vge_ldata.vge_rx_dmamap[i]);
868 		if (error) {
869 			device_printf(dev, "can't create DMA map for RX\n");
870 			rx_pos = i;
871 			goto map_fail;
872 		}
873 	}
874 	return (0);
875 
876 map_fail:
877 	for (i = 0; i < tx_pos; ++i) {
878 		error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
879 					   sc->vge_ldata.vge_tx_dmamap[i]);
880 	}
881 	for (i = 0; i < rx_pos; ++i) {
882 		error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
883 					   sc->vge_ldata.vge_rx_dmamap[i]);
884 	}
885 	bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
886 	sc->vge_ldata.vge_mtag = NULL;
887 
888 	return error;
889 }
890 
891 static void
892 vge_dma_free(struct vge_softc *sc)
893 {
894 	/* Unload and free the RX DMA ring memory and map */
895 	if (sc->vge_ldata.vge_rx_list_tag) {
896 		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
897 				  sc->vge_ldata.vge_rx_list_map);
898 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
899 				sc->vge_ldata.vge_rx_list,
900 				sc->vge_ldata.vge_rx_list_map);
901 	}
902 
903 	if (sc->vge_ldata.vge_rx_list_tag)
904 		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
905 
906 	/* Unload and free the TX DMA ring memory and map */
907 	if (sc->vge_ldata.vge_tx_list_tag) {
908 		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
909 				  sc->vge_ldata.vge_tx_list_map);
910 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
911 				sc->vge_ldata.vge_tx_list,
912 				sc->vge_ldata.vge_tx_list_map);
913 	}
914 
915 	if (sc->vge_ldata.vge_tx_list_tag)
916 		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
917 
918 	/* Destroy all the RX and TX buffer maps */
919 	if (sc->vge_ldata.vge_mtag) {
920 		int i;
921 
922 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
923 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
924 					   sc->vge_ldata.vge_tx_dmamap[i]);
925 		}
926 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
927 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
928 					   sc->vge_ldata.vge_rx_dmamap[i]);
929 		}
930 		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
931 	}
932 
933 	if (sc->vge_parent_tag)
934 		bus_dma_tag_destroy(sc->vge_parent_tag);
935 }
936 
937 /*
938  * Attach the interface. Allocate softc structures, do ifmedia
939  * setup and ethernet/BPF attach.
940  */
941 static int
942 vge_attach(device_t dev)
943 {
944 	uint8_t eaddr[ETHER_ADDR_LEN];
945 	struct vge_softc *sc;
946 	struct ifnet *ifp;
947 	int error = 0;
948 
949 	sc = device_get_softc(dev);
950 	ifp = &sc->arpcom.ac_if;
951 
952 	/* Initialize if_xname early, so if_printf() can be used */
953 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
954 
955 	/*
956 	 * Map control/status registers.
957 	 */
958 	pci_enable_busmaster(dev);
959 
960 	sc->vge_res_rid = VGE_PCI_LOMEM;
961 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
962 					     &sc->vge_res_rid, RF_ACTIVE);
963 	if (sc->vge_res == NULL) {
964 		device_printf(dev, "couldn't map ports/memory\n");
965 		return ENXIO;
966 	}
967 
968 	sc->vge_btag = rman_get_bustag(sc->vge_res);
969 	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
970 
971 	/* Allocate interrupt */
972 	sc->vge_irq_rid = 0;
973 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->vge_irq_rid,
974 					     RF_SHAREABLE | RF_ACTIVE);
975 	if (sc->vge_irq == NULL) {
976 		device_printf(dev, "couldn't map interrupt\n");
977 		error = ENXIO;
978 		goto fail;
979 	}
980 
981 	/* Reset the adapter. */
982 	vge_reset(sc);
983 
984 	/*
985 	 * Get station address from the EEPROM.
986 	 */
987 	vge_read_eeprom(sc, eaddr, VGE_EE_EADDR, 3, 0);
988 
989 	/* Allocate DMA related stuffs */
990 	error = vge_dma_alloc(dev);
991 	if (error)
992 		goto fail;
993 
994 	/* Do MII setup */
995 	error = mii_phy_probe(dev, &sc->vge_miibus, vge_ifmedia_upd,
996 			      vge_ifmedia_sts);
997 	if (error) {
998 		device_printf(dev, "MII without any phy!\n");
999 		goto fail;
1000 	}
1001 
1002 	ifp->if_softc = sc;
1003 	ifp->if_mtu = ETHERMTU;
1004 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1005 	ifp->if_init = vge_init;
1006 	ifp->if_start = vge_start;
1007 	ifp->if_watchdog = vge_watchdog;
1008 	ifp->if_ioctl = vge_ioctl;
1009 #ifdef IFPOLL_ENABLE
1010 	ifp->if_npoll = vge_npoll;
1011 #endif
1012 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1013 	ifp->if_capabilities = IFCAP_VLAN_MTU |
1014 			       IFCAP_HWCSUM |
1015 			       IFCAP_VLAN_HWTAGGING;
1016 	ifp->if_capenable = ifp->if_capabilities;
1017 	ifq_set_maxlen(&ifp->if_snd, VGE_IFQ_MAXLEN);
1018 	ifq_set_ready(&ifp->if_snd);
1019 
1020 	/*
1021 	 * Call MI attach routine.
1022 	 */
1023 	ether_ifattach(ifp, eaddr, NULL);
1024 
1025 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->vge_irq));
1026 
1027 #ifdef IFPOLL_ENABLE
1028 	ifpoll_compat_setup(&sc->vge_npoll, NULL, NULL, device_get_unit(dev),
1029 	    ifp->if_serializer);
1030 #endif
1031 
1032 	/* Hook interrupt last to avoid having to lock softc */
1033 	error = bus_setup_intr(dev, sc->vge_irq, INTR_MPSAFE, vge_intr, sc,
1034 			       &sc->vge_intrhand, ifp->if_serializer);
1035 	if (error) {
1036 		device_printf(dev, "couldn't set up irq\n");
1037 		ether_ifdetach(ifp);
1038 		goto fail;
1039 	}
1040 
1041 	return 0;
1042 fail:
1043 	vge_detach(dev);
1044 	return error;
1045 }
1046 
1047 /*
1048  * Shutdown hardware and free up resources. This can be called any
1049  * time after the mutex has been initialized. It is called in both
1050  * the error case in attach and the normal detach case so it needs
1051  * to be careful about only freeing resources that have actually been
1052  * allocated.
1053  */
1054 static int
1055 vge_detach(device_t dev)
1056 {
1057 	struct vge_softc *sc = device_get_softc(dev);
1058 	struct ifnet *ifp = &sc->arpcom.ac_if;
1059 
1060 	/* These should only be active if attach succeeded */
1061 	if (device_is_attached(dev)) {
1062 		lwkt_serialize_enter(ifp->if_serializer);
1063 
1064 		vge_stop(sc);
1065 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1066 		/*
1067 		 * Force off the IFF_UP flag here, in case someone
1068 		 * still had a BPF descriptor attached to this
1069 		 * interface. If they do, ether_ifattach() will cause
1070 		 * the BPF code to try and clear the promisc mode
1071 		 * flag, which will bubble down to vge_ioctl(),
1072 		 * which will try to call vge_init() again. This will
1073 		 * turn the NIC back on and restart the MII ticker,
1074 		 * which will panic the system when the kernel tries
1075 		 * to invoke the vge_tick() function that isn't there
1076 		 * anymore.
1077 		 */
1078 		ifp->if_flags &= ~IFF_UP;
1079 
1080 		lwkt_serialize_exit(ifp->if_serializer);
1081 
1082 		ether_ifdetach(ifp);
1083 	}
1084 
1085 	if (sc->vge_miibus)
1086 		device_delete_child(dev, sc->vge_miibus);
1087 	bus_generic_detach(dev);
1088 
1089 	if (sc->vge_irq) {
1090 		bus_release_resource(dev, SYS_RES_IRQ, sc->vge_irq_rid,
1091 				     sc->vge_irq);
1092 	}
1093 
1094 	if (sc->vge_res) {
1095 		bus_release_resource(dev, SYS_RES_MEMORY, sc->vge_res_rid,
1096 				     sc->vge_res);
1097 	}
1098 
1099 	vge_dma_free(sc);
1100 	return (0);
1101 }
1102 
1103 static int
1104 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1105 {
1106 	struct vge_dmaload_arg arg;
1107 	struct mbuf *n = NULL;
1108 	int i, error;
1109 
1110 	if (m == NULL) {
1111 		n = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1112 		if (n == NULL)
1113 			return (ENOBUFS);
1114 		m = n;
1115 	} else {
1116 		m->m_data = m->m_ext.ext_buf;
1117 	}
1118 
1119 
1120 #ifdef VGE_FIXUP_RX
1121 	/*
1122 	 * This is part of an evil trick to deal with non-x86 platforms.
1123 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1124 	 * boundaries, but that will hose non-x86 machines. To get around
1125 	 * this, we leave some empty space at the start of each buffer
1126 	 * and for non-x86 hosts, we copy the buffer back two bytes
1127 	 * to achieve word alignment. This is slightly more efficient
1128 	 * than allocating a new buffer, copying the contents, and
1129 	 * discarding the old buffer.
1130 	 */
1131 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1132 	m_adj(m, VGE_ETHER_ALIGN);
1133 #else
1134 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1135 #endif
1136 
1137 	arg.sc = sc;
1138 	arg.vge_idx = idx;
1139 	arg.vge_maxsegs = 1;
1140 	arg.vge_flags = 0;
1141 
1142 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1143 				     sc->vge_ldata.vge_rx_dmamap[idx], m,
1144 				     vge_dma_map_rx_desc, &arg, BUS_DMA_NOWAIT);
1145 	if (error || arg.vge_maxsegs != 1) {
1146 		if (n != NULL)
1147 			m_freem(n);
1148 		return (ENOMEM);
1149 	}
1150 
1151 	/*
1152 	 * Note: the manual fails to document the fact that for
1153 	 * proper opration, the driver needs to replentish the RX
1154 	 * DMA ring 4 descriptors at a time (rather than one at a
1155 	 * time, like most chips). We can allocate the new buffers
1156 	 * but we should not set the OWN bits until we're ready
1157 	 * to hand back 4 of them in one shot.
1158 	 */
1159 
1160 #define VGE_RXCHUNK 4
1161 	sc->vge_rx_consumed++;
1162 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1163 		for (i = idx; i != idx - sc->vge_rx_consumed; i--) {
1164 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1165 			    htole32(VGE_RDSTS_OWN);
1166 		}
1167 		sc->vge_rx_consumed = 0;
1168 	}
1169 
1170 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1171 
1172 	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1173 			sc->vge_ldata.vge_rx_dmamap[idx], BUS_DMASYNC_PREREAD);
1174 
1175 	return (0);
1176 }
1177 
1178 static int
1179 vge_tx_list_init(struct vge_softc *sc)
1180 {
1181 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1182 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1183 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1184 
1185 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1186 	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1187 	sc->vge_ldata.vge_tx_prodidx = 0;
1188 	sc->vge_ldata.vge_tx_considx = 0;
1189 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1190 
1191 	return (0);
1192 }
1193 
1194 static int
1195 vge_rx_list_init(struct vge_softc *sc)
1196 {
1197 	int i;
1198 
1199 	bzero(sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1200 	bzero(&sc->vge_ldata.vge_rx_mbuf,
1201 	      VGE_RX_DESC_CNT * sizeof(struct mbuf *));
1202 
1203 	sc->vge_rx_consumed = 0;
1204 
1205 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1206 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1207 			return (ENOBUFS);
1208 	}
1209 
1210 	/* Flush the RX descriptors */
1211 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1212 			sc->vge_ldata.vge_rx_list_map,
1213 			BUS_DMASYNC_PREWRITE);
1214 
1215 	sc->vge_ldata.vge_rx_prodidx = 0;
1216 	sc->vge_rx_consumed = 0;
1217 	sc->vge_head = sc->vge_tail = NULL;
1218 	return (0);
1219 }
1220 
1221 #ifdef VGE_FIXUP_RX
1222 static __inline void
1223 vge_fixup_rx(struct mbuf *m)
1224 {
1225 	uint16_t *src, *dst;
1226 	int i;
1227 
1228 	src = mtod(m, uint16_t *);
1229 	dst = src - 1;
1230 
1231 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1232 		*dst++ = *src++;
1233 
1234 	m->m_data -= ETHER_ALIGN;
1235 }
1236 #endif
1237 
1238 /*
1239  * RX handler. We support the reception of jumbo frames that have
1240  * been fragmented across multiple 2K mbuf cluster buffers.
1241  */
1242 static void
1243 vge_rxeof(struct vge_softc *sc, int count)
1244 {
1245 	struct ifnet *ifp = &sc->arpcom.ac_if;
1246 	struct mbuf *m;
1247 	int i, total_len, lim = 0;
1248 	struct vge_rx_desc *cur_rx;
1249 	uint32_t rxstat, rxctl;
1250 
1251 	ASSERT_SERIALIZED(ifp->if_serializer);
1252 
1253 	i = sc->vge_ldata.vge_rx_prodidx;
1254 
1255 	/* Invalidate the descriptor memory */
1256 
1257 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1258 			sc->vge_ldata.vge_rx_list_map, BUS_DMASYNC_POSTREAD);
1259 
1260 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1261 #ifdef IFPOLL_ENABLE
1262 		if (count >= 0 && count-- == 0)
1263 			break;
1264 #endif
1265 
1266 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1267 		m = sc->vge_ldata.vge_rx_mbuf[i];
1268 		total_len = VGE_RXBYTES(cur_rx);
1269 		rxstat = le32toh(cur_rx->vge_sts);
1270 		rxctl = le32toh(cur_rx->vge_ctl);
1271 
1272 		/* Invalidate the RX mbuf and unload its map */
1273 		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1274 				sc->vge_ldata.vge_rx_dmamap[i],
1275 				BUS_DMASYNC_POSTWRITE);
1276 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1277 				  sc->vge_ldata.vge_rx_dmamap[i]);
1278 
1279 		/*
1280 		 * If the 'start of frame' bit is set, this indicates
1281 		 * either the first fragment in a multi-fragment receive,
1282 		 * or an intermediate fragment. Either way, we want to
1283 		 * accumulate the buffers.
1284 		 */
1285 		if (rxstat & VGE_RXPKT_SOF) {
1286 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1287 			if (sc->vge_head == NULL) {
1288 				sc->vge_head = sc->vge_tail = m;
1289 			} else {
1290 				m->m_flags &= ~M_PKTHDR;
1291 				sc->vge_tail->m_next = m;
1292 				sc->vge_tail = m;
1293 			}
1294 			vge_newbuf(sc, i, NULL);
1295 			VGE_RX_DESC_INC(i);
1296 			continue;
1297 		}
1298 
1299 		/*
1300 		 * Bad/error frames will have the RXOK bit cleared.
1301 		 * However, there's one error case we want to allow:
1302 		 * if a VLAN tagged frame arrives and the chip can't
1303 		 * match it against the CAM filter, it considers this
1304 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1305 		 * We don't want to drop the frame though: our VLAN
1306 		 * filtering is done in software.
1307 		 */
1308 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM) &&
1309 		    !(rxstat & VGE_RDSTS_CSUMERR)) {
1310 			IFNET_STAT_INC(ifp, ierrors, 1);
1311 			/*
1312 			 * If this is part of a multi-fragment packet,
1313 			 * discard all the pieces.
1314 			 */
1315 			if (sc->vge_head != NULL) {
1316 				m_freem(sc->vge_head);
1317 				sc->vge_head = sc->vge_tail = NULL;
1318 			}
1319 			vge_newbuf(sc, i, m);
1320 			VGE_RX_DESC_INC(i);
1321 			continue;
1322 		}
1323 
1324 		/*
1325 		 * If allocating a replacement mbuf fails,
1326 		 * reload the current one.
1327 		 */
1328 		if (vge_newbuf(sc, i, NULL)) {
1329 			IFNET_STAT_INC(ifp, ierrors, 1);
1330 			if (sc->vge_head != NULL) {
1331 				m_freem(sc->vge_head);
1332 				sc->vge_head = sc->vge_tail = NULL;
1333 			}
1334 			vge_newbuf(sc, i, m);
1335 			VGE_RX_DESC_INC(i);
1336 			continue;
1337 		}
1338 
1339 		VGE_RX_DESC_INC(i);
1340 
1341 		if (sc->vge_head != NULL) {
1342 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1343 			/*
1344 			 * Special case: if there's 4 bytes or less
1345 			 * in this buffer, the mbuf can be discarded:
1346 			 * the last 4 bytes is the CRC, which we don't
1347 			 * care about anyway.
1348 			 */
1349 			if (m->m_len <= ETHER_CRC_LEN) {
1350 				sc->vge_tail->m_len -=
1351 				    (ETHER_CRC_LEN - m->m_len);
1352 				m_freem(m);
1353 			} else {
1354 				m->m_len -= ETHER_CRC_LEN;
1355 				m->m_flags &= ~M_PKTHDR;
1356 				sc->vge_tail->m_next = m;
1357 			}
1358 			m = sc->vge_head;
1359 			sc->vge_head = sc->vge_tail = NULL;
1360 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1361 		} else {
1362 			m->m_pkthdr.len = m->m_len =
1363 			    (total_len - ETHER_CRC_LEN);
1364 		}
1365 
1366 #ifdef VGE_FIXUP_RX
1367 		vge_fixup_rx(m);
1368 #endif
1369 		IFNET_STAT_INC(ifp, ipackets, 1);
1370 		m->m_pkthdr.rcvif = ifp;
1371 
1372 		/* Do RX checksumming if enabled */
1373 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1374 			/* Check IP header checksum */
1375 			if (rxctl & VGE_RDCTL_IPPKT)
1376 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1377 			if (rxctl & VGE_RDCTL_IPCSUMOK)
1378 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1379 
1380 			/* Check TCP/UDP checksum */
1381 			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1382 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1383 				m->m_pkthdr.csum_flags |=
1384 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1385 				    CSUM_FRAG_NOT_CHECKED;
1386 				m->m_pkthdr.csum_data = 0xffff;
1387 			}
1388 		}
1389 
1390 		if (rxstat & VGE_RDSTS_VTAG) {
1391 			m->m_flags |= M_VLANTAG;
1392 			m->m_pkthdr.ether_vlantag =
1393 				ntohs((rxctl & VGE_RDCTL_VLANID));
1394 		}
1395 		ifp->if_input(ifp, m, NULL, -1);
1396 
1397 		lim++;
1398 		if (lim == VGE_RX_DESC_CNT)
1399 			break;
1400 	}
1401 
1402 	/* Flush the RX DMA ring */
1403 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1404 			sc->vge_ldata.vge_rx_list_map,
1405 			BUS_DMASYNC_PREWRITE);
1406 
1407 	sc->vge_ldata.vge_rx_prodidx = i;
1408 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1409 }
1410 
1411 static void
1412 vge_txeof(struct vge_softc *sc)
1413 {
1414 	struct ifnet *ifp = &sc->arpcom.ac_if;
1415 	uint32_t txstat;
1416 	int idx;
1417 
1418 	idx = sc->vge_ldata.vge_tx_considx;
1419 
1420 	/* Invalidate the TX descriptor list */
1421 
1422 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1423 			sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_POSTREAD);
1424 
1425 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1426 
1427 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1428 		if (txstat & VGE_TDSTS_OWN)
1429 			break;
1430 
1431 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1432 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1433 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1434 				  sc->vge_ldata.vge_tx_dmamap[idx]);
1435 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1436 			IFNET_STAT_INC(ifp, collisions, 1);
1437 		if (txstat & VGE_TDSTS_TXERR)
1438 			IFNET_STAT_INC(ifp, oerrors, 1);
1439 		else
1440 			IFNET_STAT_INC(ifp, opackets, 1);
1441 
1442 		sc->vge_ldata.vge_tx_free++;
1443 		VGE_TX_DESC_INC(idx);
1444 	}
1445 
1446 	/* No changes made to the TX ring, so no flush needed */
1447 	if (idx != sc->vge_ldata.vge_tx_considx) {
1448 		sc->vge_ldata.vge_tx_considx = idx;
1449 		ifq_clr_oactive(&ifp->if_snd);
1450 		ifp->if_timer = 0;
1451 	}
1452 
1453 	/*
1454 	 * If not all descriptors have been released reaped yet,
1455 	 * reload the timer so that we will eventually get another
1456 	 * interrupt that will cause us to re-enter this routine.
1457 	 * This is done in case the transmitter has gone idle.
1458 	 */
1459 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1460 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1461 }
1462 
1463 static void
1464 vge_tick(struct vge_softc *sc)
1465 {
1466 	struct ifnet *ifp = &sc->arpcom.ac_if;
1467 	struct mii_data *mii;
1468 
1469 	mii = device_get_softc(sc->vge_miibus);
1470 
1471 	mii_tick(mii);
1472 	if (sc->vge_link) {
1473 		if (!(mii->mii_media_status & IFM_ACTIVE))
1474 			sc->vge_link = 0;
1475 	} else {
1476 		if (mii->mii_media_status & IFM_ACTIVE &&
1477 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1478 			sc->vge_link = 1;
1479 			if (!ifq_is_empty(&ifp->if_snd))
1480 				if_devstart(ifp);
1481 		}
1482 	}
1483 }
1484 
1485 #ifdef IFPOLL_ENABLE
1486 
1487 static void
1488 vge_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1489 {
1490 	struct vge_softc *sc = ifp->if_softc;
1491 
1492 	ASSERT_SERIALIZED(ifp->if_serializer);
1493 
1494 	vge_rxeof(sc, count);
1495 	vge_txeof(sc);
1496 
1497 	if (!ifq_is_empty(&ifp->if_snd))
1498 		if_devstart(ifp);
1499 
1500 	/* XXX copy & paste from vge_intr */
1501 	if (sc->vge_npoll.ifpc_stcount-- == 0) {
1502 		uint32_t status;
1503 
1504 		sc->vge_npoll.ifpc_stcount = sc->vge_npoll.ifpc_stfrac;
1505 
1506 		status = CSR_READ_4(sc, VGE_ISR);
1507 		if (status == 0xffffffff)
1508 			return;
1509 
1510 		if (status)
1511 			CSR_WRITE_4(sc, VGE_ISR, status);
1512 
1513 		if (status & (VGE_ISR_TXDMA_STALL |
1514 			      VGE_ISR_RXDMA_STALL))
1515 			vge_init(sc);
1516 
1517 		if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) {
1518 			IFNET_STAT_INC(ifp, ierrors, 1);
1519 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1520 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1521 		}
1522 	}
1523 }
1524 
1525 static void
1526 vge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1527 {
1528 	struct vge_softc *sc = ifp->if_softc;
1529 
1530 	ASSERT_SERIALIZED(ifp->if_serializer);
1531 
1532 	if (info != NULL) {
1533 		int cpuid = sc->vge_npoll.ifpc_cpuid;
1534 
1535 		info->ifpi_rx[cpuid].poll_func = vge_npoll_compat;
1536 		info->ifpi_rx[cpuid].arg = NULL;
1537 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1538 
1539 		if (ifp->if_flags & IFF_RUNNING)
1540 			vge_disable_intr(sc);
1541 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1542 	} else {
1543 		if (ifp->if_flags & IFF_RUNNING)
1544 			vge_enable_intr(sc, 0xffffffff);
1545 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->vge_irq));
1546 	}
1547 }
1548 
1549 #endif	/* IFPOLL_ENABLE */
1550 
1551 static void
1552 vge_intr(void *arg)
1553 {
1554 	struct vge_softc *sc = arg;
1555 	struct ifnet *ifp = &sc->arpcom.ac_if;
1556 	uint32_t status;
1557 
1558 	if (sc->suspended || !(ifp->if_flags & IFF_UP))
1559 		return;
1560 
1561 	/* Disable interrupts */
1562 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1563 
1564 	for (;;) {
1565 		status = CSR_READ_4(sc, VGE_ISR);
1566 		/* If the card has gone away the read returns 0xffff. */
1567 		if (status == 0xFFFFFFFF)
1568 			break;
1569 
1570 		if (status)
1571 			CSR_WRITE_4(sc, VGE_ISR, status);
1572 
1573 		if ((status & VGE_INTRS) == 0)
1574 			break;
1575 
1576 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1577 			vge_rxeof(sc, -1);
1578 
1579 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1580 			vge_rxeof(sc, -1);
1581 			IFNET_STAT_INC(ifp, ierrors, 1);
1582 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1583 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1584 		}
1585 
1586 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1587 			vge_txeof(sc);
1588 
1589 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1590 			vge_init(sc);
1591 
1592 		if (status & VGE_ISR_LINKSTS)
1593 			vge_tick(sc);
1594 	}
1595 
1596 	/* Re-enable interrupts */
1597 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1598 
1599 	if (!ifq_is_empty(&ifp->if_snd))
1600 		if_devstart(ifp);
1601 }
1602 
1603 static int
1604 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1605 {
1606 	struct vge_dmaload_arg arg;
1607 	bus_dmamap_t map;
1608 	int error;
1609 
1610 	arg.vge_flags = 0;
1611 
1612 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1613 		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1614 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1615 		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1616 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1617 		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1618 
1619 	arg.sc = sc;
1620 	arg.vge_idx = idx;
1621 	arg.vge_m0 = m_head;
1622 	arg.vge_maxsegs = VGE_TX_FRAGS;
1623 
1624 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1625 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, m_head,
1626 				     vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1627 	if (error && error != EFBIG) {
1628 		if_printf(&sc->arpcom.ac_if, "can't map mbuf (error %d)\n",
1629 			  error);
1630 		goto fail;
1631 	}
1632 
1633 	/* Too many segments to map, coalesce into a single mbuf */
1634 	if (error || arg.vge_maxsegs == 0) {
1635 		struct mbuf *m_new;
1636 
1637 		m_new = m_defrag(m_head, M_NOWAIT);
1638 		if (m_new == NULL) {
1639 			error = ENOBUFS;
1640 			goto fail;
1641 		} else {
1642 			m_head = m_new;
1643 		}
1644 
1645 		arg.sc = sc;
1646 		arg.vge_m0 = m_head;
1647 		arg.vge_idx = idx;
1648 		arg.vge_maxsegs = 1;
1649 
1650 		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1651 					     m_head, vge_dma_map_tx_desc, &arg,
1652 					     BUS_DMA_NOWAIT);
1653 		if (error) {
1654 			if_printf(&sc->arpcom.ac_if,
1655 				  "can't map mbuf (error %d)\n", error);
1656 			goto fail;
1657 		}
1658 	}
1659 
1660 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1661 	sc->vge_ldata.vge_tx_free--;
1662 
1663 	/*
1664 	 * Set up hardware VLAN tagging.
1665 	 */
1666 	if (m_head->m_flags & M_VLANTAG) {
1667 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1668 			htole32(htons(m_head->m_pkthdr.ether_vlantag) |
1669 				VGE_TDCTL_VTAG);
1670 	}
1671 
1672 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1673 	return (0);
1674 
1675 fail:
1676 	m_freem(m_head);
1677 	return error;
1678 }
1679 
1680 /*
1681  * Main transmit routine.
1682  */
1683 
1684 static void
1685 vge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1686 {
1687 	struct vge_softc *sc = ifp->if_softc;
1688 	struct mbuf *m_head = NULL;
1689 	int idx, pidx = 0;
1690 
1691 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1692 	ASSERT_SERIALIZED(ifp->if_serializer);
1693 
1694 	if (!sc->vge_link) {
1695 		ifq_purge(&ifp->if_snd);
1696 		return;
1697 	}
1698 
1699 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1700 		return;
1701 
1702 	idx = sc->vge_ldata.vge_tx_prodidx;
1703 
1704 	pidx = idx - 1;
1705 	if (pidx < 0)
1706 		pidx = VGE_TX_DESC_CNT - 1;
1707 
1708 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1709 		if (sc->vge_ldata.vge_tx_free <= 2) {
1710 			ifq_set_oactive(&ifp->if_snd);
1711 			break;
1712 		}
1713 
1714 		m_head = ifq_dequeue(&ifp->if_snd);
1715 		if (m_head == NULL)
1716 			break;
1717 
1718 		if (vge_encap(sc, m_head, idx)) {
1719 			/* If vge_encap() failed, it will free m_head for us */
1720 			ifq_set_oactive(&ifp->if_snd);
1721 			break;
1722 		}
1723 
1724 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1725 		    htole16(VGE_TXDESC_Q);
1726 
1727 		pidx = idx;
1728 		VGE_TX_DESC_INC(idx);
1729 
1730 		/*
1731 		 * If there's a BPF listener, bounce a copy of this frame
1732 		 * to him.
1733 		 */
1734 		ETHER_BPF_MTAP(ifp, m_head);
1735 	}
1736 
1737 	if (idx == sc->vge_ldata.vge_tx_prodidx)
1738 		return;
1739 
1740 	/* Flush the TX descriptors */
1741 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1742 			sc->vge_ldata.vge_tx_list_map,
1743 			BUS_DMASYNC_PREWRITE);
1744 
1745 	/* Issue a transmit command. */
1746 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1747 
1748 	sc->vge_ldata.vge_tx_prodidx = idx;
1749 
1750 	/*
1751 	 * Use the countdown timer for interrupt moderation.
1752 	 * 'TX done' interrupts are disabled. Instead, we reset the
1753 	 * countdown timer, which will begin counting until it hits
1754 	 * the value in the SSTIMER register, and then trigger an
1755 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1756 	 * the timer count is reloaded. Only when the transmitter
1757 	 * is idle will the timer hit 0 and an interrupt fire.
1758 	 */
1759 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1760 
1761 	/*
1762 	 * Set a timeout in case the chip goes out to lunch.
1763 	 */
1764 	ifp->if_timer = 5;
1765 }
1766 
1767 static void
1768 vge_init(void *xsc)
1769 {
1770 	struct vge_softc *sc = xsc;
1771 	struct ifnet *ifp = &sc->arpcom.ac_if;
1772 	struct mii_data *mii;
1773 	int i;
1774 
1775 	ASSERT_SERIALIZED(ifp->if_serializer);
1776 
1777 	mii = device_get_softc(sc->vge_miibus);
1778 
1779 	/*
1780 	 * Cancel pending I/O and free all RX/TX buffers.
1781 	 */
1782 	vge_stop(sc);
1783 	vge_reset(sc);
1784 
1785 	/*
1786 	 * Initialize the RX and TX descriptors and mbufs.
1787 	 */
1788 	vge_rx_list_init(sc);
1789 	vge_tx_list_init(sc);
1790 
1791 	/* Set our station address */
1792 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1793 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(ifp)[i]);
1794 
1795 	/*
1796 	 * Set receive FIFO threshold. Also allow transmission and
1797 	 * reception of VLAN tagged frames.
1798 	 */
1799 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1800 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1801 
1802 	/* Set DMA burst length */
1803 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1804 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1805 
1806 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1807 
1808 	/* Set collision backoff algorithm */
1809 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1810 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1811 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1812 
1813 	/* Disable LPSEL field in priority resolution */
1814 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1815 
1816 	/*
1817 	 * Load the addresses of the DMA queues into the chip.
1818 	 * Note that we only use one transmit queue.
1819 	 */
1820 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1821 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1822 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1823 
1824 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1825 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1826 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1827 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1828 
1829 	/* Enable and wake up the RX descriptor queue */
1830 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1831 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1832 
1833 	/* Enable the TX descriptor queue */
1834 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1835 
1836 	/* Set up the receive filter -- allow large frames for VLANs. */
1837 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1838 
1839 	/* If we want promiscuous mode, set the allframes bit. */
1840 	if (ifp->if_flags & IFF_PROMISC)
1841 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1842 
1843 	/* Set capture broadcast bit to capture broadcast frames. */
1844 	if (ifp->if_flags & IFF_BROADCAST)
1845 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1846 
1847 	/* Set multicast bit to capture multicast frames. */
1848 	if (ifp->if_flags & IFF_MULTICAST)
1849 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1850 
1851 	/* Init the cam filter. */
1852 	vge_cam_clear(sc);
1853 
1854 	/* Init the multicast filter. */
1855 	vge_setmulti(sc);
1856 
1857 	/* Enable flow control */
1858 
1859 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1860 
1861 	/* Enable jumbo frame reception (if desired) */
1862 
1863 	/* Start the MAC. */
1864 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1865 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1866 	CSR_WRITE_1(sc, VGE_CRS0,
1867 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1868 
1869 	/*
1870 	 * Configure one-shot timer for microsecond
1871 	 * resulution and load it for 500 usecs.
1872 	 */
1873 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1874 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1875 
1876 	/*
1877 	 * Configure interrupt moderation for receive. Enable
1878 	 * the holdoff counter and load it, and set the RX
1879 	 * suppression count to the number of descriptors we
1880 	 * want to allow before triggering an interrupt.
1881 	 * The holdoff timer is in units of 20 usecs.
1882 	 */
1883 
1884 #ifdef notyet
1885 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1886 	/* Select the interrupt holdoff timer page. */
1887 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1888 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1889 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1890 
1891 	/* Enable use of the holdoff timer. */
1892 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1893 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1894 
1895 	/* Select the RX suppression threshold page. */
1896 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1897 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1898 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1899 
1900 	/* Restore the page select bits. */
1901 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1902 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1903 #endif
1904 
1905 #ifdef IFPOLL_ENABLE
1906 	/* Disable intr if polling(4) is enabled */
1907 	if (ifp->if_flags & IFF_NPOLLING)
1908 		vge_disable_intr(sc);
1909 	else
1910 #endif
1911 	vge_enable_intr(sc, 0);
1912 
1913 	mii_mediachg(mii);
1914 
1915 	ifp->if_flags |= IFF_RUNNING;
1916 	ifq_clr_oactive(&ifp->if_snd);
1917 
1918 	sc->vge_if_flags = 0;
1919 	sc->vge_link = 0;
1920 }
1921 
1922 /*
1923  * Set media options.
1924  */
1925 static int
1926 vge_ifmedia_upd(struct ifnet *ifp)
1927 {
1928 	struct vge_softc *sc = ifp->if_softc;
1929 	struct mii_data *mii = device_get_softc(sc->vge_miibus);
1930 
1931 	mii_mediachg(mii);
1932 
1933 	return (0);
1934 }
1935 
1936 /*
1937  * Report current media status.
1938  */
1939 static void
1940 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1941 {
1942 	struct vge_softc *sc = ifp->if_softc;
1943 	struct mii_data *mii = device_get_softc(sc->vge_miibus);
1944 
1945 	mii_pollstat(mii);
1946 	ifmr->ifm_active = mii->mii_media_active;
1947 	ifmr->ifm_status = mii->mii_media_status;
1948 }
1949 
1950 static void
1951 vge_miibus_statchg(device_t dev)
1952 {
1953 	struct vge_softc *sc;
1954 	struct mii_data *mii;
1955 	struct ifmedia_entry *ife;
1956 
1957 	sc = device_get_softc(dev);
1958 	mii = device_get_softc(sc->vge_miibus);
1959 	ife = mii->mii_media.ifm_cur;
1960 
1961 	/*
1962 	 * If the user manually selects a media mode, we need to turn
1963 	 * on the forced MAC mode bit in the DIAGCTL register. If the
1964 	 * user happens to choose a full duplex mode, we also need to
1965 	 * set the 'force full duplex' bit. This applies only to
1966 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1967 	 * mode is disabled, and in 1000baseT mode, full duplex is
1968 	 * always implied, so we turn on the forced mode bit but leave
1969 	 * the FDX bit cleared.
1970 	 */
1971 
1972 	switch (IFM_SUBTYPE(ife->ifm_media)) {
1973 	case IFM_AUTO:
1974 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1975 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1976 		break;
1977 	case IFM_1000_T:
1978 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1979 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1980 		break;
1981 	case IFM_100_TX:
1982 	case IFM_10_T:
1983 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1984 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX)
1985 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1986 		else
1987 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1988 		break;
1989 	default:
1990 		device_printf(dev, "unknown media type: %x\n",
1991 			      IFM_SUBTYPE(ife->ifm_media));
1992 		break;
1993 	}
1994 }
1995 
1996 static int
1997 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1998 {
1999 	struct vge_softc *sc = ifp->if_softc;
2000 	struct ifreq *ifr = (struct ifreq *)data;
2001 	struct mii_data *mii;
2002 	int error = 0;
2003 
2004 	switch (command) {
2005 	case SIOCSIFMTU:
2006 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2007 			error = EINVAL;
2008 		ifp->if_mtu = ifr->ifr_mtu;
2009 		break;
2010 	case SIOCSIFFLAGS:
2011 		if (ifp->if_flags & IFF_UP) {
2012 			if ((ifp->if_flags & IFF_RUNNING) &&
2013 			    (ifp->if_flags & IFF_PROMISC) &&
2014 			    !(sc->vge_if_flags & IFF_PROMISC)) {
2015 				CSR_SETBIT_1(sc, VGE_RXCTL,
2016 				    VGE_RXCTL_RX_PROMISC);
2017 				vge_setmulti(sc);
2018 			} else if ((ifp->if_flags & IFF_RUNNING) &&
2019 				   !(ifp->if_flags & IFF_PROMISC) &&
2020 				   (sc->vge_if_flags & IFF_PROMISC)) {
2021 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2022 					     VGE_RXCTL_RX_PROMISC);
2023 				vge_setmulti(sc);
2024                         } else {
2025 				vge_init(sc);
2026 			}
2027 		} else {
2028 			if (ifp->if_flags & IFF_RUNNING)
2029 				vge_stop(sc);
2030 		}
2031 		sc->vge_if_flags = ifp->if_flags;
2032 		break;
2033 	case SIOCADDMULTI:
2034 	case SIOCDELMULTI:
2035 		vge_setmulti(sc);
2036 		break;
2037 	case SIOCGIFMEDIA:
2038 	case SIOCSIFMEDIA:
2039 		mii = device_get_softc(sc->vge_miibus);
2040 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2041 		break;
2042 	case SIOCSIFCAP:
2043 	    {
2044 		uint32_t mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2045 
2046 		if (mask & IFCAP_HWCSUM) {
2047 			ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
2048 			if (ifp->if_capenable & IFCAP_TXCSUM)
2049 				ifp->if_hwassist = VGE_CSUM_FEATURES;
2050 			else
2051 				ifp->if_hwassist = 0;
2052 			if (ifp->if_flags & IFF_RUNNING)
2053 				vge_init(sc);
2054 		}
2055 	    }
2056 		break;
2057 	default:
2058 		error = ether_ioctl(ifp, command, data);
2059 		break;
2060 	}
2061 	return (error);
2062 }
2063 
2064 static void
2065 vge_watchdog(struct ifnet *ifp)
2066 {
2067 	struct vge_softc *sc = ifp->if_softc;
2068 
2069 	if_printf(ifp, "watchdog timeout\n");
2070 	IFNET_STAT_INC(ifp, oerrors, 1);
2071 
2072 	vge_txeof(sc);
2073 	vge_rxeof(sc, -1);
2074 
2075 	vge_init(sc);
2076 }
2077 
2078 /*
2079  * Stop the adapter and free any mbufs allocated to the
2080  * RX and TX lists.
2081  */
2082 static void
2083 vge_stop(struct vge_softc *sc)
2084 {
2085 	struct ifnet *ifp = &sc->arpcom.ac_if;
2086 	int i;
2087 
2088 	ASSERT_SERIALIZED(ifp->if_serializer);
2089 
2090 	ifp->if_timer = 0;
2091 
2092 	ifp->if_flags &= ~IFF_RUNNING;
2093 	ifq_clr_oactive(&ifp->if_snd);
2094 
2095 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2096 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2097 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2098 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2099 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2100 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2101 
2102 	if (sc->vge_head != NULL) {
2103 		m_freem(sc->vge_head);
2104 		sc->vge_head = sc->vge_tail = NULL;
2105 	}
2106 
2107 	/* Free the TX list buffers. */
2108 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2109 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2110 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2111 					  sc->vge_ldata.vge_tx_dmamap[i]);
2112 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2113 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2114 		}
2115 	}
2116 
2117 	/* Free the RX list buffers. */
2118 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2119 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2120 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2121 					  sc->vge_ldata.vge_rx_dmamap[i]);
2122 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2123 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2124 		}
2125 	}
2126 }
2127 
2128 /*
2129  * Device suspend routine.  Stop the interface and save some PCI
2130  * settings in case the BIOS doesn't restore them properly on
2131  * resume.
2132  */
2133 static int
2134 vge_suspend(device_t dev)
2135 {
2136 	struct vge_softc *sc = device_get_softc(dev);
2137 	struct ifnet *ifp = &sc->arpcom.ac_if;
2138 
2139 	lwkt_serialize_enter(ifp->if_serializer);
2140 	vge_stop(sc);
2141 	sc->suspended = 1;
2142 	lwkt_serialize_exit(ifp->if_serializer);
2143 
2144 	return (0);
2145 }
2146 
2147 /*
2148  * Device resume routine.  Restore some PCI settings in case the BIOS
2149  * doesn't, re-enable busmastering, and restart the interface if
2150  * appropriate.
2151  */
2152 static int
2153 vge_resume(device_t dev)
2154 {
2155 	struct vge_softc *sc = device_get_softc(dev);
2156 	struct ifnet *ifp = &sc->arpcom.ac_if;
2157 
2158 	/* reenable busmastering */
2159 	pci_enable_busmaster(dev);
2160 	pci_enable_io(dev, SYS_RES_MEMORY);
2161 
2162 	lwkt_serialize_enter(ifp->if_serializer);
2163 	/* reinitialize interface if necessary */
2164 	if (ifp->if_flags & IFF_UP)
2165 		vge_init(sc);
2166 
2167 	sc->suspended = 0;
2168 	lwkt_serialize_exit(ifp->if_serializer);
2169 
2170 	return (0);
2171 }
2172 
2173 /*
2174  * Stop all chip I/O so that the kernel's probe routines don't
2175  * get confused by errant DMAs when rebooting.
2176  */
2177 static void
2178 vge_shutdown(device_t dev)
2179 {
2180 	struct vge_softc *sc = device_get_softc(dev);
2181 	struct ifnet *ifp = &sc->arpcom.ac_if;
2182 
2183 	lwkt_serialize_enter(ifp->if_serializer);
2184 	vge_stop(sc);
2185 	lwkt_serialize_exit(ifp->if_serializer);
2186 }
2187 
2188 static void
2189 vge_enable_intr(struct vge_softc *sc, uint32_t isr)
2190 {
2191 	CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2192 	CSR_WRITE_4(sc, VGE_ISR, isr);
2193 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2194 }
2195 
2196 #ifdef IFPOLL_ENABLE
2197 
2198 static void
2199 vge_disable_intr(struct vge_softc *sc)
2200 {
2201 	CSR_WRITE_4(sc, VGE_IMR, 0);
2202 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2203 	sc->vge_npoll.ifpc_stcount = 0;
2204 }
2205 
2206 #endif	/* IFPOLL_ENABLE */
2207