xref: /dragonfly/sys/dev/netif/vge/if_vge.c (revision 0ca59c34)
1 /*
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/dev/vge/if_vge.c,v 1.24 2006/02/14 12:44:56 glebius Exp $
33  */
34 
35 /*
36  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
37  *
38  * Written by Bill Paul <wpaul@windriver.com>
39  * Senior Networking Software Engineer
40  * Wind River Systems
41  */
42 
43 /*
44  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
45  * combines a tri-speed ethernet MAC and PHY, with the following
46  * features:
47  *
48  *	o Jumbo frame support up to 16K
49  *	o Transmit and receive flow control
50  *	o IPv4 checksum offload
51  *	o VLAN tag insertion and stripping
52  *	o TCP large send
53  *	o 64-bit multicast hash table filter
54  *	o 64 entry CAM filter
55  *	o 16K RX FIFO and 48K TX FIFO memory
56  *	o Interrupt moderation
57  *
58  * The VT6122 supports up to four transmit DMA queues. The descriptors
59  * in the transmit ring can address up to 7 data fragments; frames which
60  * span more than 7 data buffers must be coalesced, but in general the
61  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
62  * long. The receive descriptors address only a single buffer.
63  *
64  * There are two peculiar design issues with the VT6122. One is that
65  * receive data buffers must be aligned on a 32-bit boundary. This is
66  * not a problem where the VT6122 is used as a LOM device in x86-based
67  * systems, but on architectures that generate unaligned access traps, we
68  * have to do some copying.
69  *
70  * The other issue has to do with the way 64-bit addresses are handled.
71  * The DMA descriptors only allow you to specify 48 bits of addressing
72  * information. The remaining 16 bits are specified using one of the
73  * I/O registers. If you only have a 32-bit system, then this isn't
74  * an issue, but if you have a 64-bit system and more than 4GB of
75  * memory, you must have to make sure your network data buffers reside
76  * in the same 48-bit 'segment.'
77  *
78  * Special thanks to Ryan Fu at VIA Networking for providing documentation
79  * and sample NICs for testing.
80  */
81 
82 #include "opt_ifpoll.h"
83 
84 #include <sys/param.h>
85 #include <sys/endian.h>
86 #include <sys/systm.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/module.h>
91 #include <sys/kernel.h>
92 #include <sys/socket.h>
93 #include <sys/serialize.h>
94 #include <sys/proc.h>
95 #include <sys/bus.h>
96 #include <sys/rman.h>
97 #include <sys/interrupt.h>
98 
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/ethernet.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_poll.h>
105 #include <net/ifq_var.h>
106 #include <net/if_types.h>
107 #include <net/vlan/if_vlan_var.h>
108 #include <net/vlan/if_vlan_ether.h>
109 
110 #include <net/bpf.h>
111 
112 #include <dev/netif/mii_layer/mii.h>
113 #include <dev/netif/mii_layer/miivar.h>
114 
115 #include <bus/pci/pcireg.h>
116 #include <bus/pci/pcivar.h>
117 #include "pcidevs.h"
118 
119 #include "miibus_if.h"
120 
121 #include <dev/netif/vge/if_vgereg.h>
122 #include <dev/netif/vge/if_vgevar.h>
123 
124 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
125 
126 /*
127  * Various supported device vendors/types and their names.
128  */
129 static const struct vge_type vge_devs[] = {
130 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612X,
131 	  "VIA Networking Gigabit Ethernet" },
132 	{ 0, 0, NULL }
133 };
134 
135 static int vge_probe		(device_t);
136 static int vge_attach		(device_t);
137 static int vge_detach		(device_t);
138 
139 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
140 
141 static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
142 static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
143 				    bus_size_t, int);
144 static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
145 				    bus_size_t, int);
146 static int vge_dma_alloc	(device_t);
147 static void vge_dma_free	(struct vge_softc *);
148 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
149 static int vge_rx_list_init	(struct vge_softc *);
150 static int vge_tx_list_init	(struct vge_softc *);
151 #ifdef VGE_FIXUP_RX
152 static __inline void vge_fixup_rx
153 				(struct mbuf *);
154 #endif
155 static void vge_rxeof		(struct vge_softc *, int);
156 static void vge_txeof		(struct vge_softc *);
157 static void vge_intr		(void *);
158 static void vge_tick		(struct vge_softc *);
159 static void vge_start		(struct ifnet *, struct ifaltq_subque *);
160 static int vge_ioctl		(struct ifnet *, u_long, caddr_t,
161 				 struct ucred *);
162 static void vge_init		(void *);
163 static void vge_stop		(struct vge_softc *);
164 static void vge_watchdog	(struct ifnet *);
165 static int vge_suspend		(device_t);
166 static int vge_resume		(device_t);
167 static void vge_shutdown	(device_t);
168 static int vge_ifmedia_upd	(struct ifnet *);
169 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
170 
171 #ifdef VGE_EEPROM
172 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
173 #endif
174 static void vge_read_eeprom	(struct vge_softc *, uint8_t *, int, int, int);
175 
176 static void vge_miipoll_start	(struct vge_softc *);
177 static void vge_miipoll_stop	(struct vge_softc *);
178 static int vge_miibus_readreg	(device_t, int, int);
179 static int vge_miibus_writereg	(device_t, int, int, int);
180 static void vge_miibus_statchg	(device_t);
181 
182 static void vge_cam_clear	(struct vge_softc *);
183 static int vge_cam_set		(struct vge_softc *, uint8_t *);
184 static void vge_setmulti	(struct vge_softc *);
185 static void vge_reset		(struct vge_softc *);
186 
187 #ifdef IFPOLL_ENABLE
188 static void	vge_npoll(struct ifnet *, struct ifpoll_info *);
189 static void	vge_npoll_compat(struct ifnet *, void *, int);
190 static void	vge_disable_intr(struct vge_softc *);
191 #endif
192 static void	vge_enable_intr(struct vge_softc *, uint32_t);
193 
194 #define VGE_PCI_LOIO             0x10
195 #define VGE_PCI_LOMEM            0x14
196 
197 static device_method_t vge_methods[] = {
198 	/* Device interface */
199 	DEVMETHOD(device_probe,		vge_probe),
200 	DEVMETHOD(device_attach,	vge_attach),
201 	DEVMETHOD(device_detach,	vge_detach),
202 	DEVMETHOD(device_suspend,	vge_suspend),
203 	DEVMETHOD(device_resume,	vge_resume),
204 	DEVMETHOD(device_shutdown,	vge_shutdown),
205 
206 	/* bus interface */
207 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
208 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
209 
210 	/* MII interface */
211 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
212 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
213 	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
214 
215 	DEVMETHOD_END
216 };
217 
218 static driver_t vge_driver = {
219 	"vge",
220 	vge_methods,
221 	sizeof(struct vge_softc)
222 };
223 
224 static devclass_t vge_devclass;
225 
226 DECLARE_DUMMY_MODULE(if_vge);
227 MODULE_DEPEND(if_vge, miibus, 1, 1, 1);
228 DRIVER_MODULE(if_vge, pci, vge_driver, vge_devclass, NULL, NULL);
229 DRIVER_MODULE(if_vge, cardbus, vge_driver, vge_devclass, NULL, NULL);
230 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, NULL, NULL);
231 
232 #ifdef VGE_EEPROM
233 /*
234  * Read a word of data stored in the EEPROM at address 'addr.'
235  */
236 static void
237 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t dest)
238 {
239 	uint16_t word = 0;
240 	int i;
241 
242 	/*
243 	 * Enter EEPROM embedded programming mode. In order to
244 	 * access the EEPROM at all, we first have to set the
245 	 * EELOAD bit in the CHIPCFG2 register.
246 	 */
247 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
248 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
249 
250 	/* Select the address of the word we want to read */
251 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
252 
253 	/* Issue read command */
254 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
255 
256 	/* Wait for the done bit to be set. */
257 	for (i = 0; i < VGE_TIMEOUT; i++) {
258 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
259 			break;
260 	}
261 	if (i == VGE_TIMEOUT) {
262 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
263 		*dest = 0;
264 		return;
265 	}
266 
267 	/* Read the result */
268 	word = CSR_READ_2(sc, VGE_EERDDAT);
269 
270 	/* Turn off EEPROM access mode. */
271 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
272 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
273 
274 	*dest = word;
275 }
276 #endif
277 
278 /*
279  * Read a sequence of words from the EEPROM.
280  */
281 static void
282 vge_read_eeprom(struct vge_softc *sc, uint8_t *dest, int off, int cnt, int swap)
283 {
284 	int i;
285 #ifdef VGE_EEPROM
286 	uint16_t word = 0, *ptr;
287 
288 	for (i = 0; i < cnt; i++) {
289 		vge_eeprom_getword(sc, off + i, &word);
290 		ptr = (uint16_t *)(dest + (i * 2));
291 		if (swap)
292 			*ptr = ntohs(word);
293 		else
294 			*ptr = word;
295 	}
296 #else
297 	for (i = 0; i < ETHER_ADDR_LEN; i++)
298 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
299 #endif
300 }
301 
302 static void
303 vge_miipoll_stop(struct vge_softc *sc)
304 {
305 	int i;
306 
307 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
308 
309 	for (i = 0; i < VGE_TIMEOUT; i++) {
310 		DELAY(1);
311 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
312 			break;
313 	}
314 	if (i == VGE_TIMEOUT)
315 		if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
316 }
317 
318 static void
319 vge_miipoll_start(struct vge_softc *sc)
320 {
321 	int i;
322 
323 	/* First, make sure we're idle. */
324 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
325 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
326 
327 	for (i = 0; i < VGE_TIMEOUT; i++) {
328 		DELAY(1);
329 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
330 			break;
331 	}
332 	if (i == VGE_TIMEOUT) {
333 		if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
334 		return;
335 	}
336 
337 	/* Now enable auto poll mode. */
338 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
339 
340 	/* And make sure it started. */
341 	for (i = 0; i < VGE_TIMEOUT; i++) {
342 		DELAY(1);
343 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
344 			break;
345 	}
346 	if (i == VGE_TIMEOUT)
347 		if_printf(&sc->arpcom.ac_if, "failed to start MII autopoll\n");
348 }
349 
350 static int
351 vge_miibus_readreg(device_t dev, int phy, int reg)
352 {
353 	struct vge_softc *sc;
354 	int i;
355 	uint16_t rval = 0;
356 
357 	sc = device_get_softc(dev);
358 
359 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
360 		return(0);
361 
362 	vge_miipoll_stop(sc);
363 
364 	/* Specify the register we want to read. */
365 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
366 
367 	/* Issue read command. */
368 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
369 
370 	/* Wait for the read command bit to self-clear. */
371 	for (i = 0; i < VGE_TIMEOUT; i++) {
372 		DELAY(1);
373 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
374 			break;
375 	}
376 	if (i == VGE_TIMEOUT)
377 		if_printf(&sc->arpcom.ac_if, "MII read timed out\n");
378 	else
379 		rval = CSR_READ_2(sc, VGE_MIIDATA);
380 
381 	vge_miipoll_start(sc);
382 
383 	return (rval);
384 }
385 
386 static int
387 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
388 {
389 	struct vge_softc *sc;
390 	int i, rval = 0;
391 
392 	sc = device_get_softc(dev);
393 
394 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
395 		return(0);
396 
397 	vge_miipoll_stop(sc);
398 
399 	/* Specify the register we want to write. */
400 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
401 
402 	/* Specify the data we want to write. */
403 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
404 
405 	/* Issue write command. */
406 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
407 
408 	/* Wait for the write command bit to self-clear. */
409 	for (i = 0; i < VGE_TIMEOUT; i++) {
410 		DELAY(1);
411 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
412 			break;
413 	}
414 	if (i == VGE_TIMEOUT) {
415 		if_printf(&sc->arpcom.ac_if, "MII write timed out\n");
416 		rval = EIO;
417 	}
418 
419 	vge_miipoll_start(sc);
420 
421 	return (rval);
422 }
423 
424 static void
425 vge_cam_clear(struct vge_softc *sc)
426 {
427 	int i;
428 
429 	/*
430 	 * Turn off all the mask bits. This tells the chip
431 	 * that none of the entries in the CAM filter are valid.
432 	 * desired entries will be enabled as we fill the filter in.
433 	 */
434 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
435 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
436 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
437 	for (i = 0; i < 8; i++)
438 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
439 
440 	/* Clear the VLAN filter too. */
441 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
442 	for (i = 0; i < 8; i++)
443 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
444 
445 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
446 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
447 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
448 
449 	sc->vge_camidx = 0;
450 }
451 
452 static int
453 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
454 {
455 	int i, error = 0;
456 
457 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
458 		return(ENOSPC);
459 
460 	/* Select the CAM data page. */
461 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
462 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
463 
464 	/* Set the filter entry we want to update and enable writing. */
465 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
466 
467 	/* Write the address to the CAM registers */
468 	for (i = 0; i < ETHER_ADDR_LEN; i++)
469 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
470 
471 	/* Issue a write command. */
472 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
473 
474 	/* Wake for it to clear. */
475 	for (i = 0; i < VGE_TIMEOUT; i++) {
476 		DELAY(1);
477 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
478 			break;
479 	}
480 	if (i == VGE_TIMEOUT) {
481 		if_printf(&sc->arpcom.ac_if, "setting CAM filter failed\n");
482 		error = EIO;
483 		goto fail;
484 	}
485 
486 	/* Select the CAM mask page. */
487 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
488 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
489 
490 	/* Set the mask bit that enables this filter. */
491 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
492 	    1<<(sc->vge_camidx & 7));
493 
494 	sc->vge_camidx++;
495 
496 fail:
497 	/* Turn off access to CAM. */
498 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
499 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
500 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
501 
502 	return (error);
503 }
504 
505 /*
506  * Program the multicast filter. We use the 64-entry CAM filter
507  * for perfect filtering. If there's more than 64 multicast addresses,
508  * we use the hash filter insted.
509  */
510 static void
511 vge_setmulti(struct vge_softc *sc)
512 {
513 	struct ifnet *ifp = &sc->arpcom.ac_if;
514 	int error = 0;
515 	struct ifmultiaddr *ifma;
516 	uint32_t h, hashes[2] = { 0, 0 };
517 
518 	/* First, zot all the multicast entries. */
519 	vge_cam_clear(sc);
520 	CSR_WRITE_4(sc, VGE_MAR0, 0);
521 	CSR_WRITE_4(sc, VGE_MAR1, 0);
522 
523 	/*
524 	 * If the user wants allmulti or promisc mode, enable reception
525 	 * of all multicast frames.
526 	 */
527 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
528 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
529 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
530 		return;
531 	}
532 
533 	/* Now program new ones */
534 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
535 		if (ifma->ifma_addr->sa_family != AF_LINK)
536 			continue;
537 		error = vge_cam_set(sc,
538 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
539 		if (error)
540 			break;
541 	}
542 
543 	/* If there were too many addresses, use the hash filter. */
544 	if (error) {
545 		vge_cam_clear(sc);
546 
547 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
548 			if (ifma->ifma_addr->sa_family != AF_LINK)
549 				continue;
550 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
551 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
552 			if (h < 32)
553 				hashes[0] |= (1 << h);
554 			else
555 				hashes[1] |= (1 << (h - 32));
556 		}
557 
558 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
559 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
560 	}
561 }
562 
563 static void
564 vge_reset(struct vge_softc *sc)
565 {
566 	int i;
567 
568 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
569 
570 	for (i = 0; i < VGE_TIMEOUT; i++) {
571 		DELAY(5);
572 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
573 			break;
574 	}
575 
576 	if (i == VGE_TIMEOUT) {
577 		if_printf(&sc->arpcom.ac_if, "soft reset timed out");
578 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
579 		DELAY(2000);
580 	}
581 
582 	DELAY(5000);
583 
584 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
585 
586 	for (i = 0; i < VGE_TIMEOUT; i++) {
587 		DELAY(5);
588 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
589 			break;
590 	}
591 	if (i == VGE_TIMEOUT) {
592 		if_printf(&sc->arpcom.ac_if, "EEPROM reload timed out\n");
593 		return;
594 	}
595 
596 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
597 }
598 
599 /*
600  * Probe for a VIA gigabit chip. Check the PCI vendor and device
601  * IDs against our list and return a device name if we find a match.
602  */
603 static int
604 vge_probe(device_t dev)
605 {
606 	const struct vge_type *t;
607 	uint16_t did, vid;
608 
609 	did = pci_get_device(dev);
610 	vid = pci_get_vendor(dev);
611 	for (t = vge_devs; t->vge_name != NULL; ++t) {
612 		if (vid == t->vge_vid && did == t->vge_did) {
613 			device_set_desc(dev, t->vge_name);
614 			return 0;
615 		}
616 	}
617 	return (ENXIO);
618 }
619 
620 static void
621 vge_dma_map_rx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
622 		    bus_size_t mapsize, int error)
623 {
624 
625 	struct vge_dmaload_arg *ctx;
626 	struct vge_rx_desc *d = NULL;
627 
628 	if (error)
629 		return;
630 
631 	ctx = arg;
632 
633 	/* Signal error to caller if there's too many segments */
634 	if (nseg > ctx->vge_maxsegs) {
635 		ctx->vge_maxsegs = 0;
636 		return;
637 	}
638 
639 	/*
640 	 * Map the segment array into descriptors.
641 	 */
642 	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
643 
644 	/* If this descriptor is still owned by the chip, bail. */
645 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
646 		if_printf(&ctx->sc->arpcom.ac_if,
647 			  "tried to map busy descriptor\n");
648 		ctx->vge_maxsegs = 0;
649 		return;
650 	}
651 
652 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
653 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
654 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
655 	d->vge_sts = 0;
656 	d->vge_ctl = 0;
657 
658 	ctx->vge_maxsegs = 1;
659 }
660 
661 static void
662 vge_dma_map_tx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
663 		    bus_size_t mapsize, int error)
664 {
665 	struct vge_dmaload_arg *ctx;
666 	struct vge_tx_desc *d = NULL;
667 	struct vge_tx_frag *f;
668 	int i = 0;
669 
670 	if (error)
671 		return;
672 
673 	ctx = arg;
674 
675 	/* Signal error to caller if there's too many segments */
676 	if (nseg > ctx->vge_maxsegs) {
677 		ctx->vge_maxsegs = 0;
678 		return;
679 	}
680 
681 	/* Map the segment array into descriptors. */
682 	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
683 
684 	/* If this descriptor is still owned by the chip, bail. */
685 	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
686 		ctx->vge_maxsegs = 0;
687 		return;
688 	}
689 
690 	for (i = 0; i < nseg; i++) {
691 		f = &d->vge_frag[i];
692 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
693 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
694 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
695 	}
696 
697 	/* Argh. This chip does not autopad short frames */
698 	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
699 		f = &d->vge_frag[i];
700 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
701 		    ctx->vge_m0->m_pkthdr.len));
702 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
703 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
704 		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
705 		i++;
706 	}
707 
708 	/*
709 	 * When telling the chip how many segments there are, we
710 	 * must use nsegs + 1 instead of just nsegs. Darned if I
711 	 * know why.
712 	 */
713 	i++;
714 
715 	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
716 	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
717 
718 	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
719 		d->vge_ctl |= VGE_TDCTL_JUMBO;
720 
721 	ctx->vge_maxsegs = nseg;
722 }
723 
724 /*
725  * Map a single buffer address.
726  */
727 
728 static void
729 vge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
730 {
731 	if (error)
732 		return;
733 
734 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
735 	*((bus_addr_t *)arg) = segs->ds_addr;
736 }
737 
738 static int
739 vge_dma_alloc(device_t dev)
740 {
741 	struct vge_softc *sc = device_get_softc(dev);
742 	int error, nseg, i, tx_pos = 0, rx_pos = 0;
743 
744 	/*
745 	 * Allocate the parent bus DMA tag appropriate for PCI.
746 	 */
747 #define VGE_NSEG_NEW 32
748 	error = bus_dma_tag_create(NULL,	/* parent */
749 			1, 0,			/* alignment, boundary */
750 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
751 			BUS_SPACE_MAXADDR,	/* highaddr */
752 			NULL, NULL,		/* filter, filterarg */
753 			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
754 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
755 			BUS_DMA_ALLOCNOW,	/* flags */
756 			&sc->vge_parent_tag);
757 	if (error) {
758 		device_printf(dev, "can't create parent dma tag\n");
759 		return error;
760 	}
761 
762 	/*
763 	 * Allocate map for RX mbufs.
764 	 */
765 	nseg = 32;
766 	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
767 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
768 				   NULL, NULL,
769 				   MCLBYTES * nseg, nseg, MCLBYTES,
770 				   BUS_DMA_ALLOCNOW, &sc->vge_ldata.vge_mtag);
771 	if (error) {
772 		device_printf(dev, "could not allocate mbuf dma tag\n");
773 		return error;
774 	}
775 
776 	/*
777 	 * Allocate map for TX descriptor list.
778 	 */
779 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
780 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
781 				   NULL, NULL,
782 				   VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
783 				   BUS_DMA_ALLOCNOW,
784 				   &sc->vge_ldata.vge_tx_list_tag);
785 	if (error) {
786 		device_printf(dev, "could not allocate tx list dma tag\n");
787 		return error;
788 	}
789 
790 	/* Allocate DMA'able memory for the TX ring */
791 	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
792 				 (void **)&sc->vge_ldata.vge_tx_list,
793 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
794 				 &sc->vge_ldata.vge_tx_list_map);
795 	if (error) {
796 		device_printf(dev, "could not allocate tx list dma memory\n");
797 		return error;
798 	}
799 
800 	/* Load the map for the TX ring. */
801 	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
802 				sc->vge_ldata.vge_tx_list_map,
803 				sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ,
804 				vge_dma_map_addr,
805 				&sc->vge_ldata.vge_tx_list_addr,
806 				BUS_DMA_WAITOK);
807 	if (error) {
808 		device_printf(dev, "could not load tx list\n");
809 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
810 				sc->vge_ldata.vge_tx_list,
811 				sc->vge_ldata.vge_tx_list_map);
812 		sc->vge_ldata.vge_tx_list = NULL;
813 		return error;
814 	}
815 
816 	/* Create DMA maps for TX buffers */
817 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
818 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
819 					  &sc->vge_ldata.vge_tx_dmamap[i]);
820 		if (error) {
821 			device_printf(dev, "can't create DMA map for TX\n");
822 			tx_pos = i;
823 			goto map_fail;
824 		}
825 	}
826 	tx_pos = VGE_TX_DESC_CNT;
827 
828 	/*
829 	 * Allocate map for RX descriptor list.
830 	 */
831 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
832 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
833 				   NULL, NULL,
834 				   VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
835 				   BUS_DMA_ALLOCNOW,
836 				   &sc->vge_ldata.vge_rx_list_tag);
837 	if (error) {
838 		device_printf(dev, "could not allocate rx list dma tag\n");
839 		return error;
840 	}
841 
842 	/* Allocate DMA'able memory for the RX ring */
843 	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
844 				 (void **)&sc->vge_ldata.vge_rx_list,
845 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
846 				 &sc->vge_ldata.vge_rx_list_map);
847 	if (error) {
848 		device_printf(dev, "could not allocate rx list dma memory\n");
849 		return error;
850 	}
851 
852 	/* Load the map for the RX ring. */
853 	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
854 				sc->vge_ldata.vge_rx_list_map,
855 				sc->vge_ldata.vge_rx_list, VGE_TX_LIST_SZ,
856 				vge_dma_map_addr,
857 				&sc->vge_ldata.vge_rx_list_addr,
858 				BUS_DMA_WAITOK);
859 	if (error) {
860 		device_printf(dev, "could not load rx list\n");
861 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
862 				sc->vge_ldata.vge_rx_list,
863 				sc->vge_ldata.vge_rx_list_map);
864 		sc->vge_ldata.vge_rx_list = NULL;
865 		return error;
866 	}
867 
868 	/* Create DMA maps for RX buffers */
869 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
870 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
871 					  &sc->vge_ldata.vge_rx_dmamap[i]);
872 		if (error) {
873 			device_printf(dev, "can't create DMA map for RX\n");
874 			rx_pos = i;
875 			goto map_fail;
876 		}
877 	}
878 	return (0);
879 
880 map_fail:
881 	for (i = 0; i < tx_pos; ++i) {
882 		error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
883 					   sc->vge_ldata.vge_tx_dmamap[i]);
884 	}
885 	for (i = 0; i < rx_pos; ++i) {
886 		error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
887 					   sc->vge_ldata.vge_rx_dmamap[i]);
888 	}
889 	bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
890 	sc->vge_ldata.vge_mtag = NULL;
891 
892 	return error;
893 }
894 
895 static void
896 vge_dma_free(struct vge_softc *sc)
897 {
898 	/* Unload and free the RX DMA ring memory and map */
899 	if (sc->vge_ldata.vge_rx_list_tag) {
900 		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
901 				  sc->vge_ldata.vge_rx_list_map);
902 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
903 				sc->vge_ldata.vge_rx_list,
904 				sc->vge_ldata.vge_rx_list_map);
905 	}
906 
907 	if (sc->vge_ldata.vge_rx_list_tag)
908 		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
909 
910 	/* Unload and free the TX DMA ring memory and map */
911 	if (sc->vge_ldata.vge_tx_list_tag) {
912 		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
913 				  sc->vge_ldata.vge_tx_list_map);
914 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
915 				sc->vge_ldata.vge_tx_list,
916 				sc->vge_ldata.vge_tx_list_map);
917 	}
918 
919 	if (sc->vge_ldata.vge_tx_list_tag)
920 		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
921 
922 	/* Destroy all the RX and TX buffer maps */
923 	if (sc->vge_ldata.vge_mtag) {
924 		int i;
925 
926 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
927 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
928 					   sc->vge_ldata.vge_tx_dmamap[i]);
929 		}
930 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
931 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
932 					   sc->vge_ldata.vge_rx_dmamap[i]);
933 		}
934 		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
935 	}
936 
937 	if (sc->vge_parent_tag)
938 		bus_dma_tag_destroy(sc->vge_parent_tag);
939 }
940 
941 /*
942  * Attach the interface. Allocate softc structures, do ifmedia
943  * setup and ethernet/BPF attach.
944  */
945 static int
946 vge_attach(device_t dev)
947 {
948 	uint8_t eaddr[ETHER_ADDR_LEN];
949 	struct vge_softc *sc;
950 	struct ifnet *ifp;
951 	int error = 0;
952 
953 	sc = device_get_softc(dev);
954 	ifp = &sc->arpcom.ac_if;
955 
956 	/* Initialize if_xname early, so if_printf() can be used */
957 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
958 
959 	/*
960 	 * Map control/status registers.
961 	 */
962 	pci_enable_busmaster(dev);
963 
964 	sc->vge_res_rid = VGE_PCI_LOMEM;
965 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
966 					     &sc->vge_res_rid, RF_ACTIVE);
967 	if (sc->vge_res == NULL) {
968 		device_printf(dev, "couldn't map ports/memory\n");
969 		return ENXIO;
970 	}
971 
972 	sc->vge_btag = rman_get_bustag(sc->vge_res);
973 	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
974 
975 	/* Allocate interrupt */
976 	sc->vge_irq_rid = 0;
977 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->vge_irq_rid,
978 					     RF_SHAREABLE | RF_ACTIVE);
979 	if (sc->vge_irq == NULL) {
980 		device_printf(dev, "couldn't map interrupt\n");
981 		error = ENXIO;
982 		goto fail;
983 	}
984 
985 	/* Reset the adapter. */
986 	vge_reset(sc);
987 
988 	/*
989 	 * Get station address from the EEPROM.
990 	 */
991 	vge_read_eeprom(sc, eaddr, VGE_EE_EADDR, 3, 0);
992 
993 	/* Allocate DMA related stuffs */
994 	error = vge_dma_alloc(dev);
995 	if (error)
996 		goto fail;
997 
998 	/* Do MII setup */
999 	error = mii_phy_probe(dev, &sc->vge_miibus, vge_ifmedia_upd,
1000 			      vge_ifmedia_sts);
1001 	if (error) {
1002 		device_printf(dev, "MII without any phy!\n");
1003 		goto fail;
1004 	}
1005 
1006 	ifp->if_softc = sc;
1007 	ifp->if_mtu = ETHERMTU;
1008 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1009 	ifp->if_init = vge_init;
1010 	ifp->if_start = vge_start;
1011 	ifp->if_watchdog = vge_watchdog;
1012 	ifp->if_ioctl = vge_ioctl;
1013 #ifdef IFPOLL_ENABLE
1014 	ifp->if_npoll = vge_npoll;
1015 #endif
1016 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1017 	ifp->if_capabilities = IFCAP_VLAN_MTU |
1018 			       IFCAP_HWCSUM |
1019 			       IFCAP_VLAN_HWTAGGING;
1020 	ifp->if_capenable = ifp->if_capabilities;
1021 	ifq_set_maxlen(&ifp->if_snd, VGE_IFQ_MAXLEN);
1022 	ifq_set_ready(&ifp->if_snd);
1023 
1024 	/*
1025 	 * Call MI attach routine.
1026 	 */
1027 	ether_ifattach(ifp, eaddr, NULL);
1028 
1029 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->vge_irq));
1030 
1031 #ifdef IFPOLL_ENABLE
1032 	ifpoll_compat_setup(&sc->vge_npoll, NULL, NULL, device_get_unit(dev),
1033 	    ifp->if_serializer);
1034 #endif
1035 
1036 	/* Hook interrupt last to avoid having to lock softc */
1037 	error = bus_setup_intr(dev, sc->vge_irq, INTR_MPSAFE, vge_intr, sc,
1038 			       &sc->vge_intrhand, ifp->if_serializer);
1039 	if (error) {
1040 		device_printf(dev, "couldn't set up irq\n");
1041 		ether_ifdetach(ifp);
1042 		goto fail;
1043 	}
1044 
1045 	return 0;
1046 fail:
1047 	vge_detach(dev);
1048 	return error;
1049 }
1050 
1051 /*
1052  * Shutdown hardware and free up resources. This can be called any
1053  * time after the mutex has been initialized. It is called in both
1054  * the error case in attach and the normal detach case so it needs
1055  * to be careful about only freeing resources that have actually been
1056  * allocated.
1057  */
1058 static int
1059 vge_detach(device_t dev)
1060 {
1061 	struct vge_softc *sc = device_get_softc(dev);
1062 	struct ifnet *ifp = &sc->arpcom.ac_if;
1063 
1064 	/* These should only be active if attach succeeded */
1065 	if (device_is_attached(dev)) {
1066 		lwkt_serialize_enter(ifp->if_serializer);
1067 
1068 		vge_stop(sc);
1069 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1070 		/*
1071 		 * Force off the IFF_UP flag here, in case someone
1072 		 * still had a BPF descriptor attached to this
1073 		 * interface. If they do, ether_ifattach() will cause
1074 		 * the BPF code to try and clear the promisc mode
1075 		 * flag, which will bubble down to vge_ioctl(),
1076 		 * which will try to call vge_init() again. This will
1077 		 * turn the NIC back on and restart the MII ticker,
1078 		 * which will panic the system when the kernel tries
1079 		 * to invoke the vge_tick() function that isn't there
1080 		 * anymore.
1081 		 */
1082 		ifp->if_flags &= ~IFF_UP;
1083 
1084 		lwkt_serialize_exit(ifp->if_serializer);
1085 
1086 		ether_ifdetach(ifp);
1087 	}
1088 
1089 	if (sc->vge_miibus)
1090 		device_delete_child(dev, sc->vge_miibus);
1091 	bus_generic_detach(dev);
1092 
1093 	if (sc->vge_irq) {
1094 		bus_release_resource(dev, SYS_RES_IRQ, sc->vge_irq_rid,
1095 				     sc->vge_irq);
1096 	}
1097 
1098 	if (sc->vge_res) {
1099 		bus_release_resource(dev, SYS_RES_MEMORY, sc->vge_res_rid,
1100 				     sc->vge_res);
1101 	}
1102 
1103 	vge_dma_free(sc);
1104 	return (0);
1105 }
1106 
1107 static int
1108 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1109 {
1110 	struct vge_dmaload_arg arg;
1111 	struct mbuf *n = NULL;
1112 	int i, error;
1113 
1114 	if (m == NULL) {
1115 		n = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1116 		if (n == NULL)
1117 			return (ENOBUFS);
1118 		m = n;
1119 	} else {
1120 		m->m_data = m->m_ext.ext_buf;
1121 	}
1122 
1123 
1124 #ifdef VGE_FIXUP_RX
1125 	/*
1126 	 * This is part of an evil trick to deal with non-x86 platforms.
1127 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1128 	 * boundaries, but that will hose non-x86 machines. To get around
1129 	 * this, we leave some empty space at the start of each buffer
1130 	 * and for non-x86 hosts, we copy the buffer back two bytes
1131 	 * to achieve word alignment. This is slightly more efficient
1132 	 * than allocating a new buffer, copying the contents, and
1133 	 * discarding the old buffer.
1134 	 */
1135 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1136 	m_adj(m, VGE_ETHER_ALIGN);
1137 #else
1138 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1139 #endif
1140 
1141 	arg.sc = sc;
1142 	arg.vge_idx = idx;
1143 	arg.vge_maxsegs = 1;
1144 	arg.vge_flags = 0;
1145 
1146 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1147 				     sc->vge_ldata.vge_rx_dmamap[idx], m,
1148 				     vge_dma_map_rx_desc, &arg, BUS_DMA_NOWAIT);
1149 	if (error || arg.vge_maxsegs != 1) {
1150 		if (n != NULL)
1151 			m_freem(n);
1152 		return (ENOMEM);
1153 	}
1154 
1155 	/*
1156 	 * Note: the manual fails to document the fact that for
1157 	 * proper opration, the driver needs to replentish the RX
1158 	 * DMA ring 4 descriptors at a time (rather than one at a
1159 	 * time, like most chips). We can allocate the new buffers
1160 	 * but we should not set the OWN bits until we're ready
1161 	 * to hand back 4 of them in one shot.
1162 	 */
1163 
1164 #define VGE_RXCHUNK 4
1165 	sc->vge_rx_consumed++;
1166 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1167 		for (i = idx; i != idx - sc->vge_rx_consumed; i--) {
1168 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1169 			    htole32(VGE_RDSTS_OWN);
1170 		}
1171 		sc->vge_rx_consumed = 0;
1172 	}
1173 
1174 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1175 
1176 	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1177 			sc->vge_ldata.vge_rx_dmamap[idx], BUS_DMASYNC_PREREAD);
1178 
1179 	return (0);
1180 }
1181 
1182 static int
1183 vge_tx_list_init(struct vge_softc *sc)
1184 {
1185 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1186 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1187 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1188 
1189 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1190 	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1191 	sc->vge_ldata.vge_tx_prodidx = 0;
1192 	sc->vge_ldata.vge_tx_considx = 0;
1193 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1194 
1195 	return (0);
1196 }
1197 
1198 static int
1199 vge_rx_list_init(struct vge_softc *sc)
1200 {
1201 	int i;
1202 
1203 	bzero(sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1204 	bzero(&sc->vge_ldata.vge_rx_mbuf,
1205 	      VGE_RX_DESC_CNT * sizeof(struct mbuf *));
1206 
1207 	sc->vge_rx_consumed = 0;
1208 
1209 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1210 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1211 			return (ENOBUFS);
1212 	}
1213 
1214 	/* Flush the RX descriptors */
1215 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1216 			sc->vge_ldata.vge_rx_list_map,
1217 			BUS_DMASYNC_PREWRITE);
1218 
1219 	sc->vge_ldata.vge_rx_prodidx = 0;
1220 	sc->vge_rx_consumed = 0;
1221 	sc->vge_head = sc->vge_tail = NULL;
1222 	return (0);
1223 }
1224 
1225 #ifdef VGE_FIXUP_RX
1226 static __inline void
1227 vge_fixup_rx(struct mbuf *m)
1228 {
1229 	uint16_t *src, *dst;
1230 	int i;
1231 
1232 	src = mtod(m, uint16_t *);
1233 	dst = src - 1;
1234 
1235 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1236 		*dst++ = *src++;
1237 
1238 	m->m_data -= ETHER_ALIGN;
1239 }
1240 #endif
1241 
1242 /*
1243  * RX handler. We support the reception of jumbo frames that have
1244  * been fragmented across multiple 2K mbuf cluster buffers.
1245  */
1246 static void
1247 vge_rxeof(struct vge_softc *sc, int count)
1248 {
1249 	struct ifnet *ifp = &sc->arpcom.ac_if;
1250 	struct mbuf *m;
1251 	int i, total_len, lim = 0;
1252 	struct vge_rx_desc *cur_rx;
1253 	uint32_t rxstat, rxctl;
1254 
1255 	ASSERT_SERIALIZED(ifp->if_serializer);
1256 
1257 	i = sc->vge_ldata.vge_rx_prodidx;
1258 
1259 	/* Invalidate the descriptor memory */
1260 
1261 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1262 			sc->vge_ldata.vge_rx_list_map, BUS_DMASYNC_POSTREAD);
1263 
1264 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1265 #ifdef IFPOLL_ENABLE
1266 		if (count >= 0 && count-- == 0)
1267 			break;
1268 #endif
1269 
1270 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1271 		m = sc->vge_ldata.vge_rx_mbuf[i];
1272 		total_len = VGE_RXBYTES(cur_rx);
1273 		rxstat = le32toh(cur_rx->vge_sts);
1274 		rxctl = le32toh(cur_rx->vge_ctl);
1275 
1276 		/* Invalidate the RX mbuf and unload its map */
1277 		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1278 				sc->vge_ldata.vge_rx_dmamap[i],
1279 				BUS_DMASYNC_POSTWRITE);
1280 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1281 				  sc->vge_ldata.vge_rx_dmamap[i]);
1282 
1283 		/*
1284 		 * If the 'start of frame' bit is set, this indicates
1285 		 * either the first fragment in a multi-fragment receive,
1286 		 * or an intermediate fragment. Either way, we want to
1287 		 * accumulate the buffers.
1288 		 */
1289 		if (rxstat & VGE_RXPKT_SOF) {
1290 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1291 			if (sc->vge_head == NULL) {
1292 				sc->vge_head = sc->vge_tail = m;
1293 			} else {
1294 				m->m_flags &= ~M_PKTHDR;
1295 				sc->vge_tail->m_next = m;
1296 				sc->vge_tail = m;
1297 			}
1298 			vge_newbuf(sc, i, NULL);
1299 			VGE_RX_DESC_INC(i);
1300 			continue;
1301 		}
1302 
1303 		/*
1304 		 * Bad/error frames will have the RXOK bit cleared.
1305 		 * However, there's one error case we want to allow:
1306 		 * if a VLAN tagged frame arrives and the chip can't
1307 		 * match it against the CAM filter, it considers this
1308 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1309 		 * We don't want to drop the frame though: our VLAN
1310 		 * filtering is done in software.
1311 		 */
1312 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM) &&
1313 		    !(rxstat & VGE_RDSTS_CSUMERR)) {
1314 			IFNET_STAT_INC(ifp, ierrors, 1);
1315 			/*
1316 			 * If this is part of a multi-fragment packet,
1317 			 * discard all the pieces.
1318 			 */
1319 			if (sc->vge_head != NULL) {
1320 				m_freem(sc->vge_head);
1321 				sc->vge_head = sc->vge_tail = NULL;
1322 			}
1323 			vge_newbuf(sc, i, m);
1324 			VGE_RX_DESC_INC(i);
1325 			continue;
1326 		}
1327 
1328 		/*
1329 		 * If allocating a replacement mbuf fails,
1330 		 * reload the current one.
1331 		 */
1332 		if (vge_newbuf(sc, i, NULL)) {
1333 			IFNET_STAT_INC(ifp, ierrors, 1);
1334 			if (sc->vge_head != NULL) {
1335 				m_freem(sc->vge_head);
1336 				sc->vge_head = sc->vge_tail = NULL;
1337 			}
1338 			vge_newbuf(sc, i, m);
1339 			VGE_RX_DESC_INC(i);
1340 			continue;
1341 		}
1342 
1343 		VGE_RX_DESC_INC(i);
1344 
1345 		if (sc->vge_head != NULL) {
1346 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1347 			/*
1348 			 * Special case: if there's 4 bytes or less
1349 			 * in this buffer, the mbuf can be discarded:
1350 			 * the last 4 bytes is the CRC, which we don't
1351 			 * care about anyway.
1352 			 */
1353 			if (m->m_len <= ETHER_CRC_LEN) {
1354 				sc->vge_tail->m_len -=
1355 				    (ETHER_CRC_LEN - m->m_len);
1356 				m_freem(m);
1357 			} else {
1358 				m->m_len -= ETHER_CRC_LEN;
1359 				m->m_flags &= ~M_PKTHDR;
1360 				sc->vge_tail->m_next = m;
1361 			}
1362 			m = sc->vge_head;
1363 			sc->vge_head = sc->vge_tail = NULL;
1364 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1365 		} else {
1366 			m->m_pkthdr.len = m->m_len =
1367 			    (total_len - ETHER_CRC_LEN);
1368 		}
1369 
1370 #ifdef VGE_FIXUP_RX
1371 		vge_fixup_rx(m);
1372 #endif
1373 		IFNET_STAT_INC(ifp, ipackets, 1);
1374 		m->m_pkthdr.rcvif = ifp;
1375 
1376 		/* Do RX checksumming if enabled */
1377 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1378 			/* Check IP header checksum */
1379 			if (rxctl & VGE_RDCTL_IPPKT)
1380 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1381 			if (rxctl & VGE_RDCTL_IPCSUMOK)
1382 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1383 
1384 			/* Check TCP/UDP checksum */
1385 			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1386 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1387 				m->m_pkthdr.csum_flags |=
1388 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1389 				    CSUM_FRAG_NOT_CHECKED;
1390 				m->m_pkthdr.csum_data = 0xffff;
1391 			}
1392 		}
1393 
1394 		if (rxstat & VGE_RDSTS_VTAG) {
1395 			m->m_flags |= M_VLANTAG;
1396 			m->m_pkthdr.ether_vlantag =
1397 				ntohs((rxctl & VGE_RDCTL_VLANID));
1398 		}
1399 		ifp->if_input(ifp, m, NULL, -1);
1400 
1401 		lim++;
1402 		if (lim == VGE_RX_DESC_CNT)
1403 			break;
1404 	}
1405 
1406 	/* Flush the RX DMA ring */
1407 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1408 			sc->vge_ldata.vge_rx_list_map,
1409 			BUS_DMASYNC_PREWRITE);
1410 
1411 	sc->vge_ldata.vge_rx_prodidx = i;
1412 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1413 }
1414 
1415 static void
1416 vge_txeof(struct vge_softc *sc)
1417 {
1418 	struct ifnet *ifp = &sc->arpcom.ac_if;
1419 	uint32_t txstat;
1420 	int idx;
1421 
1422 	idx = sc->vge_ldata.vge_tx_considx;
1423 
1424 	/* Invalidate the TX descriptor list */
1425 
1426 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1427 			sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_POSTREAD);
1428 
1429 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1430 
1431 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1432 		if (txstat & VGE_TDSTS_OWN)
1433 			break;
1434 
1435 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1436 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1437 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1438 				  sc->vge_ldata.vge_tx_dmamap[idx]);
1439 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1440 			IFNET_STAT_INC(ifp, collisions, 1);
1441 		if (txstat & VGE_TDSTS_TXERR)
1442 			IFNET_STAT_INC(ifp, oerrors, 1);
1443 		else
1444 			IFNET_STAT_INC(ifp, opackets, 1);
1445 
1446 		sc->vge_ldata.vge_tx_free++;
1447 		VGE_TX_DESC_INC(idx);
1448 	}
1449 
1450 	/* No changes made to the TX ring, so no flush needed */
1451 	if (idx != sc->vge_ldata.vge_tx_considx) {
1452 		sc->vge_ldata.vge_tx_considx = idx;
1453 		ifq_clr_oactive(&ifp->if_snd);
1454 		ifp->if_timer = 0;
1455 	}
1456 
1457 	/*
1458 	 * If not all descriptors have been released reaped yet,
1459 	 * reload the timer so that we will eventually get another
1460 	 * interrupt that will cause us to re-enter this routine.
1461 	 * This is done in case the transmitter has gone idle.
1462 	 */
1463 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1464 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1465 }
1466 
1467 static void
1468 vge_tick(struct vge_softc *sc)
1469 {
1470 	struct ifnet *ifp = &sc->arpcom.ac_if;
1471 	struct mii_data *mii;
1472 
1473 	mii = device_get_softc(sc->vge_miibus);
1474 
1475 	mii_tick(mii);
1476 	if (sc->vge_link) {
1477 		if (!(mii->mii_media_status & IFM_ACTIVE))
1478 			sc->vge_link = 0;
1479 	} else {
1480 		if (mii->mii_media_status & IFM_ACTIVE &&
1481 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1482 			sc->vge_link = 1;
1483 			if (!ifq_is_empty(&ifp->if_snd))
1484 				if_devstart(ifp);
1485 		}
1486 	}
1487 }
1488 
1489 #ifdef IFPOLL_ENABLE
1490 
1491 static void
1492 vge_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1493 {
1494 	struct vge_softc *sc = ifp->if_softc;
1495 
1496 	ASSERT_SERIALIZED(ifp->if_serializer);
1497 
1498 	vge_rxeof(sc, count);
1499 	vge_txeof(sc);
1500 
1501 	if (!ifq_is_empty(&ifp->if_snd))
1502 		if_devstart(ifp);
1503 
1504 	/* XXX copy & paste from vge_intr */
1505 	if (sc->vge_npoll.ifpc_stcount-- == 0) {
1506 		uint32_t status;
1507 
1508 		sc->vge_npoll.ifpc_stcount = sc->vge_npoll.ifpc_stfrac;
1509 
1510 		status = CSR_READ_4(sc, VGE_ISR);
1511 		if (status == 0xffffffff)
1512 			return;
1513 
1514 		if (status)
1515 			CSR_WRITE_4(sc, VGE_ISR, status);
1516 
1517 		if (status & (VGE_ISR_TXDMA_STALL |
1518 			      VGE_ISR_RXDMA_STALL))
1519 			vge_init(sc);
1520 
1521 		if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) {
1522 			IFNET_STAT_INC(ifp, ierrors, 1);
1523 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1524 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1525 		}
1526 	}
1527 }
1528 
1529 static void
1530 vge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1531 {
1532 	struct vge_softc *sc = ifp->if_softc;
1533 
1534 	ASSERT_SERIALIZED(ifp->if_serializer);
1535 
1536 	if (info != NULL) {
1537 		int cpuid = sc->vge_npoll.ifpc_cpuid;
1538 
1539 		info->ifpi_rx[cpuid].poll_func = vge_npoll_compat;
1540 		info->ifpi_rx[cpuid].arg = NULL;
1541 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1542 
1543 		if (ifp->if_flags & IFF_RUNNING)
1544 			vge_disable_intr(sc);
1545 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1546 	} else {
1547 		if (ifp->if_flags & IFF_RUNNING)
1548 			vge_enable_intr(sc, 0xffffffff);
1549 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->vge_irq));
1550 	}
1551 }
1552 
1553 #endif	/* IFPOLL_ENABLE */
1554 
1555 static void
1556 vge_intr(void *arg)
1557 {
1558 	struct vge_softc *sc = arg;
1559 	struct ifnet *ifp = &sc->arpcom.ac_if;
1560 	uint32_t status;
1561 
1562 	if (sc->suspended || !(ifp->if_flags & IFF_UP))
1563 		return;
1564 
1565 	/* Disable interrupts */
1566 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1567 
1568 	for (;;) {
1569 		status = CSR_READ_4(sc, VGE_ISR);
1570 		/* If the card has gone away the read returns 0xffff. */
1571 		if (status == 0xFFFFFFFF)
1572 			break;
1573 
1574 		if (status)
1575 			CSR_WRITE_4(sc, VGE_ISR, status);
1576 
1577 		if ((status & VGE_INTRS) == 0)
1578 			break;
1579 
1580 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1581 			vge_rxeof(sc, -1);
1582 
1583 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1584 			vge_rxeof(sc, -1);
1585 			IFNET_STAT_INC(ifp, ierrors, 1);
1586 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1587 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1588 		}
1589 
1590 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1591 			vge_txeof(sc);
1592 
1593 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1594 			vge_init(sc);
1595 
1596 		if (status & VGE_ISR_LINKSTS)
1597 			vge_tick(sc);
1598 	}
1599 
1600 	/* Re-enable interrupts */
1601 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1602 
1603 	if (!ifq_is_empty(&ifp->if_snd))
1604 		if_devstart(ifp);
1605 }
1606 
1607 static int
1608 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1609 {
1610 	struct vge_dmaload_arg arg;
1611 	bus_dmamap_t map;
1612 	int error;
1613 
1614 	arg.vge_flags = 0;
1615 
1616 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1617 		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1618 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1619 		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1620 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1621 		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1622 
1623 	arg.sc = sc;
1624 	arg.vge_idx = idx;
1625 	arg.vge_m0 = m_head;
1626 	arg.vge_maxsegs = VGE_TX_FRAGS;
1627 
1628 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1629 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, m_head,
1630 				     vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1631 	if (error && error != EFBIG) {
1632 		if_printf(&sc->arpcom.ac_if, "can't map mbuf (error %d)\n",
1633 			  error);
1634 		goto fail;
1635 	}
1636 
1637 	/* Too many segments to map, coalesce into a single mbuf */
1638 	if (error || arg.vge_maxsegs == 0) {
1639 		struct mbuf *m_new;
1640 
1641 		m_new = m_defrag(m_head, M_NOWAIT);
1642 		if (m_new == NULL) {
1643 			error = ENOBUFS;
1644 			goto fail;
1645 		} else {
1646 			m_head = m_new;
1647 		}
1648 
1649 		arg.sc = sc;
1650 		arg.vge_m0 = m_head;
1651 		arg.vge_idx = idx;
1652 		arg.vge_maxsegs = 1;
1653 
1654 		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1655 					     m_head, vge_dma_map_tx_desc, &arg,
1656 					     BUS_DMA_NOWAIT);
1657 		if (error) {
1658 			if_printf(&sc->arpcom.ac_if,
1659 				  "can't map mbuf (error %d)\n", error);
1660 			goto fail;
1661 		}
1662 	}
1663 
1664 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1665 	sc->vge_ldata.vge_tx_free--;
1666 
1667 	/*
1668 	 * Set up hardware VLAN tagging.
1669 	 */
1670 	if (m_head->m_flags & M_VLANTAG) {
1671 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1672 			htole32(htons(m_head->m_pkthdr.ether_vlantag) |
1673 				VGE_TDCTL_VTAG);
1674 	}
1675 
1676 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1677 	return (0);
1678 
1679 fail:
1680 	m_freem(m_head);
1681 	return error;
1682 }
1683 
1684 /*
1685  * Main transmit routine.
1686  */
1687 
1688 static void
1689 vge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1690 {
1691 	struct vge_softc *sc = ifp->if_softc;
1692 	struct mbuf *m_head = NULL;
1693 	int idx, pidx = 0;
1694 
1695 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1696 	ASSERT_SERIALIZED(ifp->if_serializer);
1697 
1698 	if (!sc->vge_link) {
1699 		ifq_purge(&ifp->if_snd);
1700 		return;
1701 	}
1702 
1703 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1704 		return;
1705 
1706 	idx = sc->vge_ldata.vge_tx_prodidx;
1707 
1708 	pidx = idx - 1;
1709 	if (pidx < 0)
1710 		pidx = VGE_TX_DESC_CNT - 1;
1711 
1712 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1713 		if (sc->vge_ldata.vge_tx_free <= 2) {
1714 			ifq_set_oactive(&ifp->if_snd);
1715 			break;
1716 		}
1717 
1718 		m_head = ifq_dequeue(&ifp->if_snd);
1719 		if (m_head == NULL)
1720 			break;
1721 
1722 		if (vge_encap(sc, m_head, idx)) {
1723 			/* If vge_encap() failed, it will free m_head for us */
1724 			ifq_set_oactive(&ifp->if_snd);
1725 			break;
1726 		}
1727 
1728 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1729 		    htole16(VGE_TXDESC_Q);
1730 
1731 		pidx = idx;
1732 		VGE_TX_DESC_INC(idx);
1733 
1734 		/*
1735 		 * If there's a BPF listener, bounce a copy of this frame
1736 		 * to him.
1737 		 */
1738 		ETHER_BPF_MTAP(ifp, m_head);
1739 	}
1740 
1741 	if (idx == sc->vge_ldata.vge_tx_prodidx)
1742 		return;
1743 
1744 	/* Flush the TX descriptors */
1745 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1746 			sc->vge_ldata.vge_tx_list_map,
1747 			BUS_DMASYNC_PREWRITE);
1748 
1749 	/* Issue a transmit command. */
1750 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1751 
1752 	sc->vge_ldata.vge_tx_prodidx = idx;
1753 
1754 	/*
1755 	 * Use the countdown timer for interrupt moderation.
1756 	 * 'TX done' interrupts are disabled. Instead, we reset the
1757 	 * countdown timer, which will begin counting until it hits
1758 	 * the value in the SSTIMER register, and then trigger an
1759 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1760 	 * the timer count is reloaded. Only when the transmitter
1761 	 * is idle will the timer hit 0 and an interrupt fire.
1762 	 */
1763 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1764 
1765 	/*
1766 	 * Set a timeout in case the chip goes out to lunch.
1767 	 */
1768 	ifp->if_timer = 5;
1769 }
1770 
1771 static void
1772 vge_init(void *xsc)
1773 {
1774 	struct vge_softc *sc = xsc;
1775 	struct ifnet *ifp = &sc->arpcom.ac_if;
1776 	struct mii_data *mii;
1777 	int i;
1778 
1779 	ASSERT_SERIALIZED(ifp->if_serializer);
1780 
1781 	mii = device_get_softc(sc->vge_miibus);
1782 
1783 	/*
1784 	 * Cancel pending I/O and free all RX/TX buffers.
1785 	 */
1786 	vge_stop(sc);
1787 	vge_reset(sc);
1788 
1789 	/*
1790 	 * Initialize the RX and TX descriptors and mbufs.
1791 	 */
1792 	vge_rx_list_init(sc);
1793 	vge_tx_list_init(sc);
1794 
1795 	/* Set our station address */
1796 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1797 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(ifp)[i]);
1798 
1799 	/*
1800 	 * Set receive FIFO threshold. Also allow transmission and
1801 	 * reception of VLAN tagged frames.
1802 	 */
1803 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1804 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1805 
1806 	/* Set DMA burst length */
1807 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1808 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1809 
1810 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1811 
1812 	/* Set collision backoff algorithm */
1813 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1814 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1815 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1816 
1817 	/* Disable LPSEL field in priority resolution */
1818 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1819 
1820 	/*
1821 	 * Load the addresses of the DMA queues into the chip.
1822 	 * Note that we only use one transmit queue.
1823 	 */
1824 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1825 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1826 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1827 
1828 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1829 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1830 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1831 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1832 
1833 	/* Enable and wake up the RX descriptor queue */
1834 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1835 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1836 
1837 	/* Enable the TX descriptor queue */
1838 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1839 
1840 	/* Set up the receive filter -- allow large frames for VLANs. */
1841 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1842 
1843 	/* If we want promiscuous mode, set the allframes bit. */
1844 	if (ifp->if_flags & IFF_PROMISC)
1845 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1846 
1847 	/* Set capture broadcast bit to capture broadcast frames. */
1848 	if (ifp->if_flags & IFF_BROADCAST)
1849 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1850 
1851 	/* Set multicast bit to capture multicast frames. */
1852 	if (ifp->if_flags & IFF_MULTICAST)
1853 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1854 
1855 	/* Init the cam filter. */
1856 	vge_cam_clear(sc);
1857 
1858 	/* Init the multicast filter. */
1859 	vge_setmulti(sc);
1860 
1861 	/* Enable flow control */
1862 
1863 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1864 
1865 	/* Enable jumbo frame reception (if desired) */
1866 
1867 	/* Start the MAC. */
1868 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1869 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1870 	CSR_WRITE_1(sc, VGE_CRS0,
1871 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1872 
1873 	/*
1874 	 * Configure one-shot timer for microsecond
1875 	 * resulution and load it for 500 usecs.
1876 	 */
1877 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1878 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1879 
1880 	/*
1881 	 * Configure interrupt moderation for receive. Enable
1882 	 * the holdoff counter and load it, and set the RX
1883 	 * suppression count to the number of descriptors we
1884 	 * want to allow before triggering an interrupt.
1885 	 * The holdoff timer is in units of 20 usecs.
1886 	 */
1887 
1888 #ifdef notyet
1889 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1890 	/* Select the interrupt holdoff timer page. */
1891 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1892 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1893 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1894 
1895 	/* Enable use of the holdoff timer. */
1896 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1897 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1898 
1899 	/* Select the RX suppression threshold page. */
1900 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1901 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1902 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1903 
1904 	/* Restore the page select bits. */
1905 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1906 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1907 #endif
1908 
1909 #ifdef IFPOLL_ENABLE
1910 	/* Disable intr if polling(4) is enabled */
1911 	if (ifp->if_flags & IFF_NPOLLING)
1912 		vge_disable_intr(sc);
1913 	else
1914 #endif
1915 	vge_enable_intr(sc, 0);
1916 
1917 	mii_mediachg(mii);
1918 
1919 	ifp->if_flags |= IFF_RUNNING;
1920 	ifq_clr_oactive(&ifp->if_snd);
1921 
1922 	sc->vge_if_flags = 0;
1923 	sc->vge_link = 0;
1924 }
1925 
1926 /*
1927  * Set media options.
1928  */
1929 static int
1930 vge_ifmedia_upd(struct ifnet *ifp)
1931 {
1932 	struct vge_softc *sc = ifp->if_softc;
1933 	struct mii_data *mii = device_get_softc(sc->vge_miibus);
1934 
1935 	mii_mediachg(mii);
1936 
1937 	return (0);
1938 }
1939 
1940 /*
1941  * Report current media status.
1942  */
1943 static void
1944 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1945 {
1946 	struct vge_softc *sc = ifp->if_softc;
1947 	struct mii_data *mii = device_get_softc(sc->vge_miibus);
1948 
1949 	mii_pollstat(mii);
1950 	ifmr->ifm_active = mii->mii_media_active;
1951 	ifmr->ifm_status = mii->mii_media_status;
1952 }
1953 
1954 static void
1955 vge_miibus_statchg(device_t dev)
1956 {
1957 	struct vge_softc *sc;
1958 	struct mii_data *mii;
1959 	struct ifmedia_entry *ife;
1960 
1961 	sc = device_get_softc(dev);
1962 	mii = device_get_softc(sc->vge_miibus);
1963 	ife = mii->mii_media.ifm_cur;
1964 
1965 	/*
1966 	 * If the user manually selects a media mode, we need to turn
1967 	 * on the forced MAC mode bit in the DIAGCTL register. If the
1968 	 * user happens to choose a full duplex mode, we also need to
1969 	 * set the 'force full duplex' bit. This applies only to
1970 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1971 	 * mode is disabled, and in 1000baseT mode, full duplex is
1972 	 * always implied, so we turn on the forced mode bit but leave
1973 	 * the FDX bit cleared.
1974 	 */
1975 
1976 	switch (IFM_SUBTYPE(ife->ifm_media)) {
1977 	case IFM_AUTO:
1978 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1979 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1980 		break;
1981 	case IFM_1000_T:
1982 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1983 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1984 		break;
1985 	case IFM_100_TX:
1986 	case IFM_10_T:
1987 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1988 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX)
1989 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1990 		else
1991 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1992 		break;
1993 	default:
1994 		device_printf(dev, "unknown media type: %x\n",
1995 			      IFM_SUBTYPE(ife->ifm_media));
1996 		break;
1997 	}
1998 }
1999 
2000 static int
2001 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2002 {
2003 	struct vge_softc *sc = ifp->if_softc;
2004 	struct ifreq *ifr = (struct ifreq *)data;
2005 	struct mii_data *mii;
2006 	int error = 0;
2007 
2008 	switch (command) {
2009 	case SIOCSIFMTU:
2010 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2011 			error = EINVAL;
2012 		ifp->if_mtu = ifr->ifr_mtu;
2013 		break;
2014 	case SIOCSIFFLAGS:
2015 		if (ifp->if_flags & IFF_UP) {
2016 			if ((ifp->if_flags & IFF_RUNNING) &&
2017 			    (ifp->if_flags & IFF_PROMISC) &&
2018 			    !(sc->vge_if_flags & IFF_PROMISC)) {
2019 				CSR_SETBIT_1(sc, VGE_RXCTL,
2020 				    VGE_RXCTL_RX_PROMISC);
2021 				vge_setmulti(sc);
2022 			} else if ((ifp->if_flags & IFF_RUNNING) &&
2023 				   !(ifp->if_flags & IFF_PROMISC) &&
2024 				   (sc->vge_if_flags & IFF_PROMISC)) {
2025 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2026 					     VGE_RXCTL_RX_PROMISC);
2027 				vge_setmulti(sc);
2028                         } else {
2029 				vge_init(sc);
2030 			}
2031 		} else {
2032 			if (ifp->if_flags & IFF_RUNNING)
2033 				vge_stop(sc);
2034 		}
2035 		sc->vge_if_flags = ifp->if_flags;
2036 		break;
2037 	case SIOCADDMULTI:
2038 	case SIOCDELMULTI:
2039 		vge_setmulti(sc);
2040 		break;
2041 	case SIOCGIFMEDIA:
2042 	case SIOCSIFMEDIA:
2043 		mii = device_get_softc(sc->vge_miibus);
2044 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2045 		break;
2046 	case SIOCSIFCAP:
2047 	    {
2048 		uint32_t mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2049 
2050 		if (mask & IFCAP_HWCSUM) {
2051 			ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
2052 			if (ifp->if_capenable & IFCAP_TXCSUM)
2053 				ifp->if_hwassist = VGE_CSUM_FEATURES;
2054 			else
2055 				ifp->if_hwassist = 0;
2056 			if (ifp->if_flags & IFF_RUNNING)
2057 				vge_init(sc);
2058 		}
2059 	    }
2060 		break;
2061 	default:
2062 		error = ether_ioctl(ifp, command, data);
2063 		break;
2064 	}
2065 	return (error);
2066 }
2067 
2068 static void
2069 vge_watchdog(struct ifnet *ifp)
2070 {
2071 	struct vge_softc *sc = ifp->if_softc;
2072 
2073 	if_printf(ifp, "watchdog timeout\n");
2074 	IFNET_STAT_INC(ifp, oerrors, 1);
2075 
2076 	vge_txeof(sc);
2077 	vge_rxeof(sc, -1);
2078 
2079 	vge_init(sc);
2080 }
2081 
2082 /*
2083  * Stop the adapter and free any mbufs allocated to the
2084  * RX and TX lists.
2085  */
2086 static void
2087 vge_stop(struct vge_softc *sc)
2088 {
2089 	struct ifnet *ifp = &sc->arpcom.ac_if;
2090 	int i;
2091 
2092 	ASSERT_SERIALIZED(ifp->if_serializer);
2093 
2094 	ifp->if_timer = 0;
2095 
2096 	ifp->if_flags &= ~IFF_RUNNING;
2097 	ifq_clr_oactive(&ifp->if_snd);
2098 
2099 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2100 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2101 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2102 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2103 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2104 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2105 
2106 	if (sc->vge_head != NULL) {
2107 		m_freem(sc->vge_head);
2108 		sc->vge_head = sc->vge_tail = NULL;
2109 	}
2110 
2111 	/* Free the TX list buffers. */
2112 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2113 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2114 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2115 					  sc->vge_ldata.vge_tx_dmamap[i]);
2116 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2117 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2118 		}
2119 	}
2120 
2121 	/* Free the RX list buffers. */
2122 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2123 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2124 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2125 					  sc->vge_ldata.vge_rx_dmamap[i]);
2126 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2127 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2128 		}
2129 	}
2130 }
2131 
2132 /*
2133  * Device suspend routine.  Stop the interface and save some PCI
2134  * settings in case the BIOS doesn't restore them properly on
2135  * resume.
2136  */
2137 static int
2138 vge_suspend(device_t dev)
2139 {
2140 	struct vge_softc *sc = device_get_softc(dev);
2141 	struct ifnet *ifp = &sc->arpcom.ac_if;
2142 
2143 	lwkt_serialize_enter(ifp->if_serializer);
2144 	vge_stop(sc);
2145 	sc->suspended = 1;
2146 	lwkt_serialize_exit(ifp->if_serializer);
2147 
2148 	return (0);
2149 }
2150 
2151 /*
2152  * Device resume routine.  Restore some PCI settings in case the BIOS
2153  * doesn't, re-enable busmastering, and restart the interface if
2154  * appropriate.
2155  */
2156 static int
2157 vge_resume(device_t dev)
2158 {
2159 	struct vge_softc *sc = device_get_softc(dev);
2160 	struct ifnet *ifp = &sc->arpcom.ac_if;
2161 
2162 	/* reenable busmastering */
2163 	pci_enable_busmaster(dev);
2164 	pci_enable_io(dev, SYS_RES_MEMORY);
2165 
2166 	lwkt_serialize_enter(ifp->if_serializer);
2167 	/* reinitialize interface if necessary */
2168 	if (ifp->if_flags & IFF_UP)
2169 		vge_init(sc);
2170 
2171 	sc->suspended = 0;
2172 	lwkt_serialize_exit(ifp->if_serializer);
2173 
2174 	return (0);
2175 }
2176 
2177 /*
2178  * Stop all chip I/O so that the kernel's probe routines don't
2179  * get confused by errant DMAs when rebooting.
2180  */
2181 static void
2182 vge_shutdown(device_t dev)
2183 {
2184 	struct vge_softc *sc = device_get_softc(dev);
2185 	struct ifnet *ifp = &sc->arpcom.ac_if;
2186 
2187 	lwkt_serialize_enter(ifp->if_serializer);
2188 	vge_stop(sc);
2189 	lwkt_serialize_exit(ifp->if_serializer);
2190 }
2191 
2192 static void
2193 vge_enable_intr(struct vge_softc *sc, uint32_t isr)
2194 {
2195 	CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2196 	CSR_WRITE_4(sc, VGE_ISR, isr);
2197 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2198 }
2199 
2200 #ifdef IFPOLL_ENABLE
2201 
2202 static void
2203 vge_disable_intr(struct vge_softc *sc)
2204 {
2205 	CSR_WRITE_4(sc, VGE_IMR, 0);
2206 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2207 	sc->vge_npoll.ifpc_stcount = 0;
2208 }
2209 
2210 #endif	/* IFPOLL_ENABLE */
2211