xref: /dragonfly/sys/dev/netif/vge/if_vge.c (revision 63ab6604)
1 /*
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/dev/vge/if_vge.c,v 1.24 2006/02/14 12:44:56 glebius Exp $
33  * $DragonFly: src/sys/dev/netif/vge/if_vge.c,v 1.9 2008/05/16 13:19:12 sephe Exp $
34  */
35 
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #include "opt_polling.h"
84 
85 #include <sys/param.h>
86 #include <sys/endian.h>
87 #include <sys/systm.h>
88 #include <sys/sockio.h>
89 #include <sys/mbuf.h>
90 #include <sys/malloc.h>
91 #include <sys/module.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/serialize.h>
95 #include <sys/proc.h>
96 #include <sys/bus.h>
97 #include <sys/rman.h>
98 #include <sys/interrupt.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 #include <net/ifq_var.h>
106 #include <net/if_types.h>
107 #include <net/vlan/if_vlan_var.h>
108 #include <net/vlan/if_vlan_ether.h>
109 
110 #include <net/bpf.h>
111 
112 #include <dev/netif/mii_layer/mii.h>
113 #include <dev/netif/mii_layer/miivar.h>
114 
115 #include <bus/pci/pcireg.h>
116 #include <bus/pci/pcivar.h>
117 #include <bus/pci/pcidevs.h>
118 
119 #include "miibus_if.h"
120 
121 #include <dev/netif/vge/if_vgereg.h>
122 #include <dev/netif/vge/if_vgevar.h>
123 
124 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
125 
126 /*
127  * Various supported device vendors/types and their names.
128  */
129 static const struct vge_type vge_devs[] = {
130 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612X,
131 	  "VIA Networking Gigabit Ethernet" },
132 	{ 0, 0, NULL }
133 };
134 
135 static int vge_probe		(device_t);
136 static int vge_attach		(device_t);
137 static int vge_detach		(device_t);
138 
139 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
140 
141 static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
142 static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
143 				    bus_size_t, int);
144 static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
145 				    bus_size_t, int);
146 static int vge_dma_alloc	(device_t);
147 static void vge_dma_free	(struct vge_softc *);
148 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
149 static int vge_rx_list_init	(struct vge_softc *);
150 static int vge_tx_list_init	(struct vge_softc *);
151 #ifdef VGE_FIXUP_RX
152 static __inline void vge_fixup_rx
153 				(struct mbuf *);
154 #endif
155 static void vge_rxeof		(struct vge_softc *, int);
156 static void vge_txeof		(struct vge_softc *);
157 static void vge_intr		(void *);
158 static void vge_tick		(struct vge_softc *);
159 static void vge_start		(struct ifnet *);
160 static int vge_ioctl		(struct ifnet *, u_long, caddr_t,
161 				 struct ucred *);
162 static void vge_init		(void *);
163 static void vge_stop		(struct vge_softc *);
164 static void vge_watchdog	(struct ifnet *);
165 static int vge_suspend		(device_t);
166 static int vge_resume		(device_t);
167 static void vge_shutdown	(device_t);
168 static int vge_ifmedia_upd	(struct ifnet *);
169 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
170 
171 #ifdef VGE_EEPROM
172 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
173 #endif
174 static void vge_read_eeprom	(struct vge_softc *, uint8_t *, int, int, int);
175 
176 static void vge_miipoll_start	(struct vge_softc *);
177 static void vge_miipoll_stop	(struct vge_softc *);
178 static int vge_miibus_readreg	(device_t, int, int);
179 static int vge_miibus_writereg	(device_t, int, int, int);
180 static void vge_miibus_statchg	(device_t);
181 
182 static void vge_cam_clear	(struct vge_softc *);
183 static int vge_cam_set		(struct vge_softc *, uint8_t *);
184 static void vge_setmulti	(struct vge_softc *);
185 static void vge_reset		(struct vge_softc *);
186 
187 #ifdef DEVICE_POLLING
188 static void	vge_poll(struct ifnet *, enum poll_cmd, int);
189 static void	vge_disable_intr(struct vge_softc *);
190 #endif
191 static void	vge_enable_intr(struct vge_softc *, uint32_t);
192 
193 #define VGE_PCI_LOIO             0x10
194 #define VGE_PCI_LOMEM            0x14
195 
196 static device_method_t vge_methods[] = {
197 	/* Device interface */
198 	DEVMETHOD(device_probe,		vge_probe),
199 	DEVMETHOD(device_attach,	vge_attach),
200 	DEVMETHOD(device_detach,	vge_detach),
201 	DEVMETHOD(device_suspend,	vge_suspend),
202 	DEVMETHOD(device_resume,	vge_resume),
203 	DEVMETHOD(device_shutdown,	vge_shutdown),
204 
205 	/* bus interface */
206 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
207 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
208 
209 	/* MII interface */
210 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
211 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
212 	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
213 
214 	{ 0, 0 }
215 };
216 
217 static driver_t vge_driver = {
218 	"vge",
219 	vge_methods,
220 	sizeof(struct vge_softc)
221 };
222 
223 static devclass_t vge_devclass;
224 
225 DECLARE_DUMMY_MODULE(if_vge);
226 MODULE_DEPEND(if_vge, miibus, 1, 1, 1);
227 DRIVER_MODULE(if_vge, pci, vge_driver, vge_devclass, 0, 0);
228 DRIVER_MODULE(if_vge, cardbus, vge_driver, vge_devclass, 0, 0);
229 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
230 
231 #ifdef VGE_EEPROM
232 /*
233  * Read a word of data stored in the EEPROM at address 'addr.'
234  */
235 static void
236 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t dest)
237 {
238 	uint16_t word = 0;
239 	int i;
240 
241 	/*
242 	 * Enter EEPROM embedded programming mode. In order to
243 	 * access the EEPROM at all, we first have to set the
244 	 * EELOAD bit in the CHIPCFG2 register.
245 	 */
246 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
247 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
248 
249 	/* Select the address of the word we want to read */
250 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
251 
252 	/* Issue read command */
253 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
254 
255 	/* Wait for the done bit to be set. */
256 	for (i = 0; i < VGE_TIMEOUT; i++) {
257 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
258 			break;
259 	}
260 	if (i == VGE_TIMEOUT) {
261 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
262 		*dest = 0;
263 		return;
264 	}
265 
266 	/* Read the result */
267 	word = CSR_READ_2(sc, VGE_EERDDAT);
268 
269 	/* Turn off EEPROM access mode. */
270 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
271 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
272 
273 	*dest = word;
274 }
275 #endif
276 
277 /*
278  * Read a sequence of words from the EEPROM.
279  */
280 static void
281 vge_read_eeprom(struct vge_softc *sc, uint8_t *dest, int off, int cnt, int swap)
282 {
283 	int i;
284 #ifdef VGE_EEPROM
285 	uint16_t word = 0, *ptr;
286 
287 	for (i = 0; i < cnt; i++) {
288 		vge_eeprom_getword(sc, off + i, &word);
289 		ptr = (uint16_t *)(dest + (i * 2));
290 		if (swap)
291 			*ptr = ntohs(word);
292 		else
293 			*ptr = word;
294 	}
295 #else
296 	for (i = 0; i < ETHER_ADDR_LEN; i++)
297 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
298 #endif
299 }
300 
301 static void
302 vge_miipoll_stop(struct vge_softc *sc)
303 {
304 	int i;
305 
306 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
307 
308 	for (i = 0; i < VGE_TIMEOUT; i++) {
309 		DELAY(1);
310 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
311 			break;
312 	}
313 	if (i == VGE_TIMEOUT)
314 		if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
315 }
316 
317 static void
318 vge_miipoll_start(struct vge_softc *sc)
319 {
320 	int i;
321 
322 	/* First, make sure we're idle. */
323 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
324 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
325 
326 	for (i = 0; i < VGE_TIMEOUT; i++) {
327 		DELAY(1);
328 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
329 			break;
330 	}
331 	if (i == VGE_TIMEOUT) {
332 		if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
333 		return;
334 	}
335 
336 	/* Now enable auto poll mode. */
337 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
338 
339 	/* And make sure it started. */
340 	for (i = 0; i < VGE_TIMEOUT; i++) {
341 		DELAY(1);
342 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
343 			break;
344 	}
345 	if (i == VGE_TIMEOUT)
346 		if_printf(&sc->arpcom.ac_if, "failed to start MII autopoll\n");
347 }
348 
349 static int
350 vge_miibus_readreg(device_t dev, int phy, int reg)
351 {
352 	struct vge_softc *sc;
353 	int i;
354 	uint16_t rval = 0;
355 
356 	sc = device_get_softc(dev);
357 
358 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
359 		return(0);
360 
361 	vge_miipoll_stop(sc);
362 
363 	/* Specify the register we want to read. */
364 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
365 
366 	/* Issue read command. */
367 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
368 
369 	/* Wait for the read command bit to self-clear. */
370 	for (i = 0; i < VGE_TIMEOUT; i++) {
371 		DELAY(1);
372 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
373 			break;
374 	}
375 	if (i == VGE_TIMEOUT)
376 		if_printf(&sc->arpcom.ac_if, "MII read timed out\n");
377 	else
378 		rval = CSR_READ_2(sc, VGE_MIIDATA);
379 
380 	vge_miipoll_start(sc);
381 
382 	return (rval);
383 }
384 
385 static int
386 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
387 {
388 	struct vge_softc *sc;
389 	int i, rval = 0;
390 
391 	sc = device_get_softc(dev);
392 
393 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
394 		return(0);
395 
396 	vge_miipoll_stop(sc);
397 
398 	/* Specify the register we want to write. */
399 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
400 
401 	/* Specify the data we want to write. */
402 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
403 
404 	/* Issue write command. */
405 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
406 
407 	/* Wait for the write command bit to self-clear. */
408 	for (i = 0; i < VGE_TIMEOUT; i++) {
409 		DELAY(1);
410 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
411 			break;
412 	}
413 	if (i == VGE_TIMEOUT) {
414 		if_printf(&sc->arpcom.ac_if, "MII write timed out\n");
415 		rval = EIO;
416 	}
417 
418 	vge_miipoll_start(sc);
419 
420 	return (rval);
421 }
422 
423 static void
424 vge_cam_clear(struct vge_softc *sc)
425 {
426 	int i;
427 
428 	/*
429 	 * Turn off all the mask bits. This tells the chip
430 	 * that none of the entries in the CAM filter are valid.
431 	 * desired entries will be enabled as we fill the filter in.
432 	 */
433 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
434 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
435 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
436 	for (i = 0; i < 8; i++)
437 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
438 
439 	/* Clear the VLAN filter too. */
440 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
441 	for (i = 0; i < 8; i++)
442 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
443 
444 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
445 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
446 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
447 
448 	sc->vge_camidx = 0;
449 }
450 
451 static int
452 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
453 {
454 	int i, error = 0;
455 
456 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
457 		return(ENOSPC);
458 
459 	/* Select the CAM data page. */
460 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
461 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
462 
463 	/* Set the filter entry we want to update and enable writing. */
464 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
465 
466 	/* Write the address to the CAM registers */
467 	for (i = 0; i < ETHER_ADDR_LEN; i++)
468 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
469 
470 	/* Issue a write command. */
471 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
472 
473 	/* Wake for it to clear. */
474 	for (i = 0; i < VGE_TIMEOUT; i++) {
475 		DELAY(1);
476 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
477 			break;
478 	}
479 	if (i == VGE_TIMEOUT) {
480 		if_printf(&sc->arpcom.ac_if, "setting CAM filter failed\n");
481 		error = EIO;
482 		goto fail;
483 	}
484 
485 	/* Select the CAM mask page. */
486 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
487 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
488 
489 	/* Set the mask bit that enables this filter. */
490 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
491 	    1<<(sc->vge_camidx & 7));
492 
493 	sc->vge_camidx++;
494 
495 fail:
496 	/* Turn off access to CAM. */
497 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
498 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
499 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
500 
501 	return (error);
502 }
503 
504 /*
505  * Program the multicast filter. We use the 64-entry CAM filter
506  * for perfect filtering. If there's more than 64 multicast addresses,
507  * we use the hash filter insted.
508  */
509 static void
510 vge_setmulti(struct vge_softc *sc)
511 {
512 	struct ifnet *ifp = &sc->arpcom.ac_if;
513 	int error = 0;
514 	struct ifmultiaddr *ifma;
515 	uint32_t h, hashes[2] = { 0, 0 };
516 
517 	/* First, zot all the multicast entries. */
518 	vge_cam_clear(sc);
519 	CSR_WRITE_4(sc, VGE_MAR0, 0);
520 	CSR_WRITE_4(sc, VGE_MAR1, 0);
521 
522 	/*
523 	 * If the user wants allmulti or promisc mode, enable reception
524 	 * of all multicast frames.
525 	 */
526 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
527 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
528 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
529 		return;
530 	}
531 
532 	/* Now program new ones */
533 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
534 		if (ifma->ifma_addr->sa_family != AF_LINK)
535 			continue;
536 		error = vge_cam_set(sc,
537 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
538 		if (error)
539 			break;
540 	}
541 
542 	/* If there were too many addresses, use the hash filter. */
543 	if (error) {
544 		vge_cam_clear(sc);
545 
546 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
547 			if (ifma->ifma_addr->sa_family != AF_LINK)
548 				continue;
549 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
550 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
551 			if (h < 32)
552 				hashes[0] |= (1 << h);
553 			else
554 				hashes[1] |= (1 << (h - 32));
555 		}
556 
557 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
558 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
559 	}
560 }
561 
562 static void
563 vge_reset(struct vge_softc *sc)
564 {
565 	int i;
566 
567 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
568 
569 	for (i = 0; i < VGE_TIMEOUT; i++) {
570 		DELAY(5);
571 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
572 			break;
573 	}
574 
575 	if (i == VGE_TIMEOUT) {
576 		if_printf(&sc->arpcom.ac_if, "soft reset timed out");
577 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
578 		DELAY(2000);
579 	}
580 
581 	DELAY(5000);
582 
583 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
584 
585 	for (i = 0; i < VGE_TIMEOUT; i++) {
586 		DELAY(5);
587 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
588 			break;
589 	}
590 	if (i == VGE_TIMEOUT) {
591 		if_printf(&sc->arpcom.ac_if, "EEPROM reload timed out\n");
592 		return;
593 	}
594 
595 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
596 }
597 
598 /*
599  * Probe for a VIA gigabit chip. Check the PCI vendor and device
600  * IDs against our list and return a device name if we find a match.
601  */
602 static int
603 vge_probe(device_t dev)
604 {
605 	const struct vge_type *t;
606 	uint16_t did, vid;
607 
608 	did = pci_get_device(dev);
609 	vid = pci_get_vendor(dev);
610 	for (t = vge_devs; t->vge_name != NULL; ++t) {
611 		if (vid == t->vge_vid && did == t->vge_did) {
612 			device_set_desc(dev, t->vge_name);
613 			return 0;
614 		}
615 	}
616 	return (ENXIO);
617 }
618 
619 static void
620 vge_dma_map_rx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
621 		    bus_size_t mapsize, int error)
622 {
623 
624 	struct vge_dmaload_arg *ctx;
625 	struct vge_rx_desc *d = NULL;
626 
627 	if (error)
628 		return;
629 
630 	ctx = arg;
631 
632 	/* Signal error to caller if there's too many segments */
633 	if (nseg > ctx->vge_maxsegs) {
634 		ctx->vge_maxsegs = 0;
635 		return;
636 	}
637 
638 	/*
639 	 * Map the segment array into descriptors.
640 	 */
641 	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
642 
643 	/* If this descriptor is still owned by the chip, bail. */
644 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
645 		if_printf(&ctx->sc->arpcom.ac_if,
646 			  "tried to map busy descriptor\n");
647 		ctx->vge_maxsegs = 0;
648 		return;
649 	}
650 
651 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
652 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
653 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
654 	d->vge_sts = 0;
655 	d->vge_ctl = 0;
656 
657 	ctx->vge_maxsegs = 1;
658 }
659 
660 static void
661 vge_dma_map_tx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
662 		    bus_size_t mapsize, int error)
663 {
664 	struct vge_dmaload_arg *ctx;
665 	struct vge_tx_desc *d = NULL;
666 	struct vge_tx_frag *f;
667 	int i = 0;
668 
669 	if (error)
670 		return;
671 
672 	ctx = arg;
673 
674 	/* Signal error to caller if there's too many segments */
675 	if (nseg > ctx->vge_maxsegs) {
676 		ctx->vge_maxsegs = 0;
677 		return;
678 	}
679 
680 	/* Map the segment array into descriptors. */
681 	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
682 
683 	/* If this descriptor is still owned by the chip, bail. */
684 	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
685 		ctx->vge_maxsegs = 0;
686 		return;
687 	}
688 
689 	for (i = 0; i < nseg; i++) {
690 		f = &d->vge_frag[i];
691 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
692 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
693 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
694 	}
695 
696 	/* Argh. This chip does not autopad short frames */
697 	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
698 		f = &d->vge_frag[i];
699 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
700 		    ctx->vge_m0->m_pkthdr.len));
701 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
702 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
703 		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
704 		i++;
705 	}
706 
707 	/*
708 	 * When telling the chip how many segments there are, we
709 	 * must use nsegs + 1 instead of just nsegs. Darned if I
710 	 * know why.
711 	 */
712 	i++;
713 
714 	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
715 	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
716 
717 	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
718 		d->vge_ctl |= VGE_TDCTL_JUMBO;
719 
720 	ctx->vge_maxsegs = nseg;
721 }
722 
723 /*
724  * Map a single buffer address.
725  */
726 
727 static void
728 vge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
729 {
730 	if (error)
731 		return;
732 
733 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
734 	*((bus_addr_t *)arg) = segs->ds_addr;
735 }
736 
737 static int
738 vge_dma_alloc(device_t dev)
739 {
740 	struct vge_softc *sc = device_get_softc(dev);
741 	int error, nseg, i, tx_pos = 0, rx_pos = 0;
742 
743 	/*
744 	 * Allocate the parent bus DMA tag appropriate for PCI.
745 	 */
746 #define VGE_NSEG_NEW 32
747 	error = bus_dma_tag_create(NULL,	/* parent */
748 			1, 0,			/* alignment, boundary */
749 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
750 			BUS_SPACE_MAXADDR,	/* highaddr */
751 			NULL, NULL,		/* filter, filterarg */
752 			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
753 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
754 			BUS_DMA_ALLOCNOW,	/* flags */
755 			&sc->vge_parent_tag);
756 	if (error) {
757 		device_printf(dev, "can't create parent dma tag\n");
758 		return error;
759 	}
760 
761 	/*
762 	 * Allocate map for RX mbufs.
763 	 */
764 	nseg = 32;
765 	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
766 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
767 				   NULL, NULL,
768 				   MCLBYTES * nseg, nseg, MCLBYTES,
769 				   BUS_DMA_ALLOCNOW, &sc->vge_ldata.vge_mtag);
770 	if (error) {
771 		device_printf(dev, "could not allocate mbuf dma tag\n");
772 		return error;
773 	}
774 
775 	/*
776 	 * Allocate map for TX descriptor list.
777 	 */
778 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
779 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
780 				   NULL, NULL,
781 				   VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
782 				   BUS_DMA_ALLOCNOW,
783 				   &sc->vge_ldata.vge_tx_list_tag);
784 	if (error) {
785 		device_printf(dev, "could not allocate tx list dma tag\n");
786 		return error;
787 	}
788 
789 	/* Allocate DMA'able memory for the TX ring */
790 	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
791 				 (void **)&sc->vge_ldata.vge_tx_list,
792 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
793 				 &sc->vge_ldata.vge_tx_list_map);
794 	if (error) {
795 		device_printf(dev, "could not allocate tx list dma memory\n");
796 		return error;
797 	}
798 
799 	/* Load the map for the TX ring. */
800 	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
801 				sc->vge_ldata.vge_tx_list_map,
802 				sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ,
803 				vge_dma_map_addr,
804 				&sc->vge_ldata.vge_tx_list_addr,
805 				BUS_DMA_WAITOK);
806 	if (error) {
807 		device_printf(dev, "could not load tx list\n");
808 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
809 				sc->vge_ldata.vge_tx_list,
810 				sc->vge_ldata.vge_tx_list_map);
811 		sc->vge_ldata.vge_tx_list = NULL;
812 		return error;
813 	}
814 
815 	/* Create DMA maps for TX buffers */
816 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
817 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
818 					  &sc->vge_ldata.vge_tx_dmamap[i]);
819 		if (error) {
820 			device_printf(dev, "can't create DMA map for TX\n");
821 			tx_pos = i;
822 			goto map_fail;
823 		}
824 	}
825 	tx_pos = VGE_TX_DESC_CNT;
826 
827 	/*
828 	 * Allocate map for RX descriptor list.
829 	 */
830 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
831 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
832 				   NULL, NULL,
833 				   VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
834 				   BUS_DMA_ALLOCNOW,
835 				   &sc->vge_ldata.vge_rx_list_tag);
836 	if (error) {
837 		device_printf(dev, "could not allocate rx list dma tag\n");
838 		return error;
839 	}
840 
841 	/* Allocate DMA'able memory for the RX ring */
842 	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
843 				 (void **)&sc->vge_ldata.vge_rx_list,
844 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
845 				 &sc->vge_ldata.vge_rx_list_map);
846 	if (error) {
847 		device_printf(dev, "could not allocate rx list dma memory\n");
848 		return error;
849 	}
850 
851 	/* Load the map for the RX ring. */
852 	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
853 				sc->vge_ldata.vge_rx_list_map,
854 				sc->vge_ldata.vge_rx_list, VGE_TX_LIST_SZ,
855 				vge_dma_map_addr,
856 				&sc->vge_ldata.vge_rx_list_addr,
857 				BUS_DMA_WAITOK);
858 	if (error) {
859 		device_printf(dev, "could not load rx list\n");
860 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
861 				sc->vge_ldata.vge_rx_list,
862 				sc->vge_ldata.vge_rx_list_map);
863 		sc->vge_ldata.vge_rx_list = NULL;
864 		return error;
865 	}
866 
867 	/* Create DMA maps for RX buffers */
868 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
869 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
870 					  &sc->vge_ldata.vge_rx_dmamap[i]);
871 		if (error) {
872 			device_printf(dev, "can't create DMA map for RX\n");
873 			rx_pos = i;
874 			goto map_fail;
875 		}
876 	}
877 	return (0);
878 
879 map_fail:
880 	for (i = 0; i < tx_pos; ++i) {
881 		error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
882 					   sc->vge_ldata.vge_tx_dmamap[i]);
883 	}
884 	for (i = 0; i < rx_pos; ++i) {
885 		error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
886 					   sc->vge_ldata.vge_rx_dmamap[i]);
887 	}
888 	bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
889 	sc->vge_ldata.vge_mtag = NULL;
890 
891 	return error;
892 }
893 
894 static void
895 vge_dma_free(struct vge_softc *sc)
896 {
897 	/* Unload and free the RX DMA ring memory and map */
898 	if (sc->vge_ldata.vge_rx_list_tag) {
899 		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
900 				  sc->vge_ldata.vge_rx_list_map);
901 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
902 				sc->vge_ldata.vge_rx_list,
903 				sc->vge_ldata.vge_rx_list_map);
904 	}
905 
906 	if (sc->vge_ldata.vge_rx_list_tag)
907 		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
908 
909 	/* Unload and free the TX DMA ring memory and map */
910 	if (sc->vge_ldata.vge_tx_list_tag) {
911 		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
912 				  sc->vge_ldata.vge_tx_list_map);
913 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
914 				sc->vge_ldata.vge_tx_list,
915 				sc->vge_ldata.vge_tx_list_map);
916 	}
917 
918 	if (sc->vge_ldata.vge_tx_list_tag)
919 		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
920 
921 	/* Destroy all the RX and TX buffer maps */
922 	if (sc->vge_ldata.vge_mtag) {
923 		int i;
924 
925 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
926 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
927 					   sc->vge_ldata.vge_tx_dmamap[i]);
928 		}
929 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
930 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
931 					   sc->vge_ldata.vge_rx_dmamap[i]);
932 		}
933 		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
934 	}
935 
936 	if (sc->vge_parent_tag)
937 		bus_dma_tag_destroy(sc->vge_parent_tag);
938 }
939 
940 /*
941  * Attach the interface. Allocate softc structures, do ifmedia
942  * setup and ethernet/BPF attach.
943  */
944 static int
945 vge_attach(device_t dev)
946 {
947 	uint8_t eaddr[ETHER_ADDR_LEN];
948 	struct vge_softc *sc;
949 	struct ifnet *ifp;
950 	int error = 0;
951 
952 	sc = device_get_softc(dev);
953 	ifp = &sc->arpcom.ac_if;
954 
955 	/* Initialize if_xname early, so if_printf() can be used */
956 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
957 
958 	/*
959 	 * Map control/status registers.
960 	 */
961 	pci_enable_busmaster(dev);
962 
963 	sc->vge_res_rid = VGE_PCI_LOMEM;
964 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
965 					     &sc->vge_res_rid, RF_ACTIVE);
966 	if (sc->vge_res == NULL) {
967 		device_printf(dev, "couldn't map ports/memory\n");
968 		return ENXIO;
969 	}
970 
971 	sc->vge_btag = rman_get_bustag(sc->vge_res);
972 	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
973 
974 	/* Allocate interrupt */
975 	sc->vge_irq_rid = 0;
976 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->vge_irq_rid,
977 					     RF_SHAREABLE | RF_ACTIVE);
978 	if (sc->vge_irq == NULL) {
979 		device_printf(dev, "couldn't map interrupt\n");
980 		error = ENXIO;
981 		goto fail;
982 	}
983 
984 	/* Reset the adapter. */
985 	vge_reset(sc);
986 
987 	/*
988 	 * Get station address from the EEPROM.
989 	 */
990 	vge_read_eeprom(sc, eaddr, VGE_EE_EADDR, 3, 0);
991 
992 	/* Allocate DMA related stuffs */
993 	error = vge_dma_alloc(dev);
994 	if (error)
995 		goto fail;
996 
997 	/* Do MII setup */
998 	error = mii_phy_probe(dev, &sc->vge_miibus, vge_ifmedia_upd,
999 			      vge_ifmedia_sts);
1000 	if (error) {
1001 		device_printf(dev, "MII without any phy!\n");
1002 		goto fail;
1003 	}
1004 
1005 	ifp->if_softc = sc;
1006 	ifp->if_mtu = ETHERMTU;
1007 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1008 	ifp->if_init = vge_init;
1009 	ifp->if_start = vge_start;
1010 	ifp->if_watchdog = vge_watchdog;
1011 	ifp->if_ioctl = vge_ioctl;
1012 #ifdef DEVICE_POLLING
1013 	ifp->if_poll = vge_poll;
1014 #endif
1015 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1016 	ifp->if_capabilities = IFCAP_VLAN_MTU |
1017 			       IFCAP_HWCSUM |
1018 			       IFCAP_VLAN_HWTAGGING;
1019 	ifp->if_capenable = ifp->if_capabilities;
1020 	ifq_set_maxlen(&ifp->if_snd, VGE_IFQ_MAXLEN);
1021 	ifq_set_ready(&ifp->if_snd);
1022 
1023 	/*
1024 	 * Call MI attach routine.
1025 	 */
1026 	ether_ifattach(ifp, eaddr, NULL);
1027 
1028 	/* Hook interrupt last to avoid having to lock softc */
1029 	error = bus_setup_intr(dev, sc->vge_irq, INTR_MPSAFE, vge_intr, sc,
1030 			       &sc->vge_intrhand, ifp->if_serializer);
1031 	if (error) {
1032 		device_printf(dev, "couldn't set up irq\n");
1033 		ether_ifdetach(ifp);
1034 		goto fail;
1035 	}
1036 
1037 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->vge_irq));
1038 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1039 
1040 	return 0;
1041 fail:
1042 	vge_detach(dev);
1043 	return error;
1044 }
1045 
1046 /*
1047  * Shutdown hardware and free up resources. This can be called any
1048  * time after the mutex has been initialized. It is called in both
1049  * the error case in attach and the normal detach case so it needs
1050  * to be careful about only freeing resources that have actually been
1051  * allocated.
1052  */
1053 static int
1054 vge_detach(device_t dev)
1055 {
1056 	struct vge_softc *sc = device_get_softc(dev);
1057 	struct ifnet *ifp = &sc->arpcom.ac_if;
1058 
1059 	/* These should only be active if attach succeeded */
1060 	if (device_is_attached(dev)) {
1061 		lwkt_serialize_enter(ifp->if_serializer);
1062 
1063 		vge_stop(sc);
1064 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1065 		/*
1066 		 * Force off the IFF_UP flag here, in case someone
1067 		 * still had a BPF descriptor attached to this
1068 		 * interface. If they do, ether_ifattach() will cause
1069 		 * the BPF code to try and clear the promisc mode
1070 		 * flag, which will bubble down to vge_ioctl(),
1071 		 * which will try to call vge_init() again. This will
1072 		 * turn the NIC back on and restart the MII ticker,
1073 		 * which will panic the system when the kernel tries
1074 		 * to invoke the vge_tick() function that isn't there
1075 		 * anymore.
1076 		 */
1077 		ifp->if_flags &= ~IFF_UP;
1078 
1079 		lwkt_serialize_exit(ifp->if_serializer);
1080 
1081 		ether_ifdetach(ifp);
1082 	}
1083 
1084 	if (sc->vge_miibus)
1085 		device_delete_child(dev, sc->vge_miibus);
1086 	bus_generic_detach(dev);
1087 
1088 	if (sc->vge_irq) {
1089 		bus_release_resource(dev, SYS_RES_IRQ, sc->vge_irq_rid,
1090 				     sc->vge_irq);
1091 	}
1092 
1093 	if (sc->vge_res) {
1094 		bus_release_resource(dev, SYS_RES_MEMORY, sc->vge_res_rid,
1095 				     sc->vge_res);
1096 	}
1097 
1098 	vge_dma_free(sc);
1099 	return (0);
1100 }
1101 
1102 static int
1103 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1104 {
1105 	struct vge_dmaload_arg arg;
1106 	struct mbuf *n = NULL;
1107 	int i, error;
1108 
1109 	if (m == NULL) {
1110 		n = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1111 		if (n == NULL)
1112 			return (ENOBUFS);
1113 		m = n;
1114 	} else {
1115 		m->m_data = m->m_ext.ext_buf;
1116 	}
1117 
1118 
1119 #ifdef VGE_FIXUP_RX
1120 	/*
1121 	 * This is part of an evil trick to deal with non-x86 platforms.
1122 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1123 	 * boundaries, but that will hose non-x86 machines. To get around
1124 	 * this, we leave some empty space at the start of each buffer
1125 	 * and for non-x86 hosts, we copy the buffer back two bytes
1126 	 * to achieve word alignment. This is slightly more efficient
1127 	 * than allocating a new buffer, copying the contents, and
1128 	 * discarding the old buffer.
1129 	 */
1130 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1131 	m_adj(m, VGE_ETHER_ALIGN);
1132 #else
1133 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1134 #endif
1135 
1136 	arg.sc = sc;
1137 	arg.vge_idx = idx;
1138 	arg.vge_maxsegs = 1;
1139 	arg.vge_flags = 0;
1140 
1141 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1142 				     sc->vge_ldata.vge_rx_dmamap[idx], m,
1143 				     vge_dma_map_rx_desc, &arg, BUS_DMA_NOWAIT);
1144 	if (error || arg.vge_maxsegs != 1) {
1145 		if (n != NULL)
1146 			m_freem(n);
1147 		return (ENOMEM);
1148 	}
1149 
1150 	/*
1151 	 * Note: the manual fails to document the fact that for
1152 	 * proper opration, the driver needs to replentish the RX
1153 	 * DMA ring 4 descriptors at a time (rather than one at a
1154 	 * time, like most chips). We can allocate the new buffers
1155 	 * but we should not set the OWN bits until we're ready
1156 	 * to hand back 4 of them in one shot.
1157 	 */
1158 
1159 #define VGE_RXCHUNK 4
1160 	sc->vge_rx_consumed++;
1161 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1162 		for (i = idx; i != idx - sc->vge_rx_consumed; i--) {
1163 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1164 			    htole32(VGE_RDSTS_OWN);
1165 		}
1166 		sc->vge_rx_consumed = 0;
1167 	}
1168 
1169 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1170 
1171 	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1172 			sc->vge_ldata.vge_rx_dmamap[idx], BUS_DMASYNC_PREREAD);
1173 
1174 	return (0);
1175 }
1176 
1177 static int
1178 vge_tx_list_init(struct vge_softc *sc)
1179 {
1180 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1181 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1182 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1183 
1184 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1185 	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1186 	sc->vge_ldata.vge_tx_prodidx = 0;
1187 	sc->vge_ldata.vge_tx_considx = 0;
1188 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1189 
1190 	return (0);
1191 }
1192 
1193 static int
1194 vge_rx_list_init(struct vge_softc *sc)
1195 {
1196 	int i;
1197 
1198 	bzero(sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1199 	bzero(&sc->vge_ldata.vge_rx_mbuf,
1200 	      VGE_RX_DESC_CNT * sizeof(struct mbuf *));
1201 
1202 	sc->vge_rx_consumed = 0;
1203 
1204 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1205 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1206 			return (ENOBUFS);
1207 	}
1208 
1209 	/* Flush the RX descriptors */
1210 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1211 			sc->vge_ldata.vge_rx_list_map,
1212 			BUS_DMASYNC_PREWRITE);
1213 
1214 	sc->vge_ldata.vge_rx_prodidx = 0;
1215 	sc->vge_rx_consumed = 0;
1216 	sc->vge_head = sc->vge_tail = NULL;
1217 	return (0);
1218 }
1219 
1220 #ifdef VGE_FIXUP_RX
1221 static __inline void
1222 vge_fixup_rx(struct mbuf *m)
1223 {
1224 	uint16_t *src, *dst;
1225 	int i;
1226 
1227 	src = mtod(m, uint16_t *);
1228 	dst = src - 1;
1229 
1230 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1231 		*dst++ = *src++;
1232 
1233 	m->m_data -= ETHER_ALIGN;
1234 }
1235 #endif
1236 
1237 /*
1238  * RX handler. We support the reception of jumbo frames that have
1239  * been fragmented across multiple 2K mbuf cluster buffers.
1240  */
1241 static void
1242 vge_rxeof(struct vge_softc *sc, int count)
1243 {
1244 	struct ifnet *ifp = &sc->arpcom.ac_if;
1245 	struct mbuf *m;
1246 	int i, total_len, lim = 0;
1247 	struct vge_rx_desc *cur_rx;
1248 	uint32_t rxstat, rxctl;
1249 
1250 	ASSERT_SERIALIZED(ifp->if_serializer);
1251 
1252 	i = sc->vge_ldata.vge_rx_prodidx;
1253 
1254 	/* Invalidate the descriptor memory */
1255 
1256 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1257 			sc->vge_ldata.vge_rx_list_map, BUS_DMASYNC_POSTREAD);
1258 
1259 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1260 #ifdef DEVICE_POLLING
1261 		if (count >= 0 && count-- == 0)
1262 			break;
1263 #endif
1264 
1265 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1266 		m = sc->vge_ldata.vge_rx_mbuf[i];
1267 		total_len = VGE_RXBYTES(cur_rx);
1268 		rxstat = le32toh(cur_rx->vge_sts);
1269 		rxctl = le32toh(cur_rx->vge_ctl);
1270 
1271 		/* Invalidate the RX mbuf and unload its map */
1272 		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1273 				sc->vge_ldata.vge_rx_dmamap[i],
1274 				BUS_DMASYNC_POSTWRITE);
1275 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1276 				  sc->vge_ldata.vge_rx_dmamap[i]);
1277 
1278 		/*
1279 		 * If the 'start of frame' bit is set, this indicates
1280 		 * either the first fragment in a multi-fragment receive,
1281 		 * or an intermediate fragment. Either way, we want to
1282 		 * accumulate the buffers.
1283 		 */
1284 		if (rxstat & VGE_RXPKT_SOF) {
1285 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1286 			if (sc->vge_head == NULL) {
1287 				sc->vge_head = sc->vge_tail = m;
1288 			} else {
1289 				m->m_flags &= ~M_PKTHDR;
1290 				sc->vge_tail->m_next = m;
1291 				sc->vge_tail = m;
1292 			}
1293 			vge_newbuf(sc, i, NULL);
1294 			VGE_RX_DESC_INC(i);
1295 			continue;
1296 		}
1297 
1298 		/*
1299 		 * Bad/error frames will have the RXOK bit cleared.
1300 		 * However, there's one error case we want to allow:
1301 		 * if a VLAN tagged frame arrives and the chip can't
1302 		 * match it against the CAM filter, it considers this
1303 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1304 		 * We don't want to drop the frame though: our VLAN
1305 		 * filtering is done in software.
1306 		 */
1307 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM) &&
1308 		    !(rxstat & VGE_RDSTS_CSUMERR)) {
1309 			ifp->if_ierrors++;
1310 			/*
1311 			 * If this is part of a multi-fragment packet,
1312 			 * discard all the pieces.
1313 			 */
1314 			if (sc->vge_head != NULL) {
1315 				m_freem(sc->vge_head);
1316 				sc->vge_head = sc->vge_tail = NULL;
1317 			}
1318 			vge_newbuf(sc, i, m);
1319 			VGE_RX_DESC_INC(i);
1320 			continue;
1321 		}
1322 
1323 		/*
1324 		 * If allocating a replacement mbuf fails,
1325 		 * reload the current one.
1326 		 */
1327 		if (vge_newbuf(sc, i, NULL)) {
1328 			ifp->if_ierrors++;
1329 			if (sc->vge_head != NULL) {
1330 				m_freem(sc->vge_head);
1331 				sc->vge_head = sc->vge_tail = NULL;
1332 			}
1333 			vge_newbuf(sc, i, m);
1334 			VGE_RX_DESC_INC(i);
1335 			continue;
1336 		}
1337 
1338 		VGE_RX_DESC_INC(i);
1339 
1340 		if (sc->vge_head != NULL) {
1341 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1342 			/*
1343 			 * Special case: if there's 4 bytes or less
1344 			 * in this buffer, the mbuf can be discarded:
1345 			 * the last 4 bytes is the CRC, which we don't
1346 			 * care about anyway.
1347 			 */
1348 			if (m->m_len <= ETHER_CRC_LEN) {
1349 				sc->vge_tail->m_len -=
1350 				    (ETHER_CRC_LEN - m->m_len);
1351 				m_freem(m);
1352 			} else {
1353 				m->m_len -= ETHER_CRC_LEN;
1354 				m->m_flags &= ~M_PKTHDR;
1355 				sc->vge_tail->m_next = m;
1356 			}
1357 			m = sc->vge_head;
1358 			sc->vge_head = sc->vge_tail = NULL;
1359 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1360 		} else {
1361 			m->m_pkthdr.len = m->m_len =
1362 			    (total_len - ETHER_CRC_LEN);
1363 		}
1364 
1365 #ifdef VGE_FIXUP_RX
1366 		vge_fixup_rx(m);
1367 #endif
1368 		ifp->if_ipackets++;
1369 		m->m_pkthdr.rcvif = ifp;
1370 
1371 		/* Do RX checksumming if enabled */
1372 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1373 			/* Check IP header checksum */
1374 			if (rxctl & VGE_RDCTL_IPPKT)
1375 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1376 			if (rxctl & VGE_RDCTL_IPCSUMOK)
1377 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1378 
1379 			/* Check TCP/UDP checksum */
1380 			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1381 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1382 				m->m_pkthdr.csum_flags |=
1383 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1384 				    CSUM_FRAG_NOT_CHECKED;
1385 				m->m_pkthdr.csum_data = 0xffff;
1386 			}
1387 		}
1388 
1389 		if (rxstat & VGE_RDSTS_VTAG) {
1390 			m->m_flags |= M_VLANTAG;
1391 			m->m_pkthdr.ether_vlantag =
1392 				ntohs((rxctl & VGE_RDCTL_VLANID));
1393 		}
1394 		ifp->if_input(ifp, m);
1395 
1396 		lim++;
1397 		if (lim == VGE_RX_DESC_CNT)
1398 			break;
1399 	}
1400 
1401 	/* Flush the RX DMA ring */
1402 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1403 			sc->vge_ldata.vge_rx_list_map,
1404 			BUS_DMASYNC_PREWRITE);
1405 
1406 	sc->vge_ldata.vge_rx_prodidx = i;
1407 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1408 }
1409 
1410 static void
1411 vge_txeof(struct vge_softc *sc)
1412 {
1413 	struct ifnet *ifp = &sc->arpcom.ac_if;
1414 	uint32_t txstat;
1415 	int idx;
1416 
1417 	idx = sc->vge_ldata.vge_tx_considx;
1418 
1419 	/* Invalidate the TX descriptor list */
1420 
1421 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1422 			sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_POSTREAD);
1423 
1424 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1425 
1426 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1427 		if (txstat & VGE_TDSTS_OWN)
1428 			break;
1429 
1430 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1431 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1432 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1433 				  sc->vge_ldata.vge_tx_dmamap[idx]);
1434 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1435 			ifp->if_collisions++;
1436 		if (txstat & VGE_TDSTS_TXERR)
1437 			ifp->if_oerrors++;
1438 		else
1439 			ifp->if_opackets++;
1440 
1441 		sc->vge_ldata.vge_tx_free++;
1442 		VGE_TX_DESC_INC(idx);
1443 	}
1444 
1445 	/* No changes made to the TX ring, so no flush needed */
1446 	if (idx != sc->vge_ldata.vge_tx_considx) {
1447 		sc->vge_ldata.vge_tx_considx = idx;
1448 		ifp->if_flags &= ~IFF_OACTIVE;
1449 		ifp->if_timer = 0;
1450 	}
1451 
1452 	/*
1453 	 * If not all descriptors have been released reaped yet,
1454 	 * reload the timer so that we will eventually get another
1455 	 * interrupt that will cause us to re-enter this routine.
1456 	 * This is done in case the transmitter has gone idle.
1457 	 */
1458 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1459 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1460 }
1461 
1462 static void
1463 vge_tick(struct vge_softc *sc)
1464 {
1465 	struct ifnet *ifp = &sc->arpcom.ac_if;
1466 	struct mii_data *mii;
1467 
1468 	mii = device_get_softc(sc->vge_miibus);
1469 
1470 	mii_tick(mii);
1471 	if (sc->vge_link) {
1472 		if (!(mii->mii_media_status & IFM_ACTIVE))
1473 			sc->vge_link = 0;
1474 	} else {
1475 		if (mii->mii_media_status & IFM_ACTIVE &&
1476 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1477 			sc->vge_link = 1;
1478 			if (!ifq_is_empty(&ifp->if_snd))
1479 				if_devstart(ifp);
1480 		}
1481 	}
1482 }
1483 
1484 #ifdef DEVICE_POLLING
1485 static void
1486 vge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1487 {
1488 	struct vge_softc *sc = ifp->if_softc;
1489 
1490 	sc->rxcycles = count;
1491 
1492 	switch (cmd) {
1493 	case POLL_REGISTER:
1494 		vge_disable_intr(sc);
1495 		break;
1496 	case POLL_DEREGISTER:
1497 		vge_enable_intr(sc, 0xffffffff);
1498 		break;
1499 	case POLL_ONLY:
1500 	case POLL_AND_CHECK_STATUS:
1501 		vge_rxeof(sc, count);
1502 		vge_txeof(sc);
1503 
1504 		if (!ifq_is_empty(&ifp->if_snd))
1505 			if_devstart(ifp);
1506 
1507 		/* XXX copy & paste from vge_intr */
1508 		if (cmd == POLL_AND_CHECK_STATUS) {
1509 			uint32_t status = 0;
1510 
1511 			status = CSR_READ_4(sc, VGE_ISR);
1512 			if (status == 0xffffffff)
1513 				break;
1514 
1515 			if (status)
1516 				CSR_WRITE_4(sc, VGE_ISR, status);
1517 
1518 			if (status & (VGE_ISR_TXDMA_STALL |
1519 				      VGE_ISR_RXDMA_STALL))
1520 				vge_init(sc);
1521 
1522 			if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) {
1523 				ifp->if_ierrors++;
1524 				CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1525 				CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1526 			}
1527 		}
1528 		break;
1529 	}
1530 
1531 }
1532 #endif	/* DEVICE_POLLING */
1533 
1534 static void
1535 vge_intr(void *arg)
1536 {
1537 	struct vge_softc *sc = arg;
1538 	struct ifnet *ifp = &sc->arpcom.ac_if;
1539 	uint32_t status;
1540 
1541 	if (sc->suspended || !(ifp->if_flags & IFF_UP))
1542 		return;
1543 
1544 	/* Disable interrupts */
1545 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1546 
1547 	for (;;) {
1548 		status = CSR_READ_4(sc, VGE_ISR);
1549 		/* If the card has gone away the read returns 0xffff. */
1550 		if (status == 0xFFFFFFFF)
1551 			break;
1552 
1553 		if (status)
1554 			CSR_WRITE_4(sc, VGE_ISR, status);
1555 
1556 		if ((status & VGE_INTRS) == 0)
1557 			break;
1558 
1559 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1560 			vge_rxeof(sc, -1);
1561 
1562 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1563 			vge_rxeof(sc, -1);
1564 			ifp->if_ierrors++;
1565 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1566 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1567 		}
1568 
1569 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1570 			vge_txeof(sc);
1571 
1572 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1573 			vge_init(sc);
1574 
1575 		if (status & VGE_ISR_LINKSTS)
1576 			vge_tick(sc);
1577 	}
1578 
1579 	/* Re-enable interrupts */
1580 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1581 
1582 	if (!ifq_is_empty(&ifp->if_snd))
1583 		if_devstart(ifp);
1584 }
1585 
1586 static int
1587 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1588 {
1589 	struct vge_dmaload_arg arg;
1590 	bus_dmamap_t map;
1591 	int error;
1592 
1593 	arg.vge_flags = 0;
1594 
1595 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1596 		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1597 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1598 		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1599 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1600 		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1601 
1602 	arg.sc = sc;
1603 	arg.vge_idx = idx;
1604 	arg.vge_m0 = m_head;
1605 	arg.vge_maxsegs = VGE_TX_FRAGS;
1606 
1607 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1608 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, m_head,
1609 				     vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1610 	if (error && error != EFBIG) {
1611 		if_printf(&sc->arpcom.ac_if, "can't map mbuf (error %d)\n",
1612 			  error);
1613 		goto fail;
1614 	}
1615 
1616 	/* Too many segments to map, coalesce into a single mbuf */
1617 	if (error || arg.vge_maxsegs == 0) {
1618 		struct mbuf *m_new;
1619 
1620 		m_new = m_defrag(m_head, MB_DONTWAIT);
1621 		if (m_new == NULL) {
1622 			error = ENOBUFS;
1623 			goto fail;
1624 		} else {
1625 			m_head = m_new;
1626 		}
1627 
1628 		arg.sc = sc;
1629 		arg.vge_m0 = m_head;
1630 		arg.vge_idx = idx;
1631 		arg.vge_maxsegs = 1;
1632 
1633 		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1634 					     m_head, vge_dma_map_tx_desc, &arg,
1635 					     BUS_DMA_NOWAIT);
1636 		if (error) {
1637 			if_printf(&sc->arpcom.ac_if,
1638 				  "can't map mbuf (error %d)\n", error);
1639 			goto fail;
1640 		}
1641 	}
1642 
1643 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1644 	sc->vge_ldata.vge_tx_free--;
1645 
1646 	/*
1647 	 * Set up hardware VLAN tagging.
1648 	 */
1649 	if (m_head->m_flags & M_VLANTAG) {
1650 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1651 			htole32(htons(m_head->m_pkthdr.ether_vlantag) |
1652 				VGE_TDCTL_VTAG);
1653 	}
1654 
1655 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1656 	return (0);
1657 
1658 fail:
1659 	m_freem(m_head);
1660 	return error;
1661 }
1662 
1663 /*
1664  * Main transmit routine.
1665  */
1666 
1667 static void
1668 vge_start(struct ifnet *ifp)
1669 {
1670 	struct vge_softc *sc = ifp->if_softc;
1671 	struct mbuf *m_head = NULL;
1672 	int idx, pidx = 0;
1673 
1674 	ASSERT_SERIALIZED(ifp->if_serializer);
1675 
1676 	if (!sc->vge_link) {
1677 		ifq_purge(&ifp->if_snd);
1678 		return;
1679 	}
1680 
1681 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1682 		return;
1683 
1684 	idx = sc->vge_ldata.vge_tx_prodidx;
1685 
1686 	pidx = idx - 1;
1687 	if (pidx < 0)
1688 		pidx = VGE_TX_DESC_CNT - 1;
1689 
1690 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1691 		if (sc->vge_ldata.vge_tx_free <= 2) {
1692 			ifp->if_flags |= IFF_OACTIVE;
1693 			break;
1694 		}
1695 
1696 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1697 		if (m_head == NULL)
1698 			break;
1699 
1700 		if (vge_encap(sc, m_head, idx)) {
1701 			/* If vge_encap() failed, it will free m_head for us */
1702 			ifp->if_flags |= IFF_OACTIVE;
1703 			break;
1704 		}
1705 
1706 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1707 		    htole16(VGE_TXDESC_Q);
1708 
1709 		pidx = idx;
1710 		VGE_TX_DESC_INC(idx);
1711 
1712 		/*
1713 		 * If there's a BPF listener, bounce a copy of this frame
1714 		 * to him.
1715 		 */
1716 		ETHER_BPF_MTAP(ifp, m_head);
1717 	}
1718 
1719 	if (idx == sc->vge_ldata.vge_tx_prodidx)
1720 		return;
1721 
1722 	/* Flush the TX descriptors */
1723 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1724 			sc->vge_ldata.vge_tx_list_map,
1725 			BUS_DMASYNC_PREWRITE);
1726 
1727 	/* Issue a transmit command. */
1728 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1729 
1730 	sc->vge_ldata.vge_tx_prodidx = idx;
1731 
1732 	/*
1733 	 * Use the countdown timer for interrupt moderation.
1734 	 * 'TX done' interrupts are disabled. Instead, we reset the
1735 	 * countdown timer, which will begin counting until it hits
1736 	 * the value in the SSTIMER register, and then trigger an
1737 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1738 	 * the timer count is reloaded. Only when the transmitter
1739 	 * is idle will the timer hit 0 and an interrupt fire.
1740 	 */
1741 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1742 
1743 	/*
1744 	 * Set a timeout in case the chip goes out to lunch.
1745 	 */
1746 	ifp->if_timer = 5;
1747 }
1748 
1749 static void
1750 vge_init(void *xsc)
1751 {
1752 	struct vge_softc *sc = xsc;
1753 	struct ifnet *ifp = &sc->arpcom.ac_if;
1754 	struct mii_data *mii;
1755 	int i;
1756 
1757 	ASSERT_SERIALIZED(ifp->if_serializer);
1758 
1759 	mii = device_get_softc(sc->vge_miibus);
1760 
1761 	/*
1762 	 * Cancel pending I/O and free all RX/TX buffers.
1763 	 */
1764 	vge_stop(sc);
1765 	vge_reset(sc);
1766 
1767 	/*
1768 	 * Initialize the RX and TX descriptors and mbufs.
1769 	 */
1770 	vge_rx_list_init(sc);
1771 	vge_tx_list_init(sc);
1772 
1773 	/* Set our station address */
1774 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1775 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(ifp)[i]);
1776 
1777 	/*
1778 	 * Set receive FIFO threshold. Also allow transmission and
1779 	 * reception of VLAN tagged frames.
1780 	 */
1781 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1782 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1783 
1784 	/* Set DMA burst length */
1785 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1786 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1787 
1788 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1789 
1790 	/* Set collision backoff algorithm */
1791 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1792 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1793 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1794 
1795 	/* Disable LPSEL field in priority resolution */
1796 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1797 
1798 	/*
1799 	 * Load the addresses of the DMA queues into the chip.
1800 	 * Note that we only use one transmit queue.
1801 	 */
1802 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1803 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1804 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1805 
1806 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1807 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1808 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1809 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1810 
1811 	/* Enable and wake up the RX descriptor queue */
1812 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1813 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1814 
1815 	/* Enable the TX descriptor queue */
1816 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1817 
1818 	/* Set up the receive filter -- allow large frames for VLANs. */
1819 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1820 
1821 	/* If we want promiscuous mode, set the allframes bit. */
1822 	if (ifp->if_flags & IFF_PROMISC)
1823 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1824 
1825 	/* Set capture broadcast bit to capture broadcast frames. */
1826 	if (ifp->if_flags & IFF_BROADCAST)
1827 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1828 
1829 	/* Set multicast bit to capture multicast frames. */
1830 	if (ifp->if_flags & IFF_MULTICAST)
1831 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1832 
1833 	/* Init the cam filter. */
1834 	vge_cam_clear(sc);
1835 
1836 	/* Init the multicast filter. */
1837 	vge_setmulti(sc);
1838 
1839 	/* Enable flow control */
1840 
1841 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1842 
1843 	/* Enable jumbo frame reception (if desired) */
1844 
1845 	/* Start the MAC. */
1846 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1847 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1848 	CSR_WRITE_1(sc, VGE_CRS0,
1849 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1850 
1851 	/*
1852 	 * Configure one-shot timer for microsecond
1853 	 * resulution and load it for 500 usecs.
1854 	 */
1855 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1856 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1857 
1858 	/*
1859 	 * Configure interrupt moderation for receive. Enable
1860 	 * the holdoff counter and load it, and set the RX
1861 	 * suppression count to the number of descriptors we
1862 	 * want to allow before triggering an interrupt.
1863 	 * The holdoff timer is in units of 20 usecs.
1864 	 */
1865 
1866 #ifdef notyet
1867 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1868 	/* Select the interrupt holdoff timer page. */
1869 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1870 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1871 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1872 
1873 	/* Enable use of the holdoff timer. */
1874 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1875 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1876 
1877 	/* Select the RX suppression threshold page. */
1878 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1879 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1880 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1881 
1882 	/* Restore the page select bits. */
1883 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1884 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1885 #endif
1886 
1887 #ifdef DEVICE_POLLING
1888 	/* Disable intr if polling(4) is enabled */
1889 	if (ifp->if_flags & IFF_POLLING)
1890 		vge_disable_intr(sc);
1891 	else
1892 #endif
1893 	vge_enable_intr(sc, 0);
1894 
1895 	mii_mediachg(mii);
1896 
1897 	ifp->if_flags |= IFF_RUNNING;
1898 	ifp->if_flags &= ~IFF_OACTIVE;
1899 
1900 	sc->vge_if_flags = 0;
1901 	sc->vge_link = 0;
1902 }
1903 
1904 /*
1905  * Set media options.
1906  */
1907 static int
1908 vge_ifmedia_upd(struct ifnet *ifp)
1909 {
1910 	struct vge_softc *sc = ifp->if_softc;
1911 	struct mii_data *mii = device_get_softc(sc->vge_miibus);
1912 
1913 	mii_mediachg(mii);
1914 
1915 	return (0);
1916 }
1917 
1918 /*
1919  * Report current media status.
1920  */
1921 static void
1922 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1923 {
1924 	struct vge_softc *sc = ifp->if_softc;
1925 	struct mii_data *mii = device_get_softc(sc->vge_miibus);
1926 
1927 	mii_pollstat(mii);
1928 	ifmr->ifm_active = mii->mii_media_active;
1929 	ifmr->ifm_status = mii->mii_media_status;
1930 }
1931 
1932 static void
1933 vge_miibus_statchg(device_t dev)
1934 {
1935 	struct vge_softc *sc;
1936 	struct mii_data *mii;
1937 	struct ifmedia_entry *ife;
1938 
1939 	sc = device_get_softc(dev);
1940 	mii = device_get_softc(sc->vge_miibus);
1941 	ife = mii->mii_media.ifm_cur;
1942 
1943 	/*
1944 	 * If the user manually selects a media mode, we need to turn
1945 	 * on the forced MAC mode bit in the DIAGCTL register. If the
1946 	 * user happens to choose a full duplex mode, we also need to
1947 	 * set the 'force full duplex' bit. This applies only to
1948 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1949 	 * mode is disabled, and in 1000baseT mode, full duplex is
1950 	 * always implied, so we turn on the forced mode bit but leave
1951 	 * the FDX bit cleared.
1952 	 */
1953 
1954 	switch (IFM_SUBTYPE(ife->ifm_media)) {
1955 	case IFM_AUTO:
1956 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1957 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1958 		break;
1959 	case IFM_1000_T:
1960 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1961 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1962 		break;
1963 	case IFM_100_TX:
1964 	case IFM_10_T:
1965 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1966 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX)
1967 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1968 		else
1969 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1970 		break;
1971 	default:
1972 		device_printf(dev, "unknown media type: %x\n",
1973 			      IFM_SUBTYPE(ife->ifm_media));
1974 		break;
1975 	}
1976 }
1977 
1978 static int
1979 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1980 {
1981 	struct vge_softc *sc = ifp->if_softc;
1982 	struct ifreq *ifr = (struct ifreq *)data;
1983 	struct mii_data *mii;
1984 	int error = 0;
1985 
1986 	switch (command) {
1987 	case SIOCSIFMTU:
1988 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
1989 			error = EINVAL;
1990 		ifp->if_mtu = ifr->ifr_mtu;
1991 		break;
1992 	case SIOCSIFFLAGS:
1993 		if (ifp->if_flags & IFF_UP) {
1994 			if ((ifp->if_flags & IFF_RUNNING) &&
1995 			    (ifp->if_flags & IFF_PROMISC) &&
1996 			    !(sc->vge_if_flags & IFF_PROMISC)) {
1997 				CSR_SETBIT_1(sc, VGE_RXCTL,
1998 				    VGE_RXCTL_RX_PROMISC);
1999 				vge_setmulti(sc);
2000 			} else if ((ifp->if_flags & IFF_RUNNING) &&
2001 				   !(ifp->if_flags & IFF_PROMISC) &&
2002 				   (sc->vge_if_flags & IFF_PROMISC)) {
2003 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2004 					     VGE_RXCTL_RX_PROMISC);
2005 				vge_setmulti(sc);
2006                         } else {
2007 				vge_init(sc);
2008 			}
2009 		} else {
2010 			if (ifp->if_flags & IFF_RUNNING)
2011 				vge_stop(sc);
2012 		}
2013 		sc->vge_if_flags = ifp->if_flags;
2014 		break;
2015 	case SIOCADDMULTI:
2016 	case SIOCDELMULTI:
2017 		vge_setmulti(sc);
2018 		break;
2019 	case SIOCGIFMEDIA:
2020 	case SIOCSIFMEDIA:
2021 		mii = device_get_softc(sc->vge_miibus);
2022 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2023 		break;
2024 	case SIOCSIFCAP:
2025 	    {
2026 		uint32_t mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2027 
2028 		if (mask & IFCAP_HWCSUM) {
2029 			ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
2030 			if (ifp->if_capenable & IFCAP_TXCSUM)
2031 				ifp->if_hwassist = VGE_CSUM_FEATURES;
2032 			else
2033 				ifp->if_hwassist = 0;
2034 			if (ifp->if_flags & IFF_RUNNING)
2035 				vge_init(sc);
2036 		}
2037 	    }
2038 		break;
2039 	default:
2040 		error = ether_ioctl(ifp, command, data);
2041 		break;
2042 	}
2043 	return (error);
2044 }
2045 
2046 static void
2047 vge_watchdog(struct ifnet *ifp)
2048 {
2049 	struct vge_softc *sc = ifp->if_softc;
2050 
2051 	if_printf(ifp, "watchdog timeout\n");
2052 	ifp->if_oerrors++;
2053 
2054 	vge_txeof(sc);
2055 	vge_rxeof(sc, -1);
2056 
2057 	vge_init(sc);
2058 }
2059 
2060 /*
2061  * Stop the adapter and free any mbufs allocated to the
2062  * RX and TX lists.
2063  */
2064 static void
2065 vge_stop(struct vge_softc *sc)
2066 {
2067 	struct ifnet *ifp = &sc->arpcom.ac_if;
2068 	int i;
2069 
2070 	ASSERT_SERIALIZED(ifp->if_serializer);
2071 
2072 	ifp->if_timer = 0;
2073 
2074 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2075 
2076 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2077 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2078 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2079 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2080 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2081 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2082 
2083 	if (sc->vge_head != NULL) {
2084 		m_freem(sc->vge_head);
2085 		sc->vge_head = sc->vge_tail = NULL;
2086 	}
2087 
2088 	/* Free the TX list buffers. */
2089 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2090 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2091 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2092 					  sc->vge_ldata.vge_tx_dmamap[i]);
2093 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2094 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2095 		}
2096 	}
2097 
2098 	/* Free the RX list buffers. */
2099 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2100 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2101 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2102 					  sc->vge_ldata.vge_rx_dmamap[i]);
2103 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2104 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2105 		}
2106 	}
2107 }
2108 
2109 /*
2110  * Device suspend routine.  Stop the interface and save some PCI
2111  * settings in case the BIOS doesn't restore them properly on
2112  * resume.
2113  */
2114 static int
2115 vge_suspend(device_t dev)
2116 {
2117 	struct vge_softc *sc = device_get_softc(dev);
2118 	struct ifnet *ifp = &sc->arpcom.ac_if;
2119 
2120 	lwkt_serialize_enter(ifp->if_serializer);
2121 	vge_stop(sc);
2122 	sc->suspended = 1;
2123 	lwkt_serialize_exit(ifp->if_serializer);
2124 
2125 	return (0);
2126 }
2127 
2128 /*
2129  * Device resume routine.  Restore some PCI settings in case the BIOS
2130  * doesn't, re-enable busmastering, and restart the interface if
2131  * appropriate.
2132  */
2133 static int
2134 vge_resume(device_t dev)
2135 {
2136 	struct vge_softc *sc = device_get_softc(dev);
2137 	struct ifnet *ifp = &sc->arpcom.ac_if;
2138 
2139 	/* reenable busmastering */
2140 	pci_enable_busmaster(dev);
2141 	pci_enable_io(dev, SYS_RES_MEMORY);
2142 
2143 	lwkt_serialize_enter(ifp->if_serializer);
2144 	/* reinitialize interface if necessary */
2145 	if (ifp->if_flags & IFF_UP)
2146 		vge_init(sc);
2147 
2148 	sc->suspended = 0;
2149 	lwkt_serialize_exit(ifp->if_serializer);
2150 
2151 	return (0);
2152 }
2153 
2154 /*
2155  * Stop all chip I/O so that the kernel's probe routines don't
2156  * get confused by errant DMAs when rebooting.
2157  */
2158 static void
2159 vge_shutdown(device_t dev)
2160 {
2161 	struct vge_softc *sc = device_get_softc(dev);
2162 	struct ifnet *ifp = &sc->arpcom.ac_if;
2163 
2164 	lwkt_serialize_enter(ifp->if_serializer);
2165 	vge_stop(sc);
2166 	lwkt_serialize_exit(ifp->if_serializer);
2167 }
2168 
2169 static void
2170 vge_enable_intr(struct vge_softc *sc, uint32_t isr)
2171 {
2172 	CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2173 	CSR_WRITE_4(sc, VGE_ISR, isr);
2174 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2175 }
2176 
2177 #ifdef DEVICE_POLLING
2178 static void
2179 vge_disable_intr(struct vge_softc *sc)
2180 {
2181 	CSR_WRITE_4(sc, VGE_IMR, 0);
2182 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2183 }
2184 #endif
2185