xref: /dragonfly/sys/dev/netif/vge/if_vge.c (revision 7bc7e232)
1 /*
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/dev/vge/if_vge.c,v 1.24 2006/02/14 12:44:56 glebius Exp $
33  * $DragonFly: src/sys/dev/netif/vge/if_vge.c,v 1.5 2007/08/14 13:30:35 sephe Exp $
34  */
35 
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #include "opt_polling.h"
84 
85 #include <sys/param.h>
86 #include <sys/endian.h>
87 #include <sys/systm.h>
88 #include <sys/sockio.h>
89 #include <sys/mbuf.h>
90 #include <sys/malloc.h>
91 #include <sys/module.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/serialize.h>
95 #include <sys/proc.h>
96 #include <sys/bus.h>
97 #include <sys/rman.h>
98 
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/ethernet.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/ifq_var.h>
105 #include <net/if_types.h>
106 #include <net/vlan/if_vlan_var.h>
107 
108 #include <net/bpf.h>
109 
110 #include <dev/netif/mii_layer/mii.h>
111 #include <dev/netif/mii_layer/miivar.h>
112 
113 #include <bus/pci/pcireg.h>
114 #include <bus/pci/pcivar.h>
115 #include <bus/pci/pcidevs.h>
116 
117 #include "miibus_if.h"
118 
119 #include <dev/netif/vge/if_vgereg.h>
120 #include <dev/netif/vge/if_vgevar.h>
121 
122 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
123 
124 /*
125  * Various supported device vendors/types and their names.
126  */
127 static const struct vge_type vge_devs[] = {
128 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612X,
129 	  "VIA Networking Gigabit Ethernet" },
130 	{ 0, 0, NULL }
131 };
132 
133 static int vge_probe		(device_t);
134 static int vge_attach		(device_t);
135 static int vge_detach		(device_t);
136 
137 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
138 
139 static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
140 static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
141 				    bus_size_t, int);
142 static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
143 				    bus_size_t, int);
144 static int vge_dma_alloc	(device_t);
145 static void vge_dma_free	(struct vge_softc *);
146 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
147 static int vge_rx_list_init	(struct vge_softc *);
148 static int vge_tx_list_init	(struct vge_softc *);
149 #ifdef VGE_FIXUP_RX
150 static __inline void vge_fixup_rx
151 				(struct mbuf *);
152 #endif
153 static void vge_rxeof		(struct vge_softc *, int);
154 static void vge_txeof		(struct vge_softc *);
155 static void vge_intr		(void *);
156 static void vge_tick		(struct vge_softc *);
157 static void vge_start		(struct ifnet *);
158 static int vge_ioctl		(struct ifnet *, u_long, caddr_t,
159 				 struct ucred *);
160 static void vge_init		(void *);
161 static void vge_stop		(struct vge_softc *);
162 static void vge_watchdog	(struct ifnet *);
163 static int vge_suspend		(device_t);
164 static int vge_resume		(device_t);
165 static void vge_shutdown	(device_t);
166 static int vge_ifmedia_upd	(struct ifnet *);
167 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
168 
169 #ifdef VGE_EEPROM
170 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
171 #endif
172 static void vge_read_eeprom	(struct vge_softc *, uint8_t *, int, int, int);
173 
174 static void vge_miipoll_start	(struct vge_softc *);
175 static void vge_miipoll_stop	(struct vge_softc *);
176 static int vge_miibus_readreg	(device_t, int, int);
177 static int vge_miibus_writereg	(device_t, int, int, int);
178 static void vge_miibus_statchg	(device_t);
179 
180 static void vge_cam_clear	(struct vge_softc *);
181 static int vge_cam_set		(struct vge_softc *, uint8_t *);
182 static void vge_setmulti	(struct vge_softc *);
183 static void vge_reset		(struct vge_softc *);
184 
185 #ifdef DEVICE_POLLING
186 static void	vge_poll(struct ifnet *, enum poll_cmd, int);
187 static void	vge_disable_intr(struct vge_softc *);
188 #endif
189 static void	vge_enable_intr(struct vge_softc *, uint32_t);
190 
191 #define VGE_PCI_LOIO             0x10
192 #define VGE_PCI_LOMEM            0x14
193 
194 static device_method_t vge_methods[] = {
195 	/* Device interface */
196 	DEVMETHOD(device_probe,		vge_probe),
197 	DEVMETHOD(device_attach,	vge_attach),
198 	DEVMETHOD(device_detach,	vge_detach),
199 	DEVMETHOD(device_suspend,	vge_suspend),
200 	DEVMETHOD(device_resume,	vge_resume),
201 	DEVMETHOD(device_shutdown,	vge_shutdown),
202 
203 	/* bus interface */
204 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
205 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
206 
207 	/* MII interface */
208 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
209 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
210 	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
211 
212 	{ 0, 0 }
213 };
214 
215 static driver_t vge_driver = {
216 	"vge",
217 	vge_methods,
218 	sizeof(struct vge_softc)
219 };
220 
221 static devclass_t vge_devclass;
222 
223 DECLARE_DUMMY_MODULE(if_vge);
224 MODULE_DEPEND(if_vge, miibus, 1, 1, 1);
225 DRIVER_MODULE(if_vge, pci, vge_driver, vge_devclass, 0, 0);
226 DRIVER_MODULE(if_vge, cardbus, vge_driver, vge_devclass, 0, 0);
227 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
228 
229 #ifdef VGE_EEPROM
230 /*
231  * Read a word of data stored in the EEPROM at address 'addr.'
232  */
233 static void
234 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t dest)
235 {
236 	uint16_t word = 0;
237 	int i;
238 
239 	/*
240 	 * Enter EEPROM embedded programming mode. In order to
241 	 * access the EEPROM at all, we first have to set the
242 	 * EELOAD bit in the CHIPCFG2 register.
243 	 */
244 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
245 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
246 
247 	/* Select the address of the word we want to read */
248 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
249 
250 	/* Issue read command */
251 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
252 
253 	/* Wait for the done bit to be set. */
254 	for (i = 0; i < VGE_TIMEOUT; i++) {
255 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
256 			break;
257 	}
258 	if (i == VGE_TIMEOUT) {
259 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
260 		*dest = 0;
261 		return;
262 	}
263 
264 	/* Read the result */
265 	word = CSR_READ_2(sc, VGE_EERDDAT);
266 
267 	/* Turn off EEPROM access mode. */
268 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
269 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
270 
271 	*dest = word;
272 }
273 #endif
274 
275 /*
276  * Read a sequence of words from the EEPROM.
277  */
278 static void
279 vge_read_eeprom(struct vge_softc *sc, uint8_t *dest, int off, int cnt, int swap)
280 {
281 	int i;
282 #ifdef VGE_EEPROM
283 	uint16_t word = 0, *ptr;
284 
285 	for (i = 0; i < cnt; i++) {
286 		vge_eeprom_getword(sc, off + i, &word);
287 		ptr = (uint16_t *)(dest + (i * 2));
288 		if (swap)
289 			*ptr = ntohs(word);
290 		else
291 			*ptr = word;
292 	}
293 #else
294 	for (i = 0; i < ETHER_ADDR_LEN; i++)
295 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
296 #endif
297 }
298 
299 static void
300 vge_miipoll_stop(struct vge_softc *sc)
301 {
302 	int i;
303 
304 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
305 
306 	for (i = 0; i < VGE_TIMEOUT; i++) {
307 		DELAY(1);
308 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
309 			break;
310 	}
311 	if (i == VGE_TIMEOUT)
312 		if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
313 }
314 
315 static void
316 vge_miipoll_start(struct vge_softc *sc)
317 {
318 	int i;
319 
320 	/* First, make sure we're idle. */
321 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
322 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
323 
324 	for (i = 0; i < VGE_TIMEOUT; i++) {
325 		DELAY(1);
326 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
327 			break;
328 	}
329 	if (i == VGE_TIMEOUT) {
330 		if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
331 		return;
332 	}
333 
334 	/* Now enable auto poll mode. */
335 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
336 
337 	/* And make sure it started. */
338 	for (i = 0; i < VGE_TIMEOUT; i++) {
339 		DELAY(1);
340 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
341 			break;
342 	}
343 	if (i == VGE_TIMEOUT)
344 		if_printf(&sc->arpcom.ac_if, "failed to start MII autopoll\n");
345 }
346 
347 static int
348 vge_miibus_readreg(device_t dev, int phy, int reg)
349 {
350 	struct vge_softc *sc;
351 	int i;
352 	uint16_t rval = 0;
353 
354 	sc = device_get_softc(dev);
355 
356 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
357 		return(0);
358 
359 	vge_miipoll_stop(sc);
360 
361 	/* Specify the register we want to read. */
362 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
363 
364 	/* Issue read command. */
365 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
366 
367 	/* Wait for the read command bit to self-clear. */
368 	for (i = 0; i < VGE_TIMEOUT; i++) {
369 		DELAY(1);
370 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
371 			break;
372 	}
373 	if (i == VGE_TIMEOUT)
374 		if_printf(&sc->arpcom.ac_if, "MII read timed out\n");
375 	else
376 		rval = CSR_READ_2(sc, VGE_MIIDATA);
377 
378 	vge_miipoll_start(sc);
379 
380 	return (rval);
381 }
382 
383 static int
384 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
385 {
386 	struct vge_softc *sc;
387 	int i, rval = 0;
388 
389 	sc = device_get_softc(dev);
390 
391 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
392 		return(0);
393 
394 	vge_miipoll_stop(sc);
395 
396 	/* Specify the register we want to write. */
397 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
398 
399 	/* Specify the data we want to write. */
400 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
401 
402 	/* Issue write command. */
403 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
404 
405 	/* Wait for the write command bit to self-clear. */
406 	for (i = 0; i < VGE_TIMEOUT; i++) {
407 		DELAY(1);
408 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
409 			break;
410 	}
411 	if (i == VGE_TIMEOUT) {
412 		if_printf(&sc->arpcom.ac_if, "MII write timed out\n");
413 		rval = EIO;
414 	}
415 
416 	vge_miipoll_start(sc);
417 
418 	return (rval);
419 }
420 
421 static void
422 vge_cam_clear(struct vge_softc *sc)
423 {
424 	int i;
425 
426 	/*
427 	 * Turn off all the mask bits. This tells the chip
428 	 * that none of the entries in the CAM filter are valid.
429 	 * desired entries will be enabled as we fill the filter in.
430 	 */
431 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
432 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
433 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
434 	for (i = 0; i < 8; i++)
435 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
436 
437 	/* Clear the VLAN filter too. */
438 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
439 	for (i = 0; i < 8; i++)
440 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
441 
442 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
443 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
444 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
445 
446 	sc->vge_camidx = 0;
447 }
448 
449 static int
450 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
451 {
452 	int i, error = 0;
453 
454 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
455 		return(ENOSPC);
456 
457 	/* Select the CAM data page. */
458 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
459 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
460 
461 	/* Set the filter entry we want to update and enable writing. */
462 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
463 
464 	/* Write the address to the CAM registers */
465 	for (i = 0; i < ETHER_ADDR_LEN; i++)
466 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
467 
468 	/* Issue a write command. */
469 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
470 
471 	/* Wake for it to clear. */
472 	for (i = 0; i < VGE_TIMEOUT; i++) {
473 		DELAY(1);
474 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
475 			break;
476 	}
477 	if (i == VGE_TIMEOUT) {
478 		if_printf(&sc->arpcom.ac_if, "setting CAM filter failed\n");
479 		error = EIO;
480 		goto fail;
481 	}
482 
483 	/* Select the CAM mask page. */
484 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
485 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
486 
487 	/* Set the mask bit that enables this filter. */
488 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
489 	    1<<(sc->vge_camidx & 7));
490 
491 	sc->vge_camidx++;
492 
493 fail:
494 	/* Turn off access to CAM. */
495 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
496 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
497 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
498 
499 	return (error);
500 }
501 
502 /*
503  * Program the multicast filter. We use the 64-entry CAM filter
504  * for perfect filtering. If there's more than 64 multicast addresses,
505  * we use the hash filter insted.
506  */
507 static void
508 vge_setmulti(struct vge_softc *sc)
509 {
510 	struct ifnet *ifp = &sc->arpcom.ac_if;
511 	int error = 0;
512 	struct ifmultiaddr *ifma;
513 	uint32_t h, hashes[2] = { 0, 0 };
514 
515 	/* First, zot all the multicast entries. */
516 	vge_cam_clear(sc);
517 	CSR_WRITE_4(sc, VGE_MAR0, 0);
518 	CSR_WRITE_4(sc, VGE_MAR1, 0);
519 
520 	/*
521 	 * If the user wants allmulti or promisc mode, enable reception
522 	 * of all multicast frames.
523 	 */
524 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
525 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
526 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
527 		return;
528 	}
529 
530 	/* Now program new ones */
531 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
532 		if (ifma->ifma_addr->sa_family != AF_LINK)
533 			continue;
534 		error = vge_cam_set(sc,
535 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
536 		if (error)
537 			break;
538 	}
539 
540 	/* If there were too many addresses, use the hash filter. */
541 	if (error) {
542 		vge_cam_clear(sc);
543 
544 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
545 			if (ifma->ifma_addr->sa_family != AF_LINK)
546 				continue;
547 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
548 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
549 			if (h < 32)
550 				hashes[0] |= (1 << h);
551 			else
552 				hashes[1] |= (1 << (h - 32));
553 		}
554 
555 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
556 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
557 	}
558 }
559 
560 static void
561 vge_reset(struct vge_softc *sc)
562 {
563 	int i;
564 
565 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
566 
567 	for (i = 0; i < VGE_TIMEOUT; i++) {
568 		DELAY(5);
569 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
570 			break;
571 	}
572 
573 	if (i == VGE_TIMEOUT) {
574 		if_printf(&sc->arpcom.ac_if, "soft reset timed out");
575 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
576 		DELAY(2000);
577 	}
578 
579 	DELAY(5000);
580 
581 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
582 
583 	for (i = 0; i < VGE_TIMEOUT; i++) {
584 		DELAY(5);
585 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
586 			break;
587 	}
588 	if (i == VGE_TIMEOUT) {
589 		if_printf(&sc->arpcom.ac_if, "EEPROM reload timed out\n");
590 		return;
591 	}
592 
593 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
594 }
595 
596 /*
597  * Probe for a VIA gigabit chip. Check the PCI vendor and device
598  * IDs against our list and return a device name if we find a match.
599  */
600 static int
601 vge_probe(device_t dev)
602 {
603 	const struct vge_type *t;
604 	uint16_t did, vid;
605 
606 	did = pci_get_device(dev);
607 	vid = pci_get_vendor(dev);
608 	for (t = vge_devs; t->vge_name != NULL; ++t) {
609 		if (vid == t->vge_vid && did == t->vge_did) {
610 			device_set_desc(dev, t->vge_name);
611 			return 0;
612 		}
613 	}
614 	return (ENXIO);
615 }
616 
617 static void
618 vge_dma_map_rx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
619 		    bus_size_t mapsize, int error)
620 {
621 
622 	struct vge_dmaload_arg *ctx;
623 	struct vge_rx_desc *d = NULL;
624 
625 	if (error)
626 		return;
627 
628 	ctx = arg;
629 
630 	/* Signal error to caller if there's too many segments */
631 	if (nseg > ctx->vge_maxsegs) {
632 		ctx->vge_maxsegs = 0;
633 		return;
634 	}
635 
636 	/*
637 	 * Map the segment array into descriptors.
638 	 */
639 	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
640 
641 	/* If this descriptor is still owned by the chip, bail. */
642 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
643 		if_printf(&ctx->sc->arpcom.ac_if,
644 			  "tried to map busy descriptor\n");
645 		ctx->vge_maxsegs = 0;
646 		return;
647 	}
648 
649 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
650 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
651 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
652 	d->vge_sts = 0;
653 	d->vge_ctl = 0;
654 
655 	ctx->vge_maxsegs = 1;
656 }
657 
658 static void
659 vge_dma_map_tx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
660 		    bus_size_t mapsize, int error)
661 {
662 	struct vge_dmaload_arg *ctx;
663 	struct vge_tx_desc *d = NULL;
664 	struct vge_tx_frag *f;
665 	int i = 0;
666 
667 	if (error)
668 		return;
669 
670 	ctx = arg;
671 
672 	/* Signal error to caller if there's too many segments */
673 	if (nseg > ctx->vge_maxsegs) {
674 		ctx->vge_maxsegs = 0;
675 		return;
676 	}
677 
678 	/* Map the segment array into descriptors. */
679 	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
680 
681 	/* If this descriptor is still owned by the chip, bail. */
682 	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
683 		ctx->vge_maxsegs = 0;
684 		return;
685 	}
686 
687 	for (i = 0; i < nseg; i++) {
688 		f = &d->vge_frag[i];
689 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
690 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
691 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
692 	}
693 
694 	/* Argh. This chip does not autopad short frames */
695 	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
696 		f = &d->vge_frag[i];
697 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
698 		    ctx->vge_m0->m_pkthdr.len));
699 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
700 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
701 		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
702 		i++;
703 	}
704 
705 	/*
706 	 * When telling the chip how many segments there are, we
707 	 * must use nsegs + 1 instead of just nsegs. Darned if I
708 	 * know why.
709 	 */
710 	i++;
711 
712 	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
713 	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
714 
715 	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
716 		d->vge_ctl |= VGE_TDCTL_JUMBO;
717 
718 	ctx->vge_maxsegs = nseg;
719 }
720 
721 /*
722  * Map a single buffer address.
723  */
724 
725 static void
726 vge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
727 {
728 	if (error)
729 		return;
730 
731 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
732 	*((bus_addr_t *)arg) = segs->ds_addr;
733 }
734 
735 static int
736 vge_dma_alloc(device_t dev)
737 {
738 	struct vge_softc *sc = device_get_softc(dev);
739 	int error, nseg, i, tx_pos = 0, rx_pos = 0;
740 
741 	/*
742 	 * Allocate the parent bus DMA tag appropriate for PCI.
743 	 */
744 #define VGE_NSEG_NEW 32
745 	error = bus_dma_tag_create(NULL,	/* parent */
746 			1, 0,			/* alignment, boundary */
747 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
748 			BUS_SPACE_MAXADDR,	/* highaddr */
749 			NULL, NULL,		/* filter, filterarg */
750 			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
751 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
752 			BUS_DMA_ALLOCNOW,	/* flags */
753 			&sc->vge_parent_tag);
754 	if (error) {
755 		device_printf(dev, "can't create parent dma tag\n");
756 		return error;
757 	}
758 
759 	/*
760 	 * Allocate map for RX mbufs.
761 	 */
762 	nseg = 32;
763 	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
764 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
765 				   NULL, NULL,
766 				   MCLBYTES * nseg, nseg, MCLBYTES,
767 				   BUS_DMA_ALLOCNOW, &sc->vge_ldata.vge_mtag);
768 	if (error) {
769 		device_printf(dev, "could not allocate mbuf dma tag\n");
770 		return error;
771 	}
772 
773 	/*
774 	 * Allocate map for TX descriptor list.
775 	 */
776 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
777 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
778 				   NULL, NULL,
779 				   VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
780 				   BUS_DMA_ALLOCNOW,
781 				   &sc->vge_ldata.vge_tx_list_tag);
782 	if (error) {
783 		device_printf(dev, "could not allocate tx list dma tag\n");
784 		return error;
785 	}
786 
787 	/* Allocate DMA'able memory for the TX ring */
788 	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
789 				 (void **)&sc->vge_ldata.vge_tx_list,
790 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
791 				 &sc->vge_ldata.vge_tx_list_map);
792 	if (error) {
793 		device_printf(dev, "could not allocate tx list dma memory\n");
794 		return error;
795 	}
796 
797 	/* Load the map for the TX ring. */
798 	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
799 				sc->vge_ldata.vge_tx_list_map,
800 				sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ,
801 				vge_dma_map_addr,
802 				&sc->vge_ldata.vge_tx_list_addr,
803 				BUS_DMA_WAITOK);
804 	if (error) {
805 		device_printf(dev, "could not load tx list\n");
806 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
807 				sc->vge_ldata.vge_tx_list,
808 				sc->vge_ldata.vge_tx_list_map);
809 		sc->vge_ldata.vge_tx_list = NULL;
810 		return error;
811 	}
812 
813 	/* Create DMA maps for TX buffers */
814 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
815 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
816 					  &sc->vge_ldata.vge_tx_dmamap[i]);
817 		if (error) {
818 			device_printf(dev, "can't create DMA map for TX\n");
819 			tx_pos = i;
820 			goto map_fail;
821 		}
822 	}
823 	tx_pos = VGE_TX_DESC_CNT;
824 
825 	/*
826 	 * Allocate map for RX descriptor list.
827 	 */
828 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
829 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
830 				   NULL, NULL,
831 				   VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
832 				   BUS_DMA_ALLOCNOW,
833 				   &sc->vge_ldata.vge_rx_list_tag);
834 	if (error) {
835 		device_printf(dev, "could not allocate rx list dma tag\n");
836 		return error;
837 	}
838 
839 	/* Allocate DMA'able memory for the RX ring */
840 	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
841 				 (void **)&sc->vge_ldata.vge_rx_list,
842 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
843 				 &sc->vge_ldata.vge_rx_list_map);
844 	if (error) {
845 		device_printf(dev, "could not allocate rx list dma memory\n");
846 		return error;
847 	}
848 
849 	/* Load the map for the RX ring. */
850 	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
851 				sc->vge_ldata.vge_rx_list_map,
852 				sc->vge_ldata.vge_rx_list, VGE_TX_LIST_SZ,
853 				vge_dma_map_addr,
854 				&sc->vge_ldata.vge_rx_list_addr,
855 				BUS_DMA_WAITOK);
856 	if (error) {
857 		device_printf(dev, "could not load rx list\n");
858 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
859 				sc->vge_ldata.vge_rx_list,
860 				sc->vge_ldata.vge_rx_list_map);
861 		sc->vge_ldata.vge_rx_list = NULL;
862 		return error;
863 	}
864 
865 	/* Create DMA maps for RX buffers */
866 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
867 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
868 					  &sc->vge_ldata.vge_rx_dmamap[i]);
869 		if (error) {
870 			device_printf(dev, "can't create DMA map for RX\n");
871 			rx_pos = i;
872 			goto map_fail;
873 		}
874 	}
875 	return (0);
876 
877 map_fail:
878 	for (i = 0; i < tx_pos; ++i) {
879 		error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
880 					   sc->vge_ldata.vge_tx_dmamap[i]);
881 	}
882 	for (i = 0; i < rx_pos; ++i) {
883 		error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
884 					   sc->vge_ldata.vge_rx_dmamap[i]);
885 	}
886 	bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
887 	sc->vge_ldata.vge_mtag = NULL;
888 
889 	return error;
890 }
891 
892 static void
893 vge_dma_free(struct vge_softc *sc)
894 {
895 	/* Unload and free the RX DMA ring memory and map */
896 	if (sc->vge_ldata.vge_rx_list_tag) {
897 		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
898 				  sc->vge_ldata.vge_rx_list_map);
899 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
900 				sc->vge_ldata.vge_rx_list,
901 				sc->vge_ldata.vge_rx_list_map);
902 	}
903 
904 	if (sc->vge_ldata.vge_rx_list_tag)
905 		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
906 
907 	/* Unload and free the TX DMA ring memory and map */
908 	if (sc->vge_ldata.vge_tx_list_tag) {
909 		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
910 				  sc->vge_ldata.vge_tx_list_map);
911 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
912 				sc->vge_ldata.vge_tx_list,
913 				sc->vge_ldata.vge_tx_list_map);
914 	}
915 
916 	if (sc->vge_ldata.vge_tx_list_tag)
917 		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
918 
919 	/* Destroy all the RX and TX buffer maps */
920 	if (sc->vge_ldata.vge_mtag) {
921 		int i;
922 
923 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
924 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
925 					   sc->vge_ldata.vge_tx_dmamap[i]);
926 		}
927 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
928 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
929 					   sc->vge_ldata.vge_rx_dmamap[i]);
930 		}
931 		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
932 	}
933 
934 	if (sc->vge_parent_tag)
935 		bus_dma_tag_destroy(sc->vge_parent_tag);
936 }
937 
938 /*
939  * Attach the interface. Allocate softc structures, do ifmedia
940  * setup and ethernet/BPF attach.
941  */
942 static int
943 vge_attach(device_t dev)
944 {
945 	uint8_t eaddr[ETHER_ADDR_LEN];
946 	struct vge_softc *sc;
947 	struct ifnet *ifp;
948 	int error = 0;
949 
950 	sc = device_get_softc(dev);
951 	ifp = &sc->arpcom.ac_if;
952 
953 	/* Initialize if_xname early, so if_printf() can be used */
954 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
955 
956 	/*
957 	 * Map control/status registers.
958 	 */
959 	pci_enable_busmaster(dev);
960 
961 	sc->vge_res_rid = VGE_PCI_LOMEM;
962 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
963 					     &sc->vge_res_rid, RF_ACTIVE);
964 	if (sc->vge_res == NULL) {
965 		device_printf(dev, "couldn't map ports/memory\n");
966 		return ENXIO;
967 	}
968 
969 	sc->vge_btag = rman_get_bustag(sc->vge_res);
970 	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
971 
972 	/* Allocate interrupt */
973 	sc->vge_irq_rid = 0;
974 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->vge_irq_rid,
975 					     RF_SHAREABLE | RF_ACTIVE);
976 	if (sc->vge_irq == NULL) {
977 		device_printf(dev, "couldn't map interrupt\n");
978 		error = ENXIO;
979 		goto fail;
980 	}
981 
982 	/* Reset the adapter. */
983 	vge_reset(sc);
984 
985 	/*
986 	 * Get station address from the EEPROM.
987 	 */
988 	vge_read_eeprom(sc, eaddr, VGE_EE_EADDR, 3, 0);
989 
990 	/* Allocate DMA related stuffs */
991 	error = vge_dma_alloc(dev);
992 	if (error)
993 		goto fail;
994 
995 	/* Do MII setup */
996 	error = mii_phy_probe(dev, &sc->vge_miibus, vge_ifmedia_upd,
997 			      vge_ifmedia_sts);
998 	if (error) {
999 		device_printf(dev, "MII without any phy!\n");
1000 		goto fail;
1001 	}
1002 
1003 	ifp->if_softc = sc;
1004 	ifp->if_mtu = ETHERMTU;
1005 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1006 	ifp->if_init = vge_init;
1007 	ifp->if_start = vge_start;
1008 	ifp->if_watchdog = vge_watchdog;
1009 	ifp->if_ioctl = vge_ioctl;
1010 #ifdef DEVICE_POLLING
1011 	ifp->if_poll = vge_poll;
1012 #endif
1013 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1014 	ifp->if_capabilities = IFCAP_VLAN_MTU |
1015 			       IFCAP_HWCSUM |
1016 			       IFCAP_VLAN_HWTAGGING;
1017 	ifp->if_capenable = ifp->if_capabilities;
1018 	ifq_set_maxlen(&ifp->if_snd, VGE_IFQ_MAXLEN);
1019 	ifq_set_ready(&ifp->if_snd);
1020 
1021 	/*
1022 	 * Call MI attach routine.
1023 	 */
1024 	ether_ifattach(ifp, eaddr, NULL);
1025 
1026 	/* Hook interrupt last to avoid having to lock softc */
1027 	error = bus_setup_intr(dev, sc->vge_irq, INTR_MPSAFE, vge_intr, sc,
1028 			       &sc->vge_intrhand, ifp->if_serializer);
1029 	if (error) {
1030 		device_printf(dev, "couldn't set up irq\n");
1031 		ether_ifdetach(ifp);
1032 		goto fail;
1033 	}
1034 
1035 	return 0;
1036 fail:
1037 	vge_detach(dev);
1038 	return error;
1039 }
1040 
1041 /*
1042  * Shutdown hardware and free up resources. This can be called any
1043  * time after the mutex has been initialized. It is called in both
1044  * the error case in attach and the normal detach case so it needs
1045  * to be careful about only freeing resources that have actually been
1046  * allocated.
1047  */
1048 static int
1049 vge_detach(device_t dev)
1050 {
1051 	struct vge_softc *sc = device_get_softc(dev);
1052 	struct ifnet *ifp = &sc->arpcom.ac_if;
1053 
1054 	/* These should only be active if attach succeeded */
1055 	if (device_is_attached(dev)) {
1056 		lwkt_serialize_enter(ifp->if_serializer);
1057 
1058 		vge_stop(sc);
1059 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1060 		/*
1061 		 * Force off the IFF_UP flag here, in case someone
1062 		 * still had a BPF descriptor attached to this
1063 		 * interface. If they do, ether_ifattach() will cause
1064 		 * the BPF code to try and clear the promisc mode
1065 		 * flag, which will bubble down to vge_ioctl(),
1066 		 * which will try to call vge_init() again. This will
1067 		 * turn the NIC back on and restart the MII ticker,
1068 		 * which will panic the system when the kernel tries
1069 		 * to invoke the vge_tick() function that isn't there
1070 		 * anymore.
1071 		 */
1072 		ifp->if_flags &= ~IFF_UP;
1073 
1074 		lwkt_serialize_exit(ifp->if_serializer);
1075 
1076 		ether_ifdetach(ifp);
1077 	}
1078 
1079 	if (sc->vge_miibus)
1080 		device_delete_child(dev, sc->vge_miibus);
1081 	bus_generic_detach(dev);
1082 
1083 	if (sc->vge_irq) {
1084 		bus_release_resource(dev, SYS_RES_IRQ, sc->vge_irq_rid,
1085 				     sc->vge_irq);
1086 	}
1087 
1088 	if (sc->vge_res) {
1089 		bus_release_resource(dev, SYS_RES_MEMORY, sc->vge_res_rid,
1090 				     sc->vge_res);
1091 	}
1092 
1093 	vge_dma_free(sc);
1094 	return (0);
1095 }
1096 
1097 static int
1098 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1099 {
1100 	struct vge_dmaload_arg arg;
1101 	struct mbuf *n = NULL;
1102 	int i, error;
1103 
1104 	if (m == NULL) {
1105 		n = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1106 		if (n == NULL)
1107 			return (ENOBUFS);
1108 		m = n;
1109 	} else {
1110 		m->m_data = m->m_ext.ext_buf;
1111 	}
1112 
1113 
1114 #ifdef VGE_FIXUP_RX
1115 	/*
1116 	 * This is part of an evil trick to deal with non-x86 platforms.
1117 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1118 	 * boundaries, but that will hose non-x86 machines. To get around
1119 	 * this, we leave some empty space at the start of each buffer
1120 	 * and for non-x86 hosts, we copy the buffer back two bytes
1121 	 * to achieve word alignment. This is slightly more efficient
1122 	 * than allocating a new buffer, copying the contents, and
1123 	 * discarding the old buffer.
1124 	 */
1125 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1126 	m_adj(m, VGE_ETHER_ALIGN);
1127 #else
1128 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1129 #endif
1130 
1131 	arg.sc = sc;
1132 	arg.vge_idx = idx;
1133 	arg.vge_maxsegs = 1;
1134 	arg.vge_flags = 0;
1135 
1136 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1137 				     sc->vge_ldata.vge_rx_dmamap[idx], m,
1138 				     vge_dma_map_rx_desc, &arg, BUS_DMA_NOWAIT);
1139 	if (error || arg.vge_maxsegs != 1) {
1140 		if (n != NULL)
1141 			m_freem(n);
1142 		return (ENOMEM);
1143 	}
1144 
1145 	/*
1146 	 * Note: the manual fails to document the fact that for
1147 	 * proper opration, the driver needs to replentish the RX
1148 	 * DMA ring 4 descriptors at a time (rather than one at a
1149 	 * time, like most chips). We can allocate the new buffers
1150 	 * but we should not set the OWN bits until we're ready
1151 	 * to hand back 4 of them in one shot.
1152 	 */
1153 
1154 #define VGE_RXCHUNK 4
1155 	sc->vge_rx_consumed++;
1156 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1157 		for (i = idx; i != idx - sc->vge_rx_consumed; i--) {
1158 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1159 			    htole32(VGE_RDSTS_OWN);
1160 		}
1161 		sc->vge_rx_consumed = 0;
1162 	}
1163 
1164 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1165 
1166 	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1167 			sc->vge_ldata.vge_rx_dmamap[idx], BUS_DMASYNC_PREREAD);
1168 
1169 	return (0);
1170 }
1171 
1172 static int
1173 vge_tx_list_init(struct vge_softc *sc)
1174 {
1175 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1176 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1177 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1178 
1179 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1180 	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1181 	sc->vge_ldata.vge_tx_prodidx = 0;
1182 	sc->vge_ldata.vge_tx_considx = 0;
1183 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1184 
1185 	return (0);
1186 }
1187 
1188 static int
1189 vge_rx_list_init(struct vge_softc *sc)
1190 {
1191 	int i;
1192 
1193 	bzero(sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1194 	bzero(&sc->vge_ldata.vge_rx_mbuf,
1195 	      VGE_RX_DESC_CNT * sizeof(struct mbuf *));
1196 
1197 	sc->vge_rx_consumed = 0;
1198 
1199 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1200 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1201 			return (ENOBUFS);
1202 	}
1203 
1204 	/* Flush the RX descriptors */
1205 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1206 			sc->vge_ldata.vge_rx_list_map,
1207 			BUS_DMASYNC_PREWRITE);
1208 
1209 	sc->vge_ldata.vge_rx_prodidx = 0;
1210 	sc->vge_rx_consumed = 0;
1211 	sc->vge_head = sc->vge_tail = NULL;
1212 	return (0);
1213 }
1214 
1215 #ifdef VGE_FIXUP_RX
1216 static __inline void
1217 vge_fixup_rx(struct mbuf *m)
1218 {
1219 	uint16_t *src, *dst;
1220 	int i;
1221 
1222 	src = mtod(m, uint16_t *);
1223 	dst = src - 1;
1224 
1225 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1226 		*dst++ = *src++;
1227 
1228 	m->m_data -= ETHER_ALIGN;
1229 }
1230 #endif
1231 
1232 /*
1233  * RX handler. We support the reception of jumbo frames that have
1234  * been fragmented across multiple 2K mbuf cluster buffers.
1235  */
1236 static void
1237 vge_rxeof(struct vge_softc *sc, int count)
1238 {
1239 	struct ifnet *ifp = &sc->arpcom.ac_if;
1240 	struct mbuf *m;
1241 	int i, total_len, lim = 0;
1242 	struct vge_rx_desc *cur_rx;
1243 	uint32_t rxstat, rxctl;
1244 
1245 	ASSERT_SERIALIZED(ifp->if_serializer);
1246 
1247 	i = sc->vge_ldata.vge_rx_prodidx;
1248 
1249 	/* Invalidate the descriptor memory */
1250 
1251 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1252 			sc->vge_ldata.vge_rx_list_map, BUS_DMASYNC_POSTREAD);
1253 
1254 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1255 #ifdef DEVICE_POLLING
1256 		if (count >= 0 && count-- == 0)
1257 			break;
1258 #endif
1259 
1260 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1261 		m = sc->vge_ldata.vge_rx_mbuf[i];
1262 		total_len = VGE_RXBYTES(cur_rx);
1263 		rxstat = le32toh(cur_rx->vge_sts);
1264 		rxctl = le32toh(cur_rx->vge_ctl);
1265 
1266 		/* Invalidate the RX mbuf and unload its map */
1267 		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1268 				sc->vge_ldata.vge_rx_dmamap[i],
1269 				BUS_DMASYNC_POSTWRITE);
1270 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1271 				  sc->vge_ldata.vge_rx_dmamap[i]);
1272 
1273 		/*
1274 		 * If the 'start of frame' bit is set, this indicates
1275 		 * either the first fragment in a multi-fragment receive,
1276 		 * or an intermediate fragment. Either way, we want to
1277 		 * accumulate the buffers.
1278 		 */
1279 		if (rxstat & VGE_RXPKT_SOF) {
1280 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1281 			if (sc->vge_head == NULL) {
1282 				sc->vge_head = sc->vge_tail = m;
1283 			} else {
1284 				m->m_flags &= ~M_PKTHDR;
1285 				sc->vge_tail->m_next = m;
1286 				sc->vge_tail = m;
1287 			}
1288 			vge_newbuf(sc, i, NULL);
1289 			VGE_RX_DESC_INC(i);
1290 			continue;
1291 		}
1292 
1293 		/*
1294 		 * Bad/error frames will have the RXOK bit cleared.
1295 		 * However, there's one error case we want to allow:
1296 		 * if a VLAN tagged frame arrives and the chip can't
1297 		 * match it against the CAM filter, it considers this
1298 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1299 		 * We don't want to drop the frame though: our VLAN
1300 		 * filtering is done in software.
1301 		 */
1302 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM) &&
1303 		    !(rxstat & VGE_RDSTS_CSUMERR)) {
1304 			ifp->if_ierrors++;
1305 			/*
1306 			 * If this is part of a multi-fragment packet,
1307 			 * discard all the pieces.
1308 			 */
1309 			if (sc->vge_head != NULL) {
1310 				m_freem(sc->vge_head);
1311 				sc->vge_head = sc->vge_tail = NULL;
1312 			}
1313 			vge_newbuf(sc, i, m);
1314 			VGE_RX_DESC_INC(i);
1315 			continue;
1316 		}
1317 
1318 		/*
1319 		 * If allocating a replacement mbuf fails,
1320 		 * reload the current one.
1321 		 */
1322 		if (vge_newbuf(sc, i, NULL)) {
1323 			ifp->if_ierrors++;
1324 			if (sc->vge_head != NULL) {
1325 				m_freem(sc->vge_head);
1326 				sc->vge_head = sc->vge_tail = NULL;
1327 			}
1328 			vge_newbuf(sc, i, m);
1329 			VGE_RX_DESC_INC(i);
1330 			continue;
1331 		}
1332 
1333 		VGE_RX_DESC_INC(i);
1334 
1335 		if (sc->vge_head != NULL) {
1336 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1337 			/*
1338 			 * Special case: if there's 4 bytes or less
1339 			 * in this buffer, the mbuf can be discarded:
1340 			 * the last 4 bytes is the CRC, which we don't
1341 			 * care about anyway.
1342 			 */
1343 			if (m->m_len <= ETHER_CRC_LEN) {
1344 				sc->vge_tail->m_len -=
1345 				    (ETHER_CRC_LEN - m->m_len);
1346 				m_freem(m);
1347 			} else {
1348 				m->m_len -= ETHER_CRC_LEN;
1349 				m->m_flags &= ~M_PKTHDR;
1350 				sc->vge_tail->m_next = m;
1351 			}
1352 			m = sc->vge_head;
1353 			sc->vge_head = sc->vge_tail = NULL;
1354 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1355 		} else {
1356 			m->m_pkthdr.len = m->m_len =
1357 			    (total_len - ETHER_CRC_LEN);
1358 		}
1359 
1360 #ifdef VGE_FIXUP_RX
1361 		vge_fixup_rx(m);
1362 #endif
1363 		ifp->if_ipackets++;
1364 		m->m_pkthdr.rcvif = ifp;
1365 
1366 		/* Do RX checksumming if enabled */
1367 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1368 			/* Check IP header checksum */
1369 			if (rxctl & VGE_RDCTL_IPPKT)
1370 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1371 			if (rxctl & VGE_RDCTL_IPCSUMOK)
1372 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1373 
1374 			/* Check TCP/UDP checksum */
1375 			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1376 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1377 				m->m_pkthdr.csum_flags |=
1378 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1379 				    CSUM_FRAG_NOT_CHECKED;
1380 				m->m_pkthdr.csum_data = 0xffff;
1381 			}
1382 		}
1383 
1384 		if (rxstat & VGE_RDSTS_VTAG)
1385 			VLAN_INPUT_TAG(m, ntohs((rxctl & VGE_RDCTL_VLANID)));
1386 		else
1387 			ifp->if_input(ifp, m);
1388 
1389 		lim++;
1390 		if (lim == VGE_RX_DESC_CNT)
1391 			break;
1392 	}
1393 
1394 	/* Flush the RX DMA ring */
1395 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1396 			sc->vge_ldata.vge_rx_list_map,
1397 			BUS_DMASYNC_PREWRITE);
1398 
1399 	sc->vge_ldata.vge_rx_prodidx = i;
1400 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1401 }
1402 
1403 static void
1404 vge_txeof(struct vge_softc *sc)
1405 {
1406 	struct ifnet *ifp = &sc->arpcom.ac_if;
1407 	uint32_t txstat;
1408 	int idx;
1409 
1410 	idx = sc->vge_ldata.vge_tx_considx;
1411 
1412 	/* Invalidate the TX descriptor list */
1413 
1414 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1415 			sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_POSTREAD);
1416 
1417 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1418 
1419 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1420 		if (txstat & VGE_TDSTS_OWN)
1421 			break;
1422 
1423 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1424 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1425 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1426 				  sc->vge_ldata.vge_tx_dmamap[idx]);
1427 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1428 			ifp->if_collisions++;
1429 		if (txstat & VGE_TDSTS_TXERR)
1430 			ifp->if_oerrors++;
1431 		else
1432 			ifp->if_opackets++;
1433 
1434 		sc->vge_ldata.vge_tx_free++;
1435 		VGE_TX_DESC_INC(idx);
1436 	}
1437 
1438 	/* No changes made to the TX ring, so no flush needed */
1439 	if (idx != sc->vge_ldata.vge_tx_considx) {
1440 		sc->vge_ldata.vge_tx_considx = idx;
1441 		ifp->if_flags &= ~IFF_OACTIVE;
1442 		ifp->if_timer = 0;
1443 	}
1444 
1445 	/*
1446 	 * If not all descriptors have been released reaped yet,
1447 	 * reload the timer so that we will eventually get another
1448 	 * interrupt that will cause us to re-enter this routine.
1449 	 * This is done in case the transmitter has gone idle.
1450 	 */
1451 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1452 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1453 }
1454 
1455 static void
1456 vge_tick(struct vge_softc *sc)
1457 {
1458 	struct ifnet *ifp = &sc->arpcom.ac_if;
1459 	struct mii_data *mii;
1460 
1461 	mii = device_get_softc(sc->vge_miibus);
1462 
1463 	mii_tick(mii);
1464 	if (sc->vge_link) {
1465 		if (!(mii->mii_media_status & IFM_ACTIVE))
1466 			sc->vge_link = 0;
1467 	} else {
1468 		if (mii->mii_media_status & IFM_ACTIVE &&
1469 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1470 			sc->vge_link = 1;
1471 			if (!ifq_is_empty(&ifp->if_snd))
1472 				ifp->if_start(ifp);
1473 		}
1474 	}
1475 }
1476 
1477 #ifdef DEVICE_POLLING
1478 static void
1479 vge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1480 {
1481 	struct vge_softc *sc = ifp->if_softc;
1482 
1483 	sc->rxcycles = count;
1484 
1485 	switch (cmd) {
1486 	case POLL_REGISTER:
1487 		vge_disable_intr(sc);
1488 		break;
1489 	case POLL_DEREGISTER:
1490 		vge_enable_intr(sc, 0xffffffff);
1491 		break;
1492 	case POLL_ONLY:
1493 	case POLL_AND_CHECK_STATUS:
1494 		vge_rxeof(sc, count);
1495 		vge_txeof(sc);
1496 
1497 		if (!ifq_is_empty(&ifp->if_snd))
1498 			ifp->if_start(ifp);
1499 
1500 		/* XXX copy & paste from vge_intr */
1501 		if (cmd == POLL_AND_CHECK_STATUS) {
1502 			uint32_t status = 0;
1503 
1504 			status = CSR_READ_4(sc, VGE_ISR);
1505 			if (status == 0xffffffff)
1506 				break;
1507 
1508 			if (status)
1509 				CSR_WRITE_4(sc, VGE_ISR, status);
1510 
1511 			if (status & (VGE_ISR_TXDMA_STALL |
1512 				      VGE_ISR_RXDMA_STALL))
1513 				vge_init(sc);
1514 
1515 			if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) {
1516 				ifp->if_ierrors++;
1517 				CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1518 				CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1519 			}
1520 		}
1521 		break;
1522 	}
1523 
1524 }
1525 #endif	/* DEVICE_POLLING */
1526 
1527 static void
1528 vge_intr(void *arg)
1529 {
1530 	struct vge_softc *sc = arg;
1531 	struct ifnet *ifp = &sc->arpcom.ac_if;
1532 	uint32_t status;
1533 
1534 	if (sc->suspended || !(ifp->if_flags & IFF_UP))
1535 		return;
1536 
1537 	/* Disable interrupts */
1538 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1539 
1540 	for (;;) {
1541 		status = CSR_READ_4(sc, VGE_ISR);
1542 		/* If the card has gone away the read returns 0xffff. */
1543 		if (status == 0xFFFFFFFF)
1544 			break;
1545 
1546 		if (status)
1547 			CSR_WRITE_4(sc, VGE_ISR, status);
1548 
1549 		if ((status & VGE_INTRS) == 0)
1550 			break;
1551 
1552 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1553 			vge_rxeof(sc, -1);
1554 
1555 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1556 			vge_rxeof(sc, -1);
1557 			ifp->if_ierrors++;
1558 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1559 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1560 		}
1561 
1562 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1563 			vge_txeof(sc);
1564 
1565 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1566 			vge_init(sc);
1567 
1568 		if (status & VGE_ISR_LINKSTS)
1569 			vge_tick(sc);
1570 	}
1571 
1572 	/* Re-enable interrupts */
1573 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1574 
1575 	if (!ifq_is_empty(&ifp->if_snd))
1576 		ifp->if_start(ifp);
1577 }
1578 
1579 static int
1580 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1581 {
1582 	struct vge_dmaload_arg arg;
1583 	bus_dmamap_t map;
1584 	int error;
1585 
1586 	arg.vge_flags = 0;
1587 
1588 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1589 		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1590 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1591 		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1592 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1593 		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1594 
1595 	arg.sc = sc;
1596 	arg.vge_idx = idx;
1597 	arg.vge_m0 = m_head;
1598 	arg.vge_maxsegs = VGE_TX_FRAGS;
1599 
1600 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1601 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, m_head,
1602 				     vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1603 	if (error && error != EFBIG) {
1604 		if_printf(&sc->arpcom.ac_if, "can't map mbuf (error %d)\n",
1605 			  error);
1606 		goto fail;
1607 	}
1608 
1609 	/* Too many segments to map, coalesce into a single mbuf */
1610 	if (error || arg.vge_maxsegs == 0) {
1611 		struct mbuf *m_new;
1612 
1613 		m_new = m_defrag(m_head, MB_DONTWAIT);
1614 		if (m_new == NULL) {
1615 			error = ENOBUFS;
1616 			goto fail;
1617 		} else {
1618 			m_head = m_new;
1619 		}
1620 
1621 		arg.sc = sc;
1622 		arg.vge_m0 = m_head;
1623 		arg.vge_idx = idx;
1624 		arg.vge_maxsegs = 1;
1625 
1626 		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1627 					     m_head, vge_dma_map_tx_desc, &arg,
1628 					     BUS_DMA_NOWAIT);
1629 		if (error) {
1630 			if_printf(&sc->arpcom.ac_if,
1631 				  "can't map mbuf (error %d)\n", error);
1632 			goto fail;
1633 		}
1634 	}
1635 
1636 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1637 	sc->vge_ldata.vge_tx_free--;
1638 
1639 	/*
1640 	 * Set up hardware VLAN tagging.
1641 	 */
1642 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1643 	    m_head->m_pkthdr.rcvif != NULL &&
1644 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN) {
1645 		struct ifvlan *ifv = m_head->m_pkthdr.rcvif->if_softc;
1646 
1647 		if (ifv != NULL) {
1648 			sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1649 				htole32(htons(ifv->ifv_tag) | VGE_TDCTL_VTAG);
1650 		}
1651 	}
1652 
1653 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1654 	return (0);
1655 
1656 fail:
1657 	m_freem(m_head);
1658 	return error;
1659 }
1660 
1661 /*
1662  * Main transmit routine.
1663  */
1664 
1665 static void
1666 vge_start(struct ifnet *ifp)
1667 {
1668 	struct vge_softc *sc = ifp->if_softc;
1669 	struct mbuf *m_head = NULL;
1670 	int idx, pidx = 0;
1671 
1672 	ASSERT_SERIALIZED(ifp->if_serializer);
1673 
1674 	if (!sc->vge_link || (ifp->if_flags & IFF_OACTIVE))
1675 		return;
1676 
1677 	if (ifq_is_empty(&ifp->if_snd))
1678 		return;
1679 
1680 	idx = sc->vge_ldata.vge_tx_prodidx;
1681 
1682 	pidx = idx - 1;
1683 	if (pidx < 0)
1684 		pidx = VGE_TX_DESC_CNT - 1;
1685 
1686 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1687 		m_head = ifq_poll(&ifp->if_snd);
1688 		if (m_head == NULL)
1689 			break;
1690 
1691 		if (sc->vge_ldata.vge_tx_free <= 2) {
1692 			ifp->if_flags |= IFF_OACTIVE;
1693 			break;
1694 		}
1695 
1696 		m_head = ifq_dequeue(&ifp->if_snd, m_head);
1697 
1698 		if (vge_encap(sc, m_head, idx)) {
1699 			/* If vge_encap() failed, it will free m_head for us */
1700 			ifp->if_flags |= IFF_OACTIVE;
1701 			break;
1702 		}
1703 
1704 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1705 		    htole16(VGE_TXDESC_Q);
1706 
1707 		pidx = idx;
1708 		VGE_TX_DESC_INC(idx);
1709 
1710 		/*
1711 		 * If there's a BPF listener, bounce a copy of this frame
1712 		 * to him.
1713 		 */
1714 		BPF_MTAP(ifp, m_head);
1715 	}
1716 
1717 	if (idx == sc->vge_ldata.vge_tx_prodidx)
1718 		return;
1719 
1720 	/* Flush the TX descriptors */
1721 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1722 			sc->vge_ldata.vge_tx_list_map,
1723 			BUS_DMASYNC_PREWRITE);
1724 
1725 	/* Issue a transmit command. */
1726 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1727 
1728 	sc->vge_ldata.vge_tx_prodidx = idx;
1729 
1730 	/*
1731 	 * Use the countdown timer for interrupt moderation.
1732 	 * 'TX done' interrupts are disabled. Instead, we reset the
1733 	 * countdown timer, which will begin counting until it hits
1734 	 * the value in the SSTIMER register, and then trigger an
1735 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1736 	 * the timer count is reloaded. Only when the transmitter
1737 	 * is idle will the timer hit 0 and an interrupt fire.
1738 	 */
1739 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1740 
1741 	/*
1742 	 * Set a timeout in case the chip goes out to lunch.
1743 	 */
1744 	ifp->if_timer = 5;
1745 }
1746 
1747 static void
1748 vge_init(void *xsc)
1749 {
1750 	struct vge_softc *sc = xsc;
1751 	struct ifnet *ifp = &sc->arpcom.ac_if;
1752 	struct mii_data *mii;
1753 	int i;
1754 
1755 	ASSERT_SERIALIZED(ifp->if_serializer);
1756 
1757 	mii = device_get_softc(sc->vge_miibus);
1758 
1759 	/*
1760 	 * Cancel pending I/O and free all RX/TX buffers.
1761 	 */
1762 	vge_stop(sc);
1763 	vge_reset(sc);
1764 
1765 	/*
1766 	 * Initialize the RX and TX descriptors and mbufs.
1767 	 */
1768 	vge_rx_list_init(sc);
1769 	vge_tx_list_init(sc);
1770 
1771 	/* Set our station address */
1772 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1773 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(ifp)[i]);
1774 
1775 	/*
1776 	 * Set receive FIFO threshold. Also allow transmission and
1777 	 * reception of VLAN tagged frames.
1778 	 */
1779 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1780 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1781 
1782 	/* Set DMA burst length */
1783 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1784 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1785 
1786 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1787 
1788 	/* Set collision backoff algorithm */
1789 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1790 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1791 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1792 
1793 	/* Disable LPSEL field in priority resolution */
1794 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1795 
1796 	/*
1797 	 * Load the addresses of the DMA queues into the chip.
1798 	 * Note that we only use one transmit queue.
1799 	 */
1800 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1801 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1802 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1803 
1804 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1805 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1806 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1807 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1808 
1809 	/* Enable and wake up the RX descriptor queue */
1810 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1811 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1812 
1813 	/* Enable the TX descriptor queue */
1814 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1815 
1816 	/* Set up the receive filter -- allow large frames for VLANs. */
1817 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1818 
1819 	/* If we want promiscuous mode, set the allframes bit. */
1820 	if (ifp->if_flags & IFF_PROMISC)
1821 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1822 
1823 	/* Set capture broadcast bit to capture broadcast frames. */
1824 	if (ifp->if_flags & IFF_BROADCAST)
1825 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1826 
1827 	/* Set multicast bit to capture multicast frames. */
1828 	if (ifp->if_flags & IFF_MULTICAST)
1829 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1830 
1831 	/* Init the cam filter. */
1832 	vge_cam_clear(sc);
1833 
1834 	/* Init the multicast filter. */
1835 	vge_setmulti(sc);
1836 
1837 	/* Enable flow control */
1838 
1839 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1840 
1841 	/* Enable jumbo frame reception (if desired) */
1842 
1843 	/* Start the MAC. */
1844 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1845 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1846 	CSR_WRITE_1(sc, VGE_CRS0,
1847 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1848 
1849 	/*
1850 	 * Configure one-shot timer for microsecond
1851 	 * resulution and load it for 500 usecs.
1852 	 */
1853 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1854 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1855 
1856 	/*
1857 	 * Configure interrupt moderation for receive. Enable
1858 	 * the holdoff counter and load it, and set the RX
1859 	 * suppression count to the number of descriptors we
1860 	 * want to allow before triggering an interrupt.
1861 	 * The holdoff timer is in units of 20 usecs.
1862 	 */
1863 
1864 #ifdef notyet
1865 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1866 	/* Select the interrupt holdoff timer page. */
1867 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1868 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1869 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1870 
1871 	/* Enable use of the holdoff timer. */
1872 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1873 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1874 
1875 	/* Select the RX suppression threshold page. */
1876 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1877 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1878 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1879 
1880 	/* Restore the page select bits. */
1881 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1882 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1883 #endif
1884 
1885 #ifdef DEVICE_POLLING
1886 	/* Disable intr if polling(4) is enabled */
1887 	if (ifp->if_flags & IFF_POLLING)
1888 		vge_disable_intr(sc);
1889 	else
1890 #endif
1891 	vge_enable_intr(sc, 0);
1892 
1893 	mii_mediachg(mii);
1894 
1895 	ifp->if_flags |= IFF_RUNNING;
1896 	ifp->if_flags &= ~IFF_OACTIVE;
1897 
1898 	sc->vge_if_flags = 0;
1899 	sc->vge_link = 0;
1900 }
1901 
1902 /*
1903  * Set media options.
1904  */
1905 static int
1906 vge_ifmedia_upd(struct ifnet *ifp)
1907 {
1908 	struct vge_softc *sc = ifp->if_softc;
1909 	struct mii_data *mii = device_get_softc(sc->vge_miibus);
1910 
1911 	mii_mediachg(mii);
1912 
1913 	return (0);
1914 }
1915 
1916 /*
1917  * Report current media status.
1918  */
1919 static void
1920 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1921 {
1922 	struct vge_softc *sc = ifp->if_softc;
1923 	struct mii_data *mii = device_get_softc(sc->vge_miibus);
1924 
1925 	mii_pollstat(mii);
1926 	ifmr->ifm_active = mii->mii_media_active;
1927 	ifmr->ifm_status = mii->mii_media_status;
1928 }
1929 
1930 static void
1931 vge_miibus_statchg(device_t dev)
1932 {
1933 	struct vge_softc *sc;
1934 	struct mii_data *mii;
1935 	struct ifmedia_entry *ife;
1936 
1937 	sc = device_get_softc(dev);
1938 	mii = device_get_softc(sc->vge_miibus);
1939 	ife = mii->mii_media.ifm_cur;
1940 
1941 	/*
1942 	 * If the user manually selects a media mode, we need to turn
1943 	 * on the forced MAC mode bit in the DIAGCTL register. If the
1944 	 * user happens to choose a full duplex mode, we also need to
1945 	 * set the 'force full duplex' bit. This applies only to
1946 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1947 	 * mode is disabled, and in 1000baseT mode, full duplex is
1948 	 * always implied, so we turn on the forced mode bit but leave
1949 	 * the FDX bit cleared.
1950 	 */
1951 
1952 	switch (IFM_SUBTYPE(ife->ifm_media)) {
1953 	case IFM_AUTO:
1954 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1955 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1956 		break;
1957 	case IFM_1000_T:
1958 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1959 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1960 		break;
1961 	case IFM_100_TX:
1962 	case IFM_10_T:
1963 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1964 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX)
1965 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1966 		else
1967 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1968 		break;
1969 	default:
1970 		device_printf(dev, "unknown media type: %x\n",
1971 			      IFM_SUBTYPE(ife->ifm_media));
1972 		break;
1973 	}
1974 }
1975 
1976 static int
1977 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1978 {
1979 	struct vge_softc *sc = ifp->if_softc;
1980 	struct ifreq *ifr = (struct ifreq *)data;
1981 	struct mii_data *mii;
1982 	int error = 0;
1983 
1984 	switch (command) {
1985 	case SIOCSIFMTU:
1986 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
1987 			error = EINVAL;
1988 		ifp->if_mtu = ifr->ifr_mtu;
1989 		break;
1990 	case SIOCSIFFLAGS:
1991 		if (ifp->if_flags & IFF_UP) {
1992 			if ((ifp->if_flags & IFF_RUNNING) &&
1993 			    (ifp->if_flags & IFF_PROMISC) &&
1994 			    !(sc->vge_if_flags & IFF_PROMISC)) {
1995 				CSR_SETBIT_1(sc, VGE_RXCTL,
1996 				    VGE_RXCTL_RX_PROMISC);
1997 				vge_setmulti(sc);
1998 			} else if ((ifp->if_flags & IFF_RUNNING) &&
1999 				   !(ifp->if_flags & IFF_PROMISC) &&
2000 				   (sc->vge_if_flags & IFF_PROMISC)) {
2001 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2002 					     VGE_RXCTL_RX_PROMISC);
2003 				vge_setmulti(sc);
2004                         } else {
2005 				vge_init(sc);
2006 			}
2007 		} else {
2008 			if (ifp->if_flags & IFF_RUNNING)
2009 				vge_stop(sc);
2010 		}
2011 		sc->vge_if_flags = ifp->if_flags;
2012 		break;
2013 	case SIOCADDMULTI:
2014 	case SIOCDELMULTI:
2015 		vge_setmulti(sc);
2016 		break;
2017 	case SIOCGIFMEDIA:
2018 	case SIOCSIFMEDIA:
2019 		mii = device_get_softc(sc->vge_miibus);
2020 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2021 		break;
2022 	case SIOCSIFCAP:
2023 	    {
2024 		uint32_t mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2025 
2026 		if (mask & IFCAP_HWCSUM) {
2027 			ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
2028 			if (ifp->if_capenable & IFCAP_TXCSUM)
2029 				ifp->if_hwassist = VGE_CSUM_FEATURES;
2030 			else
2031 				ifp->if_hwassist = 0;
2032 			if (ifp->if_flags & IFF_RUNNING)
2033 				vge_init(sc);
2034 		}
2035 	    }
2036 		break;
2037 	default:
2038 		error = ether_ioctl(ifp, command, data);
2039 		break;
2040 	}
2041 	return (error);
2042 }
2043 
2044 static void
2045 vge_watchdog(struct ifnet *ifp)
2046 {
2047 	struct vge_softc *sc = ifp->if_softc;
2048 
2049 	if_printf(ifp, "watchdog timeout\n");
2050 	ifp->if_oerrors++;
2051 
2052 	vge_txeof(sc);
2053 	vge_rxeof(sc, -1);
2054 
2055 	vge_init(sc);
2056 }
2057 
2058 /*
2059  * Stop the adapter and free any mbufs allocated to the
2060  * RX and TX lists.
2061  */
2062 static void
2063 vge_stop(struct vge_softc *sc)
2064 {
2065 	struct ifnet *ifp = &sc->arpcom.ac_if;
2066 	int i;
2067 
2068 	ASSERT_SERIALIZED(ifp->if_serializer);
2069 
2070 	ifp->if_timer = 0;
2071 
2072 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2073 
2074 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2075 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2076 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2077 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2078 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2079 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2080 
2081 	if (sc->vge_head != NULL) {
2082 		m_freem(sc->vge_head);
2083 		sc->vge_head = sc->vge_tail = NULL;
2084 	}
2085 
2086 	/* Free the TX list buffers. */
2087 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2088 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2089 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2090 					  sc->vge_ldata.vge_tx_dmamap[i]);
2091 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2092 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2093 		}
2094 	}
2095 
2096 	/* Free the RX list buffers. */
2097 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2098 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2099 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2100 					  sc->vge_ldata.vge_rx_dmamap[i]);
2101 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2102 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2103 		}
2104 	}
2105 }
2106 
2107 /*
2108  * Device suspend routine.  Stop the interface and save some PCI
2109  * settings in case the BIOS doesn't restore them properly on
2110  * resume.
2111  */
2112 static int
2113 vge_suspend(device_t dev)
2114 {
2115 	struct vge_softc *sc = device_get_softc(dev);
2116 	struct ifnet *ifp = &sc->arpcom.ac_if;
2117 
2118 	lwkt_serialize_enter(ifp->if_serializer);
2119 	vge_stop(sc);
2120 	sc->suspended = 1;
2121 	lwkt_serialize_exit(ifp->if_serializer);
2122 
2123 	return (0);
2124 }
2125 
2126 /*
2127  * Device resume routine.  Restore some PCI settings in case the BIOS
2128  * doesn't, re-enable busmastering, and restart the interface if
2129  * appropriate.
2130  */
2131 static int
2132 vge_resume(device_t dev)
2133 {
2134 	struct vge_softc *sc = device_get_softc(dev);
2135 	struct ifnet *ifp = &sc->arpcom.ac_if;
2136 
2137 	/* reenable busmastering */
2138 	pci_enable_busmaster(dev);
2139 	pci_enable_io(dev, SYS_RES_MEMORY);
2140 
2141 	lwkt_serialize_enter(ifp->if_serializer);
2142 	/* reinitialize interface if necessary */
2143 	if (ifp->if_flags & IFF_UP)
2144 		vge_init(sc);
2145 
2146 	sc->suspended = 0;
2147 	lwkt_serialize_exit(ifp->if_serializer);
2148 
2149 	return (0);
2150 }
2151 
2152 /*
2153  * Stop all chip I/O so that the kernel's probe routines don't
2154  * get confused by errant DMAs when rebooting.
2155  */
2156 static void
2157 vge_shutdown(device_t dev)
2158 {
2159 	struct vge_softc *sc = device_get_softc(dev);
2160 	struct ifnet *ifp = &sc->arpcom.ac_if;
2161 
2162 	lwkt_serialize_enter(ifp->if_serializer);
2163 	vge_stop(sc);
2164 	lwkt_serialize_exit(ifp->if_serializer);
2165 }
2166 
2167 static void
2168 vge_enable_intr(struct vge_softc *sc, uint32_t isr)
2169 {
2170 	CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2171 	CSR_WRITE_4(sc, VGE_ISR, isr);
2172 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2173 }
2174 
2175 #ifdef DEVICE_POLLING
2176 static void
2177 vge_disable_intr(struct vge_softc *sc)
2178 {
2179 	CSR_WRITE_4(sc, VGE_IMR, 0);
2180 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2181 }
2182 #endif
2183