xref: /dragonfly/sys/dev/netif/wb/if_wb.c (revision 03517d4e)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_wb.c,v 1.26.2.6 2003/03/05 18:42:34 njl Exp $
33  */
34 
35 /*
36  * Winbond fast ethernet PCI NIC driver
37  *
38  * Supports various cheap network adapters based on the Winbond W89C840F
39  * fast ethernet controller chip. This includes adapters manufactured by
40  * Winbond itself and some made by Linksys.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The Winbond W89C840F chip is a bus master; in some ways it resembles
49  * a DEC 'tulip' chip, only not as complicated. Unfortunately, it has
50  * one major difference which is that while the registers do many of
51  * the same things as a tulip adapter, the offsets are different: where
52  * tulip registers are typically spaced 8 bytes apart, the Winbond
53  * registers are spaced 4 bytes apart. The receiver filter is also
54  * programmed differently.
55  *
56  * Like the tulip, the Winbond chip uses small descriptors containing
57  * a status word, a control word and 32-bit areas that can either be used
58  * to point to two external data blocks, or to point to a single block
59  * and another descriptor in a linked list. Descriptors can be grouped
60  * together in blocks to form fixed length rings or can be chained
61  * together in linked lists. A single packet may be spread out over
62  * several descriptors if necessary.
63  *
64  * For the receive ring, this driver uses a linked list of descriptors,
65  * each pointing to a single mbuf cluster buffer, which us large enough
66  * to hold an entire packet. The link list is looped back to created a
67  * closed ring.
68  *
69  * For transmission, the driver creates a linked list of 'super descriptors'
70  * which each contain several individual descriptors linked toghether.
71  * Each 'super descriptor' contains WB_MAXFRAGS descriptors, which we
72  * abuse as fragment pointers. This allows us to use a buffer managment
73  * scheme very similar to that used in the ThunderLAN and Etherlink XL
74  * drivers.
75  *
76  * Autonegotiation is performed using the external PHY via the MII bus.
77  * The sample boards I have all use a Davicom PHY.
78  *
79  * Note: the author of the Linux driver for the Winbond chip alludes
80  * to some sort of flaw in the chip's design that seems to mandate some
81  * drastic workaround which signigicantly impairs transmit performance.
82  * I have no idea what he's on about: transmit performance with all
83  * three of my test boards seems fine.
84  */
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/sockio.h>
89 #include <sys/mbuf.h>
90 #include <sys/malloc.h>
91 #include <sys/kernel.h>
92 #include <sys/socket.h>
93 #include <sys/queue.h>
94 #include <sys/serialize.h>
95 #include <sys/bus.h>
96 #include <sys/rman.h>
97 #include <sys/thread2.h>
98 #include <sys/interrupt.h>
99 
100 #include <net/if.h>
101 #include <net/ifq_var.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 
107 #include <net/bpf.h>
108 
109 #include <vm/vm.h>              /* for vtophys */
110 #include <vm/pmap.h>            /* for vtophys */
111 
112 #include "pcidevs.h"
113 #include <bus/pci/pcireg.h>
114 #include <bus/pci/pcivar.h>
115 
116 #include <dev/netif/mii_layer/mii.h>
117 #include <dev/netif/mii_layer/miivar.h>
118 
119 /* "controller miibus0" required.  See GENERIC if you get errors here. */
120 #include "miibus_if.h"
121 
122 #define WB_USEIOSPACE
123 
124 #include "if_wbreg.h"
125 
126 /*
127  * Various supported device vendors/types and their names.
128  */
129 static struct wb_type wb_devs[] = {
130 	{ PCI_VENDOR_WINBOND, PCI_PRODUCT_WINBOND_W89C840F,
131 		"Winbond W89C840F 10/100BaseTX" },
132 	{ PCI_VENDOR_COMPEX, PCI_PRODUCT_COMPEX_RL100ATX,
133 		"Compex RL100-ATX 10/100baseTX" },
134 	{ 0, 0, NULL }
135 };
136 
137 static int	wb_probe(device_t);
138 static int	wb_attach(device_t);
139 static int	wb_detach(device_t);
140 
141 static void	wb_bfree(void *);
142 static int	wb_newbuf(struct wb_softc *, struct wb_chain_onefrag *,
143 			  struct mbuf *);
144 static int	wb_encap(struct wb_softc *, struct wb_chain *, struct mbuf *);
145 
146 static void	wb_rxeof(struct wb_softc *);
147 static void	wb_rxeoc(struct wb_softc *);
148 static void	wb_txeof(struct wb_softc *);
149 static void	wb_txeoc(struct wb_softc *);
150 static void	wb_intr(void *);
151 static void	wb_tick(void *);
152 static void	wb_start(struct ifnet *, struct ifaltq_subque *);
153 static int	wb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
154 static void	wb_init(void *);
155 static void	wb_stop(struct wb_softc *);
156 static void	wb_watchdog(struct ifnet *);
157 static void	wb_shutdown(device_t);
158 static int	wb_ifmedia_upd(struct ifnet *);
159 static void	wb_ifmedia_sts(struct ifnet *, struct ifmediareq *);
160 
161 static void	wb_eeprom_putbyte(struct wb_softc *, int);
162 static void	wb_eeprom_getword(struct wb_softc *, int, uint16_t *);
163 static void	wb_read_eeprom(struct wb_softc *, caddr_t, int, int);
164 static void	wb_mii_sync(struct wb_softc *);
165 static void	wb_mii_send(struct wb_softc *, uint32_t, int);
166 static int	wb_mii_readreg(struct wb_softc *, struct wb_mii_frame *);
167 static int	wb_mii_writereg(struct wb_softc *, struct wb_mii_frame *);
168 
169 static void	wb_setcfg(struct wb_softc *, uint32_t);
170 static void	wb_setmulti(struct wb_softc *);
171 static void	wb_reset(struct wb_softc *);
172 static void	wb_fixmedia(struct wb_softc *);
173 static int	wb_list_rx_init(struct wb_softc *);
174 static int	wb_list_tx_init(struct wb_softc *);
175 
176 static int	wb_miibus_readreg(device_t, int, int);
177 static int	wb_miibus_writereg(device_t, int, int, int);
178 static void	wb_miibus_statchg(device_t);
179 
180 #ifdef WB_USEIOSPACE
181 #define WB_RES			SYS_RES_IOPORT
182 #define WB_RID			WB_PCI_LOIO
183 #else
184 #define WB_RES			SYS_RES_MEMORY
185 #define WB_RID			WB_PCI_LOMEM
186 #endif
187 
188 static device_method_t wb_methods[] = {
189 	/* Device interface */
190 	DEVMETHOD(device_probe,		wb_probe),
191 	DEVMETHOD(device_attach,	wb_attach),
192 	DEVMETHOD(device_detach,	wb_detach),
193 	DEVMETHOD(device_shutdown,	wb_shutdown),
194 
195 	/* bus interface, for miibus */
196 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
197 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
198 
199 	/* MII interface */
200 	DEVMETHOD(miibus_readreg,	wb_miibus_readreg),
201 	DEVMETHOD(miibus_writereg,	wb_miibus_writereg),
202 	DEVMETHOD(miibus_statchg,	wb_miibus_statchg),
203 	DEVMETHOD_END
204 };
205 
206 static DEFINE_CLASS_0(wb, wb_driver, wb_methods, sizeof(struct wb_softc));
207 static devclass_t wb_devclass;
208 
209 DECLARE_DUMMY_MODULE(if_wb);
210 DRIVER_MODULE(if_wb, pci, wb_driver, wb_devclass, NULL, NULL);
211 DRIVER_MODULE(miibus, wb, miibus_driver, miibus_devclass, NULL, NULL);
212 
213 #define WB_SETBIT(sc, reg, x)				\
214 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
215 
216 #define WB_CLRBIT(sc, reg, x)				\
217 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
218 
219 #define SIO_SET(x)					\
220 	CSR_WRITE_4(sc, WB_SIO,	CSR_READ_4(sc, WB_SIO) | (x))
221 
222 #define SIO_CLR(x)					\
223 	CSR_WRITE_4(sc, WB_SIO, CSR_READ_4(sc, WB_SIO) & ~(x))
224 
225 /*
226  * Send a read command and address to the EEPROM, check for ACK.
227  */
228 static void
229 wb_eeprom_putbyte(struct wb_softc *sc, int addr)
230 {
231 	int d, i;
232 
233 	d = addr | WB_EECMD_READ;
234 
235 	/*
236 	 * Feed in each bit and stobe the clock.
237 	 */
238 	for (i = 0x400; i; i >>= 1) {
239 		if (d & i)
240 			SIO_SET(WB_SIO_EE_DATAIN);
241 		else
242 			SIO_CLR(WB_SIO_EE_DATAIN);
243 		DELAY(100);
244 		SIO_SET(WB_SIO_EE_CLK);
245 		DELAY(150);
246 		SIO_CLR(WB_SIO_EE_CLK);
247 		DELAY(100);
248 	}
249 }
250 
251 /*
252  * Read a word of data stored in the EEPROM at address 'addr.'
253  */
254 static void
255 wb_eeprom_getword(struct wb_softc *sc, int addr, uint16_t *dest)
256 {
257 	int i;
258 	uint16_t word = 0;
259 
260 	/* Enter EEPROM access mode. */
261 	CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
262 
263 	/*
264 	 * Send address of word we want to read.
265 	 */
266 	wb_eeprom_putbyte(sc, addr);
267 
268 	CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
269 
270 	/*
271 	 * Start reading bits from EEPROM.
272 	 */
273 	for (i = 0x8000; i; i >>= 1) {
274 		SIO_SET(WB_SIO_EE_CLK);
275 		DELAY(100);
276 		if (CSR_READ_4(sc, WB_SIO) & WB_SIO_EE_DATAOUT)
277 			word |= i;
278 		SIO_CLR(WB_SIO_EE_CLK);
279 		DELAY(100);
280 	}
281 
282 	/* Turn off EEPROM access mode. */
283 	CSR_WRITE_4(sc, WB_SIO, 0);
284 
285 	*dest = word;
286 }
287 
288 /*
289  * Read a sequence of words from the EEPROM.
290  */
291 static void
292 wb_read_eeprom(struct wb_softc *sc, caddr_t dest, int off, int cnt)
293 {
294 	int i;
295 	uint16_t word = 0, *ptr;
296 
297 	for (i = 0; i < cnt; i++) {
298 		wb_eeprom_getword(sc, off + i, &word);
299 		ptr = (uint16_t *)(dest + (i * 2));
300 		*ptr = word;
301 	}
302 }
303 
304 /*
305  * Sync the PHYs by setting data bit and strobing the clock 32 times.
306  */
307 static void
308 wb_mii_sync(struct wb_softc *sc)
309 {
310 	int i;
311 
312 	SIO_SET(WB_SIO_MII_DIR | WB_SIO_MII_DATAIN);
313 
314 	for (i = 0; i < 32; i++) {
315 		SIO_SET(WB_SIO_MII_CLK);
316 		DELAY(1);
317 		SIO_CLR(WB_SIO_MII_CLK);
318 		DELAY(1);
319 	}
320 }
321 
322 /*
323  * Clock a series of bits through the MII.
324  */
325 static void
326 wb_mii_send(struct wb_softc *sc, uint32_t bits, int cnt)
327 {
328 	int i;
329 
330 	SIO_CLR(WB_SIO_MII_CLK);
331 
332 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
333                 if (bits & i)
334 			SIO_SET(WB_SIO_MII_DATAIN);
335                 else
336 			SIO_CLR(WB_SIO_MII_DATAIN);
337 		DELAY(1);
338 		SIO_CLR(WB_SIO_MII_CLK);
339 		DELAY(1);
340 		SIO_SET(WB_SIO_MII_CLK);
341 	}
342 }
343 
344 /*
345  * Read an PHY register through the MII.
346  */
347 static int
348 wb_mii_readreg(struct wb_softc *sc, struct wb_mii_frame *frame)
349 {
350 	int ack, i;
351 
352 	crit_enter();
353 
354 	/*
355 	 * Set up frame for RX.
356 	 */
357 	frame->mii_stdelim = WB_MII_STARTDELIM;
358 	frame->mii_opcode = WB_MII_READOP;
359 	frame->mii_turnaround = 0;
360 	frame->mii_data = 0;
361 
362 	CSR_WRITE_4(sc, WB_SIO, 0);
363 
364 	/*
365  	 * Turn on data xmit.
366 	 */
367 	SIO_SET(WB_SIO_MII_DIR);
368 
369 	wb_mii_sync(sc);
370 
371 	/*
372 	 * Send command/address info.
373 	 */
374 	wb_mii_send(sc, frame->mii_stdelim, 2);
375 	wb_mii_send(sc, frame->mii_opcode, 2);
376 	wb_mii_send(sc, frame->mii_phyaddr, 5);
377 	wb_mii_send(sc, frame->mii_regaddr, 5);
378 
379 	/* Idle bit */
380 	SIO_CLR((WB_SIO_MII_CLK | WB_SIO_MII_DATAIN));
381 	DELAY(1);
382 	SIO_SET(WB_SIO_MII_CLK);
383 	DELAY(1);
384 
385 	/* Turn off xmit. */
386 	SIO_CLR(WB_SIO_MII_DIR);
387 	/* Check for ack */
388 	SIO_CLR(WB_SIO_MII_CLK);
389 	DELAY(1);
390 	ack = CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT;
391 	SIO_SET(WB_SIO_MII_CLK);
392 	DELAY(1);
393 	SIO_CLR(WB_SIO_MII_CLK);
394 	DELAY(1);
395 	SIO_SET(WB_SIO_MII_CLK);
396 	DELAY(1);
397 
398 	/*
399 	 * Now try reading data bits. If the ack failed, we still
400 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
401 	 */
402 	if (ack) {
403 		for(i = 0; i < 16; i++) {
404 			SIO_CLR(WB_SIO_MII_CLK);
405 			DELAY(1);
406 			SIO_SET(WB_SIO_MII_CLK);
407 			DELAY(1);
408 		}
409 		goto fail;
410 	}
411 
412 	for (i = 0x8000; i; i >>= 1) {
413 		SIO_CLR(WB_SIO_MII_CLK);
414 		DELAY(1);
415 		if (!ack) {
416 			if (CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT)
417 				frame->mii_data |= i;
418 			DELAY(1);
419 		}
420 		SIO_SET(WB_SIO_MII_CLK);
421 		DELAY(1);
422 	}
423 
424 fail:
425 
426 	SIO_CLR(WB_SIO_MII_CLK);
427 	DELAY(1);
428 	SIO_SET(WB_SIO_MII_CLK);
429 	DELAY(1);
430 
431 	crit_exit();
432 
433 	if (ack)
434 		return(1);
435 	return(0);
436 }
437 
438 /*
439  * Write to a PHY register through the MII.
440  */
441 static int
442 wb_mii_writereg(struct wb_softc *sc, struct wb_mii_frame *frame)
443 {
444 
445 	crit_enter();
446 	/*
447 	 * Set up frame for TX.
448 	 */
449 
450 	frame->mii_stdelim = WB_MII_STARTDELIM;
451 	frame->mii_opcode = WB_MII_WRITEOP;
452 	frame->mii_turnaround = WB_MII_TURNAROUND;
453 
454 	/*
455  	 * Turn on data output.
456 	 */
457 	SIO_SET(WB_SIO_MII_DIR);
458 
459 	wb_mii_sync(sc);
460 
461 	wb_mii_send(sc, frame->mii_stdelim, 2);
462 	wb_mii_send(sc, frame->mii_opcode, 2);
463 	wb_mii_send(sc, frame->mii_phyaddr, 5);
464 	wb_mii_send(sc, frame->mii_regaddr, 5);
465 	wb_mii_send(sc, frame->mii_turnaround, 2);
466 	wb_mii_send(sc, frame->mii_data, 16);
467 
468 	/* Idle bit. */
469 	SIO_SET(WB_SIO_MII_CLK);
470 	DELAY(1);
471 	SIO_CLR(WB_SIO_MII_CLK);
472 	DELAY(1);
473 
474 	/*
475 	 * Turn off xmit.
476 	 */
477 	SIO_CLR(WB_SIO_MII_DIR);
478 
479 	crit_exit();
480 
481 	return(0);
482 }
483 
484 static int
485 wb_miibus_readreg(device_t dev, int phy, int reg)
486 {
487 	struct wb_softc *sc = device_get_softc(dev);
488 	struct wb_mii_frame frame;
489 
490 	bzero(&frame, sizeof(frame));
491 
492 	frame.mii_phyaddr = phy;
493 	frame.mii_regaddr = reg;
494 	wb_mii_readreg(sc, &frame);
495 
496 	return(frame.mii_data);
497 }
498 
499 static int
500 wb_miibus_writereg(device_t dev, int phy, int reg, int data)
501 {
502 	struct wb_softc *sc = device_get_softc(dev);
503 	struct wb_mii_frame frame;
504 
505 	bzero(&frame, sizeof(frame));
506 
507 	frame.mii_phyaddr = phy;
508 	frame.mii_regaddr = reg;
509 	frame.mii_data = data;
510 
511 	wb_mii_writereg(sc, &frame);
512 
513 	return(0);
514 }
515 
516 static void
517 wb_miibus_statchg(device_t dev)
518 {
519 	struct wb_softc *sc = device_get_softc(dev);
520 	struct mii_data *mii;
521 
522 	mii = device_get_softc(sc->wb_miibus);
523 	wb_setcfg(sc, mii->mii_media_active);
524 }
525 
526 /*
527  * Program the 64-bit multicast hash filter.
528  */
529 static void
530 wb_setmulti(struct wb_softc *sc)
531 {
532 	struct ifnet *ifp = &sc->arpcom.ac_if;
533 	int h = 0, mcnt = 0;
534 	uint32_t hashes[2] = { 0, 0 };
535 	struct ifmultiaddr *ifma;
536 	uint32_t rxfilt;
537 
538 	rxfilt = CSR_READ_4(sc, WB_NETCFG);
539 
540 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
541 		rxfilt |= WB_NETCFG_RX_MULTI;
542 		CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
543 		CSR_WRITE_4(sc, WB_MAR0, 0xFFFFFFFF);
544 		CSR_WRITE_4(sc, WB_MAR1, 0xFFFFFFFF);
545 		return;
546 	}
547 
548 	/* first, zot all the existing hash bits */
549 	CSR_WRITE_4(sc, WB_MAR0, 0);
550 	CSR_WRITE_4(sc, WB_MAR1, 0);
551 
552 	/* now program new ones */
553 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
554 		if (ifma->ifma_addr->sa_family != AF_LINK)
555 			continue;
556 		h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
557 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
558 		if (h < 32)
559 			hashes[0] |= (1 << h);
560 		else
561 			hashes[1] |= (1 << (h - 32));
562 		mcnt++;
563 	}
564 
565 	if (mcnt)
566 		rxfilt |= WB_NETCFG_RX_MULTI;
567 	else
568 		rxfilt &= ~WB_NETCFG_RX_MULTI;
569 
570 	CSR_WRITE_4(sc, WB_MAR0, hashes[0]);
571 	CSR_WRITE_4(sc, WB_MAR1, hashes[1]);
572 	CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
573 }
574 
575 /*
576  * The Winbond manual states that in order to fiddle with the
577  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
578  * first have to put the transmit and/or receive logic in the idle state.
579  */
580 static void
581 wb_setcfg(struct wb_softc *sc, uint32_t media)
582 {
583 	int i, restart = 0;
584 
585 	if (CSR_READ_4(sc, WB_NETCFG) & (WB_NETCFG_TX_ON | WB_NETCFG_RX_ON)) {
586 		restart = 1;
587 		WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_TX_ON | WB_NETCFG_RX_ON));
588 
589 		for (i = 0; i < WB_TIMEOUT; i++) {
590 			DELAY(10);
591 			if ((CSR_READ_4(sc, WB_ISR) & WB_ISR_TX_IDLE) &&
592 				(CSR_READ_4(sc, WB_ISR) & WB_ISR_RX_IDLE))
593 				break;
594 		}
595 
596 		if (i == WB_TIMEOUT) {
597 			if_printf(&sc->arpcom.ac_if, "failed to force tx and "
598 				  "rx to idle state\n");
599 		}
600 	}
601 
602 	if (IFM_SUBTYPE(media) == IFM_10_T)
603 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
604 	else
605 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
606 
607 	if ((media & IFM_GMASK) == IFM_FDX)
608 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
609 	else
610 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
611 
612 	if (restart)
613 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON | WB_NETCFG_RX_ON);
614 }
615 
616 static void
617 wb_reset(struct wb_softc *sc)
618 {
619 	int i;
620 	struct mii_data *mii;
621 
622 	CSR_WRITE_4(sc, WB_NETCFG, 0);
623 	CSR_WRITE_4(sc, WB_BUSCTL, 0);
624 	CSR_WRITE_4(sc, WB_TXADDR, 0);
625 	CSR_WRITE_4(sc, WB_RXADDR, 0);
626 
627 	WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
628 	WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
629 
630 	for (i = 0; i < WB_TIMEOUT; i++) {
631 		DELAY(10);
632 		if ((CSR_READ_4(sc, WB_BUSCTL) & WB_BUSCTL_RESET) == 0)
633 			break;
634 	}
635 	if (i == WB_TIMEOUT)
636 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
637 
638 	/* Wait a little while for the chip to get its brains in order. */
639 	DELAY(1000);
640 
641 	if (sc->wb_miibus == NULL)
642 		return;
643 
644 	mii = device_get_softc(sc->wb_miibus);
645 	if (mii == NULL)
646 		return;
647 
648         if (mii->mii_instance) {
649 		struct mii_softc *miisc;
650 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
651                         mii_phy_reset(miisc);
652         }
653 }
654 
655 static void
656 wb_fixmedia(struct wb_softc *sc)
657 {
658 	struct mii_data *mii;
659 	uint32_t media;
660 
661 	if (sc->wb_miibus == NULL)
662 		return;
663 
664 	mii = device_get_softc(sc->wb_miibus);
665 
666 	mii_pollstat(mii);
667 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
668 		media = mii->mii_media_active & ~IFM_10_T;
669 		media |= IFM_100_TX;
670 	} else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
671 		media = mii->mii_media_active & ~IFM_100_TX;
672 		media |= IFM_10_T;
673 	} else
674 		return;
675 
676 	ifmedia_set(&mii->mii_media, media);
677 }
678 
679 /*
680  * Probe for a Winbond chip. Check the PCI vendor and device
681  * IDs against our list and return a device name if we find a match.
682  */
683 static int
684 wb_probe(device_t dev)
685 {
686 	struct wb_type *t;
687 	uint16_t vendor, product;
688 
689 	vendor = pci_get_vendor(dev);
690 	product = pci_get_device(dev);
691 
692 	for (t = wb_devs; t->wb_name != NULL; t++) {
693 		if (vendor == t->wb_vid && product == t->wb_did) {
694 			device_set_desc(dev, t->wb_name);
695 			return(0);
696 		}
697 	}
698 
699 	return(ENXIO);
700 }
701 
702 /*
703  * Attach the interface. Allocate softc structures, do ifmedia
704  * setup and ethernet/BPF attach.
705  */
706 static int
707 wb_attach(device_t dev)
708 {
709 	u_char eaddr[ETHER_ADDR_LEN];
710 	struct wb_softc *sc;
711 	struct ifnet *ifp;
712 	int error = 0, rid;
713 
714 	sc = device_get_softc(dev);
715 	callout_init(&sc->wb_stat_timer);
716 
717 	/*
718 	 * Handle power management nonsense.
719 	 */
720 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
721 		uint32_t iobase, membase, irq;
722 
723 		/* Save important PCI config data. */
724 		iobase = pci_read_config(dev, WB_PCI_LOIO, 4);
725 		membase = pci_read_config(dev, WB_PCI_LOMEM, 4);
726 		irq = pci_read_config(dev, WB_PCI_INTLINE, 4);
727 
728 		/* Reset the power state. */
729 		device_printf(dev, "chip is in D%d power mode "
730 		"-- setting to D0\n", pci_get_powerstate(dev));
731 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
732 
733 		/* Restore PCI config data. */
734 		pci_write_config(dev, WB_PCI_LOIO, iobase, 4);
735 		pci_write_config(dev, WB_PCI_LOMEM, membase, 4);
736 		pci_write_config(dev, WB_PCI_INTLINE, irq, 4);
737 	}
738 
739 	pci_enable_busmaster(dev);
740 
741 	rid = WB_RID;
742 	sc->wb_res = bus_alloc_resource_any(dev, WB_RES, &rid, RF_ACTIVE);
743 
744 	if (sc->wb_res == NULL) {
745 		device_printf(dev, "couldn't map ports/memory\n");
746 		error = ENXIO;
747 		goto fail;
748 	}
749 
750 	sc->wb_btag = rman_get_bustag(sc->wb_res);
751 	sc->wb_bhandle = rman_get_bushandle(sc->wb_res);
752 
753 	/* Allocate interrupt */
754 	rid = 0;
755 	sc->wb_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
756 	    RF_SHAREABLE | RF_ACTIVE);
757 
758 	if (sc->wb_irq == NULL) {
759 		device_printf(dev, "couldn't map interrupt\n");
760 		error = ENXIO;
761 		goto fail;
762 	}
763 
764 	/* Save the cache line size. */
765 	sc->wb_cachesize = pci_read_config(dev, WB_PCI_CACHELEN, 4) & 0xFF;
766 
767 	ifp = &sc->arpcom.ac_if;
768 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
769 
770 	/* Reset the adapter. */
771 	wb_reset(sc);
772 
773 	/*
774 	 * Get station address from the EEPROM.
775 	 */
776 	wb_read_eeprom(sc, (caddr_t)&eaddr, 0, 3);
777 
778 	sc->wb_ldata = contigmalloc(sizeof(struct wb_list_data) + 8, M_DEVBUF,
779 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
780 
781 	if (sc->wb_ldata == NULL) {
782 		device_printf(dev, "no memory for list buffers!\n");
783 		error = ENXIO;
784 		goto fail;
785 	}
786 
787 	ifp->if_softc = sc;
788 	ifp->if_mtu = ETHERMTU;
789 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
790 	ifp->if_ioctl = wb_ioctl;
791 	ifp->if_start = wb_start;
792 	ifp->if_watchdog = wb_watchdog;
793 	ifp->if_init = wb_init;
794 	ifp->if_baudrate = 10000000;
795 	ifq_set_maxlen(&ifp->if_snd, WB_TX_LIST_CNT - 1);
796 	ifq_set_ready(&ifp->if_snd);
797 
798 	/*
799 	 * Do MII setup.
800 	 */
801 	if (mii_phy_probe(dev, &sc->wb_miibus,
802 	    wb_ifmedia_upd, wb_ifmedia_sts)) {
803 		error = ENXIO;
804 		goto fail;
805 	}
806 
807 	/*
808 	 * Call MI attach routine.
809 	 */
810 	ether_ifattach(ifp, eaddr, NULL);
811 
812 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->wb_irq));
813 
814 	error = bus_setup_intr(dev, sc->wb_irq, INTR_MPSAFE,
815 			       wb_intr, sc, &sc->wb_intrhand,
816 			       ifp->if_serializer);
817 
818 	if (error) {
819 		device_printf(dev, "couldn't set up irq\n");
820 		ether_ifdetach(ifp);
821 		goto fail;
822 	}
823 
824 	return(0);
825 
826 fail:
827 	wb_detach(dev);
828 	return(error);
829 }
830 
831 static int
832 wb_detach(device_t dev)
833 {
834 	struct wb_softc *sc = device_get_softc(dev);
835 	struct ifnet *ifp = &sc->arpcom.ac_if;
836 
837 
838 	if (device_is_attached(dev)) {
839 		lwkt_serialize_enter(ifp->if_serializer);
840 		wb_stop(sc);
841 		bus_teardown_intr(dev, sc->wb_irq, sc->wb_intrhand);
842 		lwkt_serialize_exit(ifp->if_serializer);
843 
844 		ether_ifdetach(ifp);
845 	}
846 
847 	if (sc->wb_miibus)
848 		device_delete_child(dev, sc->wb_miibus);
849 	bus_generic_detach(dev);
850 
851 	if (sc->wb_irq)
852 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
853 	if (sc->wb_res)
854 		bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
855 	if (sc->wb_ldata_ptr) {
856 		contigfree(sc->wb_ldata_ptr, sizeof(struct wb_list_data) + 8,
857 		    M_DEVBUF);
858 	}
859 
860 	return(0);
861 }
862 
863 /*
864  * Initialize the transmit descriptors.
865  */
866 static int
867 wb_list_tx_init(struct wb_softc *sc)
868 {
869 	struct wb_chain_data *cd;
870 	struct wb_list_data *ld;
871 	int i, nexti;
872 
873 	cd = &sc->wb_cdata;
874 	ld = sc->wb_ldata;
875 
876 	for (i = 0; i < WB_TX_LIST_CNT; i++) {
877 		nexti = (i == WB_TX_LIST_CNT - 1) ? 0 : i + 1;
878 		cd->wb_tx_chain[i].wb_ptr = &ld->wb_tx_list[i];
879 		cd->wb_tx_chain[i].wb_nextdesc = &cd->wb_tx_chain[nexti];
880 	}
881 
882 	cd->wb_tx_free = &cd->wb_tx_chain[0];
883 	cd->wb_tx_tail = cd->wb_tx_head = NULL;
884 
885 	return(0);
886 }
887 
888 /*
889  * Initialize the RX descriptors and allocate mbufs for them. Note that
890  * we arrange the descriptors in a closed ring, so that the last descriptor
891  * points back to the first.
892  */
893 static int
894 wb_list_rx_init(struct wb_softc *sc)
895 {
896 	struct wb_chain_data *cd;
897 	struct wb_list_data *ld;
898 	int i, nexti;
899 
900 	cd = &sc->wb_cdata;
901 	ld = sc->wb_ldata;
902 
903 	for (i = 0; i < WB_RX_LIST_CNT; i++) {
904 		cd->wb_rx_chain[i].wb_ptr = &ld->wb_rx_list[i];
905 		cd->wb_rx_chain[i].wb_buf = &ld->wb_rxbufs[i];
906 		if (wb_newbuf(sc, &cd->wb_rx_chain[i], NULL) == ENOBUFS)
907 			return(ENOBUFS);
908 		nexti = (WB_RX_LIST_CNT - 1) ? 0 : i + 1;
909 		cd->wb_rx_chain[i].wb_nextdesc = &cd->wb_rx_chain[nexti];
910 		ld->wb_rx_list[i].wb_next =  vtophys(&ld->wb_rx_list[nexti]);
911 	}
912 
913 	cd->wb_rx_head = &cd->wb_rx_chain[0];
914 
915 	return(0);
916 }
917 
918 static void
919 wb_bfree(void *arg)
920 {
921 }
922 
923 /*
924  * Initialize an RX descriptor and attach an MBUF cluster.
925  */
926 static int
927 wb_newbuf(struct wb_softc *sc, struct wb_chain_onefrag *c, struct mbuf *m)
928 {
929 	struct mbuf *m_new = NULL;
930 
931 	if (m == NULL) {
932 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
933 		if (m_new == NULL)
934 			return(ENOBUFS);
935 
936 		m_new->m_data = m_new->m_ext.ext_buf = c->wb_buf;
937 		m_new->m_flags |= M_EXT;
938 		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
939 		    m_new->m_len = WB_BUFBYTES;
940 		m_new->m_ext.ext_free = wb_bfree;
941 		m_new->m_ext.ext_ref = wb_bfree;
942 	} else {
943 		m_new = m;
944 		m_new->m_len = m_new->m_pkthdr.len = WB_BUFBYTES;
945 		m_new->m_data = m_new->m_ext.ext_buf;
946 	}
947 
948 	m_adj(m_new, sizeof(uint64_t));
949 
950 	c->wb_mbuf = m_new;
951 	c->wb_ptr->wb_data = vtophys(mtod(m_new, caddr_t));
952 	c->wb_ptr->wb_ctl = WB_RXCTL_RLINK | 1536;
953 	c->wb_ptr->wb_status = WB_RXSTAT;
954 
955 	return(0);
956 }
957 
958 /*
959  * A frame has been uploaded: pass the resulting mbuf chain up to
960  * the higher level protocols.
961  */
962 static void
963 wb_rxeof(struct wb_softc *sc)
964 {
965         struct ifnet *ifp = &sc->arpcom.ac_if;
966         struct mbuf *m, *m0;
967 	struct wb_chain_onefrag *cur_rx;
968 	int total_len = 0;
969 	uint32_t rxstat;
970 
971 	for (;;) {
972 		rxstat = sc->wb_cdata.wb_rx_head->wb_ptr->wb_status;
973 		if ((rxstat & WB_RXSTAT_OWN) == 0)
974 			break;
975 
976 		cur_rx = sc->wb_cdata.wb_rx_head;
977 		sc->wb_cdata.wb_rx_head = cur_rx->wb_nextdesc;
978 
979 		m = cur_rx->wb_mbuf;
980 
981 		if ((rxstat & WB_RXSTAT_MIIERR) ||
982 		    (WB_RXBYTES(cur_rx->wb_ptr->wb_status) < WB_MIN_FRAMELEN) ||
983 		    (WB_RXBYTES(cur_rx->wb_ptr->wb_status) > 1536) ||
984 		    (rxstat & WB_RXSTAT_LASTFRAG) == 0||
985 		    (rxstat & WB_RXSTAT_RXCMP) == 0) {
986 			IFNET_STAT_INC(ifp, ierrors, 1);
987 			wb_newbuf(sc, cur_rx, m);
988 			if_printf(ifp, "receiver babbling: possible chip "
989 				  "bug, forcing reset\n");
990 			wb_fixmedia(sc);
991 			wb_reset(sc);
992 			wb_init(sc);
993 			return;
994 		}
995 
996 		if (rxstat & WB_RXSTAT_RXERR) {
997 			IFNET_STAT_INC(ifp, ierrors, 1);
998 			wb_newbuf(sc, cur_rx, m);
999 			break;
1000 		}
1001 
1002 		/* No errors; receive the packet. */
1003 		total_len = WB_RXBYTES(cur_rx->wb_ptr->wb_status);
1004 
1005 		/*
1006 		 * XXX The Winbond chip includes the CRC with every
1007 		 * received frame, and there's no way to turn this
1008 		 * behavior off (at least, I can't find anything in
1009 	 	 * the manual that explains how to do it) so we have
1010 		 * to trim off the CRC manually.
1011 		 */
1012 		total_len -= ETHER_CRC_LEN;
1013 
1014 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1015 			      total_len + ETHER_ALIGN, 0, ifp);
1016 		wb_newbuf(sc, cur_rx, m);
1017 		if (m0 == NULL) {
1018 			IFNET_STAT_INC(ifp, ierrors, 1);
1019 			break;
1020 		}
1021 		m_adj(m0, ETHER_ALIGN);
1022 		m = m0;
1023 
1024 		IFNET_STAT_INC(ifp, ipackets, 1);
1025 		ifp->if_input(ifp, m, NULL, -1);
1026 	}
1027 }
1028 
1029 static void
1030 wb_rxeoc(struct wb_softc *sc)
1031 {
1032 	wb_rxeof(sc);
1033 
1034 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1035 	CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
1036 	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1037 	if (CSR_READ_4(sc, WB_ISR) & WB_RXSTATE_SUSPEND)
1038 		CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
1039 }
1040 
1041 /*
1042  * A frame was downloaded to the chip. It's safe for us to clean up
1043  * the list buffers.
1044  */
1045 static void
1046 wb_txeof(struct wb_softc *sc)
1047 {
1048 	struct ifnet *ifp = &sc->arpcom.ac_if;
1049 	struct wb_chain *cur_tx;
1050 
1051 	/* Clear the timeout timer. */
1052 	ifp->if_timer = 0;
1053 
1054 	if (sc->wb_cdata.wb_tx_head == NULL)
1055 		return;
1056 
1057 	/*
1058 	 * Go through our tx list and free mbufs for those
1059 	 * frames that have been transmitted.
1060 	 */
1061 	while(sc->wb_cdata.wb_tx_head->wb_mbuf != NULL) {
1062 		uint32_t txstat;
1063 
1064 		cur_tx = sc->wb_cdata.wb_tx_head;
1065 		txstat = WB_TXSTATUS(cur_tx);
1066 
1067 		if ((txstat & WB_TXSTAT_OWN) || txstat == WB_UNSENT)
1068 			break;
1069 
1070 		if (txstat & WB_TXSTAT_TXERR) {
1071 			IFNET_STAT_INC(ifp, oerrors, 1);
1072 			if (txstat & WB_TXSTAT_ABORT)
1073 				IFNET_STAT_INC(ifp, collisions, 1);
1074 			if (txstat & WB_TXSTAT_LATECOLL)
1075 				IFNET_STAT_INC(ifp, collisions, 1);
1076 		}
1077 
1078 		IFNET_STAT_INC(ifp, collisions,
1079 		    (txstat & WB_TXSTAT_COLLCNT) >> 3);
1080 
1081 		IFNET_STAT_INC(ifp, opackets, 1);
1082 		m_freem(cur_tx->wb_mbuf);
1083 		cur_tx->wb_mbuf = NULL;
1084 
1085 		if (sc->wb_cdata.wb_tx_head == sc->wb_cdata.wb_tx_tail) {
1086 			sc->wb_cdata.wb_tx_head = NULL;
1087 			sc->wb_cdata.wb_tx_tail = NULL;
1088 			break;
1089 		}
1090 
1091 		sc->wb_cdata.wb_tx_head = cur_tx->wb_nextdesc;
1092 	}
1093 }
1094 
1095 /*
1096  * TX 'end of channel' interrupt handler.
1097  */
1098 static void
1099 wb_txeoc(struct wb_softc *sc)
1100 {
1101 	struct ifnet *ifp = &sc->arpcom.ac_if;
1102 
1103 	ifp->if_timer = 0;
1104 
1105 	if (sc->wb_cdata.wb_tx_head == NULL) {
1106 		ifq_clr_oactive(&ifp->if_snd);
1107 		sc->wb_cdata.wb_tx_tail = NULL;
1108 	} else if (WB_TXOWN(sc->wb_cdata.wb_tx_head) == WB_UNSENT) {
1109 		WB_TXOWN(sc->wb_cdata.wb_tx_head) = WB_TXSTAT_OWN;
1110 		ifp->if_timer = 5;
1111 		CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1112 	}
1113 }
1114 
1115 static void
1116 wb_intr(void *arg)
1117 {
1118 	struct wb_softc *sc = arg;
1119 	struct ifnet *ifp = &sc->arpcom.ac_if;
1120 	uint32_t status;
1121 
1122 	if ((ifp->if_flags & IFF_UP) == 0)
1123 		return;
1124 
1125 	/* Disable interrupts. */
1126 	CSR_WRITE_4(sc, WB_IMR, 0x00000000);
1127 
1128 	for (;;) {
1129 		status = CSR_READ_4(sc, WB_ISR);
1130 		if (status)
1131 			CSR_WRITE_4(sc, WB_ISR, status);
1132 
1133 		if ((status & WB_INTRS) == 0)
1134 			break;
1135 
1136 		if ((status & WB_ISR_RX_NOBUF) || (status & WB_ISR_RX_ERR)) {
1137 			IFNET_STAT_INC(ifp, ierrors, 1);
1138 			wb_reset(sc);
1139 			if (status & WB_ISR_RX_ERR)
1140 				wb_fixmedia(sc);
1141 			wb_init(sc);
1142 			continue;
1143 		}
1144 
1145 		if (status & WB_ISR_RX_OK)
1146 			wb_rxeof(sc);
1147 
1148 		if (status & WB_ISR_RX_IDLE)
1149 			wb_rxeoc(sc);
1150 
1151 		if (status & WB_ISR_TX_OK)
1152 			wb_txeof(sc);
1153 
1154 		if (status & WB_ISR_TX_NOBUF)
1155 			wb_txeoc(sc);
1156 
1157 		if (status & WB_ISR_TX_IDLE) {
1158 			wb_txeof(sc);
1159 			if (sc->wb_cdata.wb_tx_head != NULL) {
1160 				WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1161 				CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1162 			}
1163 		}
1164 
1165 		if (status & WB_ISR_TX_UNDERRUN) {
1166 			IFNET_STAT_INC(ifp, oerrors, 1);
1167 			wb_txeof(sc);
1168 			WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1169 			/* Jack up TX threshold */
1170 			sc->wb_txthresh += WB_TXTHRESH_CHUNK;
1171 			WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
1172 			WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
1173 			WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1174 		}
1175 
1176 		if (status & WB_ISR_BUS_ERR) {
1177 			wb_reset(sc);
1178 			wb_init(sc);
1179 		}
1180 	}
1181 
1182 	/* Re-enable interrupts. */
1183 	CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
1184 
1185 	if (!ifq_is_empty(&ifp->if_snd))
1186 		if_devstart(ifp);
1187 }
1188 
1189 static void
1190 wb_tick(void *xsc)
1191 {
1192 	struct wb_softc *sc = xsc;
1193 	struct ifnet *ifp = &sc->arpcom.ac_if;
1194 	struct mii_data *mii = device_get_softc(sc->wb_miibus);
1195 
1196 	lwkt_serialize_enter(ifp->if_serializer);
1197 	mii_tick(mii);
1198 	callout_reset(&sc->wb_stat_timer, hz, wb_tick, sc);
1199 	lwkt_serialize_exit(ifp->if_serializer);
1200 }
1201 
1202 /*
1203  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1204  * pointers to the fragment pointers.
1205  */
1206 static int
1207 wb_encap(struct wb_softc *sc, struct wb_chain *c, struct mbuf *m_head)
1208 {
1209 	struct wb_desc *f = NULL;
1210 	struct mbuf *m;
1211 	int frag, total_len;
1212 
1213 	/*
1214  	 * Start packing the mbufs in this chain into
1215 	 * the fragment pointers. Stop when we run out
1216  	 * of fragments or hit the end of the mbuf chain.
1217 	 */
1218 	total_len = 0;
1219 
1220 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1221 		if (m->m_len != 0) {
1222 			if (frag == WB_MAXFRAGS)
1223 				break;
1224 			total_len += m->m_len;
1225 			f = &c->wb_ptr->wb_frag[frag];
1226 			f->wb_ctl = WB_TXCTL_TLINK | m->m_len;
1227 			if (frag == 0) {
1228 				f->wb_ctl |= WB_TXCTL_FIRSTFRAG;
1229 				f->wb_status = 0;
1230 			} else {
1231 				f->wb_status = WB_TXSTAT_OWN;
1232 			}
1233 			f->wb_next = vtophys(&c->wb_ptr->wb_frag[frag + 1]);
1234 			f->wb_data = vtophys(mtod(m, vm_offset_t));
1235 			frag++;
1236 		}
1237 	}
1238 
1239 	/*
1240 	 * Handle special case: we used up all 16 fragments,
1241 	 * but we have more mbufs left in the chain. Copy the
1242 	 * data into an mbuf cluster. Note that we don't
1243 	 * bother clearing the values in the other fragment
1244 	 * pointers/counters; it wouldn't gain us anything,
1245 	 * and would waste cycles.
1246 	 */
1247 	if (m != NULL) {
1248 		struct mbuf *m_new = NULL;
1249 
1250 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
1251 		if (m_new == NULL)
1252 			return(1);
1253 		if (m_head->m_pkthdr.len > MHLEN) {
1254 			MCLGET(m_new, M_NOWAIT);
1255 			if ((m_new->m_flags & M_EXT) == 0) {
1256 				m_freem(m_new);
1257 				return(1);
1258 			}
1259 		}
1260 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1261 		    mtod(m_new, void *));
1262 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1263 		m_freem(m_head);
1264 		m_head = m_new;
1265 		f = &c->wb_ptr->wb_frag[0];
1266 		f->wb_status = 0;
1267 		f->wb_data = vtophys(mtod(m_new, caddr_t));
1268 		f->wb_ctl = total_len = m_new->m_len;
1269 		f->wb_ctl |= WB_TXCTL_TLINK|WB_TXCTL_FIRSTFRAG;
1270 		frag = 1;
1271 	}
1272 
1273 	if (total_len < WB_MIN_FRAMELEN) {
1274 		f = &c->wb_ptr->wb_frag[frag];
1275 		f->wb_ctl = WB_MIN_FRAMELEN - total_len;
1276 		f->wb_data = vtophys(&sc->wb_cdata.wb_pad);
1277 		f->wb_ctl |= WB_TXCTL_TLINK;
1278 		f->wb_status = WB_TXSTAT_OWN;
1279 		frag++;
1280 	}
1281 
1282 	c->wb_mbuf = m_head;
1283 	c->wb_lastdesc = frag - 1;
1284 	WB_TXCTL(c) |= WB_TXCTL_LASTFRAG;
1285 	WB_TXNEXT(c) = vtophys(&c->wb_nextdesc->wb_ptr->wb_frag[0]);
1286 
1287 	return(0);
1288 }
1289 
1290 /*
1291  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1292  * to the mbuf data regions directly in the transmit lists. We also save a
1293  * copy of the pointers since the transmit list fragment pointers are
1294  * physical addresses.
1295  */
1296 static void
1297 wb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1298 {
1299 	struct wb_softc *sc = ifp->if_softc;
1300 	struct mbuf *m_head = NULL;
1301 	struct wb_chain *cur_tx = NULL, *start_tx;
1302 
1303 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1304 
1305 	/*
1306 	 * Check for an available queue slot. If there are none,
1307 	 * punt.
1308 	 */
1309 	if (sc->wb_cdata.wb_tx_free->wb_mbuf != NULL) {
1310 		ifq_set_oactive(&ifp->if_snd);
1311 		return;
1312 	}
1313 
1314 	start_tx = sc->wb_cdata.wb_tx_free;
1315 
1316 	while (sc->wb_cdata.wb_tx_free->wb_mbuf == NULL) {
1317 		m_head = ifq_dequeue(&ifp->if_snd);
1318 		if (m_head == NULL)
1319 			break;
1320 
1321 		/* Pick a descriptor off the free list. */
1322 		cur_tx = sc->wb_cdata.wb_tx_free;
1323 		sc->wb_cdata.wb_tx_free = cur_tx->wb_nextdesc;
1324 
1325 		/* Pack the data into the descriptor. */
1326 		wb_encap(sc, cur_tx, m_head);
1327 
1328 		if (cur_tx != start_tx)
1329 			WB_TXOWN(cur_tx) = WB_TXSTAT_OWN;
1330 
1331 		BPF_MTAP(ifp, cur_tx->wb_mbuf);
1332 	}
1333 
1334 	/*
1335 	 * If there are no packets queued, bail.
1336 	 */
1337 	if (cur_tx == NULL)
1338 		return;
1339 
1340 	/*
1341 	 * Place the request for the upload interrupt
1342 	 * in the last descriptor in the chain. This way, if
1343 	 * we're chaining several packets at once, we'll only
1344 	 * get an interupt once for the whole chain rather than
1345 	 * once for each packet.
1346 	 */
1347 	WB_TXCTL(cur_tx) |= WB_TXCTL_FINT;
1348 	cur_tx->wb_ptr->wb_frag[0].wb_ctl |= WB_TXCTL_FINT;
1349 	sc->wb_cdata.wb_tx_tail = cur_tx;
1350 
1351 	if (sc->wb_cdata.wb_tx_head == NULL) {
1352 		sc->wb_cdata.wb_tx_head = start_tx;
1353 		WB_TXOWN(start_tx) = WB_TXSTAT_OWN;
1354 		CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1355 	} else {
1356 		/*
1357 		 * We need to distinguish between the case where
1358 		 * the own bit is clear because the chip cleared it
1359 		 * and where the own bit is clear because we haven't
1360 		 * set it yet. The magic value WB_UNSET is just some
1361 		 * ramdomly chosen number which doesn't have the own
1362 	 	 * bit set. When we actually transmit the frame, the
1363 		 * status word will have _only_ the own bit set, so
1364 		 * the txeoc handler will be able to tell if it needs
1365 		 * to initiate another transmission to flush out pending
1366 		 * frames.
1367 		 */
1368 		WB_TXOWN(start_tx) = WB_UNSENT;
1369 	}
1370 
1371 	/*
1372 	 * Set a timeout in case the chip goes out to lunch.
1373 	 */
1374 	ifp->if_timer = 5;
1375 }
1376 
1377 static void
1378 wb_init(void *xsc)
1379 {
1380 	struct wb_softc *sc = xsc;
1381 	struct ifnet *ifp = &sc->arpcom.ac_if;
1382 	int i;
1383 	struct mii_data *mii;
1384 
1385 	crit_enter();
1386 
1387 	mii = device_get_softc(sc->wb_miibus);
1388 
1389 	/*
1390 	 * Cancel pending I/O and free all RX/TX buffers.
1391 	 */
1392 	wb_stop(sc);
1393 	wb_reset(sc);
1394 
1395 	sc->wb_txthresh = WB_TXTHRESH_INIT;
1396 
1397 	/*
1398 	 * Set cache alignment and burst length.
1399 	 */
1400 #ifdef foo
1401 	CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_CONFIG);
1402 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
1403 	WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
1404 #endif
1405 
1406 	CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_MUSTBEONE | WB_BUSCTL_ARBITRATION);
1407 	WB_SETBIT(sc, WB_BUSCTL, WB_BURSTLEN_16LONG);
1408 	switch(sc->wb_cachesize) {
1409 	case 32:
1410 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_32LONG);
1411 		break;
1412 	case 16:
1413 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_16LONG);
1414 		break;
1415 	case 8:
1416 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_8LONG);
1417 		break;
1418 	case 0:
1419 	default:
1420 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_NONE);
1421 		break;
1422 	}
1423 
1424 	/* This doesn't tend to work too well at 100Mbps. */
1425 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_EARLY_ON);
1426 
1427 	/* Init our MAC address */
1428 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1429 		CSR_WRITE_1(sc, WB_NODE0 + i, sc->arpcom.ac_enaddr[i]);
1430 
1431 	/* Init circular RX list. */
1432 	if (wb_list_rx_init(sc) == ENOBUFS) {
1433 		if_printf(ifp, "initialization failed: no "
1434 			  "memory for rx buffers\n");
1435 		wb_stop(sc);
1436 		crit_exit();
1437 		return;
1438 	}
1439 
1440 	/* Init TX descriptors. */
1441 	wb_list_tx_init(sc);
1442 
1443 	/* If we want promiscuous mode, set the allframes bit. */
1444 	if (ifp->if_flags & IFF_PROMISC)
1445 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
1446 	else
1447 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
1448 
1449 	/*
1450 	 * Set capture broadcast bit to capture broadcast frames.
1451 	 */
1452 	if (ifp->if_flags & IFF_BROADCAST)
1453 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
1454 	else
1455 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
1456 
1457 	/*
1458 	 * Program the multicast filter, if necessary.
1459 	 */
1460 	wb_setmulti(sc);
1461 
1462 	/*
1463 	 * Load the address of the RX list.
1464 	 */
1465 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1466 	CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
1467 
1468 	/*
1469 	 * Enable interrupts.
1470 	 */
1471 	CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
1472 	CSR_WRITE_4(sc, WB_ISR, 0xFFFFFFFF);
1473 
1474 	/* Enable receiver and transmitter. */
1475 	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1476 	CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
1477 
1478 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1479 	CSR_WRITE_4(sc, WB_TXADDR, vtophys(&sc->wb_ldata->wb_tx_list[0]));
1480 	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1481 
1482 	mii_mediachg(mii);
1483 
1484 	ifp->if_flags |= IFF_RUNNING;
1485 	ifq_clr_oactive(&ifp->if_snd);
1486 
1487 	crit_exit();
1488 
1489 	callout_reset(&sc->wb_stat_timer, hz, wb_tick, sc);
1490 }
1491 
1492 /*
1493  * Set media options.
1494  */
1495 static int
1496 wb_ifmedia_upd(struct ifnet *ifp)
1497 {
1498 	struct wb_softc *sc = ifp->if_softc;
1499 
1500 	if (ifp->if_flags & IFF_UP)
1501 		wb_init(sc);
1502 
1503 	return(0);
1504 }
1505 
1506 /*
1507  * Report current media status.
1508  */
1509 static void
1510 wb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1511 {
1512 	struct wb_softc *sc = ifp->if_softc;
1513 	struct mii_data *mii = device_get_softc(sc->wb_miibus);
1514 
1515 	mii_pollstat(mii);
1516 	ifmr->ifm_active = mii->mii_media_active;
1517 	ifmr->ifm_status = mii->mii_media_status;
1518 }
1519 
1520 static int
1521 wb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1522 {
1523 	struct wb_softc *sc = ifp->if_softc;
1524 	struct mii_data *mii;
1525 	struct ifreq *ifr = (struct ifreq *) data;
1526 	int error = 0;
1527 
1528 	crit_enter();
1529 
1530 	switch(command) {
1531 	case SIOCSIFFLAGS:
1532 		if (ifp->if_flags & IFF_UP)
1533 			wb_init(sc);
1534 		else if (ifp->if_flags & IFF_RUNNING)
1535 			wb_stop(sc);
1536 		error = 0;
1537 		break;
1538 	case SIOCADDMULTI:
1539 	case SIOCDELMULTI:
1540 		wb_setmulti(sc);
1541 		error = 0;
1542 		break;
1543 	case SIOCGIFMEDIA:
1544 	case SIOCSIFMEDIA:
1545 		mii = device_get_softc(sc->wb_miibus);
1546 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1547 		break;
1548 	default:
1549 		error = ether_ioctl(ifp, command, data);
1550 		break;
1551 	}
1552 
1553 	crit_exit();
1554 
1555 	return(error);
1556 }
1557 
1558 static void
1559 wb_watchdog(struct ifnet *ifp)
1560 {
1561 	struct wb_softc *sc = ifp->if_softc;
1562 
1563 	IFNET_STAT_INC(ifp, oerrors, 1);
1564 	if_printf(ifp, "watchdog timeout\n");
1565 #ifdef foo
1566 	if ((wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) == 0)
1567 		if_printf(ifp, "no carrier - transceiver cable problem?\n");
1568 #endif
1569 	wb_stop(sc);
1570 	wb_reset(sc);
1571 	wb_init(sc);
1572 
1573 	if (!ifq_is_empty(&ifp->if_snd))
1574 		if_devstart(ifp);
1575 }
1576 
1577 /*
1578  * Stop the adapter and free any mbufs allocated to the
1579  * RX and TX lists.
1580  */
1581 static void
1582 wb_stop(struct wb_softc *sc)
1583 {
1584 	struct ifnet *ifp = &sc->arpcom.ac_if;
1585 	int i;
1586 
1587 	ifp->if_timer = 0;
1588 
1589 	callout_stop(&sc->wb_stat_timer);
1590 
1591 	WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_RX_ON | WB_NETCFG_TX_ON));
1592 	CSR_WRITE_4(sc, WB_IMR, 0x00000000);
1593 	CSR_WRITE_4(sc, WB_TXADDR, 0x00000000);
1594 	CSR_WRITE_4(sc, WB_RXADDR, 0x00000000);
1595 
1596 	/*
1597 	 * Free data in the RX lists.
1598 	 */
1599 	for (i = 0; i < WB_RX_LIST_CNT; i++) {
1600 		if (sc->wb_cdata.wb_rx_chain[i].wb_mbuf != NULL) {
1601 			m_freem(sc->wb_cdata.wb_rx_chain[i].wb_mbuf);
1602 			sc->wb_cdata.wb_rx_chain[i].wb_mbuf = NULL;
1603 		}
1604 	}
1605 	bzero(&sc->wb_ldata->wb_rx_list, sizeof(sc->wb_ldata->wb_rx_list));
1606 
1607 	/*
1608 	 * Free the TX list buffers.
1609 	 */
1610 	for (i = 0; i < WB_TX_LIST_CNT; i++) {
1611 		if (sc->wb_cdata.wb_tx_chain[i].wb_mbuf != NULL) {
1612 			m_freem(sc->wb_cdata.wb_tx_chain[i].wb_mbuf);
1613 			sc->wb_cdata.wb_tx_chain[i].wb_mbuf = NULL;
1614 		}
1615 	}
1616 
1617 	bzero(&sc->wb_ldata->wb_tx_list, sizeof(sc->wb_ldata->wb_tx_list));
1618 
1619 	ifp->if_flags &= ~IFF_RUNNING;
1620 	ifq_clr_oactive(&ifp->if_snd);
1621 }
1622 
1623 /*
1624  * Stop all chip I/O so that the kernel's probe routines don't
1625  * get confused by errant DMAs when rebooting.
1626  */
1627 static void
1628 wb_shutdown(device_t dev)
1629 {
1630 	struct wb_softc *sc = device_get_softc(dev);
1631 	struct ifnet *ifp = &sc->arpcom.ac_if;
1632 
1633 	lwkt_serialize_enter(ifp->if_serializer);
1634 	wb_stop(sc);
1635 	lwkt_serialize_exit(ifp->if_serializer);
1636 }
1637 
1638